八年级数学 图形在坐标系中的平移教案

合集下载

浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》教学设计

浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》教学设计

浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》教学设计一. 教材分析浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》是学生在学习了平面直角坐标系、图形的性质等知识的基础上,进一步学习图形的变换。

本节课主要内容是图形的轴对称和平移,这两种变换在实际生活中有着广泛的应用。

教材通过丰富的例题和练习题,引导学生掌握轴对称和平移的性质,培养学生的动手操作能力和空间想象能力。

二. 学情分析八年级的学生已经掌握了平面直角坐标系的基本知识,具备了一定的空间想象能力。

但是,对于轴对称和平移的理解可能还不够深入,需要通过实例和操作来进一步巩固。

此外,学生对于实际生活中的对称和变换现象可能有一定的了解,但需要引导他们将这些现象与数学知识结合起来。

三. 教学目标1.理解轴对称和平移的定义及性质。

2.能够识别和判断图形是否具有轴对称和平移性质。

3.能够运用轴对称和平移的知识解决实际问题。

4.培养学生的空间想象能力和动手操作能力。

四. 教学重难点1.轴对称和平移的定义及性质。

2.图形轴对称和平移的判断。

3.轴对称和平移在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论来理解轴对称和平移的性质。

2.利用多媒体课件和实物模型,直观展示轴对称和平移的变换过程,帮助学生建立空间想象。

3.注重动手操作,让学生通过实际操作来体会轴对称和平移的特点。

4.设计丰富的练习题,让学生在实践中巩固所学知识。

六. 教学准备1.多媒体课件和实物模型。

2.练习题和答案。

3.黑板和粉笔。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一些实际生活中的对称和变换现象,如剪纸、建筑物的对称等,引导学生关注这些现象背后的数学原理。

2.呈现(10分钟)介绍轴对称和平移的定义及性质,通过示例和动画演示,让学生直观地理解这两种变换。

3.操练(10分钟)让学生分组进行动手操作,利用实物模型或画图工具,尝试进行轴对称和平移变换,并观察变换前后的图形特点。

11.2图形在坐标系中的平移教学设计

11.2图形在坐标系中的平移教学设计
活动4初显身手运用新知
播放例题的多媒体课件,教师引导学生利用规律进行解答
活动5举一反三小结归纳
通过例题的学习,教师继续引导学生利用所学的知识解题,并小结图形的平移变换规律
活动6巩固练习畅谈收获
通过练习和对所学内容的回顾,加深对用坐标不服水土平移的知识的理解,渗透由具体到抽象的数学研究方法。
教学准备
学生
另外,“简记”只是为了学生更好地去记忆,所以教师应加以解释。
四、初显身手运用新知
前面是探索点的平移规律,若对一个图形进行平移,又该如何呢?我们结合例题解决:
如图,ΔABC三个顶点的坐标分别是A(4,3),B(3,1),C(1,2)。
⑴将ΔABC的横坐标都减去6,纵坐标不变,分别得到点D、E、F,依次连接D、E、F各点,所ห้องสมุดไป่ตู้ΔDEF与ΔABC的大小、形状和位置有什么关系?
为了更好记忆,可简记为:“上下x不变,左右y不变;右上加,左下减。”
教师先让学生自己先独立完成填空(当然,确实有困难的,可向同学或老师求助),再与同桌说说这个“归纳”的具体意义。同时,为了更好地记忆,教师应引导学生用自己的语言来小结平规律。
培养学生的独立解决问题的能力或是与他人合作的能力,同时也培养学生语言叙述和表达能力。
直尺、三角尺、铅笔
教师
多媒体平台
教学过程
问题与情境
师生行为
设计意图
一、创设情境提出问题
1、前面我们学习了哪些与坐标有关的知识?
2、请大家组用坐标表示“第三组第二位,第三组第四位”,从而引导学生得出点的位置不同,它们的坐标也不同,因此,把一个点向左或向右平移时,点的坐标会变化吗?有什么规律?
教师提出问题,学生畅所欲言
学生既有分工,又有合作,所以能充分地调动他们的积极性。同时,同桌之间互相举例,培养他们养成与人合作的习惯。并且通过教师的抽查,能及时便于教师掌握学生的学习情况,以便于调节教学进度。

沪科版-数学-八年级上册-11.2.3 图形在坐标系中的平移 教案

沪科版-数学-八年级上册-11.2.3 图形在坐标系中的平移 教案

11.2.3 图形在坐标系中的平移教案教学目标1.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程.2.用坐标表示平移体现了平面直角坐标系在数学中的应用.3.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.教材分析重点在平面直角坐标系中,图形平移变化中坐标的变化规律难点在平面直角坐标系中,图形平移变化中坐标的变化规律教具电脑、投影仪教学过程一、引言上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.二、新课展示问题:教材第56页图.(1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位长度呢?(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(,));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,)).教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.例如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?引导学生动手操作,按要求画出图形后,解答此例题.解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC 的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.三、课堂达标:1、已知点P的坐标是(4,-6),则这个点到x轴的距离是。

八年级数学上册 第11章 平面直角坐标系 11.2 图形在坐标系中的平移教案 (新版)沪科版

八年级数学上册 第11章 平面直角坐标系 11.2 图形在坐标系中的平移教案 (新版)沪科版

11.2图形在坐标系中的平移◇教学目标◇【知识与技能】1.能在平面直角坐标系中用坐标的方法研究图形的变换,掌握图形在平移过程中各点坐标的变化规律,理解图形在平面直角坐标系上的平移实质上就是点坐标的对应变换;2.运用图形在平面直角坐标系中平移的点坐标的变化规律进行简单的平移作图.【过程与方法】经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程.【情感、态度与价值观】让学生发现数学与图形的平移、物体的运动等有实际意义的事情之间的关系,体会数学在现实生活中的用途.◇教学重难点◇【教学重点】掌握用坐标系的变化规律来描述平移的过程.【教学难点】根据图形的平移过程,探索、归纳出坐标的变化规律.◇教学过程◇一、情境导入(1)平移的概念是什么?(2)下象棋时,棋子的移动,什么在变,什么不变?在棋盘上推动棋子是否可以看成图形在平面上的平移?二、合作探究1.2.探究图形的平移与其坐标变化的关系:(1)左、右平移:原图形上的点(x,y)(x a,y);原图形上的点(x,y)(x a,y).(2)上、下平移:原图形上的点(x,y)(x,y b);原图形上的点(x,y)(x,y b).3.归纳出平移规律:(1)三角形的平移,是通过三角形任意一点坐标的变化而得到的.(2)在平面直角坐标系中,沿横轴平移,图形上每一点的纵坐标不变,而横坐标增减,简记为“左减右加”;沿纵轴平移,横坐标不变,纵坐标增减,简记为“上加下减”.(3)“左减右加,上加下减”也可这样理解:按x轴(y轴)正方向平移,则横(纵)坐标加上平移的单位数量,按x轴(y轴)负方向平移,则横(纵)坐标减去平移的单位数量.典例1如图,将三角形ABC先向右平移6个单位,再向下平移2个单位得到三角形A1B1C1,写出各顶点变动前后的坐标.[解析]用箭头代表平移,有A(-2,6)→(4,6)→A1(4,4),B(-4,4)→(2,4)→B1(2,2),C(1,1)→(7,1)→C1(7,-1).变式训练将三角形ABC先向左移动3个单位,再向上移动2个单位,得到三角形A2B2C2,写出三角形A2B2C2的各顶点坐标.[解析]点A2(-5,8),点B2(-7,6),点C(-2,3).典例2说一说,下列由点A到点B是怎样平移的?(1)A(x,y)→B(x-1,y+2);(2)A(x,y)→B(x+3,y-2);(3)A(x+3,y-2)→B(x,y).[解析](1)将点A先向左平移1个单位,再向上平移2个单位,即可得到点B.(2)将点A先向右平移3个单位,再向下平移2个单位,即可得到点B.(3)将点先向左平移3个单位,再向上平移2个单位,即可得到点【技巧点拨】由坐标的变化确定平移的过程:横坐标变大(小)向右(左)移,纵坐标变大(小)向上(下)移.平移的距离,是平移前后相应坐标差的绝对值.图形在坐标系中的平移1.点的平移与坐标的变化.2.图形的平移与其坐标变化的关系.3.平移规律.◇教学反思◇本节课的主要内容是平移的变化规律“左减右加”“上加下减”,让学生在理解的基础上加以消化掌握,不能死记硬背,只要正确作出图形即可知道变化情况.方位角和距离的讲解要补充并强化.教学时注重与中考知识点链接,训练学生的逆向思维能力.感谢您的支持,我们会努力把内容做得更好!。

