2019年吉林省长春市二道区中考数学一模试卷
精品解析:【市级联考】吉林省长春市2019届九年级第一次试考(4月)数学试题(解析版)
2019年长春市中考第一次试考数学试题一、选择题:(本大题共8个小题,每小题3分,共24分.)1.的绝对值是()A. -2019.B. 2019.C.D.【答案】D【解析】【分析】直接利用绝对值的定义进而得出答案.【详解】的绝对值是.故选D.【点睛】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.据统计,截止2019年2月,某市实际居住人口约4210000人,4210000这个数,用科学记数法表示为:()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】421 0000=4.21×106,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是一个正六棱柱的茶叶盒,其俯视图为()A. B. C. D.【答案】D【解析】【分析】根据正六棱柱的俯视图为正六边形,即可得出结论.【详解】正六棱柱的俯视图为正六边形.故选D.【点睛】本题考查了简单几何体的三视图,熟记正六棱柱的三视图是解题的关键.4.不等式的解集在数轴上表示正确的是()A. B. C. D.【答案】A【解析】解不等式3x﹣1≤2,得:x≤1,解不等式x+2>0,得:x>﹣2,则不等式组的解集为﹣2<x≤1,故选A.5.如图,为直角三角形,,若沿图中虚线剪去,则的度数是()A. B. C. D.【答案】B【解析】【分析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选B.【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.6. 如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行. 张强扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为()A. 5.5mB. 6.2mC. 11 mD. 2.2 m【答案】A【解析】如图,作DE⊥FC于点E,∴△ABC∽△CED,∴.设AB=x米,由题意得DE=6米,EF=2.2米.∴,解得x=5.5.故选A.7.如图,某地修建高速公路,要从地向修一座隧道(在同一水平面上),为了测量两地之间的距离,某工程师乘坐热气球从地出发,垂直上升200米到达处,在处观察地的俯角为,则两地之间的距离为()A. B. C. D.【答案】D【解析】【分析】根据正切的定义解答即可.【详解】由题意得,∠B=,在Rt△ACB中,tanB=,则BC=米,故选D.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角和俯角的概念、熟记锐角三角函数的定义是解题的关键.8.如图,在平面直角坐标系中,点、的坐标分别为(0,3)、(1、0).将线段绕着点顺时针旋转,得到线段.若点落在函数的图象上,则的值为()A. 3B. 4C. 6D. 8【答案】B【解析】试题分析:根据旋转的性质和勾股定理可求得AB=AC=,然后设C的坐标为(4,),则AC=,解得k=±4,由图像可知k=4.故选:B.点睛:此题主要考查了勾股定理在平面直角坐标系中的应用,解题关键是明确旋转后的坐标变化,表示出C 点的坐标,从而根据反比例函数的图像的性质,求出k的值.二、填空题(本大题共6小题,每小题3分,共18分)9.比较大小:__________3.(添“>”或“<”)【答案】<【解析】【分析】首先把两个数分别平方,然后比较平方的结果即可比较大小.【详解】∵7<9,∴<3.故答案为:<.【点睛】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.10.计算:__________.【答案】【解析】【分析】根据幂的乘方运算法则进行计算即可得解.【详解】a2×3=a6.故答案为:a6.【点睛】本题主要考查了幂的乘方的运算法则:底数不变,指数相乘,熟练掌握运算法则是解题关键. 11.如图,直线与直线(为常数)的交点在第三象限,则的值可以为_________.(写出一个即可)【答案】答案不唯一,只要-3<a<0即可【解析】【分析】首先求出方程组的解,然后根据第三象限内点的坐标特征,列出关于a的不等式组,从而得出a的取值范围.【详解】解方程组,得.∵交点在第三象限,∴,解得-3 <a<0.故答案不唯一,只要-3<a<0即可.【点睛】本题主要考查了一次函数与方程组的关系及第二象限内点的坐标特征.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.第四象限内点的坐标特征:横坐标大于0,纵坐标小于0.12.如图,四边形内接于.若,则的大小为__________度.【答案】100【解析】试题分析:根据圆内接四边形的对角互补,可求得∠B=180°-∠ADC=50°,然后跟据圆周角定理可求得∠AOC=2×50°=100°.故答案为:100°.13.如图,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分别以点A和点B为圆心、大于AB一半的长为半径作圆弧,两弧相交于点E和点F,作直线EF交AB于点D,连结CD.则CD的长为________.【答案】【解析】解:由作图可知,E F垂直平分AB,即DC是Rt△ABC斜边上的中线,故DC=AB= .14.如图,在平面直角坐标系中,抛物线交轴于点,过点作轴交抛物线于点,点在抛物线上,连结、.若点关于轴的对称点恰好落在直线上,则的面积是_____________.【答案】2.【解析】试题解析:令x=0,则y=x2-2x-1=-1,∴A(0,-1),把y=-1代入y=x2-2x-1得-1=x2-2x-1,解得x1=0,x2=2,∴B(2,-1),∴AB=2,∵点P关于x轴的对称点恰好落在直线AB上,∴△PAB边AB上的高为2,∴S=×2×2=2.考点:二次函数图象上点的坐标特征.三、解答题(本大题共10小题,共78分)15.小明解方程出现了错误,解答过程如下:方程两边都乘以,得(第一步)去括号,得(第二步)移项,合并同类项,得(第三步)检验,当时(第四步)所以是原方程的解. (第五步)(1)小明解答过程是从第步开始出错的,原方程化为第一步的根据是 . (2)请写出此题正确的解答过程.【答案】(1)一,方程两边都乘以(或都除以)同一个不为0的数,方程的解不变;(2)见解析. 【解析】【分析】(1)根据等式的基本性质判断可得;(2)根据解分式方程的步骤依次计算可得.【详解】(1)一方程两边都乘以(或都除以)同一个不为0的数,方程的解不变(2)解答过程如下:方程两边都乘以,得.解得.检验,当时所以是原方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.某校对初三学生进行物理、化学实验操作能力测试.物理、化学各有3个不同的操作实验题目,物理实验分别用①、②、③表示,化学实验分别用a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.王刚同学对物理的①、②号实验和化学的b、c号实验准备得较好.请用画树状图(或列表)的方法,求王刚同学同时抽到两科都准备得较好的实验题目的概率.【答案】【解析】试题分析:根据题意画出树状图,再求出一共有的等可能结果数,及他两科都抽到准备得较好的实验题目的情况数,利用概率公式求解即可。
2019年吉林省长春市中考数学一模试卷(精品解析版)
2019年吉林省长春市中考数学一模试卷一、选择题1.-的绝对值是( )A.B. 2019C.D.【答案】D 【解析】【分析】:直接利用绝对值的定义进而得出答案. 【详解】的绝对值是.故选D .【点睛】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.据统计,截止2019年2月,长春市实际居住人口约4210000人,4210000这个数用科学记数法表示为( )A.B. C.D.【答案】C 【解析】【分析】:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】421 0000=4.21×106,故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图是一个正六棱柱的茶叶盒,其俯视图为( )A.B.C.D.【答案】B 【解析】试题解析:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.4.不等式的解集在数轴上表示正确的是( )A. B.C. D.【答案】A【解析】【分析】:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式3x-1≤2,得:x≤1,解不等式x+2>0,得:x>-2,则不等式组的解集为-2<x≤1,故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A. B. C. D.【答案】B【解析】【分析】:利用三角形内角与外角关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选B.【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.6.如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为( )A. B. C. 11m D.【答案】A【解析】如图,作DE⊥FC于点E,∴△ABC∽△CED,∴.设AB=x米,由题意得DE=6米,EF=2.2米.∴,解得x=5.5.故选A.7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升200米到达A处,在A处观察B地的俯角为α,则B,C两地之间的距离为()A.米 B. 米 C. 米 D. 米【答案】D【解析】【分析】:根据正切的定义解答即可.【详解】由题意得,∠B=,在Rt△ACB中,tanB=,则BC=米,故选D.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角和俯角的概念、熟记锐角三角函数的定义是解题的关键.8.如图,在平面直角坐标系中,点A、B的坐标分贝为(0,3)、(1,0),将线段AB绕点B顺时针旋转90°,得到线段BC,若点C落在函数y=(x>0)的图象上,则k的值为( )A. 3B. 4C. 6D. 8【答案】B【解析】试题分析:根据旋转的性质和勾股定理可求得AB=AC=,然后设C的坐标为(4,),则AC=,解得k=±4,由图像可知k=4.故选:B.点睛:此题主要考查了勾股定理在平面直角坐标系中的应用,解题关键是明确旋转后的坐标变化,表示出C点的坐标,从而根据反比例函数的图像的性质,求出k的值.二、填空题9.比较大小:______3(填写“<”或“>”).【答案】.【解析】【分析】:首先把两个数分别平方,然后比较平方结果即可比较大小.【详解】∵7<9,∴<3.故答案为:<.【点睛】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.10.(a2)3=_____.【答案】a6【解析】分析:直接根据幂的乘方法则运算即可.详解:原式=a6.故答案为a6.点睛:本题考查了幂的乘方与积的乘法:(a m)n=a mn(m,n是正整数);(ab)n=a n b n(n是正整数).11.如图,直线L:y=-x-3与直线y=a(a为常数)的交点在第三象限,则a的值可以为______.(写出一个即可)【答案】答案不唯一,只要-3<a<0即可【解析】分析:首先求出方程组的解,然后根据第三象限内点的坐标特征,列出关于a的不等式组,从而得出a的取值范围.【详解】解方程组,得.∵交点在第三象限,∴,解得-3 <a<0.故答案不唯一,只要-3<a<0即可.点睛:本题主要考查了一次函数与方程组的关系及第二象限内点的坐标特征.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.第四象限内点的坐标特征:横坐标大于0,纵坐标小于0.12.如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的大小为______度.【答案】100【解析】试题分析:根据圆内接四边形的对角互补,可求得∠B=180°-∠ADC=50°,然后跟据圆周角定理可求得∠AOC=2×50°=100°.故答案为:100°.13.如图,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分别以点A和点B为圆心、大于AB一半的长为半径作圆弧,两弧相交于点E和点F,作直线EF交AB于点D,连结CD.则CD的长为______.【答案】【解析】解:由作图可知,E F垂直平分AB,即DC是Rt△ABC斜边上的中线,故DC=AB= .14.如图,在平面直角坐标系中,抛物线y=x2-2x-1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是______.【答案】2【解析】【分析】求得C的坐标,进而求得B的坐标,根据点P关于x轴的对称点恰好落在直线AB上得出三角形的高,然后根据三角形面积公式即可求得.【详解】解:令x=0,则y=x2-2x-1=-1,∴A(0,-1),把y=-1代入y=x2-2x-1得-1=x2-2x-1,解得x1=0,x2=2,∴B(2,-1),∴AB=2,∵点P关于x轴的对称点恰好落在直线AB上,∴△PAB边AB上的高为2,∴S=×2×2=2.故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,求得A、B的坐标以及三角形的高是解题的关键.三、解答题15.小明解方程=3出现了错误,解答过程如下:方程两边都乘以(x-2),得1-(1-x)=3(第一步)去括号,得1-1+x=3(第二步)移项,合并同类项,得x=3(第三步)检验,当x=3时x-2≠0(第四步)所以x=3是原方程的解.(第五步)(1)小明解答过程是从第____步开始出错的,原方程化为第一步的根据是_____.(2)请写出此题正确的解答过程.【答案】(1)一,方程两边都乘以(或都除以)同一个不为0的数,方程的解不变;(2)见解析. 【解析】【分析】(1)根据等式的基本性质判断可得;(2)根据解分式方程的步骤依次计算可得.【详解】(1)一方程两边都乘以(或都除以)同一个不为0的数,方程的解不变(2)解答过程如下:方程两边都乘以,得.解得.检验,当时所以是原方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.某校对初三学生进行物理、化学实验操作能力测试.物理、化学各有3个不同的操作实验题目,物理实验分别用①、②、③表示,化学实验分别用a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.王刚同学对物理的①、②号实验和化学的b、c号实验准备得较好.请用画树状图(或列表)的方法,求王刚同学同时抽到两科都准备得较好的实验题目的概率.【答案】【解析】试题分析:根据题意画出树状图,再求出一共有的等可能结果数,及他两科都抽到准备得较好的实验题目的情况数,利用概率公式求解即可。
吉林省长春市中考数学一模试卷
吉林省长春市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·合肥期中) 下列计算正确是()A . (a )=aB . a •a=aC . a ÷a =aD . a =12. (2分)(2012·绵阳) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)(2019·赣县模拟) 如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A . 2个或3个B . 3个或4个C . 4个或5个D . 5个或6个4. (2分)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A . 7.26×1010元B . 72.6×109元C . 0.726×1011元D . 7.26×1011元5. (2分) (2019七上·姜堰期末) 如图射线OA的方向是北偏东30°,在同一平面内∠AOB=70°,则射线OB的方向是()A . 北偏东B . 北偏西C . 南偏东D . B、C都有可能6. (2分) (2019八上·武汉月考) 如图△ABC 的∠ABC 的外角平分线 BD 与∠ACB 的外角平分线 CE 交于 P,过 P 作MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,则 MN=()A . 2B . 3C . 4D . 57. (2分)已知一元二次方程(x+1)(2x-1)=0的解是()A . -1B . 0.5C . -1或-2D . -1或0.58. (2分)我校举行A,B两项趣味比赛,甲、乙两名学生各自随机选择其中一项,则他们恰好参加同一项比赛的概率是()A .B .C .D .9. (2分)已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是()A . 相交B . 外切C . 外离D . 内含10. (2分)下列命题是真命题的是()A . 如果|a|=1,那么a=1B . 一组对边平行的四边形是平行四边形C . 如果a是有理数,那么a是实数D . 对角线相等的四边形是矩形11. (2分) (2015九上·山西期末) 一次函数与二次函数在同一平面直角坐标系中的图象可能是()A .B .C .D .12. (2分) (2019七下·重庆期中) 在科幻电影“银河护卫队”中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成。
2019年吉林省长春市中考数学一模考试试卷(解析版)
2019年吉林省长春市中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.-法;的绝对值是( )2.3. A. -2019B.201912019据统计,截止2019年2月,长春市实际居住人口约4210000 A , 4210000这个数用 科学记数法表示为()A. 42.1 x 105 B. 4.21 x 105 C. 4.21 x 106如图是一个正六棱柱的茶叶盒,其俯视图为( )D. 4.21 x 107A.4,不等式{乂竿项Mo 的解集在数轴上表示正确的是( )-1 05.已知如图,/kABC 为直角三角形,zC=90°,若沿图中虚线剪去乙C,贝0zl+z2等于( )A. 315°B. 270°C. 180°D. 135°6,如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱 子(人与箱子的总高度约为2.2m )乘电梯刚好安全通过,请你根据图中数据回答, 两层楼之间的高约为()A. 5.5m D. 2.2m7,如图,某地修建高速公路,要从3地向。