11.2图形在坐标系中的平移-沪科版八年级数学上册教案

11.2图形在坐标系中的平移-沪科版八年级数学上册教案

11.2 图形在坐标系中的平移-沪科版八年级数学上册教案一、教学目标1.理解平移的概念及特点2.理解图形在坐标系中的平移方法和规律3.掌握图形在坐标系中进行平移的技巧4.理解平移对图形的影响及其性质二、教学重难点•教学重点:图形在坐标系上的平移方法及规律•教学难点:对图形进行平移的技巧和对平移对图形的影响及其性质的理解三、教学内容及过程1. 平移的概念及特点•平移的定义:平移是指将一个图形沿着某个方向移动一段距离后,形状和大小都不变的变化。

它可以看作是一个向量的移动过程。

•平移的性质:平移有保持长度、角度、面积等性质的特点。

2. 图形在坐标系中的平移方法和规律•图形在坐标系中进行平移的方法:将图形的每个顶点沿着平移的方向移动相同的距离。

•平移规律:对于平面直角坐标系中的图形,当图形向右平移ℎ个单位,向上平移k个单位时,它的每个顶点的坐标变为(x+ℎ,y+k)。

3. 图形在坐标系中进行平移的技巧•将图形的每个顶点的坐标进行变化,同时保持图形的相对位置不变,即可完成图形的平移操作。

•如果需要在坐标系中进行快速平移操作,可以考虑使用格子纸,先确定基准点,再按照平移规律将图形移动到新的位置上。

4. 平移对图形的影响及其性质•平移不改变图形的大小和形状,只改变图形的位置。

•平移保持图形的各种性质不变,如长度、角度和面积等。

四、教学方法及建议•讲授法:通过课堂讲解,结合示例进行平移的操作演示。

•演示法:利用PPT或板书演示图形在坐标系中的平移方法和规律。

•实践法:通过课堂练习,让学生熟练掌握图形在坐标系中的平移操作技巧。

五、教学反思图形的平移是初中数学中的重要概念之一,对学生的几何直观有很大的帮助。

在教学时,需要注重学生的实践操作,让他们通过实际操作来体会和理解图形在坐标系中的平移方法和规律。

同时,需要注重练习,加强对平移的掌握和技巧运用能力,使学生在掌握平移基础知识的同时,能够灵活应用到实际情况中。

用坐标表示平移教案

用坐标表示平移教案

用坐标表示平移教案一、教学目标:1. 让学生理解平移的性质,掌握平移在坐标系中的表示方法。

2. 培养学生运用坐标解决实际问题的能力,提高学生的数学思维水平。

3. 培养学生的团队协作精神,提高学生的动手操作能力。

二、教学内容:1. 平移的定义及性质2. 坐标系中平移的表示方法3. 平移在实际问题中的应用三、教学重点与难点:1. 教学重点:平移的性质,坐标系中平移的表示方法。

2. 教学难点:平移在实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解平移的定义及性质,引导学生理解平移的概念。

2. 采用案例分析法,分析坐标系中平移的表示方法,让学生学会运用坐标解决实际问题。

3. 采用小组讨论法,让学生在团队合作中探索平移在实际问题中的应用。

五、教学过程:1. 导入:通过生活中的实例,如滑滑梯、拉抽屉等,引导学生感受平移现象。

2. 新课讲解:讲解平移的定义及性质,让学生理解平移的概念。

3. 案例分析:分析坐标系中平移的表示方法,让学生学会运用坐标解决实际问题。

4. 小组讨论:让学生在团队合作中探索平移在实际问题中的应用。

5. 总结与拓展:总结本节课的主要内容,布置课后作业,拓展学生的知识视野。

六、教学评估:1. 课堂提问:通过提问了解学生对平移概念的理解程度,以及是否能熟练运用坐标表示平移。

2. 小组讨论:观察学生在小组讨论中的参与程度,以及他们的合作意识和解决问题的能力。

3. 课后作业:通过课后作业的完成情况,评估学生对课堂所学内容的掌握程度。

七、教学资源:1. 教学PPT:展示平移的定义、性质和坐标表示方法。

2. 坐标纸:用于让学生在实际操作中体验平移。

3. 课后作业:提供具有不同难度的题目,以适应不同学生的需求。

八、教学进度安排:1. 第一课时:讲解平移的定义及性质。

2. 第二课时:分析坐标系中平移的表示方法。

3. 第三课时:探索平移在实际问题中的应用。

4. 第四课时:总结本单元内容,布置课后作业。

用坐标表示平移(课教案)

用坐标表示平移(课教案)

用坐标表示平移一、教学目标1. 让学生理解平移的性质,掌握平移在坐标系中的表示方法。

2. 培养学生运用坐标解决实际问题的能力。

3. 培养学生合作交流、归纳总结的能力。

二、教学重点与难点1. 教学重点:平移的性质,坐标系中平移的表示方法。

2. 教学难点:坐标系中图形平移的坐标表示。

三、教学准备1. 教学工具:多媒体课件、黑板、粉笔、坐标纸、学生活动材料。

2. 学生活动材料:坐标纸、铅笔、直尺、橡皮。

四、教学过程1. 导入新课a. 利用多媒体课件展示生活中的平移现象,如电梯上升、滑滑梯等。

b. 引导学生观察这些现象,提问:它们有什么共同特点?c. 学生回答后,总结平移的定义。

2. 探究平移的性质a. 在黑板上画出一个简单的图形,如一个三角形。

b. 进行一次平移,观察图形的变化。

c. 提问:图形发生了什么变化?它的位置发生了怎样的改变?d. 学生回答后,总结平移的性质。

3. 学习坐标系中的平移表示a. 讲解坐标系的基本知识,如坐标轴、原点等。

b. 讲解图形在坐标系中的表示方法。

c. 讲解图形平移时,坐标的变化规律。

d. 进行实例演示,让学生理解并掌握平移的坐标表示方法。

4. 实践操作a. 让学生在坐标纸上进行实践操作,尝试用坐标表示平移。

b. 学生互相交流,分享自己的成果。

c. 教师选取部分学生的作品进行展示,并讲解其正确性。

5. 总结提升a. 让学生总结本节课所学的知识。

b. 教师进行补充,强调平移的性质和坐标表示方法的重要性。

五、课后作业1. 完成教材中的相关练习题。

2. 结合生活实际,找出一道关于平移的问题,并用坐标表示出来。

六、教学拓展1. 利用多媒体课件展示平移在实际生活中的应用,如图形设计、建筑物的移动等。

2. 引导学生理解平移在现实世界中的重要性,激发学生学习兴趣。

七、课堂小结1. 让学生回顾本节课所学的知识,总结平移的性质和坐标表示方法。

2. 强调平移在实际生活中的应用,提醒学生注意观察和思考。

沪科版-数学-八年级上册-11.2.1图形在坐标系中的平移教案

沪科版-数学-八年级上册-11.2.1图形在坐标系中的平移教案

11.2.1 图形在坐标系中的平移教案教学目标1.掌握利用平面直角坐标系绘制地图的过程;2.确定图形平移后的各点坐标;教材分析重点确定图形平移后的各点坐标难点确定图形平移后的各点坐标教具电脑、投影仪教学过程一、学前准备1. 点的坐标变化与平移间的关系(1)实验探索将吉普车从点A(-2,-3)向右平移5个单位长度,得到A1的坐标是 .把吉普车从点A向上平移4个单位长度得到A2的坐标是___________将吉普车从点A(-2,-3)先向_____平移___个单位长度、再向_____平移___个单位长度得到A2(2)总结在平面直角坐标系中,将点(x,y)向右(或左)平移a(a是正数)个单位长度,可以得到对应点(x+a,y)(或(,));将点(x,y)向上(或下)平移b(b 是正数)个单位长度,可以得到对应点(x,y+b)(或(,)).2.图形上点的坐标变化与图形平移间的关系A1A如图,三角形ABC三个顶点的坐标A(4,3),B(3,1),C(1,2)(1)将三角形ABC三个顶点的横坐标都减去6,有A1 ,B1 ,C1 .(2)将三角形ABC三个顶点的纵坐标都减去5,有A2 ,B2 ,C2 .(3)将三角形ABC三个顶点的横坐标都减 6,纵坐标减5,有A2 ,B2 ,C2 .(4)归纳:在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向__ _(或向_ ___)平移_ __个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向__ _(或向 _ _) 平移__ _个单位长度.即“上加下减,左减右加”练一练:1.在平面直角坐标系中,把点P(-1,-2)向上平移4个单位长度所得点的坐标是 .2. 将P(- 4,3)沿x轴负方向平移两个单位长度,再沿y轴负方向平移两个单位长度,所得到的点的坐标为 .预习疑难摘要________________________________________________________________________________________________________二、探究活动(一)师生探究·解决问题例1.如图,将平行四边形ABCD向左平移2个单位长度、再向上平移3个单位长度,可以得到平行四边形 A’B’C’D’,画出平移后的图形,并写出其各个顶点的坐标.例2.说出下列由点A到点B是怎样平移的?(1) A(x,y) B(x-1,y+2) (2) A(x,y) B(x+3,y-2) (3) A(x+3,y-2) B(x,y)(二)独立思考·巩固升华1. 已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A、(-2,2),(3,4),(1,7) B、(-2,2),(4,3),(1,7)C、(2,2),(3,4),(1,7)D、(2,-2),(3,3),(1,7)2. 线段CD是由线段AB平移得到的。

沪科版数学八年级上册(教学设计)11.2《图形在坐标系中的平移》

沪科版数学八年级上册(教学设计)11.2《图形在坐标系中的平移》

?图形在坐标系中的平移?教学设计教学目标:1.使学生掌握平面直角坐标系中的点或图形平移引起的点的坐标的变化规律。

2.使学生看到平面直角坐标系是数与形之间的桥梁,感受到代数与几何的相互转化,初步建立空间观念.教学重点:掌握平面直角坐标系中的点或图形平移引起的点的坐标的变化规律。

教学难点:看到平面直角坐标系是数与形之间的桥梁,感受到代数与几何的相互转化,初步建立空间观念。

课前准备:【教师准备】多媒体教学课件、三角尺。

【学生准备】三角尺、几何簿。

教学过程:一、情境导入同学们会下棋吗?棋子的移动,什么在变,什么不变?那么在棋盘上推动棋子是否可以看成图形在平面上的平移?二、合作探究探究点一:平面直角坐标系中点的平移将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是________.解析:向左平移1个单位,横坐标减1,向下平移2个单位,纵坐标减2,于是点(1,2)变为(0,0).故答案为(0,0).方法总结:根据平移前后图形的坐标关系:①上加下减(纵坐标变化),左减右加(横坐标变化).②正加负减,即向x(y)轴正方向平移,横(纵)坐标增加;负方向平移,横(纵)坐标减小.探究点二:平面直角坐标系中图形的平移【类型一】平移方向与距离,确定平移后图形的位置如图,将三角形ABC先向下平移5个单位,再向左平移3个单位得到三角形A′B′C′,求三角形A′B′C′的顶点坐标,并画出三角形A′B′C′.解析:按照点的平移规律求出平移后点的坐标,向下平移5个单位,即横坐标不变,纵坐标减5;向左平移3个单位,即纵坐标不变,横坐标减3,再画出图形即可.解:用箭头表示平移,那么有:A(3,5)→(3,0)→A′(0,0),B(0,3)→(0,-2)→B′(-3,-2),C(2,0)→(2,-5)→C′(-1,-5).画出三角形A′B′C′如上图.方法总结:画平移后的图形,应先求出平移后各关键点的坐标,再描点连线即可.【类型二】由坐标的变化确定平移过程在如下图的平面直角坐标系内,画在透明胶片上的平行四边形ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,那么此平移可以是( ) A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C .先向右平移4个单位,再向下平移1个单位D .先向右平移4个单位,再向下平移3个单位解析:由点A (0,2)变化到点A ′(5,-1)知横纵坐标的变化规律,可得出平移方向与距离,即由横坐标加5,纵坐标减3,得出此平移可以是先向右平移5个单位,再向下平移3个单位.故答案为B.方法总结:①可用排除法,对照备选选项,逐一分析,选择出正确答案.②由坐标定平移口诀:坐标变化定平移,横变纵定左右移,横坐标变大向右移,纵变横定上下移,纵坐标变大向上移,横变纵变两次移.③左右(上下)平移的距离,就是平移前后两点横(纵)坐标差的绝对值.三、板书设计图形在坐标系中的平移⎩⎪⎨⎪⎧沿x 轴平移⎩⎪⎨⎪⎧纵坐标不变横坐标加上一个正数⇔向右平移横坐标减去一个正数⇔向左平移沿y 轴平移⎩⎪⎨⎪⎧横坐标不变纵坐标加上一个正数⇔向上平移纵坐标减去一个正数⇔向下平移教学反思: 本节课的教学过程中,无论是从情境中引入,还是对新知的探究及拓展,始终在努力调动学生学习的积极性.通过探究归纳出点或图形的平移引起的点的坐标的变化规律,积累数学活动经历,提高学生科学思维素养;体验数学活动充满探索性与创造性,激发学生学习数学的兴趣,使学生经历数学思维过程获得成功体验.。

北师大2024八年级数学下册 3.1 第3课时 坐标系中的点沿x轴、y轴的两次平移 教案

北师大2024八年级数学下册 3.1 第3课时  坐标系中的点沿x轴、y轴的两次平移 教案

3.1 图形的平移主要师生活动一、温习旧知,导入新知在坐标系中,将坐标作如下变化时,图形将怎样变化?1.(x,y) →(x,y+4)2.(x,y) →(x,y-2)3.(x,y) →(x-1,y)4.(x,y) →(x+3,y)师生活动:教师提问,学生积极举手发言,预测学生能正确回答这些问题.思考:(x,y) →(x-3,y+4)师生活动:学生小组讨论,教师引导学生根据点横坐标减3和纵坐标加4,逐步分析点的变化并画图讲解:教师追问:A经过两次平移到C,能否经过一次平移到C呢?二、探究新知二、小组合作,探究概念和性质知识点一:坐标系中图形的两次平移先将图中的“鱼”F向下平移2个单位长度,再向右平移3个单位长度,得到新“鱼”F'.(1) 在图所示的平面直角坐标系中画出“鱼”F'.师生活动:学生生动手描点画图,预测学生可能会有分两步画图或直接画出最终结果,教师都应予以鼓励.(2) 能否将“鱼”F'看成是“鱼”F经过一次平移得到的?如果能,请指出平移的方向和平移的距离,并与同伴交流.师生活动:学生小组讨论,学生代表发言,教师适时引导得出:可以将“鱼”F'看成是“鱼”F经过一次平移得到的;平移方向是点O(0,0) 到点A(3,-2) 的方向,平移距离是OA=13 .(3)在“鱼”F和“鱼”F'中,对应点的坐标之间有什么关系?设计意图:继续以“鱼”为素材,在具体背景中研究图形变化引起坐标变化的规律.师生活动:学生独立思考,由学生代表发言,预测学生能通过观察和前面所学的规律,可答出:横坐标加3,纵坐标减2.做一做先将图中的“鱼”F的每个“顶点”的横坐标分别加2,纵坐标不变,得到“鱼”G;再将“鱼”G的每个“顶点”的纵坐标分别加3,横坐标不变,得到“鱼”H. “鱼”H与原来的“鱼”F相比有什么变化?师生活动:教师让学生分组分别探究“鱼”G和“鱼”H的“顶点”坐标并填写表格,分别请两组小组代表展示结果:1.“鱼”G 各“顶点”坐标如下表:2.“鱼”H 各“顶点”坐标如下表:问题:能否将“鱼”H看成是“鱼”F经过一次平移得到的?与同伴交流.师生活动:学生小组讨论,小组代表发言,教师适时引导,预测能得出正确结论:结论:1. 形状、大小相同,只是位置改变,先向右平移了2个单位长度,再向上平移了3个单位长度.2. 可以将“鱼”H看成是“鱼”F经过一次平移得到的,平移方向是点(0,0) 到点(2,3) 的方向,平移距离是13.议一议一个图形依次沿x轴方向、y轴方向平移后所得图形与原来的图形相比,位置有什么变化?它们对应点的坐标之间有怎样的关系?师生活动:学生小组讨论,教师请4名学生代表发言填写表格:由此,教师引导学生得出结论:归纳总结:一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.典例精析例四边形ABCD各顶点的坐标分别为A (-3,5) ,B (-4,3),C (-1,1),D (-1,4),将四边形ABCD先向上平移 3 个单位长度,再向右平移4个单位长度,得到四边形A′B′C′D′.(1)四边形A′B′C′D′与四边形ABCD对应点的横坐标有什么关系?纵坐标呢?分别写出点A′,B′,C′,D′的坐标.师生活动:学生独立思考,教师巡堂查看,学生代表发言,可能会两种思路,即直接根据规律得到,也可能画图观察,教师都应予以正向评价,并引导学生通过规律作答.解:四边形A′B′C′D′与四边形ABCD对应点的横坐标分别增加了4,纵坐标分别增加了3,A′ (1,8),B′ (0,6),C′ (3,4),D′ (3,7).(2)如果四边形A′B′C′D′ 看成是由四边形ABCD 经过一次平移得到的,请指出这一平移的平移方向和平移距离.师生活动:学生独立思考,教师巡堂查看,学生代表发言,教师适时引导,得出结果:解:平移方向是A到A′,如图所示;平移距离是AA'的长,由勾股定理得AA' = 5.针对训练1.将点A(3,2) 向上平移2个单位长度,向左平移空间观念、空间想象力和作图能力.三、当堂练习,巩固所学4个单位长度得到A1,则A1的坐标为.2.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2 个单位长度,得到点A′,则点A′的坐标是()A. (-1,1)B. (-1,-2)C. (-1,2)D. (1,2)3. 如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A. 2B. 3C. 4D. 5师生活动:学生独立思考,教师请学生分别回答,并适时给予学生指导和评价,帮助学生形成正确的认知.三、当堂练习,巩固所学1. 如图,△ABC上任意一点P(x0,y0) 经平移后得到的对应点为P1 (x0 + 2,y0 + 4),将△ABC作同样的平移得到△A1B1C1. 求A1、B1、C1的坐标.设计意图:考查学生对平面直角坐标系中点的平移规律的掌握. 提高学生的综合应用能力.设计意图:考查学生对平面直角坐标系中点的平移规律的掌握,助力学生灵活应用所学知识.板书设计坐标系中的点沿x轴、y轴的两次平移教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。