地修一座隧道(B,。
在同一水平面上),为了测量。
两地之间的距离,某工程师乘坐热气球从。
地出发,垂直上升200米到达A处,在A处观察B地的俯角为a,则B,C两地之间的距离为()A.200sina米B.200tana米C.竺米sina8,如图,在平面直角坐标系中,点A、B的坐标分贝为(0,3)、(1,0),将线段AB绕点B顺时针旋转90。
,得到线段3C,若点。
落在函数y=§(x>0)的图象上,贝琳的值为()A.3B.4C.6D.8二、填空题(本大题共6小题,共18.0分)9.比较大小:V73(填写或">”).10.(a2)3=.11.如图,直线L:y=-|x-3与直线y=a(a为常数)的交点在第三象限,则a的值可以为.(写出一个即可)12,如图,四边形ABCQ内接于若ZADC=130°,则zAOC的大小为度.DB13.如图,在Rt「AB C中,zACB=90。
吉林省长春市2019年中考数学模拟试卷(包含答案)
吉林省长春市2019年中考数学模拟试卷一.选择题(满分24分,每小题3分)1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.﹣a可以表示正数D.0既是正数也是负数2.已知a<b,下列式子不成立的是()A.a+1<b+1 B.4a<4bC.﹣>﹣b D.如果c<0,那么<3.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×1074.如图,点O在直线AB上,若∠AOC=3∠BOC,则∠BOC的度数为()A.30°B.45°C.50°D.60°5.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD=8,则OE长为()A.3 B.5 C.2.5 D.46.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A .a sin α+a sin βB .a cos α+a cos βC .a tan α+a tan βD .+7.如图,在⊙O 中,点C 在优弧上,将沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )①AC =CD ;②AD =BD ;③+=;④CD 平分∠ACBA .1B .2C .3D .48.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =的图象经过点B ,若△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD =2,则k 的值为( )A .2B .4C .6D .8二.填空题(满分18分,每小题3分) 9.因式分解:ax 3y ﹣axy 3= .10.定义[x ]表示不超过实数x 的最大整数,例如:[0.82]=0,[6]=6,[﹣]=﹣3,[﹣7]=﹣7.若规定:对于实数m ,.例如:f (7)=[]﹣[]=[﹣]﹣[]=﹣2﹣1=﹣3,则f (﹣6)= .11.如图,在四边形ABCD 中,∠ABC =90°,对角线AC 、BD 交于点O ,AO =CO ,CD ⊥BD ,如果CD=3,BC=5,那么AB=.12.如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=°.13.如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则=.14.二次函数y=ax2+bx+c的图象与x轴相交于(﹣1,0)和(5,0)两点,则该抛物线的对称轴是.三.解答题15.(6分)先化简再求值,(3a﹣2)2﹣3a(2a﹣1)+5,其中a是方程x2﹣3x+1=0的解.16.(6分)现有学生若干人,分住若干宿舍.如果每间住4人,那么还余20人;如果每间住6人,那么有一间宿舍只住了2人.试求学生人数和宿舍间数.17.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.18.(7分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(7分)在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC ,其中∠A =2∠B ,关系式a 2=b (b +c )是否仍然成立?并证明你的结论.(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数. 20.(7分)已知抛物线y =x 2+(2m ﹣1)x ﹣2m (m >0.5)的最低点的纵坐标为﹣4. (1)求抛物线的解析式;(2)如图1,抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,D 为抛物线上的一点,BD 平分四边形ABCD 的面积,求点D 的坐标;(3)如图2,平移抛物线y =x 2+(2m ﹣1)x ﹣2m ,使其顶点为坐标原点,直线y =﹣2上有一动点P ,过点P 作两条直线,分别与抛物线有唯一的公共点E 、F (直线PE 、PF 不与y 轴平行),求证:直线EF 恒过某一定点.21.(8分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙. (2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.22.(9分)如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD 上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.23.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.【观察猜想】①AE与BD的数量关系是;②∠APD的度数为.【数学思考】如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;【拓展应用】如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为.24.在平面直角坐标系中,如果某点的横坐标与纵坐标的和为10,则称此点为“合适点”例如,点(1,9),(﹣2019,2029)…都是“合适点”.(1)求函数y=2x+1的图象上的“合适点”的坐标;(2)求二次函数y=x2﹣5x﹣2的图象上的两个“合适点”A,B之间线段的长;(3)若二次函数y=ax2+4x+c的图象上有且只有一个合适点”,其坐标为(4,6),求二次函数y=ax2+4x+c的表达式;(4)我们将抛物线y=2(x﹣n)2﹣3在x轴下方的图象记为G1,在x轴及x轴上方图象记为G2,现将G1沿x轴向上翻折得到G3,图象G2和图象G3两部分组成的记为G,当图象G上恰有两个“合适点”时,直接写出n的取值范围.参考答案一.选择题1.解:A、“+15米”不一定表示向东走15米,原说法错误,故这个选项不符合题意;B、0℃不是没有温度,而是表示零上温度和零下温度的分界点,原说法错误,故这个选项不符合题意;C、﹣a可以表示正数,也可以表示负数,原说法正确,故这个选项符合题意;D、0 既不是正数也不是负数,原说法错误,故这个选项不符合题意;故选:C.2.解:A、不等式两边同时加上1,不等号方向不变,式子a+1<b+1成立,故这个选项不符合题意;B、不等式两边同时乘以4,不等号方向不变,式子4a<4b成立,故这个选项不符合题意;C、不等式两边同时乘以﹣,不等号方向改变,式子﹣a>﹣b成立,故这个选项不符合题意;D、不等式两边同时除以负数c,不等号方向改变,式子<不成立,故这个选项符合题意.故选:D.3.解:用科学记数法表示1326000的结果是1.326×106,故选:B.4.解:∵∠AOC与∠BOC互为邻补角,∴∠AOC+∠BOC=180°,①又∵∠AOC=3∠BOC,②把②代入①,可得3∠BOC+∠BOC=180°,解得∠BOC=45°.故选:B.5.解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB==5,则OE=AD=.故选:C.6.解:在Rt△ABD和Rt△ABC中,AB=a,tanα=,tanβ=,∴BC=a tanα,BD=a tanβ,∴CD=BC+BD=a tanα+a tanβ;故选:C.7.解:过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;∵点D是AB的中点,∴AD=BD,∵AC=CD',故②正确;∴=,由折叠得:=,∴+=;故③正确;延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:A.8.解:设B点坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴S△OAC =AC2,S△BAD=AD2,∵S△OAC ﹣S△BAD=2,∴AC2﹣AD2=4,∴(AC+AD)(AC﹣AD)=4∴(OC+BD)•CD=4,∴a•b=4,∴k=4.故选:B.二.填空题9.解:ax3y﹣axy3=axy(x2﹣y2)=axy(x+y)(x﹣y).故答案为:axy(x+y)(x﹣y).10.解:∵,∴f(﹣6)=[]﹣[]=2﹣(﹣2)=4.故答案为:4.11.解:如图,过点A作AE⊥BD,∵CD⊥BD,AE⊥BD,∴∠CDB=∠AED=90°,且CO=AO,∠COD=∠AOE,∴△AOE≌△COD(AAS)∴CD=AE=3,∵∠CDB=90°,BC=5,CD=3,∴DB===4;∵∠ABC=∠AEB=90°,∴∠ABE+∠EAB=90°,∠CBD+∠ABE=90°,∴∠EAB=∠CBD,且∠CDB=∠AED=90°,∴△ABE∽△BCD,∴,∴∴AB=故答案为:.12.解:连接EA,∵为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.13.解:由作法得BD平分∠ABC,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∴DA=DB,在Rt△BCD中,BD=2CD,∴AD=2CD,∴=.故答案为.14.解:∵二次函数y=ax2+bx+c的图象与x轴相交于(﹣1,0)和(5,0)两点,∴其对称轴为:x==2.故答案为:x=2.三.解答15.解:原式=9a2﹣12a+4﹣6a2+3a+5=3a2﹣9a+9=3(a2﹣3a)+9,把x=a代入方程得:a2﹣3a+1=0,即a2﹣3a=﹣1,则原式=﹣3+9=6.16.解:设学生有x人,宿舍有y间,依题意,得:,解得:.答:学生有68人,宿舍有12间.17.解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.18.解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.19.(1)证明:∵∠A=2∠B,∠A=60°∴∠B=30°,∠C=90°∴c=2b,a=b∴a2=3b2=b(b+c)(2)解:关系式a2=b(b+c)仍然成立.法一:证明:∵∠A=2∠B∴∠C=180°﹣∠A﹣∠B=180°﹣3∠B由正弦定理得即a=2R sin A,b=2R sin B,c=2R sin C∴b(b+c)=2R sin B(2R sin B+2R sin C)=4R2sin B[sin B+sin(180°﹣3∠B)]=4R2sin B(sin B+sin3∠B)=4R2sin B(2sin2B cos B)=4R2sin2B×sin2B=4R2sin22B又∵a2=4R2sin2A=4R2sin22B∴a2=b(b+c)(3)解:若△ABC是倍角三角形,由∠A=2∠B,应有a2=b(b+c),且a>b.当a>c>b时,设a=n+1,c=n,b=n﹣1,(n为大于1的正整数)代入a2=b(b+c),得(n+1)2=(n﹣1)•(2n﹣1),解得n=5,有a=6,b=4,c=5,可以证明这个三角形中,∠A=2∠B当c>a>b及a>b>c时,均不存在三条边长恰为三个连续正整数的倍角三角形.边长为4,5,6的三角形为所求.20.解:(1)∵y =x 2+(2m ﹣1)x ﹣2m =(x +m ﹣0.5)2﹣m 2﹣m ﹣0.25,∴顶点坐标为(0.5﹣m ,﹣m 2﹣m ﹣0.25)∵最低点的纵坐标为﹣4,∴﹣m 2﹣m ﹣0.25=﹣4,即4m 2+4m ﹣15=0,∴m =1.5或﹣2.5,∵m >0.5,∴m =1.5.∴抛物线的解析式为y =x 2+2x ﹣3;(2)∵y =x 2+2x ﹣3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C , ∴A (﹣3,0),B (1,0),C (0,﹣3).如图1,连AC 交BD 于E ,过A 作AM ⊥BD 于M ,过C 作CN ⊥BD 于N ,∵BD 平分四边形ABCD 的面积,∴S △ABD =S △CBD ,∴BD ×AM =BD ×CN ,∴AM =CN ,且∠AEM =∠CMN ,∠AME =∠CNE =90°∴△AEM ≌△CEN (AAS ),∴AE =CE ,∴E (﹣1.5,﹣1.5),且B (1,0),∴直线BE 的解析式为y =0.6x ﹣0.6.∴0.6x ﹣0.6=x 2+2x ﹣3,解得x 1=﹣,x 2=1, ∴D (﹣,﹣).(3)由题意可得平移后解析式为y=x2,设E(t,t2),F(n,n2),设直线PE为y=k1(x﹣t)+t2,由题意可得x2﹣k1x+k1t﹣t2=0,∴△=k12﹣4(k1t﹣t2)=(k1﹣2t)2=0,∴k1=2t.∴直线PE为y=2t(x﹣t)+t2,即y=2tx﹣t2.令y=﹣2,得x P=,同理,设直线PF为y=k2(x﹣n)+n2,∴x P=,∴=,∵t≠n,∴tn=﹣2.设直线EF的解析式为y=kx+b,得x2﹣kx﹣b=0,∴x E•x F=﹣b,即tn=﹣b,∴b=2.∴直线EF为y=kx+2,过定点(0,2).21.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.22.解:(1)如图1中,∵四边形ABCD是平行四边形,∴AB∥CB,∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)如图1中,作AH⊥CD交CD的延长线于H.在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60°=,DH=AD•cos60°=,∵DE=EC=,∴EH=DH+DE=2,∴AE===,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴=,∴=,∴EF=.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.∵DE∥PF,∴=,∵AD是定值,∴PA定值最大时,定值最大,观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,由(2)可知,AH=,CH=,∠H=90°,∴AC===,∴OM=AC=,∵OK∥AH,AO=OC,∴KH=KC,∴OK==,∴MK=NQ=﹣,在Rt△NDQ中,DN===﹣,∴AN=AD+DN=+,∴的最大值==+.23.解:【观察猜想】:结论:AE=BD.∠APD=60°.理由:设AE交CD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,∵∠AOC=∠DOP,∴∠DPO=∠ACO=60°,即∠APD=60°.故答案为AE=BD,60°.【数学思考】:结论仍然成立.理由:设AC交BD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,即∠APD=60°.【拓展应用】:设AC交BE于点O.∵△ADC,△ECB都是等腰直角三角形,∴ED=EA,∠AED=∠BEC=90°,CE=EB,∴∠AEC=∠DEB∴△AEC≌△DEB(SAS),∴AC=BD=10,∠PBO=∠OCE,∵∠BOP=∠EOC,∴∠BPO=∠CEO=90°,∴AC⊥BD,=•AC•DP+•AC•PB=•AC•(DP+PB)=•AC•BD=50.∴S四边形ABCD故答案为50.24.解:(1)联立x+y=10和y=2x+1并解得:x=3,y=7,故“合适点”的坐标为(3,7);(2)联立x+y=10和y=x2﹣5x﹣2并解得:x=﹣2或6,故点A、B的坐标分别为:(﹣2,12)、(6,4),则AB==8;(3)将点(4,6)代入二次函数表达式得:16a+16+c=6…①,联立y=10﹣x和y=ax2+4x+c并整理得:ax2+5x+(c﹣10)=0,△=25﹣4a(c﹣10)=0…②,联立①②并解得:a=﹣,c=0,故抛物线的表达式为:y=﹣x2+4x;(4)图象G,如下图所示:G 2的顶点坐标为(n,3),则G2的函数表达式为:y=﹣2(x﹣n)2+3,x+y=10,则y=10﹣x,设直线m为:y=10﹣x,①当直线m与图象G2只有一个交点时,直线m与图象G有3个交点,即有3个“合适点”,联立直线m与G2的表达式得:y=﹣2(x﹣n)2+3=10﹣x,整理得:2x2﹣(4n+1)x+(2n2+7)=0,△=b2﹣4ac=8n﹣55=0,解得:n=,故当n<时,图象G恰好有2个“合适点”;②当直线m经过点A、B时,直线m与图象G有3个交点,即有3个“合适点”,则在这两个点之间有2个“合适点”,吉林省长春市2019年中考数学模拟试卷(包含答案)直线m与x轴的交点为(10,0),将(10,0)代入y=2(x﹣n)2﹣3并解得:n=10,故10﹣<n<10+;综上,n的取值范围为:n<或10﹣<n<10+.21 / 21。
2019-2020年吉林市初三中考数学第一次模拟试题【含答案】
2019-2020年吉林市初三中考数学第一次模拟试题【含答案】2019-2020年吉林市初三中考数学第一次模拟试题【含答案】一、选择题(本大题共10小题,共30.0分)1.给出四个实数,2,0,-1,其中无理数是()A. B. 2 C. 0 D.2.我国某国产手机使用了新一代移动SOC处理器麒麟980,麒麟980实现了基于Cortex-A76的开发商用,相较上一代处理器在表现上提升75%,在能效上提升58%,采用7nm制程工艺的手机芯片,在指甲盖大小的尺寸上塞进69亿个晶体管数据“69亿”用科学记数法表示为()A. B. C. D.3.如图是正方体的表面展开图,则与“2019”字相对的字是()A. 考B. 必C. 胜D.4.下列计算正确的是()A. B.C. D.5.九年级(15)班小姜同学所在小组的7名成员的中招体育成绩(单位:分)依次为70,65,63,68,64,68,69,则这组数据的众数与中位数分别是()A. 68分,68分B. 68分,65分C. 67分分D. 70分,65分6.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元?我们设乙图书每本价格为x元,则可得方程()A. B.C. D.7.已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.8.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A. B. C. D.9.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),以A为圆心,任意长为半径画弧,分别交AC、AO于点M、N,再分别以M、N为圆心,大于MN长为半径画弧两弧交于点Q,作射线AQ交y轴于点D,则点D的坐标为()A. B. C. D.10.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A. B. C. 5 D. 4二、填空题(本大题共5小题,共15.0分)11.如果分式有意义,那么实数x的取值范围是______.12.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为______.13.关于x的一元二次方程(a-1)x2-2x+1=0有实数根,则a的取值范围是______.14.如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______.15.如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM=,点M′与点M关于射线OP对称,且直线MM′与射线OA交于点N.当△ONM'为等腰三角形时,ON的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值,其中a=2sin45°,b=四、解答题(本大题共7小题,共67.0分)17.2019年央视315晚会曝光了卫生不达标的“毒辣条”,“食品安全”受到全社会的广泛关注,“安全教育平台”也推出了“将毒食品拋出窗外”一课我校为了了解九年级家长和学生参“将毒食品抛出窗外”的情况,在我校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A仅学生自己参与;B.家长和学生一起参与;C仅家长自己参与;D.家长和学生都未参请根据图中提供的信息解答下列问题(1)在这次抽样调查中,共调查了______名学生(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数(3)根据抽样调查结果,估计我校九年级2000名学生中“家长和学生都未参与”的人数18.如图直线y1=-x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点(1)求k的值;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,求此时点P 的坐标.19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为______时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为______.20.如图是某户外看台的截面图,长10m的看台AB与水平地面AP的夹角为35°,与AP平行的平台BC长为1.9m,点F是遮阳棚DE上端E正下方在地面上的一点,测得AF=2m,(参考数据:sin35°≈0.57,在挡风墙CD的点D处测得点E的仰角为26°,求遮阳棚DE的长.cos35°≈0.82,sin26°≈0.44,cos26°≈0.90)21.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?22.如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是______,∠MAE=______;(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;(3)若CD=BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=CD时,请直接写出α的值.23.如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.答案和解析1.【答案】A【解析】解:A、=2,是无理数,故本选项符合题意;B、,2是有理数,不是无理数,故本选项不符合题意;C、0是有理数,不是无理数,故本选项不符合题意;D、-1是有理数,不是无理数,故本选项不符合题意;故选:A.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】B【解析】解:69亿=6.9×109,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.3.【答案】C【解析】解:由图形可知,与“2019”字相对的字是“胜”.故选:C.由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】C【解析】解:A、a2?a3=a2+3=a5,故此选项错误;B、(a+b)(a-2b)=a?a-a?2b+b?a-b?2b=a2-2ab+ab-2b2=a2-ab-2b2.故此选项错误;C、(ab3)2=a2?(b3)2=a2b6,故此选项正确;D、5a-2a=(5-2)a=3a,故此选项错误.故选:C.根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.【答案】A【解析】解:中招体育成绩(单位:分)排序得:63,64,65,68,68,69,70;处在中间的是:68分,因此中位数是:68分;出现次数最多的数也是68分,因此众数是68分;故选:A.根据众数、中位数的意义,将这组数据从小到大排序后,处在中间位置的数是中位数,出现次数最多的数就是众数考查中位数、众数的意义和求法,准确理解中位数、众数的意义和求法是解决问题的前提.6.【答案】B【解析】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:-=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50.答:甲图书每本价格是50元,乙图书每本价格为20元.故选:B.可设乙图书每本价格为x元,则甲图书每本价格是2.5x元,利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案.此题主要考查了分式方程的应用,正确表示出图书的价格是解题关键.7.【答案】A【解析】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.。
2019年吉林省吉林市中考数学一模试卷含答案解析
2019年吉林省吉林市中考数学一模试卷含答案解析2019年吉林省吉林市中考数学一模试卷一、选择题(每小题3分,共24分)1.(3分)(2017?吉林一模)实数a在数轴上的位置如图所示,则a的值可能为()A.﹣4B.﹣3C.﹣2D.12.(3分)(2017?吉林一模)截止2016年末,吉林市户籍总人口约为4220000人,将数据4220000用科学记数法表示为()A.4.22×105B.4.22×106C.42.2×105D.0.422×107 3.(3分)(2017?吉林一模)将如图平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.4.(3分)(2017?吉林一模)在下列各数中,使不等式x﹣1>2成立的数为()A.B.C.D.5.(3分)(2016?成都)分式方程1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=36.(3分)(2017?吉林一模)如图,在△ABC中,∠B=85°,∠ACB=45°,若CD∥AB,则∠ACD的度数为()A.40°B.45°C.50°D.60°7.(3分)(2017?吉林一模)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A.120m B.100m C.75m D.25m8.(3分)(2017?吉林一模)如图,⊙O的半径是1,AB是⊙O的切线,A是切点,若半径OC∥AB,则阴影部分的面积为()A.B.C.D.二、填空题(每小题3分,共24分)9.(3分)(2017?吉林一模)的相反数是.10.(3分)(2019?湖州)分解因式:x2﹣9=.11.(3分)(2017?吉林一模)关于x的方程x2﹣2x+k=0有两个相等实根,则k=.12.(3分)(2017?吉林一模)二次函数y =x2﹣2x+3的最小值是.13.(3分)(2017?吉林一模)如图,∠AOB的平分线上有一点C,CD⊥OA于点D,若CD =3,则点C到OB的距离为.14.(3分)(2017?吉林一模)如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为.15.(3分)(2017?吉林一模)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC =130°,点P为半径OB上任意一点,连接CP,则∠BCP可能为°(写出一个即可)16.(3分)(2017?吉林一模)如图,在平面直角坐标系中,面积为a的矩形ABCD的边与坐标轴平行或垂直,顶点A、C分别在函数y的图象的两个分支上,则图中两块阴影部分面积的和等于.(用含a的式子表示)三、解答题(第17、18题每小题各5分,第19、20每小题各6分,共22分)17.(5分)(2017?吉林一模)先化简,再求值:x(x﹣2)+(x+1)2,其中x.18.(5分)(2017?吉林一模)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”请你求出问题中的鸡兔各有几只.19.(6分)(2017?吉林)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.(6分)(2017?吉林一模)甲、乙、丙三人用三根完全相同的吸管玩游戏,将其中一根剪去一段(如图1所示),甲把三根吸管按如图2所示的方式拿在手中,使露出的部分完全相同,乙先从中抽取一根不放回,丙再从中抽取一根.(1)乙抽到吸管c的概率为;(2)用画树状图或列表的方法,求乙、丙两人都没有抽到吸管c 的概率.四、解答题(每小题7分,共14分)21.(7分)(2017?吉林一模)如图是某住宅区的配电房示意图(图中长度单位:m),它是一个轴对称图形,求配电房的高AE(结果精确到0.1m).(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)22.(7分)(2017?吉林一模)老师想知道学生每天在上学的路上要花多少时间,于是让大家将每天来学校的单程时间写在纸上.如图是全班30名学生上学单程所花时间的条形统计图:(1)请直接写出学生上学单程所花时间的平均数、中位数和众数;(2)假如老师随机地问一名学生,你认为老师最可能得到的回答是多少时间?五、解答题(每小题8分,共16分)23.(8分)(2017?吉林一模)小明、小华约好去滑雪场滑雪.小明乘环保车从民俗村出发,沿景区公路(如图1所示)去滑雪场,同时小华从古庙群出发,骑电动自行车沿景区公路去滑雪场.小明、小华与民俗村之间的路程s(单位:km)与时间t(单位:h)的函数图象如图2所示.(1)民俗村与古庙群之间的路程为km;(2)分别求小明、小华与民俗村之间的路程s关于时间t的函数解析式(不要求写自变量的取值范围);(3)直接写出当小明到达滑雪场时,小华与滑雪场的路程.24.(8分)(2017?吉林一模)操作:已知△ABC,对△ABC进行如下变换:如图1,请画出对△ABC关于直线AC对称的△ADC(不要求尺规作图,不要求写画法,保留画图痕迹)如图2,将△ABC绕点A逆时针旋转,使点C落在AB上,得到△AEF.发现:当△ABC的边满足条件时,AD∥BC;当△ABC的边满足条件时,EF∥AC;应用:如图3,在锐角△GHK中,∠K<60°,GK=KH,将△GHK 按上述操作,得到△GHM和△GPN,延长NP交KH于点Q,延长MG 交NP于点R,判断四边形GHQR 的形状,并说明理由.六、解答题(每小题10分,共20分)25.(10分)(2017?吉林一模)如图,在平行四边形OABC中,∠AOC=60°,OC=4cm,OA=8cm,动点P从点O出发,以1cm/s 的速度沿边按O→A→B运动,同时动点Q从点O出发,以1cm/s的速度沿边按O→C→B运动,其中一点到达终点B时,另一点也停止运动,设运动时间为t(s),平行四边形OABC位于直线PQ左侧的图形面积为S(cm2).(1)平行四边形OABC的面积是cm2;(2)当t=s时,直线PQ平分平行四边形OABC的面积;(3)求S关于t的函数解析式.26.(10分)(2017?吉林一模)如图,在平面直角坐标系中的三点A(1,0),B(﹣1,0),P(0,﹣1),将线段AB沿y轴向上平移m(m>0)个单位长度,得到线段CD,二次函数y=a(x﹣h)2+k的图象经过点P、C、D.(1)当m=1时,a=;当m=2时,a=;(2)猜想a与m的关系,并证明你的猜想;(3)将线段AB沿y轴向上平移n(n>0)个单位长度,得到线段C1D1,点C1,D1分别与点A、B对应,二次函数y=2a(x﹣h)2+k的图象经过点P,C1,D1,①求n与m之间的关系;②当△COD1是直角三角形时,直接写出a的值.2017年吉林省吉林市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2017?吉林一模)实数a在数轴上的位置如图所示,则a的值可能为()A.﹣4B.﹣3C.﹣2D.1【解答】解:根据数轴上点的位置得:﹣2.5<a<0,则a的值可能为﹣2,故选:C.2.(3分)(2017?吉林一模)截止2016年末,吉林市户籍总人口约为4220000人,将数据4220000用科学记数法表示为()A.4.22×105B.4.22×106C.42.2×105D.0.422×107【解答】解:4220000=4.22×106,故选:B.3.(3分)(2017?吉林一模)将如图平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.【解答】解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选:A.4.(3分)(2017?吉林一模)在下列各数中,使不等式x﹣1>2成立的数为()A.B.C.D.【解答】解:∵x﹣1>2,∴x>3,∵>3,∴使不等式x﹣1>2成立的数为:.故选:D.5.(3分)(2016?成都)分式方程1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=3【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:B.6.(3分)(2017?吉林一模)如图,在△ABC中,∠B=85°,∠ACB=45°,若CD∥AB,则∠ACD的度数为()A.40°B.45°C.50°D.60°【解答】解:∵∠B=85°,∠ACB=45°,∴∠A=180°﹣85°﹣45°=50°,∵CD∥AB,∴∠ACD=∠A,∴∠ACD=50°,故选:C.7.(3分)(2017?吉林一模)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A.120m B.100m C.75m D.25m【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,∴AB100(米).则两岸间的大致距离为100米.故选:B.8.(3分)(2017?吉林一模)如图,⊙O的半径是1,AB是⊙O的切线,A是切点,若半径OC∥AB,则阴影部分的面积为()A.B.C.D.【解答】解:∵AB是切线,∴OA⊥AB,∴∠OAB=90°,∵OC∥AB,∴∠COA=∠OAB=90°,∴阴影部分的扇形的圆心角的度数为270°,∴S阴π.故选:D.二、填空题(每小题3分,共24分)9.(3分)(2017?吉林一模)的相反数是.【解答】解:的相反数是,故答案为:.10.(3分)(2019?湖州)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).11.(3分)(2017?吉林一模)关于x的方程x2﹣2x+k=0有两个相等实根,则k=1.【解答】解:∵关于x的方程x2﹣2x+k=0有两个相等实根,∴△=(﹣2)2﹣4k=0,解得k=1.故答案为:1.12.(3分)(2017?吉林一模)二次函数y=x2﹣2x+3的最小值是2.【解答】解:∵二次函数y=x2﹣2x+3可化为y=(x﹣1)2+2的形式,∴二次函数y=x2﹣2x+3的最小值是2.13.(3分)(2017?吉林一模)如图,∠AOB的平分线上有一点C,CD⊥OA于点D,若CD =3,则点C到OB的距离为3.【解答】解:作CE⊥OB于E,∵OC是∠AOB的平分线,CD⊥OA,CE⊥OB,∴CE=CD=3,故答案为:3.14.(3分)(2017?吉林一模)如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为(,0).【解答】解:∵A(﹣4,0),B(0,3),∴OA=4,OB=3,∵∠AOB=90°,∴AB=5,∵OC为AB边的中线,∴OC AB,∴OD=OC,∴D(,0);故答案为:(,0).15.(3分)(2017?吉林一模)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC =130°,点P为半径OB上任意一点,连接CP,则∠BCP可能为30°(写出一个即可)【解答】解:∵四边形ABCD内接于⊙O,∴∠B=180°﹣∠ADC=50°,当点P与点O重合时,∠BCP=∠B=50°,∴0≤∠BCP≤50°,∴∠BCP可能为30°,故答案为:30.16.(3分)(2017?吉林一模)如图,在平面直角坐标系中,面积为a的矩形ABCD的边与坐标轴平行或垂直,顶点A、C分别在函数y的图象的两个分支上,则图中两块阴影部分面积的和等于a﹣2.(用含a的式子表示)【解答】解:依题意,设A(m,n)C(c,d),∵A、C两点在函数y的图象上,∴m n=cd=1,∴图中两块阴影部分面积的和等于a﹣2,故答案为:a﹣2.