坐标系中的平移操作教案

坐标系中的平移操作教案

坐标系中的平移操作教案1.教学目标通过本教案的学习,学生将掌握坐标系中的平移操作,包括平移的概念、平移的方式、平移的规律及其基本性质。

同时,学生还将拓展对坐标系和平几何的认识,提高空间观念和图形处理能力。

2.教学重点(1) 平移的概念(2) 平移的方式(3) 平移的规律及其基本性质(4) 坐标系和平面几何的认识3.教学难点(1) 平移的规律及其基本性质的掌握(2) 如何运用平移方法对图形进行变换4.教学过程4.1.教学方法本课程采用“师生互动,学生主体”和“讲授、练习、实践”相结合的教学方式。

引导学生在教师的指导下,积极参与,主动思考,自主探索和合作学习。

通过讲解课堂练习、课外作业、实践演练等一系列活动,将平移操作的概念、方式、规律及其基本性质逐步深入地呈现给学生。

4.2.教学内容4.2.1.平移的概念平移是指将一个图形沿着一个方向移动一定的距离,而新图形仍然和原图形形状大小相同,位置不同,新旧图形之间存在着等量的对应关系。

平移的本质是求新坐标,即将原图形上每一点沿着平移方向移动相同的距离,即得到新图形上对应点的坐标。

4.2.2.平移的方式平移的方式有两种:向右平移和向上平移。

向右平移:向右平移会使该图形在坐标轴上向右移动x个单位。

向上平移:向上平移会使该图形在坐标轴上向上移动y个单位。

4.2.3.平移的规律及其基本性质(1) 平移是向量加法的一种表现形式。

(2) 平移是等量代换的一种形式。

(3) 平移是一种等距变换。

(4) 平移不改变图形的面积和形状,仅改变其位置。

4.2.4.坐标系和平面几何的认识平移是基于坐标系的平面几何学的一个重要概念。

学生在学习平移时,需要深入了解和掌握坐标系和平面几何的基本知识,包括直线、曲线、角度、面积等。

这将为学生后续学习几何学打下坚实的基础。

4.3.教学实践4.3.1.理论讲解教师可以通过详细介绍平移的概念、方式、规律、基本性质、坐标系和平面几何的关系等来引导学生逐步了解平移的本质和基本原理。

沪科版八年级数学上册《图形在坐标系中的平移》教案1

沪科版八年级数学上册《图形在坐标系中的平移》教案1

《图形在坐标系中的平移》教案教学内容在同一坐标系中,感受图形上的点的坐标与图形变化之间的关系.教学目标1、能在直角坐标系中用坐标的方法研究图形的变换,掌握图形在平移过程中各点坐标的变化规律,理解图形在平面坐标系上的平移实质上就是点坐标的对应变换;2、运用图形在直角坐标系中平移的点坐标的变化规律进行简单的平移作图;3、经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程进一步发展数形结合的思想与空间观念.教学重点掌握用坐标系的变化规律来描述平移的过程.教学难点根据图形的平移过程,探索、归纳出坐标的变化规律.教学关键通过探究发现并总结规律,让学生在坐标系中,结合图形的变换理解得出的结论. 教学准备多媒体、三角板及相关资料.教学方法探究、启发教学.教学过程(一)创设情境.(多媒体显示)1、平移的概念(提问学生,强调方向和距离)2、同学们会下棋吗?棋子的移动,什么在变,什么不变?那么在棋盘上推动棋子是否可以看成图形在平面上的平移?(二)问题导入,新课讲解.探索图形在平移过程中各点坐标的变化规律.第12页观察(多媒体显示)师:引导学生讨论、分析;生:与同伴交流回答问题.(教师指正)发现:第(2)题对应点的纵坐标都不变,横坐标变了,将横坐标都减去5即可;第(3)题对应点的横坐标都不变,纵坐标变了,将纵坐标都减去2即可.师:把三角形ABC向左或向上移动1个单位,点坐标又将怎样的变化?生:讨论回答问题.师生共同归纳出平移规律:(1)三角形的平移,是通过三角形任意一点坐标的变化而得到的;(2)在直角坐标系中,沿横轴平移,图形上每一点的纵坐标不变,而横坐标增减,简记“左减右加”;沿纵轴平移,横坐标不变,纵坐标增减,简记“上加下减”.(3)“左减右加,上加下减”也可这样理解:按x轴(y轴)正方向平移,则纵(横)坐标加上平移的单位数量,按x轴(y轴)负方向平移,则横(纵)坐标减去平移的单位数量即可.师:好,那我们现在来看看在平面直角坐标系中,是怎样来描述平移的呢?师:在平面直角坐标系中,描述平移的一个方法是用图形上任意一点的坐标(x,y)的变化来表示.例如,右移2个单位、下移3个单位的平移记作(x,y) (x+2,y-3).那么请同学们现在独立完成书上第12页的例题.(待学生完成后集体讨论、订正.)(教学形式:观察、操作、感知、总结、互动交流)(三)范例讲解,领悟规律.第13页例题1.(多媒体显示)师:组织学生练习,提醒学生应用总结出的规律,则能很快标出移动后各点坐标;生:阅读理解,验证图形的平移规律.变化题:将三角形ABC先向左移动5个单位,再向上移动6个单位后的各顶点坐标.(学生动手画图、观察、寻找规律)1、例题:说出下列由点A到点B是怎样平移的?(1) A(x,y) B(x-1,y+2) (2) A(x,y) B(x+3,y-2)(3) A(x+3,y-2) B(x,y)逆向思维训练,给出变化的坐标,让学生了解点的位置的变化,会使学生更为清晰地掌握图形在平面上平移的意义.(四)课堂小结.1、本节课主要学习了哪些内容?(学生自己总结)2、教材第13页“思考”题.(师生相互交流,归纳出结论)。

浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》教案

浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》教案

浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》教案一. 教材分析《4.3 坐标平面内的图形的轴对称和平移》是浙教版数学八年级上册的一个重要内容。

这部分内容主要让学生了解和掌握坐标平面内图形的轴对称和平移的性质和运用。

通过这部分的学习,学生能够更好地理解和运用坐标系,提高他们的空间想象能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了坐标系的基本知识,对图形的变换也有了一定的了解。

但是,对于坐标平面内图形的轴对称和平移的性质和运用,可能还存在一定的困难。

因此,教师在教学过程中,需要结合学生的实际情况,循序渐进,引导学生理解和掌握。

三. 教学目标1.让学生了解和掌握坐标平面内图形的轴对称和平移的性质。

2.培养学生运用坐标系解决问题的能力。

3.提高学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.坐标平面内图形的轴对称和平移的性质。

2.如何在实际问题中运用坐标平面内图形的轴对称和平移。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过自主学习、合作交流,掌握坐标平面内图形的轴对称和平移的性质和运用。