三、解答题(第17、18题每小题各5分,第19、20每小题各6分,共22分)17.(5分)(2017?吉林一模)先化简,再求值:x(x﹣2)+(x+1)2,其中x.【解答】解:x(x﹣2)+(x+1)2 =x2﹣2x+x2+2x+1=2x2+1,当x时,原式=2×()2+1=2×2+1=4+1=5.18.(5分)(2017?吉林一模)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”请你求出问题中的鸡兔各有几只.【解答】解:设鸡有x只,兔有y只.根据题意可得:,解得:.答:鸡有23只,兔有12只.19.(6分)(2017?吉林)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.20.(6分)(2017?吉林一模)甲、乙、丙三人用三根完全相同的吸管玩游戏,将其中一根剪去一段(如图1所示),甲把三根吸管按如图2所示的方式拿在手中,使露出的部分完全相同,乙先从中抽取一根不放回,丙再从中抽取一根.(1)乙抽到吸管c的概率为;(2)用画树状图或列表的方法,求乙、丙两人都没有抽到吸管c 的概率.【解答】解:(1)∵共有a,b,c,三根吸管,∴乙抽到吸管c的概率,故答案为:;(2)画树状图得:由树状图可知所有可能结果共6种,其中乙、丙两人都没有抽到吸管c的结果有2种,所以P(乙、丙两人都没有抽到吸管c).四、解答题(每小题7分,共14分)21.(7分)(2017?吉林一模)如图是某住宅区的配电房示意图(图中长度单位:m),它是一个轴对称图形,求配电房的高AE(结果精确到0.1m).(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)【解答】解:根据题意得BD=0.3+1.5=1.8,DE=2.5,在Rt△ABD中,∵tan B,∴AD=BD?tan B=1.8×tan35°=1.8×0.70≈1.26,∴AE=AD+DE=1.26+2.5≈3.8(m).答:配电房的高AE为3.8m.22.(7分)(2017?吉林一模)老师想知道学生每天在上学的路上要花多少时间,于是让大家将每天来学校的单程时间写在纸上.如图是全班30名学生上学单程所花时间的条形统计图:(1)请直接写出学生上学单程所花时间的平均数、中位数和众数;(2)假如老师随机地问一名学生,你认为老师最可能得到的回答是多少时间?【解答】解:(1)(2×5+4×10+6×15+12×20+4×25+2×30)=18min;处在中间位置的数,即中位数为20min;出现次数最多的数位20min,即众数为20min.(2)众数最有可能被叫到,故选20min.五、解答题(每小题8分,共16分)23.(8分)(2017?吉林一模)小明、小华约好去滑雪场滑雪.小明乘环保车从民俗村出发,沿景区公路(如图1所示)去滑雪场,同时小华从古庙群出发,骑电动自行车沿景区公路去滑雪场.小明、小华与民俗村之间的路程s(单位:km)与时间t(单位:h)的函数图象如图2所示.(1)民俗村与古庙群之间的路程为10km;(2)分别求小明、小华与民俗村之间的路程s关于时间t的函数解析式(不要求写自变量的取值范围);(3)直接写出当小明到达滑雪场时,小华与滑雪场的路程.【解答】解:(1)由题意可得,民俗村与古庙群之间的路程为:10﹣0=10(km),故答案为:10;(2)设小明与民俗村之间的路程s关于时间t的函数解析式是s =kt,k×1=30,得k=30,即小明与民俗村之间的路程s关于时间t的函数解析式是s=30t,设小华与民俗村之间的路程s关于时间t的函数解析式是s=at+b,,得,即小华与民俗村之间的路程s关于时间t的函数解析式是s=20t+10;(3)由题意可得,将s=45代入s=30t,得t=1.5,件t=1.5代入s=20t+10,得s=40,45﹣40=5,答:当小明到达滑雪场时,小华与滑雪场的路程是5km.24.(8分)(2017?吉林一模)操作:已知△ABC,对△ABC进行如下变换:如图1,请画出对△ABC关于直线AC对称的△ADC(不要求尺规作图,不要求写画法,保留画图痕迹)如图2,将△ABC绕点A逆时针旋转,使点C落在AB上,得到△AEF.发现:当△ABC的边满足条件AB=BC时,AD∥BC;当△ABC的边满足条件AB=BC时,EF∥AC;应用:如图3,在锐角△GH K中,∠K<60°,GK=KH,将△GHK 按上述操作,得到△GHM和△GPN,延长NP交KH于点Q,延长MG 交NP于点R,判断四边形GHQR 的形状,并说明理由.【解答】解:操作:如图1所示:发现:当△ABC的边满足条件AB=BC时,AD∥BC;理由如下:如图2所示,由对称的性质得:△ADC≌△ABC,∴∠DAC=∠BAC,∵AB=BC,∴∠BAC=∠BCA,∴∠DAC=∠BCA,∴AD∥BC;故答案为:AB=BC;当△ABC的边满足条件AB=BC时,EF∥AC;理由如下:由旋转的性质得:△AEF≌△ABC,∴∠EF A=∠BCA,∵AB=BC,∴∠BAC=∠BCA,∴∠EF A=∠BAC,∴EF∥AC;故答案为:AB=BC;应用:四边形GHQR是菱形,理由如下:由操作、发现可知:MG∥KH,RQ∥GH,∴四边形GHQR是平行四边形,∴∠PRG=∠GHK,∵RQ∥GH,∴∠RPG=∠KGH,∵KG=KH,∴∠KGH=∠KHG,∴∠PRG=∠RPG,∴RG=PG,又∵PG=GH,∴RG=GH,∴四边形GHQR是菱形.六、解答题(每小题10分,共20分)25.(10分)(2017?吉林一模)如图,在平行四边形OABC中,∠AOC=60°,OC=4cm,OA=8cm,动点P从点O出发,以1cm/s 的速度沿边按O→A→B运动,同时动点Q从点O出发,以1cm/s的速度沿边按O→C→B运动,其中一点到达终点B时,另一点也停止运动,设运动时间为t(s),平行四边形OABC位于直线PQ左侧的图形面积为S(cm2).(1)平行四边形OABC的面积是16cm2;(2)当t=6s时,直线PQ平分平行四边形OABC的面积;(3)求S关于t的函数解析式.【解答】解:(1)如图1,过点C作CD⊥OA于D,在Rt△COD中,∠AOC=60°,OC=4,∴CD=2,∵OA=8,∴S平行四边形OABC=OA?CD=8×216cm2,故答案为:16;(2)如图3,过点C作CD⊥OA于D,由(1)知,CD=2,S平行四边形OABC=16cm2,∵直线PQ平分平行四边形OABC的面积,∴S梯形OCQP S平行四边形OABC168,由运动知,CQ=t﹣4,OP=t,∴S梯形OCQP(CQ+OP)?CD(t﹣4+t)×2(2t﹣4)=8,∴t=6,故答案为:6;(3)当0≤t≤4时,如图2,过点Q作QD⊥OA于D,。
吉林省长春市2019年中考数学模拟试卷(2)含答案解析
吉林省长春市2019年中考数学模拟试卷(2)(解析版)一、选择题(本题共8个小题,每小题3分,共24分)1.﹣2019的绝对值是()A.2019 B.﹣2019 C.D.﹣【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣2019的绝对值是2007.故选:A.【点评】此题考查了绝对值,解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.据统计,2019年长春市中考的报名人数为58847人,58847这个数用科学记数法表示为()A.58.847×105B.5.8847×105C.5.8847×104D.0.58847×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:58847这个数用科学记数法表示为5.8847×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是()A.B.C.D.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为3,1,从而确定正确的选项.【解答】解:由分析得该组合体的主视图为:故选B.【点评】本题考查由三视图判断几何体及简单组合体的三视图的知识.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.4.计算(x2y)3的结果是()A.x6y3B.x5y3C.x5y D.x2y3【分析】根据积的乘方和幂的乘方法则求解.【解答】解:(x2y)3=(x2)3y3=x6y3,故选A.【点评】本题考查了积的乘方和幂的乘方,熟练掌握运算法则是解题的关键.5.已知关于x的一元二次方程x2+bx+1=0有两个不相等的实数根,则在下列选项中,b的值可以是()A.b=0 B.b=﹣1 C.b=﹣2 D.b=﹣3【分析】先利用判别式的意义得到b2>4,然后对各选项进行判断.【解答】解:△=b2﹣4>0,即b2>4,当b=0、﹣1、﹣2不满足条件,而b=﹣3满足条件.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6.如图,若以平行四边形一边AB为直径的圆恰好与边CD相切于点D,则∠C的度数是()A.40°B.45°C.50°D.60°【分析】连接OD,如图,先利用切线的性质得OD⊥CD,再根据平行四边形的性质∠A=∠C,AB∥CD,则OD⊥AB,利用圆周角定理得到∠A=∠BOD=45°,从而得到∠C的度数.【解答】解:连接OD,如图,∵CD为切线,∴OD⊥CD,∵四边形ABCD为平行四边形,∴∠A=∠C,AB∥CD,∴OD⊥AB,∴∠BOD=90°,∴∠A=∠BOD=45°,∴∠C=45°.故选B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了平行四边形的性质.7.将含有30°角的直角三角板OAB如图放置在平面直角坐标中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,1)B.(1,﹣)C.(,﹣)D.(﹣,)【分析】求出旋转后OA与y轴夹角为45°,然后求出点A′的横坐标与纵坐标,从而得解.【解答】解:如图,∵三角板绕原点O顺时针旋转75°,∴旋转后OA与y轴夹角为45°,∵OA=2,∴OA′=2,∴点A′的横坐标为2×=,纵坐标为﹣2×=﹣,所以,点A′的坐标为(,﹣).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,准确识图求出旋转后OA与y轴的夹角为45°是解题的关键.8.如图,在平面直角坐标系中,菱形OABC的顶点B在y轴正半轴上,顶点C在函数y=(x <0)的图象上.若对角线AC=6,OB=8,则k的值是()A.24 B.12 C.﹣12 D.﹣6【分析】先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.【解答】解:∵菱形的两条对角线的长分别是6和4,∴C(﹣3,4),∵点C在反比例函数y=的图象上,∴k=(﹣3)×4=﹣12.故选C.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.二、填空题(本大题共6小题,每小题3分,共18分)9.分解因式:a3﹣16a=a(a+4)(a﹣4).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a3﹣16a,=a(a2﹣16),=a(a+4)(a﹣4).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,难点在于需要进行二次分解.10.不等式组的解集是﹣2<x≤.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣2,解不等式②得,x≤,所以不等式组的解集是﹣2<x≤.故答案为:﹣2<x≤.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).11.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为56度.【分析】先根据平行线的性质得出∠CDE的度数,再根据三角形内角和定理,即可得到∠C 的度数.【解答】解:∵AB∥CD,∠B=34°,∴∠CDE=∠B=34°,又∵CE⊥BE,∴Rt△CDE中,∠C=90°﹣34°=56°,故答案为:56.【点评】本题主要考查了平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,同位角相等.12.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是准确找出图形中的对应线段,正确列出比例式求解、计算.13.如图,以点O为圆心的半圆经过点C,AB为直径,若AC=BC=,则图中阴影部分的面积是.【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【解答】解:∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC==.故答案为:.【点评】本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.14.如图,线段AB的长为4,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长的最小值是2.【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=x,CE=(4﹣x),根据勾股定理然后用配方法即可求解.【解答】解:设AC=x,BC=4﹣x,∵△CD,△BCE均为等腰直角三角形,∴CD=x,CE=(4﹣x),∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE2=CD2+CE2=x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:2.故答案为:2【点评】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(2a﹣b)2﹣a(4a﹣3b),其中a=1,b=.【分析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2﹣4ab+b2﹣4a2+3ab=b2﹣ab,当a=1,b=时,原式=3﹣.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则及公式是解本题的关键.16.(6分)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为2;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【分析】(1)由必然事件的定义可知:透明的袋子中装的都是黑球,从袋子中随机摸出一个球是黑球的事件为“必然事件”才能成立,所以m 的值即可求出;(2)列表得出所有等可能的情况数,找出两次摸到的球颜色相同的情况数,即可求出所求的概率. 【解答】解:(1)∵在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同,从袋子中拿走m 个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”, ∴透明的袋子中装的都是黑球, ∴m=2, 故答案为:2;(2)设红球分别为H 1、H 2,黑球分别为B 1、B 2,列表得:总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种, 所以两次摸到的球颜色相同的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km ,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【分析】设普通列车的速度为为xkm/h ,动车的平均速度为1.5xkm/h ,根据走过相同的路程360km ,坐动车所用的时间比坐普通列车所用的时间少1小时,列方程求解.【解答】解:设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,由题意得,﹣=1,解得:x=120,经检验,x=120是原分式方程的解,且符合题意.动车的平均速度=120×1.5=180km/h.答:该趟动车的平均速度为180km/h.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.18.(7分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,(3)由题意可得,=5,即这50名学生每周课外体育活动时间的平均数是5;(4)由题意可得,全校学生每周课外体育活动时间不少于6小时的学生有:1000×(人),即全校学生每周课外体育活动时间不少于6小时的学生有300人.【点评】本题考查频数分布直方图、样本、总体、样本容量、用样本估计总体、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.19.(7分)如图,在▱ABCD中,AB<BC,以点A为圆心,AB长为半径作圆弧交AD于点F,再分别以点B、F为圆心,大于BF的一半长为半径作圆弧,两弧交于一点P,连结AP并延长交BC于点E,连结EF.(1)四边形ABEF是菱形(填“矩形”、“菱形”、“正方形”或“无法确定”)(直接填写结果),并证明你的结论.(2)AE、NF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,∠ADC=120°,(直接填写结果)【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明.(2)根据菱形的性质首先证明△AOB是含有30°的直角三角形,由此即可解决问题.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为10,120.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,想到利用特殊三角形解决问题,属于中考常考题型.20.(7分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的仰角为32°,已知该建筑物高BC为208米,求此时航拍无人机与该建筑物的水平距离AD(精确到0.1米)【参考数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249】【分析】在首先证明△ABD是的等腰直角三角形,则BD=AD,然后在直角△ACD中,利用tan∠CAD=,即可得到关于AD的方程,解方程求得AD的长.【解答】解:∵∠DAB=45°,AD⊥BC,∴∠B=45°,∴∠B=∠BAD,∴BD=AD.∴CD=208﹣AD.在Rt△ADC中,∠ADC=90°,tan∠CAD=,∴AD•tan32°=CD,∴0.6249AD=208﹣AD,∴AD≈128.0.答:此时航拍无人机与该建筑物的水平距离AD约是128.0米.【点评】此题考查了仰角与俯角的知识.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.21.(8分)某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C;乙在甲出发20分钟后乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C:甲、乙两人同时到达景点C,甲、乙两人之间的距离y(米)与甲出发的时间x(分)之间的函数图象如图所示.(1)甲步行的速度为60米/分,观光车的速度为300米/分.(2)直接写出乙乘观光车时y与x之间的函数关系式.(3)求乙步行的速度.【分析】(1)根据速度=路程÷时间,可求出甲步行的速度;根据观光车的速度=路程÷时间+甲步行的速度,即可求出观光车的速度;(2)设乙乘观光车时y与x之间的函数关系式为y=kx+b(k≠0),分当20≤x≤25时及当25≤x≤30时两种情况,根据点的坐标利用待定系数法求出函数关系式;(3)观察图形,寻找乙的运动过程,设乙步行的速度为v米/分,根据甲、乙之间的距离=速度差×时间,即可得出关于v的一元一次方程,解之即可得出结论.【解答】解:(1)1200÷20=60(米/分),1200÷(25﹣20)+60=300(米/分).故答案为:60;300.(2)设乙乘观光车时y与x之间的函数关系式为y=kx+b(k≠0),当20≤x≤25时,将(20,1200)、(25,0)代入y=kx+b,得:,解得:,∴此时y=﹣24x+6000;当25≤x≤30时,将(25,0)、(30,1200)代入y=kx+b,得:,解得:,∴此时y=240x﹣6000.综上所述:乙乘观光车时y与x之间的函数关系式为y=.(3)由已知可得,甲出发30分钟时乙到达景点B,在景点B处停留30分钟,甲出发60分钟时他们相距60×30﹣1200=600(米).设乙步行的速度为v米/分,根据题意得:(90﹣60)(v﹣60)=600,解得:v=80.答:乙步行的速度为80米/分.【点评】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程,解题的关键是:(1)根据数量关系求出速度;(2)根据点的坐标,利用待定系数求出函数关系式;(3)根据甲、乙之间的距离=速度差×时间,列出关于v的一元一次方程.22.(9分)问题原型:如图①,点A、B分别在∠MON的边OM、ON上,连结AB,C、D、E分别为线段OA、OB、AB中点,连结CE、DE,易知四边形OCED是平行四边形.问题探究:如图②,点A、B分别在锐角∠MON的边OM,ON上,连结AB,C、D、E分别为线段OA、OB、AB中点,连结CE、DE,分别以OA、OB为斜边在∠MON外侧作等腰直角三角形△OAP、△OBQ,连结PE,QE,求证:△PCE≌△EDQ.拓展发现:如图③,点A、B分别在钝角∠MON的边OM、ON上,∠MON=150°,连结AB、C、D、E分别为线段OA、OB、AB中点,连结CE、DE,分别以OA、OB为斜边在∠MON外侧作等腰直角三角形△OAP、△OBQ,PC、QD的延长线交于点R,连结AR,BR,则∠ARB= 60°.【分析】问题探究:根据四边形ODEC是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论;拓展发现:连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论.【解答】解:问题探究:证明:∵四边形ODEC是平行四边形,∴∠OCE=∠ODE,∴∠ACE=∠BDE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠EDO=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)拓展发现:∠ARB=60°,如图③,连接RO,CE,∵PR与QR分别是OA,OB的垂直平分线,∴AR=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°.故答案为:60°.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,等边三角形的判定和性质,线段垂直平分线的性质,熟练掌握等腰直角三角形的性质是解题的关键.23.(10分)如图,BD是正方形ABCD的对角线,BC=2,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,同时动点Q从点C出发,以相同的速度沿射线BC运动,当点P出发后,过点Q作QE⊥BD,交直线BD于点E,连结AP、AE、PE、QE,设运动时间为t(秒).(1)请直接写出动点P运动过程中,四边形APQD是什么四边形?(2)请判断AE,PE之间的数量关系和位置关系,并加以证明.(3)设△EPB的面积为y,求y与t之间的函数关系式.(4)直接写出△EPQ的面积是△EDQ面积的2倍时t的值.【分析】(1)由正方形的性质和已知条件得出∠ABE=∠EBQ=45°,AD∥BQ,AD=BC=2,BP=CQ,得出BC=AD=PQ,即可证出四边形APQD是平行四边形;(2)证出BE=QE,由SAS证明△AEB≌△EPQ,得出AE=PE,∠AEB=∠PEQ,得出∠AEP=∠BEQ=90°,即可得出AE⊥PE;(3)过E作EF⊥BC与F,BQ=t+2,EF=,得出y=××t,即可得出答案;(4)分两种情况:①当P在BC延长线上时,作PM⊥QE于M,由等腰直角三角形的性质和勾股定理得出PM=PQ=,BE=QE=BQ=(t+2),求出DE=BE﹣BD=,由三角形面积关系和面积公式得出方程,解方程即可;①当P在BC边上时,解法同①,此时DE=﹣t,由三角形面积关系和面积公式得出方程,解方程即可.【解答】解:(1)四边形APQD是平行四边形;理由如下:∵四边形ABCD是正方形,P、Q速度相同,∴∠ABE=∠EBQ=45°,AD∥BQ,AD=BC=2,BP=CQ,∴BC=AD=PQ,∴四边形APQD是平行四边形;(2)AE=PE,AE⊥PE;理由如下:∵EQ⊥BD,∴∠PQE=90°﹣45°=45°,∴∠ABE=∠EBQ=∠PQE=45°,∴BE=QE,在△AEB和△EPQ中,,∴△AEB≌△EPQ(SAS),∴AE=PE,∠AEB=∠PEQ,∴∠AEP=∠BEQ=90°,∴AE⊥PE;(3)过E作EF⊥BC于F,如图1所示:BQ=t+2,EF=,∴y=××t,即y=t2+t;(4)分两种情况:①当P在BC延长线上时,作PM⊥QE于M,如图2所示:∵PQ=2,∠BQE=45°,∴PM=PQ=,BE=QE=BQ=(t+2),∴DE=BE﹣BD=(t+2)﹣2=,∵△EPQ的面积积是△EDQ面积的2倍,∴×(t+2)×=2×(t﹣)×(t+2),解得:t=3或t=﹣2(舍去),∴t=3;①当P在BC边上时,解法同①,此时DE=﹣t,∵△EPQ的面积积是△EDQ面积的2倍,∴×(t+2)×=2×(﹣t)×(t+2),解得:t=1或t=﹣2(舍去),∴t=1;综上所述,△EPQ的面积是△EDQ面积的2倍时t的值为:1或3.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积公式等知识;本题综合性强,有一定难度.24.(12分)如图①,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC所对应的函数表达式.(2)设点M(3,m),直接写出使得MN+MD的值最小时m的值.(3)若抛物线的对称轴与直线AC相交于点B、E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B、D、E、F为顶点的四边形能否为平行四边形?若能,求点E的坐标,若不能,请说明理由.(4)点P是图①中直线AC上方抛物线上的一个动点(不与A、C重合),过点P与x轴垂直的直线交AC于点Q,如图②,若线段PQ将△PAC分成两部分的面积比为1:3,直接写出点P的坐标.【分析】(1)将点A、C的坐标代入抛物线解析式可得出b、c的值,继而得出抛物线解析式,利用待定系数法可求出AC的函数解析式;(2)利用轴对称求最短路径的知识,找到N点关于直线x=3的对称点N′,连接N'D,N'D 与直线x=3的交点即是点M的位置,继而求出m的值.(3)设出点E的坐标,分情况讨论,①当点E在线段AC上时,点F在点E上方,②当点E 在线段AC(或CA)延长线上时,点F在点E下方,根据平行四边形的性质表示出F的坐标,将点F的坐标代入抛物线解析式可得出x的值,继而求出点E的坐标.(4)根据面积的比,可得(x P﹣x A):(x C﹣x P)=1:3,根据比例的性质,可得答案.【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3),可得:,解得:,故抛物线为y=﹣x2+2x+3,设直线AC解析式为y=kx+n,将点A(﹣1,0)、C(2,3)代入得:,解得:,故直线AC为y=x+1.(2)作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),可求出直线DN′的函数关系式为y=﹣x+,当M(3,m)在直线DN′上时,MN+MD的值最小,则m=﹣×3+=.(3)由(1)、(2)得D(1,4),B(1,2)点E在直线AC上,设E(x,x+1),①当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3解得,x=0或x=1(舍去),则点E的坐标为:(0,1).②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),∵点F在抛物线上,∴x﹣1=﹣x2+2x+3,解得x=或x=,即点E的坐标为:(,)或(,)综上可得满足条件的点E为E(0,1)或(,)或(,);(4)S△APQ=AP•(x P﹣x A),S△CPQ=AP(x C﹣x P),S△APQ:S△CPQ=1:3,即(x P﹣x A):(x C﹣x P)=1:3,解得x=﹣,y=﹣x2+2x+3=,即P(﹣,);S△APQ:S△CPQ=3:1,即(x P﹣x A):(x C﹣x P)=3:1,解得x=,y=﹣x2+2x+3=,即P(,),综上所述:若线段PQ将△PAC分成两部分的面积比为1:3,点P的坐标是(﹣,)(,).【点评】本题考查了二次函数的综合题,涉及了待定系数法求函数解析式、轴对称求最短路径及平行四边形的性质,同学们注意培养自己解答综合题的能力,将所学知识融会贯通.。
2019届吉林长春二道区中考模拟数学试卷(5月份)【含答案及解析】
2019届吉林长春二道区中考模拟数学试卷(5月份)【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 的倒数是()A. B. C. D.二、选择题2. 保护水资源,人人有责,我国是缺水国家,目前可利用淡水资源总量仅约为899000亿立方米,899000亿用科学记数法表示为()A.8.99×1013 B.0.899×1014 C.8.99×1012 D.89.9×1011三、单选题3. 由6个完全相同的小正方体搭成的几何体如图所示,它的俯视图是()A. B. C. D.4. 下列计算正确的是()A. a3﹣a2=aB. a2•a3=a6C. (2a)2=4a2D. a6÷a3=a2四、选择题5. 一元二次方程x2﹣4x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根6. 如图,菱形ABCD的两条对角线相交于点O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.2 D.47. 如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27° B.34° C.36° D.54°8. 如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0C.m<0,n>0 D.m<0,n<0五、填空题9. 比较大小: 2 (填“<“,“=“或“>“).10. 不等式组的解集为.11. 如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB= .12. 一个扇形的圆心角为60°,半径是10cm,则这个扇形的弧长是 cm.13. 如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过点B(3,0),C(4,3),将抛物线y=ax2+bx+3向上平移,使顶点E落在平移,使顶点E落在x轴上的点F处,则由两条抛物线、线段EF和y轴围成的图形(图中阴影部分)面积S= .14. 如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,﹣2),则点F的坐标是.六、计算题15. 先化简,再求值:(),其中x=﹣2.16. 把大小完全相同的6个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.七、解答题17. 供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?18. 如图,在△AEF中,点D,B分别在边AF和AF的延长线上,已知FB=AD,BC∥AE,且BC=AE,连结CD,CF,DE.求证:四边形CDEF是平行四边形.19. 如图,甲、乙两栋大楼相距78米,一测量人员从甲楼AC的顶部看乙楼BD的顶部其仰角为27°.如果甲楼的高为34米,求乙楼的高度是多少米?(结果精确到0.1米)【参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.51】20. 今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,某校学生会为了调查学生对雾霾天气知识的了解程度,随机抽取了该校的n名学生做了一次跟踪调查,将调查结果分为四个等级:(A)非常了解.(B)比较了解.(C)基本了解.(D)不了解,并将调查结果绘制成如下两幅不完整统计图.根据统计图提供的信息,解答下列问题:(1)求n的值;(2)在调查的n名学生中,对雾霾天气知识不了解的学生有人,并将条形统计图补充完整.(3)估计该校1500名学生中,对雾霾天气知识比较了解的学生人数.21. 某工厂甲、乙两个车间同时开始生产某种产品,产品总任务量为m件,开始甲、乙两个车间工作效率相同.乙车间在生产一段时间后,停止生产,更换新设备,之后工作效率提高.甲车间始终按原工作效率生产.甲、乙两车间生产的产品总件数y与甲的生产时间x(时)的函数图象如图所示.(1)甲车间每小时生产产品件,a= .(2)求乙车间更换新设备之后y与x之间的函数关系式,并求m的值.(3)若乙车间在开始更换新设备时,增加两名工作人员,这样可便更换设备时间减少0.5小时,并且更换后工作效率提高到原来的2倍,那么两个车间完成原任务量需几小时?22. 阅读发现:(1)如图①,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD,AE.易证:△BCD≌△BAE.(不需要证明)提出问题:(2)在(1)的条件下,当BD∥AE时,延长CD交AE于点F,如图②,求AF 的长.解决问题:(3)如图③,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD,AE.当∠BAE=45°时,点E到AB的距离EF的长为2,求线段CD的长为.23. 如图,四边形ABCD为矩形,AC为对角线,AB=6,BC=8,点M是AD的中点,P、Q两点同时从点M出发,点P沿射线MA向右运动;点Q沿线段MD先向左运动至点D后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与△ABC重叠部分的面积为S.(1)当点R在线段AC上时,求出t的值.(2)求出S与t之间的函数关系式,并直接写出取值范围.(求函数关系式时,只须写出重叠部分为三角形时的详细过程,其余情况直接写出函数关系式.)(3)在点P、点Q运动的同时,有一点E以每秒1个单位的速度从C向B运动,当t为何值时,△LRE是等腰三角形.请直接写出t的值或取值范围.24. 如图,在平面直角坐标系中,矩形OABC的顶点O为坐标原点,顶点A、C的坐标分别为(0,﹣)、(2,0),将矩形OABC绕点O顺时针旋转45°得到矩形OA′B′C′,边A′B′与y轴交于点D,经过坐标原点的抛物线y=ax2+bx同时经过点A′、C′.(1)求抛物线所对应的函数表达式;(2)写出点B′的坐标;(3)点P是边OC′上一点,过点P作PQ⊥OC′,交抛物线位于y轴右侧部分于点Q,连接OQ、DQ,设△ODQ的面积为S,当直线PQ将矩形OA′B′C′的面积分为1:3的两部分时,求S的值;(4)保持矩形OA′B′C′不动,将矩形OABC沿射线CO方向以每秒1个单位长度的速度平移,设平移时间为t秒(t>0).当矩形OABC与矩形OA′B′C′重叠部分图形为轴对称多边形时,直接写出t的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
2018-2019学年吉林省长春市二道区九年级(上)第一次段考数学试卷