六. 教学准备1.教学课件。

2.相关案例和问题。

3.坐标系图表。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,引导学生思考和讨论,激发学生的学习兴趣。

例如,如何通过轴对称和平移,将一个图形变换成另一个图形。

2.呈现(15分钟)教师通过课件和坐标系图表,呈现坐标平面内图形的轴对称和平移的性质,引导学生理解和掌握。

同时,教师可以通过举例和讲解,让学生了解和掌握如何在实际问题中运用坐标平面内图形的轴对称和平移。

3.操练(10分钟)教师给出一些练习题,让学生独立完成,巩固所学知识。

教师可以通过巡视课堂,及时发现和纠正学生的错误。

4.巩固(10分钟)教师可以通过一些案例分析,让学生进一步理解和掌握坐标平面内图形的轴对称和平移的性质和运用。

5.拓展(10分钟)教师可以引导学生思考和讨论,如何将坐标平面内图形的轴对称和平移的性质运用到实际问题中,提高学生解决问题的能力。

沪科版数学八年级上册11.2《图形在坐标系中的平移》教学设计

沪科版数学八年级上册11.2《图形在坐标系中的平移》教学设计

沪科版数学八年级上册11.2《图形在坐标系中的平移》教学设计一. 教材分析《图形在坐标系中的平移》是沪科版数学八年级上册第11.2节的内容。

本节内容是在学生已经掌握了坐标系和图形的坐标表示的基础上,进一步探究图形的平移变换。

通过本节内容的学习,使学生理解平移的性质,掌握平移的规律,能够将图形的平移运用到实际问题中。

二. 学情分析学生在学习本节内容前,已经掌握了坐标系的基础知识,对图形的坐标表示有一定的理解。

但是,对于图形的平移变换,可能还存在一些困惑,如平移的方向、距离等。

因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索图形的平移规律。

三. 教学目标1.理解平移的性质,掌握平移的规律。

2.能够运用平移变换解决实际问题。

3.培养学生的观察能力、操作能力、思考能力。

四. 教学重难点1.重点:平移的性质,平移的规律。

2.难点:如何将平移变换运用到实际问题中。

五. 教学方法1.引导发现法:通过引导学生观察、操作、思考,自主探索图形的平移规律。

2.实例分析法:通过分析实际问题,让学生理解平移变换的应用。

六. 教学准备1.教学课件:制作课件,展示图形的平移变换过程。

2.练习题:准备一些有关图形平移的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平移现象,如电梯上升、滑滑梯等,引导学生关注平移变换。

2.呈现(5分钟)讲解平移的定义,解释平移的方向和距离。

通过示例,演示图形的平移过程,让学生观察并理解平移的性质。

3.操练(10分钟)让学生分组进行讨论,每组选择一个图形,探讨其平移规律。

学生可以自己动手操作,改变图形的位置,观察平移后的变化。

4.巩固(10分钟)出示一些有关图形平移的练习题,让学生独立完成。

教师及时给予反馈,帮助学生巩固所学知识。

5.拓展(10分钟)让学生思考如何将平移变换运用到实际问题中。

出示一些实际问题,如建筑设计、游戏设计等,让学生尝试用平移变换解决问题。

《图形在坐标系中的平移》示范教学方案

《图形在坐标系中的平移》示范教学方案

第十一章平面直角坐标系11.2 图形在坐标系中的平移一、教学目标1.使学生掌握平面直角坐标系中的点或图形平移引起的坐标变化规律.2.运用点的坐标的变化规律来进行简单的平移作图.3.经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程,进一步发展数形结合思想与空间观念.二、教学重点及难点重点:认识直角坐标系,学会坐标系中的平移过程及其应用.难点:根据图形的平移过程,归纳出坐标的变化规律.三、教学用具多媒体课件.四、相关资源《棋盘》图片、《平移》图片、《习题1》图片、《习题2》图片.五、教学过程【课堂导入】教师提出问题:棋盘上推动棋子是否可以看成图形在平面上的平移?插入图片《棋盘》教师带领学生看课本12页11-13题目.总结规律:在平面直角坐标系中,描述平移的一个方法是用图形上任一点的坐标(x,y)的变化来表示.例如:右移两个单位,下移三个单位的平移记作(x,y)→(x+2,y-3).设计意图:创设情境,通过学生熟知的象棋引入平移的概念,,引出平面直角坐标系中平移的知识,激发兴趣,增强学生的学习热情.本图片是微课的首页截图,本微课资源讲解了用坐标表示平移及平移的规律,并通过讲解实例巩固所学的知识点.若需使用,请插入微课【知识点解析】用坐标表示平移.【新知讲解】1.下面平面直角坐标系中点A的坐标是(,),点A向右平移4个单位后坐标是(,);点A向左平移2个单位后的坐标是(,);你能写出点A向右平移25个单位后的坐标是(,)吗?你发现点A平移前后横坐标、纵坐标有什么变化?能找出其中的规律吗?把你的重大发现与大家一起分享.学生思考问题.插入图片《平移》教师分享答案:-3,-1;1,-1;-5,-1;-28,-1;教师在学生回答的基础上讲解:沿x轴平移纵坐标不变;横坐标加上一个正数向右平移;横坐标减去一个正数,向左平移;沿y轴平移横坐标不变;纵坐标加上一个正数,向上平移;纵坐标减去一个正数,向下平移.设计意图:通过做题,带领学生认识平面直角坐标系中平移的规律.此图片是视频缩略图,本资源是坐标方法的简单应用的节前引入视频,通过确定地理位置,引出坐标方法的简单应用.若需使用,请插入【情景演示】用坐标表示平移的应用.2.已知平移方向与距离,确定平移后图形的位置.教师展示PPT上题目,引导学生观察:将三角形ABC向下平移5个单位,再向左平移3个单位后得到三角形A′B′C′,求三角形A′B′C′的顶点坐标.学生相互交流,得出正确答案.教师解析:A(3,5)→(3,0)→A′(0,0),B(0,3)→(0,-2)→B′(-3,-2),C(2,0)→(2,-5)→C′(-1,-5).设计意图:通过习题,培养学生自主探究的学习习惯.插入图片《习题1》3.由坐标的变化确定平移过程.教师展示PPT上题目,引导学生观察:如图所示,在平面直角坐标系内,有一个平行四边形ABCD,点A的坐标是(0,2).现将这个平行四边形平移,使点A落在点A′(5,-1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位教师归纳总结:由点A(0,2)变化到点A′(5,-1)可得出平移方向与距离,即由横坐标加5,纵坐标减3,得出此平移可以是先向右平移5个单位,再向下平移3个单位.所以答案为B.插入图片《习题2》设计意图:通过习题,学会做由坐标的变化确定平移过程的题.【典型例题】例1将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是________.解:向左平移1个单位,横坐标减1,向下平移2个单位,纵坐标减2,于是点(1,2)变为(0,0).故答案为(0,0).设计意图:认识平面直角坐标中点的平移.例2小雨将平面直角坐标系中的三角形ABC进行平移,得到三角形A′B′C′,已知点A(2,-1)的对应点A′的坐标为(a,-4),点B(5,-2)的对应点B′的坐标为(3,b),则点C(a,b)的对应点C′的坐标为()A.(3,-4)B.(-2,-8)C.(0,-5)D.无法确定解:∵点A(2,-1)的对应点A′的坐标为(a,-4),∴点A向下平移了3个单位,∵点B(5,-2)的对应点B′的坐标为(3,b),∴点B向左平移了2个单位,∴点A、B应该是先向下平移了3个单位,再向左平移了2个单位,∴a=2-2=0,b=-2-3=-5,∴-(0,-5),∴C′的坐标为(0-2,-5-3),即(-2,-8),故选:B.设计意图:通过练习,巩固已知平移方向与距离,确定平移后图形的位置的题型.【随堂练习】1.已知△ABC平移后得到△A1B1C1,且A1(﹣2,3),B1(﹣4,﹣1),C1(m,n),C(m+5,n+3),则A,B两点的坐标为()A.(3,6),(1,2)B.(-7,0),(-9,-4)C.(1,8),(-1,4)D.(-7,-2),(0,-9)解:观察C1(m,n),C(m+5,n+3),发现平移时的坐标变化规律,再求A、B两点的坐标由C1到C,横坐标加5,纵坐标加3,B1C1到BC也遵循此规律,∴A点的坐标为(-2+5,3+3),B点的坐标为(-4+5,-1+3),即A(3,6),B(1,2);故选A设计意图:通过学生对平面直角坐标系中平移练习,使教师及时了解学生对平移知识的理解情况,以便教师及时对学生进行矫正.六、课堂小结1.在平面直角坐标系中,描述平移的一个方法是用图形上任一点的坐标(x,y)的变化来表示.例如:右移两个单位,下移三个单位的平移记作(x,y)→(x+2,y-3).2.沿x轴平移纵坐标不变;横坐标加上一个正数向右平移;横坐标减去一个正数,向左平移;沿y轴平移横坐标不变;纵坐标加上一个正数,向上平移;纵坐标减去一个正数,向下平移.3.左右(上下)平移的距离,就是平移前后两点横(纵)坐标差的绝对值.设计意图:通过小结,回顾本节课所学新知,加深印象.七、板书设计11.2 图形在坐标系中的平移沿x轴平移纵坐标不变;横坐标加上一个正数向右平移;横坐标减去一个正数,向左平移;沿y轴平移横坐标不变;纵坐标加上一个正数,向上平移;纵坐标减去一个正数,向下平移.。

江岸区某中学八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移教案新版沪科版3

江岸区某中学八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移教案新版沪科版3

11.2 图形在坐标系中的平移【知识与技能】在同一坐标系中,感受图形上的点的坐标与图形变化之间的关系.【过程与方法】经历图形在坐标系中的平移过程,培养学生形象思维能力和数形结合意识.【情感与态度】调动学生学习的主动性,培养合作探究的意识,体会坐标系中的图形平移的实际应用价值.【教学重点】重点是探究点或图形的平移引起的坐标变化的规律,另一个是研究图形上的点的坐标的某种变化引起的图形的平移变换.【教学难点】难点是对图形在坐标中的平移变化的理解.一、创设情境,导入新知1.复习回顾探究:根据下面条件画一副示意图,标出学校和小强家、小敏家、小刚家的位置.小刚家:出校门向东走150m,再向北走200m.小强家:出校门向西走200m,再向北走350m,最后向东走50m.小敏家:出校门向南走100m,再向东走300m,最后向南走75m.选取直角坐标系的方法很多,在让学生充分交流的基础上,引导学生选择最优方案,那就是:选学校所在位置为原点,分别取正东、正北方向为x轴、y轴正方向建立直角坐标系,并取比例尺1:10000(图中1cm相当于实际中10000cm即100m).依题目所给的已知条件,取得小刚家的位置是(150, 200),类似地,小强和小敏家的位置分别是(-150, 350)和(300,-175).2.教师归纳利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立直角坐标系,选择一个适当的参照为原点,确定x轴、y轴的正方向.(2)依据具体问题确定适当的比例尺,在坐标轴上标出单位长度.(3)在坐标平面的内部画出这些点,写出各点的坐标和各个地点的名称.二、问题牵引,引入研究【问题】如图,△ABC在坐标平面上平移后得到新图形△A1B1C1.(1)△ABC移动的方向怎样?(2)写出△ABC与△A1B1C1各点的坐标,比较对应点坐标,看有怎样的变化?(3)如果△ABC向下平移2个单位,得到△A2B2C2.写出这时各顶点坐标,比较两者对应点坐标,看有怎样的变化?观察比较△ABC与△A1B1C1:对应点的纵坐标都不变,横坐标移动后改变了,即:将横坐标都减去5可得到移动后的点的坐标.请同学们解答完第(3)个问题后,将图形向上平移2个单位再探究一下.【归纳结论】平移规律:描述平移的一个方法是用图形上任一点的坐标(x,y)的变化来表示.(1)在坐标系内,左右平移的点的坐标规律:(x,y)→(x±a, y)(a>0)(2)在坐标系内,上下平移的点的坐标规律:(x,y)→(x, y±b)(b>0)(3)在坐标系内,上下、左右平移的点的坐标规律:(x,y)→(x±a, y±b)(a>0,b >0)三、范例学习,理解新知例1如图,将△ABC先向右平移6个单位,再向下平移2个单位,得到△A1B1C1,写出各顶点变动前后的坐标.【解】得到结论有:A(-2, 6)→(4, 6)→A1(4, 4)B(-4, 4)→(2, 4)→B1(2, 2)C(1, 1)→(7, 1)→C1(7, -1)例2说出下列由点A到点B是怎样平移的?(1)A(x, y)B(x-1, y+2)(2)A(x, y)B(x+3, y-2)(3)A(x+3, y-2)B(x, y)【解】(1)点A向左平移1个单位长度,再向上平移2个单位长度,得到点B;(2)点A向右平移3个单位长度,再向下平移2个单位长度,得到点B;(3)点A向左平移3个单位长度,再向上平移2个单位长度,得到点B.【教学说明】逆向思维训练,给出变化的坐标,让学生了解点的位置的变化,会使学生更为清晰地掌握图形在平面上平移的意义.四、运用新知,深化理解1.(内蒙古呼伦贝尔中考)将点A(-2, -3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,将点P(-2, 1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2, 4)B.(1, 5)C.(1, -3)D.(-5, 5)3.(广西梧州中考)已知线段AB的A点坐标是(3,2),B点坐标是(-2, -5),将线段AB平移后得到点A的对应点A′的坐标是(5,-1),则点B的对应点B′的坐标是 .4.如图,把△ABC放置在网格中,点A的坐标为(-3,1),现将△ABC先向右平移4个单位,再向上平移2个单位后得到△A′B′C′,则点A′的坐标是.5.三角形ABC中,A(-2, 2),B(-4, -2),C(1, 0),把三角形平移后,三角形某一边上的点P(x, y)对应点为P′(x+4, y-2),求平移后所得三角形各顶点的坐标.【参考答案】1.D 2.B3.(0, -8)4.(1, 3)5.解:∵点P(x, y)的对应点为P′(x+4, y-2),∴平移变换规律为向右平移4个单位,向下平移2个单位,∵A(-2, 2),B(-4, -2),C(1, 0),∴平移后A的对应点坐标为(2, 0),B的对应点坐标为(0, -4),C的对应点坐标为(5,-2).五、师生互动,课堂小结1.本节课学习了哪些内容?2.把平面直角坐标系中的一个图形,按下面的要求平移,那么图形上任一点的坐标(x, y)是如何变化的?①向左或向右移动a(a>0)个单位;②向上或向下移动b(b>0)个单位;③向左或向右移动a个单位,再向上或向下移动b个单位(a>0,b>0).1.课本第14页练习2、3.2.完成练习册中的相应作业.本节课是在学生学习了平移的概念和性质的基础上,探究图形在坐标系内平移的变化规律.主要是引导学生运用分类思想,依次通过对点和图形的平移的观察、画图、猜想、验证、归纳、比较、分析等活动,最终探究出点的坐标变化与点平移的关系、图形各个点的坐标变化与图形平移的关系.然而,一堂课下来,我感触颇深,认为本节课离高效课堂“把课堂还给学生、激发学生自主学习的积极性、提高学生自主学习的能力、切实提高课堂教学效益”的要求还很远.2.5 矩形2.5.1 矩形的性质【知识与技能】1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.【过程与方法】经历探索矩形的概念和性质的过程,发展学生合理推理的意识;掌握几何思维方法.并渗透运动联系、从量变到质变的观点.【情感态度】培养严谨的推理能力,以及自主学习的精神,体会逻辑推理的思维价值.【教学重点】矩形的性质.【教学难点】矩形的性质灵活应用.一、创设情境,导入新课在小学,我们初步认识了长方形,你能举出日常生活中有关长方形的例子吗?观察教材图2-41的长方形,它是平行四边形吗?它有什么特点呢?我们这节课就来学习它.【教学说明】用学生身边熟悉的例子入手,同时以提问的方式引起学生的思考和注意,激发学生的求知欲望,让他们愉快地投入到学习中去.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1 矩形的定义做一做用教具演示活动平行四边形的变化过程,当变化到有一个角是直角时停止,让学生观察这是什么图形?引出矩形的定义.【教学说明】这里既复习了四边形的不稳定性,又通过演示操作观察得出矩形的概念,学生一目了然.问题2 矩形的性质提问 ①当□ABCD 变为矩形时,它的四个角有什么变化?对边、对角有什么关系? ②沿矩形对边中点折叠,你有什么发现?绕着对角线的交点旋转180°呢?【教学说明】让学生经历知识形成的过程,动手操作得出的结论既直观,印象又深刻,更易于理解.思考 教材第59页“动脑筋”【教学说明】利用三角形全等得出矩形的另一条性质对角线相等,让学生明白它的由来.例:教材第59页“例1”【教学说明】利用所学的矩形的性质进行有关的证明与计算,一方面学生熟练运用,另一方面加深理解.三、运用新知,深化理解1.如图,在矩形ABCD 中,对角线AC 、BD 相交于O 点,∠AOB=60°,AB=5,则AD 的长是( )A.52B.53C.5D.102.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在D′处,若AB=3,AD=4,则ED 的长为()A.23B.3C.1D.433.如图,在Rt△ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF=cm.4.如图,已知矩形ABCD 中,F 是BC 上一点,且AF=BC ,DE⊥AF,垂足为E ,连接DF.求证:(1)△ABF≌△DEA;(2)DF是∠EDC的平分线.【教学说明】让学生自主完成,加深对所学知识的理解和运用以及检查学生的掌握情况,对有困难的学生及时给予帮助,及时纠正出现的错误,并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.答案:1.B 2.A 3.54.证明:(1)∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠DEA=∠B=90°,∵AF=BC,∴AF=AD,∴△ABF≌△DEA.(2)由(1)知△ABF≌△DEA,∴DE=AB.∵四边形ABCD是矩形,∴∠C=90°,DC=AB,∴DC=DE,∴Rt△DEF≌Rt△DCF(HL),∴∠EDF=∠CDF,即DF是∠EDC的平分线.四、师生互动,课堂小结通过今天的学习,你掌握了矩形的哪些性质?还有什么心得与大家共享?存在哪些困难?与大家共同讨论.【教学说明】引导学生回顾所学知识点,加深印象,相互学习,共同提高.1.布置作业:习题2.5中的第1、5题.2.完成练习册中本课时练习的作业部分.通过学生动手操作,观察实验得出结论,既有理性思考,又能让数学活动与知识的学习有机的结合.在教学中要注意学生的薄弱环节,对于学习中出现的问题及时矫正,同时进行必要的补充.14.1.3 积的乘方1.掌握积的乘方的运算法则.(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么? 学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加. 幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方.二、合作探究探究点一:积的乘方【类型一】 直接利用积的乘方法则进行计算计算:(1)(-5ab )3;(2)-(3x 2y )2; (3)(-43ab 2c 3)3;(4)(-x m y 3m )2.解析:直接应用积的乘方法则计算即可.解:(1)(-5ab )3=(-5)3a 3b 3=-125a 3b 3;(2)-(3x 2y )2=-32x 4y 2=-9x 4y 2; (3)(-43ab 2c 3)3=(-43)3a 3b 6c 9=-6427a 3b 6c 9;(4)(-x m y 3m )2=(-1)2x 2m y 6m =x 2m y 6m.方法总结:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.【类型二】 积的乘方在实际中的应用太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3)解析:将R =6×105千米代入V =43πR 3,即可求得答案.解:∵R =6×105千米,∴V =43πR 3=43×π×(6×105)3=8.64×1017(立方千米).答:它的体积大约是8.64×1017立方千米.方法总结:读懂题目信息,理解球的体积公式并熟记积的乘方的性质是解题的关键. 【类型三】 含积的乘方的混合运算计算:(1)-4xy 2·(12xy 2)2·(-2x 2)3;(2)(-a 3b 6)2+(-a 2b 4)3.解析:(1)先进行积的乘方,然后根据同底数幂的乘法法则求解;(2)先进行积的乘方和幂的乘方,然后合并.解:(1)原式=4xy 2·14x 2y 4·8x 6=8x 9y 6;(2)原式=a 6b 12-a 6b 12=0.方法总结:先算积的乘方,再算乘法,最后算加减,然后合并同类项.探究点二:积的乘方的逆运算【类型一】 利用积的乘方的逆运算进行简便运算计算:(23)2015×(32)2016.解析:将(32)2016转化为(32)2015×32,再逆用积的乘方公式进行计算.解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.方法总结:对公式a n·b n=(ab )n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.运用此公式可进行简便运算.【类型二】 利用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,23<32,∴213×310<210×312. 方法总结:利用积的乘方,转化成同底数的同指数的幂是解答此类问题的关键.三、板书设计积的乘方积的乘方公式:(ab )n =a n b n(n 为正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:a n ·b n =(ab )n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n 为奇数时,(-a )n =-a n(n 为正整数);当n 为偶数时,(-a )n =a n(n 为正整数).。