2018-2019学年吉林省长春市二道区九年级(上)第一次段考数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)下列方程中是一元二次方程的是()A.xy+2=1 B.C.x2=0 D.ax2+bx+c=0 2.(3分)下列二次根式中能与2合并的是()A.B.C.D.3.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.2a=3b B.=C.3a=2b D.=4.(3分)在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的正弦值()A.扩大2倍B.缩小C.不变D.无法确定5.(3分)如果y=+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±36.(3分)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.7.(3分)若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形B.矩形C.对角线相等的四边形D.对角线互相垂直的四边形8.(3分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长二、填空题(本题共6小题,每小题3分,共18分)9.(3分)若式子有意义,则x的取值范围是.10.(3分)以m=为反例,可以证明命题“关于x的一元二次方程x2+x+m=0必有实数根”是错误的命题(写出一个m值即可).11.(3分)如图,一人乘雪橇沿坡角为α的斜坡笔直滑行了82米,那么他下降的高度为米(用含α的式子表示).12.(3分)如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,=,则△DEF与△ABC的面积比是.13.(3分)某玩具商店出售一种“小猪佩奇”玩具,平均每天可销售50个,每个盈利36元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,若每个玩具降价1元,平均每天可多售出5个,商店要想平均每天销售这种玩具盈利2400元,则每个玩具应降价多少元?设每个玩具应降价x元,可列方程为.14.(3分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.若BC=4,△ABC的面积是6,那么这个正方形DEFG的面积是.三、解答题(本题共10小题,共78分)15.(6分)计算:×﹣(+)+2sin45°.16.(6分)对于实数a、b,定义运算※如下,a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(3x﹣2)=0,求x的值.17.(6分)如图,图①、图②、图③均为4×2的正方形网格,△ABC的顶点均在格点上.按要求在图②、图③中各画一个顶点在格点上的三角形.要求:(1)所画的两个三角形都与△ABC相似但都不与△ABC全等.(2)图②和图③中新画的三角形不全等.18.(7分)如图,某餐厅的餐桌桌面是一个面积为0.84m2的矩形,桌面装有两个表面为相同正方形的电磁炉,两个电磁炉之间及与四周的距离均为0.2m,求电磁炉表面的边长.19.(7分)在△ABC中,AB=6,AC=8,D、E分别在AB、AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.20.(7分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.5米.当起重臂AC长度为8米,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位)【参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53】21.(8分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:∵22<()2<32,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(3)已知x是3+的整数部分,y是其小数部分,直接写出x﹣y的值.22.(9分)感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC 边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,则DE的长为.23.(10分)我们知道,解一元一次方程,可以把它转化为两个一元一次方程来解,其实用“转化”的数学思想,我们还可以解一些新的方程,例如一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x ﹣2=0,可得方程x3+x2﹣2x=0的解.(1)方程x3+x2﹣2x=0的解是x1=0,x2=,x3=.(2)用“转化”思想求方程=x的解.(3)如图,已知矩形草坪ABCD的长AD=14m,宽AB=12m,小华把一根长为28m 的绳子的一端固定在点B处,沿草坪边沿BA、AD走到点P处,把长绳PB段拉直并固定在点P处,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C处,求AP的长.24.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=3,AB=5.点P从点A出发,以每秒5个单位长度的速度沿AC方向运动,过点P作PQ⊥AB于点Q,当点Q和点B重合时,点P停止运动,以AP和AQ为边作▱APHQ.设点P的运动时间为t秒(t>0)(1)线段PQ的长为.(用含t的代数式表示)(2)当点H落在边BC上时,求t的值.(3)当▱APHQ与△ABC的重叠部分图形为四边形时,设四边形的面积为S,求S 与t之间的函数关系式.(4)过点C作直线CD⊥AB于点D,当直线CD将▱APHQ分成两部分图形的面积比为1:7时,直接写出t的值.2018-2019学年吉林省长春市二道区九年级(上)第一次段考数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)下列方程中是一元二次方程的是()A.xy+2=1 B.C.x2=0 D.ax2+bx+c=0【分析】根据一元二次方程的定义:含有一个未知数,并且所含未知数的项的次数是2次的整式方程,即可判断答案.【解答】解:根据一元二次方程的定义:A、是二元二次方程,故本选项错误;B、是分式方程,不是整式方程,故本选项错误;C、是一元二次方程,故本选项正确;D、当a b c是常数,a≠0时,方程才是一元二次方程,故本选项错误;故选:C.【点评】本题考查了对一元二次方程和一元一次方程的理解,关键是知道一元二次方程含有3个条件:①整式方程,②含有一个未知数,③所含未知数的项的次数是1次.2.(3分)下列二次根式中能与2合并的是()A.B.C.D.【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.【解答】解:A、,不能与2合并,错误;B、能与2合并,正确;C、不能与2合并,错误;D、不能与2合并,错误;故选:B.【点评】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.3.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.2a=3b B.=C.3a=2b D.=【分析】根据内项之积等于外项之积即可判断;【解答】解:∵=(a≠0,b≠0),∴3a=2b.由B、C、D都可以得到:3a=2b,故选项A错误,故选:A.【点评】本题考查比例的性质、熟练掌握内项之积等于外项之积是解题的关键.4.(3分)在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的正弦值()A.扩大2倍B.缩小C.不变D.无法确定【分析】根据锐角A的对边a与斜边c的比叫做∠A的正弦解答即可.【解答】解:设Rt△ABC的三边长为a,b,c,则sinA=,如果各边长都扩大5倍,∴sinA==,故∠A的正弦值大小不变.故选:C.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.5.(3分)如果y=+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±3【分析】根据二次根式中的被开方数必须是非负数列出不等式,求出x、y的值,根据算术平方根的概念解答即可.【解答】解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,∴y=3,则y x=9,9的算术平方根是3.故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数和算术平方根的概念是解题的关键.6.(3分)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【解答】解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选:B.【点评】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.7.(3分)若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形B.矩形C.对角线相等的四边形D.对角线互相垂直的四边形【分析】根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【解答】解:根据题意得:四边形EFGH是菱形,∴EF=FG=CH=EH,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.【点评】本题考查的是菱形的性质、中点四边形,掌握菱形的性质、三角形中位线的性质是解题的关键,注意掌握数形结合思想的应用.8.(3分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.二、填空题(本题共6小题,每小题3分,共18分)9.(3分)若式子有意义,则x的取值范围是x≤5.【分析】直接利用二次根式的定义进而得出答案.【解答】解:∵式子有意义,∴5﹣x≥0,解得:x≤5,则x的取值范围是:x≤5,故答案为:x≤5.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式定义是解题关键.10.(3分)以m=2为反例,可以证明命题“关于x的一元二次方程x2+x+m=0必有实数根”是错误的命题(写出一个m值即可).【分析】由方程有实数根,得到根的判别式大于等于0,求出m的范围即可做出判断.【解答】解:∵方程x2+x+m=0,必有实数解,∴△=1﹣4m≥0,解得:m≤,则命题“关于x的一元二次方程x2+x+m=0,必有实数解.”是假命题.则可以作为反例的是m=2,故答案为:2,【点评】此题考查了命题与定理,以及根的判别式,熟练掌握举反例说明命题为假命题的方法是解本题的关键.11.(3分)如图,一人乘雪橇沿坡角为α的斜坡笔直滑行了82米,那么他下降的高度为82•sinα米(用含α的式子表示).【分析】如图,设下滑的距离为AB=82米,下降的高度为线段AC.解直角三角形求出AC即可;【解答】解:如图,设下滑的距离为AB=82米,下降的高度为线段AC.在Rt△ABC中,AC=AB•sinα=82•sinα,故答案为82•sinα.【点评】本题考查解直角三角形的应用,解题的关键是理解题意,属于中考常考题型.12.(3分)如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,=,则△DEF与△ABC的面积比是4:25.【分析】根据位似变换的性质得到△DEF∽△ABC,根据题意求出相似比,根据相似三角形的性质解答即可.【解答】解:∵△DEF是由△ABC经过位似变换得到的,∴△DEF∽△ABC,∵=,∴=,即△DEF与△ABC的相似比为,∴△DEF与△ABC的面积比是4:25,故答案为:4:25.【点评】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.13.(3分)某玩具商店出售一种“小猪佩奇”玩具,平均每天可销售50个,每个盈利36元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,若每个玩具降价1元,平均每天可多售出5个,商店要想平均每天销售这种玩具盈利2400元,则每个玩具应降价多少元?设每个玩具应降价x元,可列方程为(36﹣x)(50+5x)=2400.【分析】商店平均每天盈利数=每个玩具的盈利×售出个数;每个玩具的盈利=原来每个的盈利﹣降价数.设每个玩具应降价x元,然后根据前面的关系式即可列出方程.【解答】解:设每个玩具应降价x元.则此时每天出售的数量为:(50+5x)个,每个的盈利为:(36﹣x)元,根据题意得(36﹣x)(50+5x)=2400,故答案为(36﹣x)(50+5x)=2400.【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是理解题意,找到题目蕴含的相等关系.14.(3分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.若BC=4,△ABC的面积是6,那么这个正方形DEFG的面积是.【分析】作AH⊥BC于H,交GF于M,如图,先利用三角形面积公式计算出AH=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,再证明△AGF∽△ABC,则根据相似三角形的性质得=,由此构建方程即可解决问题.【解答】解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在应用相似三角形的性质时,主要利用相似比计算相应线段的长.也考查了正方形的性质.三、解答题(本题共10小题,共78分)15.(6分)计算:×﹣(+)+2sin45°.【分析】先计算乘法、去括号,化简后合并同类二次根式即可;【解答】解:原式=﹣﹣+=2﹣﹣+=+.【点评】本题考查二次根式的混合运算,解题的关键是熟练掌握运算顺序,先乘方再乘除,最后加减,有括号的先算括号里面的.16.(6分)对于实数a、b,定义运算※如下,a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(3x﹣2)=0,求x的值.【分析】根据题意列出方程,解方程即可.【解答】解:由题意知(x+1)2﹣(x+1)(3x﹣2)=0,则(x+1)[(x+1)﹣(3x﹣2)]=0,整理,得:(x+1)(﹣2x+3)=0,则x+1=0或﹣2x+3=0,解得:x=﹣1或x=.【点评】本题考查的是一元二次方程的解法,根据题意正确得到方程是解题的关键.17.(6分)如图,图①、图②、图③均为4×2的正方形网格,△ABC的顶点均在格点上.按要求在图②、图③中各画一个顶点在格点上的三角形.要求:(1)所画的两个三角形都与△ABC相似但都不与△ABC全等.(2)图②和图③中新画的三角形不全等.【分析】将原三角形的三边分别扩大和2倍即可得.【解答】解:如图,△A1B1C1和△A2B2C2即为所求作三角形.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.本题从∠ACB=135°,AC:BC=:1找到突破口.18.(7分)如图,某餐厅的餐桌桌面是一个面积为0.84m2的矩形,桌面装有两个表面为相同正方形的电磁炉,两个电磁炉之间及与四周的距离均为0.2m,求电磁炉表面的边长.【分析】设电磁炉表面的边长为xm,则矩形桌面的长为(2x+0.6)m,宽为(x+0.4)m,根据矩形的面积公式结合餐桌桌面的面积为0.84m2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设电磁炉表面的边长为xm,则矩形桌面的长为(2x+0.6)m,宽为(x+0.4)m,根据题意得:(2x+0.6)(x+0.4)=0.84,解得:x1=0.3,x2=﹣1(舍去).答:电磁炉表面的边长为0.3m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.(7分)在△ABC中,AB=6,AC=8,D、E分别在AB、AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.【分析】(1)根据两边成比例夹角相等即可证明;(2)法两种情形分别求解即可解决问题;【解答】解:(1)∵AB=6,BD=2,∴AD=4,∵AC=8,CE=5,∴AE=3,∴==,==,∴=,∵∠EAD=∠BAC,∴△AED∽△ABC;(2)①若△ADE∽△ABC,则=,∴y=x(0<x<6).②若△ADE∽△ACB,则=,∴y=x+(0<x<6).【点评】本题考查相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判断方法,学会用分类讨论的思想思考问题,属于中考常考题型.20.(7分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.5米.当起重臂AC长度为8米,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位)【参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53】【分析】作CE⊥BD于E,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.5m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.【解答】解:作CE⊥BD于E,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.5m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=8sin28°=8×0.47=3.76,∴CE=CF+EF=3.76+3.5≈7.3(m),答:操作平台C离地面的高度为7.3m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行计算.21.(8分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:∵22<()2<32,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是3,小数部分是﹣3.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(3)已知x是3+的整数部分,y是其小数部分,直接写出x﹣y的值.【分析】(1)由3<<4可得答案;(2)由2<<3知a=﹣2,由6<<7知b=6,据此求解可得;(3)由2<<3知5<3+<6,据此得出x、y的值代入计算可得.【解答】解:(1)∵3<<4,∴的整数部分是3,小数部分是﹣3;故答案为:3;﹣3.(2)∵2<<3,∴a=﹣2,∵6<<7,∴b=6,∴a+b﹣=﹣2+6﹣=4.(3)∵2<<3,∴5<3+<6,∴3+的整数部分为x=5,小数部分为y=3+﹣5=﹣2.则x﹣y=5﹣(﹣2)=5﹣+2=7﹣.【点评】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.22.(9分)感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC 边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,则DE的长为.【分析】感知:先判断出,∠BAP=∠DPC,进而得出结论;探究:同理根据两角相等相等,两三角形相似,进而得出结论;拓展:利用相似三角形△BDP∽△CPE得出比例式求出BD,三角形内角和定理证得AC⊥AB且AC=AB;然后在直角△ABC中由勾股定理求得AC=AB=6;最后利用在直角△ADE中利用勾股定理来求DE的长度.