坐标的平移教案初中

坐标的平移教案初中

坐标的平移教案初中教学目标:1. 知识与技能:理解坐标系中点的平移规律,能用坐标表示图形平移后的位置。

2. 过程与方法:通过观察、操作、猜想、归纳等数学活动,培养学生的探究能力和数形结合思想。

3. 情感态度价值观:感受数学与现实生活的联系,培养学生解决实际问题的能力。

教学重点:坐标系中点的平移规律。

教学难点:坐标系中图形平移的坐标表示。

教学准备:直角坐标系图,点、线段的平移图示。

教学过程:一、导入(5分钟)1. 复习坐标系的基础知识,引导学生回顾点的坐标表示方法。

2. 提问:同学们,你们知道物体在平面直角坐标系中的位置是如何表示的吗?二、新课讲解(15分钟)1. 讲解点的平移规律:(1)将点A(2,3)向右平移5个单位长度,得到点A1,引导学生观察坐标变化,发现横坐标增加5,纵坐标不变。

(2)将点A(2,3)向上平移4个单位长度,得到点A2,引导学生观察坐标变化,发现纵坐标增加4,横坐标不变。

(3)总结规律:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,得到对应点(x+a,y);将点(x,y)向上平移b个单位长度,得到对应点(x,y+b)。

2. 讲解图形的平移:(1)以正方形为例,引导学生观察正方形在坐标系中的平移过程,发现正方形的四个顶点坐标按照相同规律变化。

(2)引导学生归纳图形平移的坐标表示方法:将图形的每个顶点坐标按照平移规律进行变换,得到平移后的图形坐标表示。

三、课堂练习(15分钟)1. 请同学们完成教材P67的练习题,巩固点的平移规律。

2. 请同学们完成教材P68的练习题,巩固图形的平移规律。

四、总结与拓展(5分钟)1. 总结:本节课我们学习了坐标系中点的平移规律和图形的平移规律,能用坐标表示图形平移后的位置。

2. 拓展:思考一下,坐标系中的旋转是否也有类似的规律呢?下节课我们一起来探究。

教学反思:本节课通过观察、操作、猜想、归纳等数学活动,让学生掌握了坐标系中点的平移规律和图形的平移规律。

坐标轴的平移初中数学教案

坐标轴的平移初中数学教案

坐标轴的平移(初中数学教案)一、教学目标:1. 让学生理解坐标轴平移的概念,掌握坐标轴平移的规律。

2. 培养学生运用坐标轴平移解决实际问题的能力。

3. 培养学生合作探究、归纳总结的能力。

二、教学内容:1. 坐标轴平移的定义及规律。

2. 坐标轴平移在实际问题中的应用。

三、教学重点与难点:1. 坐标轴平移的规律。

2. 运用坐标轴平移解决实际问题。

四、教学方法:1. 采用问题驱动法,引导学生主动探究坐标轴平移的规律。

2. 利用实例分析,让学生了解坐标轴平移在实际问题中的应用。

3. 组织小组讨论,培养学生合作解决问题的能力。

五、教学过程:1. 导入新课:通过一个简单的实例,让学生初步了解坐标轴平移的概念。

2. 自主探究:引导学生发现坐标轴平移的规律,学生可以画图、讨论,总结平移的规律。

3. 讲解与演示:讲解坐标轴平移的规律,并通过几何画板或实物演示,让学生更直观地理解平移的过程。

4. 应用拓展:给出一些实际问题,让学生运用坐标轴平移的规律解决问题。

5. 总结与反馈:让学生总结本节课所学内容,并对学生的学习情况进行反馈。

6. 布置作业:设计一些有关坐标轴平移的练习题,巩固所学知识。

六、教学评价:1. 通过课堂提问、作业批改和课堂表现,评价学生对坐标轴平移概念和规律的理解程度。

2. 通过小组讨论和问题解答,评估学生在实际问题中应用坐标轴平移的能力。

3. 通过课后练习和拓展活动,检测学生对所学知识的掌握和运用情况。

七、教学资源:1. 教学PPT或黑板,用于展示和讲解坐标轴平移的规律。

2. 几何画板或实物模型,用于演示坐标轴平移的过程。

3. 练习题和实际问题案例,用于学生的应用和实践。

八、教学进度安排:1. 第1-2课时:介绍坐标轴平移的概念和规律。

2. 第3-4课时:讲解坐标轴平移的原理和实际应用。

3. 第5-6课时:进行小组讨论和问题解答,巩固坐标轴平移的应用。

4. 第7-8课时:通过课后练习和拓展活动,评估学生的学习成果。

11.2图形在坐标系中的平移(教案)