【解答】解:感知:∵∠APD=90°,∴∠APB+∠DPC=90°,∵∠B=90°,∴∠APB+∠BAP=90°,∴∠BAP=∠DPC,∵AB∥CD,∠B=90°,∴∠C=∠B=90°,∴△ABP∽△DCP.探究:∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD,∴∠BAP+∠B=∠APD+∠CPD.∵∠B=∠APD,∴∠BAP=∠CPD.∵∠B=∠C,∴△ABP∽△PCD,拓展:同探究的方法得出,△BDP∽△CPE,∴,∵点P是边BC的中点,∴BP=CP=3,∵CE=4,∴,∴BD=,∵∠B=∠C=45°,∴∠A=180°﹣∠B﹣∠C=90°,即AC⊥AB且AC=AB=6,∴AD=AB﹣BD=6﹣=,AE=AC﹣CE=6﹣4=2,在Rt△ADE中,DE===.故答案是:.【点评】此题是相似综合题.主要考查了相似三角形的判定与性质、勾股定理、三角形内角和定理以及三角形外角定理.解本题的关键是△ABP∽△PCD.23.(10分)我们知道,解一元一次方程,可以把它转化为两个一元一次方程来解,其实用“转化”的数学思想,我们还可以解一些新的方程,例如一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x ﹣2=0,可得方程x3+x2﹣2x=0的解.(1)方程x3+x2﹣2x=0的解是x1=0,x2=1,x3=﹣2.(2)用“转化”思想求方程=x的解.(3)如图,已知矩形草坪ABCD的长AD=14m,宽AB=12m,小华把一根长为28m 的绳子的一端固定在点B处,沿草坪边沿BA、AD走到点P处,把长绳PB段拉直并固定在点P处,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C处,求AP的长.【分析】(1)先提取公因式x,再因式分解可得x(x﹣1)(x+2)=0,据此解之可得;(2)两边平方后整理可得x2﹣2x﹣3=0,解之可得;(3)设AP=x,则DP=14﹣x,根据勾股定理可得PB=、PC=,由PB+PC=28得+=28,移项、平方求解可得.【解答】解:(1)∵x3+x2﹣2x=0,∴x(x2+x﹣2)=0,∴x(x﹣1)(x+2)=0,则x=0或x﹣1=0或x+2=0,解得:x1=0、x2=1、x3=﹣2.故答案为:1、﹣2.(2)∵=x,∴2x+3=x2,即x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,则x+1=0或x﹣3=0,解得:x1=﹣1、x2=3;(3)设AP=x,则DP=14﹣x,∵AB=CD=12,∠A=∠D=90°,∴PB==、PC==,∵PB+PC=28,∴+=28,=28﹣,两边平方,整理可得:=,再两边平方,整理可得:x2﹣14x+45=0,解得x1=5、x2=9,则AP的长为5m或9m.【点评】本题考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.24.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=3,AB=5.点P从点A出发,以每秒5个单位长度的速度沿AC方向运动,过点P作PQ⊥AB于点Q,当点Q和点B重合时,点P停止运动,以AP和AQ为边作▱APHQ.设点P的运动时间为t秒(t>0)(1)线段PQ的长为4t.(用含t的代数式表示)(2)当点H落在边BC上时,求t的值.(3)当▱APHQ与△ABC的重叠部分图形为四边形时,设四边形的面积为S,求S 与t之间的函数关系式.(4)过点C作直线CD⊥AB于点D,当直线CD将▱APHQ分成两部分图形的面积比为1:7时,直接写出t的值.【分析】(1)利用勾股定理求出BC,再根据sinA==,构建方程即可解决问题;(2)如图2中,因为QH∥AC,可得=,由此构建方程即可解决问题;(3)飞两种情形分别求解:①如图3中,当0<t≤时,重叠部分是四边形APHQ.②如图4中,当≤t≤时,重叠部分是四边形ACMQ;(4)飞两种情形画出图形分别利用三角形的中位线定理求解即可;【解答】解:(1)如图1中,在Rt△ACB中,∵AC=3,AB=5,∠C=90°,∴BC==4,∵AP=5t,sinA==,∴=,∴PQ=4t,AQ==3t.故答案为4t.(2)如图2中,当点H落在BC上时.∵QH∥AC,∴=,∴=,∴t=.(3)①如图3中,当0<t≤时,重叠部分是四边形APHQ.S=12t2.②如图4中,当≤t≤时,重叠部分是四边形ACMQ,S=•CM=•[4﹣(5﹣3t)]=﹣t2+t.(4)①如图5中,∵S△HEF :S五边形EQAPF=1:7,CD∥PQ,∴EF是△HPQ的中位线.∵cos ∠A===,∴AD=,∵QH ∥AC , ∴∠DQE=∠A ,∴cos ∠DQE=cos ∠A=, ∴=, ∴=,∴t=.②如图6中,当S △ADC :S 五边形CDQHP =1:7时,CD 是△APQ 的中位线.∴AQ=2AD ,∴3t=2×,∴t=.综上所述,满足条件的t的值为或s.【点评】本题考查几何变换综合题、平行四边形的性质、锐角三角函数、平行线分线段成比例定理、三角形的中位线定理、勾股定理等知识,解题的关键是学会用分类讨论的射线思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2019年吉林省长春市二道区中考数学一模试卷(含答案)
2019年吉林省长春市二道区中考数学一模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)互为相反数的两个数的和为()A.0B.﹣1C.1D.22.(3分)国产电影《流浪地球》深受观众喜爱,截止到2019年4月15日,该电影票房已达到46.86亿元,46.86亿用科学记数法表示为()A.0.4686×1010B.46.86×108C.4.686×108D.4.686×1093.(3分)某物体的三视图如图所示,则该物体的形状是()A.正方体B.长方体C.圆柱体D.球体4.(3分)点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.5.(3分)若k>4,则关于x的一元二次方程x2+4x+k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断6.(3分)小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为∠α,已知tanα=,则点D到地面的距离CD是()A.2.7米B.3.0米C.3.2米D.3.4米7.(3分)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD 即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对8.(3分)数学课上,老师提出一个问题:如图①,在平面直角坐标系中,点A的坐标为(0,2),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使∠BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图②所示.题中用“…”表示的缺失的条件应补为()A.边AB的长B.△ABC的周长C.点C的横坐标D.点C的纵坐标二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)×=.10.(3分)分解因式:x3﹣9x=.11.(3分)直线l1∥l2,一块含45°角的直角三角板如图放置.若∠1=75°,则∠2=度.12.(3分)如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=.13.(3分)如图,在平面直角坐标系中,直线y=x﹣1与函数y=(k>0,x>0)的图象交于点A,与x轴交于点B,与y轴交于点C.若点B为AC的中点,则k的值为.14.(3分)对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:,其中x的值从﹣1,2,3中选择一个适当的数.16.(6分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.17.(6分)图①、图②均是3×2的正方形网格,每个小正方形的顶点称为格点.线段AB 的端点均在格点上.在图①、图②给定的网格中各画一个△APC,使点P在线段AB上,点C为格点,且∠APC的正切值为2.要求:(1)图①中的△APC为直角三角形,图②中的△APC为锐角三角形.(2)只用无刻度的直尺,保留适当的作图痕迹18.(7分)每年的4月23日,是“世界读书日”.据统计,“幸福家园小区”1号楼的住户一年内共阅读纸质图书460本,2号楼的住户一年内共阅读纸质图书184本,1号楼住户的人数比2号楼住户人数的2倍多20人,且两栋楼的住户一年内人均阅读纸质图书的数量相同.求这两栋楼的住户一年内人均阅读纸质图书的数量是多少本?19.(7分)如图,△ABC的边BC为⊙O的直径,边AC和⊙O交点D,且∠ABD=∠ACB.(1)求证:AB是⊙O的切线;(2)若BD=4,AB=5,则BC的长为.20.(7分)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整【收集数据】甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83【整理数据】按如下分数段整理、描述这两组样本数据在表中,a=,b=.【分析数据】(1)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.21.(8分)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与x(时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x 的取值范围.22.(9分)【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F 分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB 上一点,当∠DCE=45°,BE=2时,则DE的长为.23.(10分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点D为边AB的中点.点P从点A出发,沿AC方向以每秒1个单位长度的速度向终点C运动,同时点Q从点C 出发,以每秒2个单位长度的速度先沿CB方向运动到点B,再沿BA方向向终点A运动,以DP、DQ为邻边构造▱PEQD,设点P运动的时间为t秒.(1)设点Q到边AC的距离为h,直接用含t的代数式表示h;(2)当点E落在AC边上时,求t的值;(3)当点Q在边AB上时,设▱PEQD的面积为S(S>0),求S与t之间的函数关系式;(4)连接CD,直接写出CD将▱PEQD分成的两部分图形面积相等时t的值.24.(12分)我们约定,在平面直角坐标系中两条抛物线有且只有一个交点时,我们称这两条抛物线为“共点抛物线”,这个交点为“共点”.(1)判断抛物线y=x2与y=﹣x2是“共点抛物线”吗?如果是,直接写出“共点”坐标;如果不是,说明理由;(2)抛物线y=x2﹣2x与y=x2﹣2mx﹣3是“共点抛物线”,且“共点”在x轴上,求抛物线y=x2﹣2mx﹣3的函数关系式;(3)抛物线L1:y=﹣x2+2x+1的图象如图所示,L1与L2:y=﹣2x2+mx是“共点抛物线”;①求m的值;②点P是x轴负半轴上一点,设抛物线L1、L2的“共点”为Q,作点P关于点Q的对称点P′,以PP′为对角线作正方形PMP′N,当点M或点N落在抛物线L1上时,直接写出点P的坐标.2019年吉林省长春市二道区中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【解答】解:互为相反数的两个数的和为:0.故选:A.2.【解答】解:46.86亿=46.86×108=4.686×109,故选:D.3.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是正方形可判断出这个几何体应该是长方体.故选:B.4.【解答】解:由题意知m+1>0,解得m>﹣1,故选:C.5.【解答】解:∵x2+4x+k=0,∴△=42﹣4k=4(4﹣k),∵k>4,∴4﹣k<0,∴△<0,∴该方程没有实数根,故选:A.6.【解答】解:在直角△ADE中,∠DAE=α,AE=5米,tan,∴tanα===,∴DE=1.5米.又CE=AB=1.7米,∴CD=CE+DE=3.2米.故选:C.7.【解答】解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选:A.8.【解答】解:作AD∥x轴,作CD⊥AD于点D,如右图所示,由已知可得,OB=x,OA=2,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离2,∴y=x+2(x>0).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)9.【解答】解:×===.10.【解答】解:原式=x(x2﹣9)=x(x+3)(x﹣3),故答案为:x(x+3)(x﹣3).11.【解答】解:给图中各角标上序号,如图所示.∵直线l1∥l2,∴∠4=∠1=75°.∵∠4=∠3+45°,∴∠3=∠4﹣45°=30°,∴∠2=∠3=30°.故答案为:30.12.【解答】解:∵△ABC与△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,则OE:EB=1:2.故答案为:1:2.13.【解答】解:y=x﹣1与x轴交于点B,与y轴交于点C,∴B(1,0),C(0,﹣1),设A(m,n),∵点B为AC的中点,∴m=2,n=1,∴k=2,故答案为2;14.【解答】解:∵二次函数y=x2﹣4x+4=(x﹣2)2,∴该函数的顶点坐标为(2,0),对称轴为:x=﹣,把y=0代入解析式可得:x=2,把y=1代入解析式可得:x1=3,x2=1,所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,故可得:1≤a≤2,故答案为:1≤a≤2.三、解答题(本大题共10小题,共78分)15.【解答】解:原式=•=,当x=3时,原式=3.16.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=.17.【解答】解:如图所示,图①中的△APC为直角三角形,图②中的△APC为锐角三角形.18.【解答】解:设这两栋楼的住户一年内人均阅读纸质图书的数量为x本.由题意,得.解得x=4.6.经检验,x=4.6是原方程的解,且符合题意.答:这两栋楼的住户一年内人均阅读纸质图书的数量为4.6本.19.【解答】(1)证明:∵BC为⊙O的直径,∴∠BDC=90°,∴∠C+∠DBC=90°,∵∠ABD=∠C,∴∠ABD+∠DBC=90°,∴∠ABC=90°,∴AB是⊙O的切线;(2)解:∵∠ADB=90°,BD=4,AB=5,∴AD=3,∵∠ADB=∠BDC=90°,∠C=∠ABD,∴△ABD∽△BCD,∴,∴=,∴BC=.故答案为:.20.【解答】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,故a=7,b=4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x=85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y=80,故答案为:85,80;(2)60×=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.21.【解答】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米∴(25﹣5)÷(8﹣4)=5(立方米/时)∴每小时的进水量为5立方米.(2)设函数y=kx+b经过点(8,25),(12,37)解得:∴当8≤x≤12时,y=3x+1(3)∵8点到12点既进水又出水时,每小时水量上升3立方米∴每小时出水量为:5﹣3=2(立方米)当8≤x≤12时,3x+1≥28,解得:x≥9当x>14时,37﹣2(x﹣14)≥28,解得:x≤∴当水塔中的贮水量不小于28立方米时,x的取值范围是9≤x≤22.【解答】【问题背景】解:如图1,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.【探索延伸】解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;【学以致用】如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.23.【解答】解:(1)当0<t≤时,h=2t.当<t≤4时,h=3﹣(2t﹣3)=﹣t+.(2)当点E落在AC边上时,DQ∥AC,∵AD=DB,∴CQ=QB,∴2t=,∴t=.(3)①如图1中,当≤t<时,作PH⊥AB于H,则PH=P A•sin A=t,DQ=﹣2t,∴S=t•(﹣2t)=﹣t2+t.②如图2中,当<t≤4时,同法可得S=t•(2t﹣)=t2﹣t.(4)当点E落在直线CD上时,CD将▱PEQD分成的两部分图形面积相等.有两种情形:①当点E在CD上,且点Q在CB上时(如图3所示),过点E作EG⊥CA于点G,过点D作DH⊥CB于点H,易证Rt△PGE≌Rt△DHQ,∴PG=DH=2,∴CG=2﹣t,GE=HQ=CQ﹣CH=2t﹣,∵CD=AD,∴∠DCA=∠DAC∴在Rt△CEG中,tan∠ECG===,∴t=.②当点E在CD上,且点Q在AB上时(如图4所示),过点E作EF⊥CA于点F,∵CD=AD,∴∠CAD=∠ACD.∵PE∥AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,∴PF=PC=,PE=DQ=﹣2t,∴在Rt△PEF中,cos∠EPF===,∴t=综上所述,满足要求的t的值为或.24.【解答】解:(1)是,(0,0)x2=﹣x2∴x=0(2)令y=x2﹣2x=0解得x1=0,x2=2当x=0时,﹣3≠0∴(0,0)不是共点当x=2时,4﹣4m﹣3=0解得m=∴y=x(3)①若两个抛物线是“共点抛物线”则方程﹣x2+2x+1=﹣2x2+mx有两个相等的实数根即x2+(2﹣m)x+1=0有两个相等的实数根∴△=(2﹣m)2﹣4=0解得m=0或m=4∴m的值为0或4.②P(﹣3,0)或P(﹣5,0)或P(﹣13,0)设点P(a,0)当m=0时,Q(﹣1,﹣2)∴P'(﹣2﹣a,﹣4)∵PM=MP',∠A=∠B,∠AMP=∠BP'M∴△APM≌△BMP'(AAS)设M(x,y),N(a,b)解得解得∴可得M(1,﹣3﹣a),N(﹣3,a﹣1)分别代入L1解析式可得a1=﹣5,a2=﹣13当m=4时,Q(1,2)∴P'(2﹣a,4)∵PM=MP',∠A=∠B,∠AMP=∠BP'M∴△APM≌△BMP'(AAS)设M(m,n)N(x,y)解得解得∴可得M(﹣2,4﹣a),N(3,1+a)分别代入L1解析式可得a1=﹣3,a2=11(舍)∴P(﹣3,0)或P(﹣5,0)或P(﹣13,0)。