11.2图形在坐标系中的平移(教案)

沪科版数学八年级上册11.2图形在坐标系中的平移教学设计课题11.2图形在坐标系中的平移单元第十一单元学科数学年级八年级上教材分析图形在坐标系中的平移作为沪科版八年级上册第十一单元第二课时内容,该课时主要讲了坐标系中的图形的平移等方面的重要内容,该课时有利于发展学生形象思维能力和树形结合意识学情分析学习直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,有利于让学生体会坐标系中的图形平移的实际应用价值。

学习目标1.能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移实质2.经历图形在坐标系中的平移过程,发展学生形象思维能力和树形结合意识3.调动学生学习主动性,培养合作探究的意识,体会坐标系中的图形平移的实际应用价值。

重点探究点或图形的平移与坐标变化的规律难点对图形的坐标中的平移变化的理解教学过程教学环节教师活动学生活动设计意图导入新课问题:你会下象棋吗? 如果下一步想“马走日”“象走田”应该走到哪里呢?你知道吗?除了象棋的走法,你能将象棋的走法与坐标系联系起来么?教师引入象棋这一话题,通过象棋的走法引导学生思考。

由象棋的走法引导学生思考,逐步进入新课坐标平面内的移动知识的讲解。

讲授新课一、温故知新思考思考,并和同学交流一下,什么叫做平移?在平面内,把一个图形沿某个方向移动一定的距离,这种图形的变换叫做平移.平移的方向和距离是平移的两个要素。

通过观察,你能得出平移都有哪些性质吗?平移的性质:1.新图形与原图形形状和大小不变,但位置改教师组织学生讨论,引导学生回忆平移的相关知识,勾起学生的兴趣和思考。

教师通过引导学生回忆平移的相关知识,勾起学生的兴趣和思考。

熟练平移的概念和性质。

变;2.对应点的连线平行且相等.二、新知讲解观察:如图,三角形ABC在坐标平面上平移后得到新图形三角形A1B1C1.并思考下列问题。

新教材浙教版八年级上册初中数学 第2课时 坐标平面内图形的平移教案

新教材浙教版八年级上册初中数学 第2课时 坐标平面内图形的平移教案

第4章图形与坐标4.3 坐标平面内图形的轴对称和平移第2课时坐标平面内图形的平移1.了解当坐标平面内图形左、右或上、下平移时对应点之间的坐标关系。

2.会求已知点左、右或上、下平移后所得的像的坐标。

3.已知会利用平移后对应点之间的坐标关系,分析已知图形的平移变换. 坐标平面内图形左、右或上、下平移后对应点的坐标关系.利用平移后对应点间的坐标关系,分析已知图形的平移变换如图,将点A(-3,3)关于x轴、y轴作轴对称变换,像的坐标分别为________. 设问:在这一图形变换中,除了用轴对称变换外,可以用其他的图形变换吗?生:可以用平移变换师:将变化的坐标填在表格中。

师:观察各点平移时的坐标变化,你能发现它们变化的规律吗?平移时的坐标变化左右平移时:向右平移h个单位(a,b)(a+h, b)向左平移h个单位(a,b)(a-h, b)上下平移时:向上平移h个单位(a,b)(a, b+h)向下平移h个单位(a,b)(a, b -h )做一做:1.已知点A的坐标为(-2,-3),分别求点经下列平移变换后所得的像的坐标。

(1)向上平移3个单位(2)向下平移3个单位(3)向左平移2个单位(4)向右平移4个单位(5)先向右平移3个单位,再向下平移3个单位2.已知点A的坐标为(a,b), 点A经怎样变换得到下列点?(1) (a-2,b) (2) (a,b+2)例:如图,在直角坐标系中,平行于x轴的线段AB上所有点的纵坐标都是-1,横坐标x的取值范围是1≤x ≤5 ,则线段AB上任意一点的坐标可以用“(x,-1) (1≤x ≤5)”表示,按照这样的规定,回答下面的问题:1 按照以上的规定怎样表示线段CD上任意一点的坐标?(2, y)(-1≤y ≤3)2 把线段AB向上平移2.5个单位,线段的两个端点的横坐标、纵坐标发生了什么变化?由此可知线段上任意一点的坐标变化吗?3 把线段CD向左平移3个单位,作出所得像,像上任意一点的坐标怎示?(-1, y)(-1≤y ≤3)平移时坐标变化的规律;如何用坐标来表示一条平行于坐标轴的线段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.2图形在坐标系中的平移
◇教学目标◇
【知识与技能】
1.能在平面直角坐标系中用坐标的方法研究图形的变换,掌握图形在平移过程中各点坐标的变化规律,理解图形在平面直角坐标系上的平移实质上就是点坐标的对应变换;
2.运用图形在平面直角坐标系中平移的点坐标的变化规律进行简单的平移作图.
【过程与方法】
经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程.
【情感、态度与价值观】
让学生发现数学与图形的平移、物体的运动等有实际意义的事情之间的关系,体会数学在现实生活中的用途.
◇教学重难点◇
【教学重点】
掌握用坐标系的变化规律来描述平移的过程.
【教学难点】
根据图形的平移过程,探索、归纳出坐标的变化规律.
◇教学过程◇
一、情境导入
(1)平移的概念是什么?
(2)下象棋时,棋子的移动,什么在变,什么不变?在棋盘上推动棋子是否可以看成图形在平面上的平移?
二、合作探究
1.探究点的平移与坐标的变化:
2.探究图形的平移与其坐标变化的关系:
(1)左、右平移:
原图形上的点(x,y)(x a,y);
原图形上的点(x,y)(x a,y).
(2)上、下平移:
原图形上的点(x,y)(x,y b);
原图形上的点(x,y)(x,y b).
3.归纳出平移规律:
(1)三角形的平移,是通过三角形任意一点坐标的变化而得到的.
(2)在平面直角坐标系中,沿横轴平移,图形上每一点的纵坐标不变,而横坐标增减,简记为“左减右加”;沿纵轴平移,横坐标不变,纵坐标增减,简记为“上加下减”.
(3)“左减右加,上加下减”也可这样理解:按x轴(y轴)正方向平移,则横(纵)坐标加上平移的单位数量,按x轴(y轴)负方向平移,则横(纵)坐标减去平移的单位数量.
典例1如图,将三角形ABC先向右平移6个单位,再向下平移2个单位得到三角形A1B1C1,写出各顶点变动前后的坐标.
[解析]用箭头代表平移,有
A(-2,6)→(4,6)→A1(4,4),B(-4,4)→(2,4)→B1(2,2),C(1,1)→(7,1)→C1(7,-1).
将三角形ABC先向左移动3个单位,再向上移动2个单位,得到三角形A2B2C2,写出三角形A2B2C2的各顶点坐标.
[解析]点A2(-5,8),点B2(-7,6),点C(-2,3).
典例2说一说,下列由点A到点B是怎样平移的?
(1)A(x,y)→B(x-1,y+2);
(2)A(x,y)→B(x+3,y-2);
(3)A(x+3,y-2)→B(x,y).
[解析](1)将点A先向左平移1个单位,再向上平移2个单位,即可得到点B.
(2)将点A先向右平移3个单位,再向下平移2个单位,即可得到点B.
(3)将点A先向左平移3个单位,再向上平移2个单位,即可得到点B.
图形在坐标系中的平移
1.点的平移与坐标的变化.
2.图形的平移与其坐标变化的关系.
3.平移规律.
◇教学反思◇
本节课的主要内容是平移的变化规律“左减右加”“上加下减”,让学生在理解的基础上加以消化掌握,不能死记硬背,只要正确作出图形即可知道变化情况.方位角和距离的讲解要补充并强化.教学时注重与中考知识点链接,训练学生的逆向思维能力.。

相关文档
最新文档