2019年吉林省长春市中考数学试题(原卷+解析)
2019年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据绝对值的定义即可得到结论.【解答】解:数轴上表示﹣2的点A到原点的距离是2,故选:B.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将275000000用科学记数法表示为:2.75×108.故选:C.3.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层最右边有一个正方形.故选:A.4.【分析】直接进行移项,系数化为1,即可得出x的取值.【解答】解:移项得:﹣x≥﹣2系数化为1得:x≤2.故选:D.5.【分析】直接利用每人出九钱,会多出11钱;每人出6钱,又差16钱,分别得出方程求出答案.【解答】解:设人数为x,买鸡的钱数为y,可列方程组为:.故选:D.6.【分析】直接利用锐角三角函数关系得出sinα==,进而得出答案.【解答】解:由题意可得:sinα==,故BC=3sinα(m).故选:A.7.【分析】由∠ADC=2∠B且∠ADC=∠B+∠BCD知∠B=∠BCD,据此得DB=DC,由线段的中垂线的性质可得答案.【解答】解:∵∠ADC=2∠B且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴DB=DC,∴点D是线段BC中垂线与AB的交点,故选:B.8.【分析】根据A、C的坐标分别是(0,3)、(3、0)可知OA=OC=3,进而可求出AC,由AC=2BC,又可求BC,通过作垂线构造等腰直角三角形,求出点B的坐标,再求出k 的值.【解答】解:过点B作BD⊥x轴,垂足为D,∵A、C的坐标分别是(0,3)、(3、0),∴OA=OC=3,在Rt△AOC中,AC=,又∵AC=2BC,∴BC=,又∵∠ACB=90°,∴∠OAC=∠OCA=45°=∠BCD=∠CBD,∴CD=BD==,∴OD=3+=∴B(,)代入y=得:k=,故选:D.二、填空题(共6小题,每小题3分,满分18分)9.【分析】直接合并同类二次根式即可求解.【解答】解:原式=2.故答案为:2.10.【分析】直接提取公因式b,进而分解因式即可.【解答】解:ab+2b=b(a+2).故答案为:b(a+2).11.【分析】根据根的判别式等于b2﹣4ac,代入求值即可.【解答】解:∵a=1,b=﹣3,c=1,∴△=b2﹣4ac=(﹣3)2﹣4×1×1=5,故答案为:5.12.【分析】直接利用平行线的性质得出∠ABD的度数,再结合三角形内角和定理得出答案.【解答】解:∵直线MN∥PQ,∴∠MAB=∠ABD=33°,∵CD⊥AB,∴∠BCD=90°,∴∠CDB=90°﹣33°=57°.故答案为:57.13.【分析】根据折叠的性质得到∠DAF=∠BAF=45°,根据矩形的性质得到FC=ED=2,根据勾股定理求出GF,根据周长公式计算即可.【解答】解:由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=6,∴EB=AB﹣AE=2,由题意得,四边形EFCB为矩形,∴FC=ED=2,∵AB∥FC,∴∠GFC=∠A=45°,∴GC=FC=2,由勾股定理得,GF==2,则△GCF的周长=GC+FC+GF=4+2,故答案为:4+2.14.【分析】先根据抛物线解析式求出点A坐标和其对称轴,再根据对称性求出点M坐标,利用点M为线段AB中点,得出点B坐标;用含a的式子表示出点P坐标,写出直线OP 的解析式,再将点B坐标代入即可求解出a的值.【解答】解:∵抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,∴A(0,),抛物线的对称轴为x=1∴顶点P坐标为(1,﹣a),点M坐标为(2,)∵点M为线段AB的中点,∴点B坐标为(4,)设直线OP解析式为y=kx(k为常数,且k≠0)将点P(1,)代入得=k∴y=()x将点B(4,)代入得=()×4解得a=2故答案为:2.三、解答题(共10小题,满分78分)15.【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【解答】解:原式=4a2+4a+1﹣4a2+4a=8a+1,当a=时,原式=8a+1=2.16.【分析】画出树状图,共有9个等可能的结果,小新同学两次摸出小球上的汉字相同的结果有5个,由概率公式即可得出结果.【解答】解:画树状图如图:共有9个等可能的结果,小新同学两次摸出小球上的汉字相同的结果有5个,∴小新同学两次摸出小球上的汉字相同的概率为.17.【分析】该灯具厂原计划每天加工这种彩灯的数量为x套,由题意列出方程:﹣=5,解方程即可.【解答】解:该灯具厂原计划每天加工这种彩灯的数量为x套,则实际每天加工彩灯的数量为1.2x套,由题意得:﹣=5,解得:x=300,经检验,x=300是原方程的解,且符合题意;答:该灯具厂原计划每天加工这种彩灯的数量为300套.18.【分析】(1)根据四边形ABCD是正方形,AB为⊙O的直径,得到∠ABE=∠BCG=∠AFB=90°,根据余角的性质得到∠EBF=∠BAF,根据全等三角形的判定定理即可得到结论;(2)连接OF,根据三角形的内角和得到∠BAE=90°﹣55°=35°,根据圆周角定理得到∠BOF=2∠BAE=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,AB为⊙O的直径,∴∠ABE=∠BCG=∠AFB=90°,∴∠BAF+∠ABF=90°,∠ABF+∠EBF=90°,∴∠EBF=∠BAF,在△ABE与△BCG中,,∴△ABE≌△BCG(ASA);(2)解:连接OF,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°﹣55°=35°,∴∠BOF=2∠BAE=70°,∵OA=3,∴的长==.19.【分析】(1)把20个数据从小到大排列,即可求出中位数;出现次数最多的数据即为众数;(2)由平均数乘以18即可;(3)用总人数乘以每周网上学习时间超过2小时的学生人数所占的比例即可.【解答】解:(1)从小到大排列为:0.6,1,1.5,1.5,1.8,2,2,2.2,2.4,2.5,2.5,2.5,2.5,2.8,3,3.1,3.3,3.3,3.5,4,∴中位数m的值为=2.5,众数n为2.5;故答案为:2.5,2.5;(2)2.4×18=43.2(小时),答:估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间为43.2小时.(3)200×=130(人),答:该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数为130人.20.【分析】(1)直接利用三角形的面积的计算方法得出符合题意的图形;(2)直接利用三角形面积求法得出答案;(3)根据矩形函数三角形的面积的求法进而得出答案.【解答】解:(1)如图①所示,△ABM即为所求;(2)如图②所示,△CDN即为所求;(3)如图③所示,四边形EFGH即为所求;21.【分析】(1)根据图象可知两车2小时后相遇,根据路程和为270千米即可求出乙车的速度;然后根据“路程、速度、时间”的关系确定a、b的值;(2)运用待定系数法解得即可;(3)求出甲车到达距B地70千米处时行驶的时间,代入(2)的结论解答即可.【解答】解:(1)乙车的速度为:(270﹣60×2)÷2=75千米/时,a=270÷75=3.6,b=270÷60=4.5.故答案为:75;3.6;4.5;(2)60×3.6=216(千米),当2<x≤3.6时,设y=k1x+b1,根据题意得:,解得,∴y=135x﹣270(2<x≤3.6);当3.6<x≤4.6时,设y=60x,∴;(3)甲车到达距B地70千米处时行驶的时间为:(270﹣70)÷60=(小时),此时甲、乙两车之间的路程为:135×﹣270=180(千米).答:当甲车到达距B地70千米处时,求甲、乙两车之间的路程为180千米.22.【分析】教材呈现:如图①,连结ED.根据三角形中位线定理可得DE∥AC,DE=AC,那么△DEG∽△ACG,由相似三角形对应边成比例以及比例的性质即可证明==;结论应用:(1)如图②.先证明△BEF∽△DAF,得出BF=DF,那么BF=BD,又BO=BD,可得OF=OB﹣BF=BD,由正方形的性质求出BD=6,即可求出OF =;(2)如图③,连接OE.由(1)易证=2.根据同高的两个三角形面积之比等于底边之比得出△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,那么△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,所以△BOC的面积=,进而求出▱ABCD的面积=4×=6.【解答】教材呈现:证明:如图①,连结ED.∵在△ABC中,D,E分别是边BC,AB的中点,∴DE∥AC,DE=AC,∴△DEG∽△ACG,∴===2,∴==3,∴==;结论应用:(1)解:如图②.∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,∴AD∥BC,BE=BC=AD,BO=BD,∴△BEF∽△DAF,∴==,∴BF=DF,∴BF=BD,∵BO=BD,∴OF=OB﹣BF=BD﹣BD=BD,∵正方形ABCD中,AB=6,∴BD=6,∴OF=.故答案为;(2)解:如图③,连接OE.由(1)知,BF=BD,OF=BD,∴=2.∵△BEF与△OEF的高相同,∴△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,∴△BOC的面积=,∴▱ABCD的面积=4×=6.故答案为6.23.【分析】(1)根据勾股定理即可直接计算AB的长,根据三角函数即可计算出PN.(2)当▱PQMN为矩形时,由PN⊥AB可知PQ∥AB,根据平行线分线段成比例定理可得,即可计算出t的值.(3)当▱PQMN与△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.▱PQMN在三角形内部时,Ⅱ.▱PQMN有部分在外边时.由三角函数可计算各图形中的高从而计算面积.(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,有两种情况,Ⅰ.过MN 的中点,Ⅱ.过QM的中点.分别根据解三角形求相关线段长利用平行线等分线段性质和可列方程计算t值.【解答】解:(1)在Rt△ABC中,∠C=90°,AC=20,BC=15.∴AB===25.∴,由题可知AP=5t,∴PN=AP•sin∠CAB==3t.故答案为:①25;②3t.(2)当▱PQMN为矩形时,∠NPQ=90°,∵PN⊥AB,∴PQ∥AB,∴,由题意可知AP=CQ=5t,CP=20﹣5t,∴,解得t=,即当▱PQMN为矩形时t=.(3)当▱PQMN△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.如解图(3)1所示.▱PQMN在三角形内部时.延长QM交AB于G点,由(1)题可知:cos A=sin B=,cos B=,AP=5t,BQ=15﹣5t,PN=QM=3t.∴AN=AP•cos A=4t,BG=BQ•cos B=9﹣3t,QG=BQ•sin B=12﹣4t,∵.▱PQMN在三角形内部时.有0<QM≤QG,∴0<3t≤12﹣4t,∴0<t.∴NG=25﹣4t﹣(9﹣3t)=16﹣t.∴当0<t时,▱PQMN与△ABC重叠部分图形为▱PQMN,S与t之间的函数关系式为S=PN•NG=3t•(16﹣t)=﹣3t2+48t.Ⅱ.如解图(3)2所示.当0<QG<QM,▱PQMN与△ABC重叠部分图形为梯形PQMG 时,即:0<12﹣4t<3t,解得:,▱PQMN与△ABC重叠部分图形为梯形PQMG的面积S===.综上所述:当0<t时,S=﹣3t2+48t.当,S=.(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,有两种情况,Ⅰ.如解题图(4)1,PR∥BC,PR与AB交于K点,R为MN中点,过R点作RH⊥AB,∴∠PKN=∠HKR=∠B,NK=PN•cot∠PKN=3t=,∵NR=MR,HR∥PN∥QM,∴NH=GH=,HR=,∴GM=QM﹣QG=3t﹣(12﹣4t)=7t﹣12.HR=.∴KH=HR•cot∠HKR==,∵NK+KH=NH,∴,解得:t=,Ⅱ.如解题图(4)2,PR∥BC,PR与AB交于K点,R为MQ中点,过Q点作QH⊥PR,∴∠HPN=∠A=∠QRH,四边形PCQH为矩形,∴HQ=QR•sin∠QRH=∵PC=20﹣5t,∴20﹣5t=,解得t=.综上所述:当t=或时,点P且平行于BC的直线经过▱PQMN一边中点时,24.【分析】(1)①将P(4,b)代入y=﹣x2+x+;②当x≥5时,当x=5时有最大值为5;当x<5时,当x=时有最大值为;故函数的最大值为;(2)将点(4,2)代入y=﹣x2+nx+n中,得到n=,所以<n≤4时,图象与线段AB只有一个交点;将点(2,2)代入y=﹣x2+nx+n和y=﹣x2+x+中,得到n =2,n=,所以2≤n<时图象与线段AB只有一个交点;(3)当x=n时,>4,得到n>8;当x=时,+≤4,得到n≥,当x=n时,y=﹣n2+n2+n=n,n<4.【解答】解:(1)当n=5时,y=,①将P(4,b)代入y=﹣x2+x+,∴b=;②当x≥5时,当x=5时有最大值为5;当x<5时,当x=时有最大值为;∴函数的最大值为;(2)将点(4,2)代入y=﹣x2+nx+n中,∴n=,∴<n≤4时,图象与线段AB只有一个交点;将点(2,2)代入y=﹣x2+nx+n中,∴n=2,将点(2,2)代入y=﹣x2+x+中,∴n=,∴2≤n<时图象与线段AB只有一个交点;综上所述:<n≤4,2≤n<时,图象与线段AB只有一个交点;(3)当x=n时,y=﹣n2+n2+=,>4,∴n>8;当x=时,y=+,+≤4,∴n≥,当x=n时,y=﹣n2+n2+n=n,n<4;∴函数图象上有4个点到x轴的距离等于4时,n>8或n≤<4.。
吉林省长春市2019-2020学年中考一诊数学试题含解析
吉林省长春市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.矩形具有而平行四边形不具有的性质是( )A .对角相等B .对角线互相平分C .对角线相等D .对边相等2.如图,用一个半径为6cm 的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G 向下移动了3πcm ,则滑轮上的点F 旋转了( )A .60°B .90°C .120°D .45°3.下面运算正确的是( )A .111()22-=-B .(2a )2=2a 2C .x 2+x 2=x 4D .|a|=|﹣a|4.如图,△ABC 内接于⊙O ,AD 为⊙O 的直径,交BC 于点E ,若DE=2,OE=3,则tan ∠ACB·tan ∠ABC=( )A .2B .3C .4D .55.已知二次函数y=ax 2+bx+c 的图像经过点(0,m )、(4、m )、(1,n ),若n <m ,则( ) A .a >0且4a+b=0B .a <0且4a+b=0C .a >0且2a+b=0D .a <0且2a+b=06.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .257.据国家统计局2018年1月18日公布,2017年我国GDP 总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为( )A .8.27122×1012B .8.27122×1013C .0.827122×1014D .8.27122×10148.如图所示,把直角三角形纸片沿过顶点B 的直线(BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得等腰△EBA ,那么结论中:①∠A=30°;②点C 与AB 的中点重合;③点E 到AB 的距离等于CE 的长,正确的个数是( )A .0B .1C .2D .39.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差 10.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .()2y x 2=-B .()2y x 26=-+C .2y x 6=+D .2y x =11.在下列函数中,其图象与x 轴没有交点的是( )A .y=2xB .y=﹣3x+1C .y=x 2D .y=1x12.如图,△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算(﹣3)+(﹣9)的结果为______.14.如图,已知直线////a b c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 和B 、D 、F ,如果3AC =,5CE =,4DF =,那么BD =______.15.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为16.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.17.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.18.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.20.(6分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?21.(6分)有A 、B 两组卡片共1张,A 组的三张分别写有数字2,4,6,B 组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A 组抽取一张,求抽到数字为2的概率;随机地分别从A 组、B 组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?22.(8分)(5分)计算:.23.(8分)如图,已知抛物线213(0)22y x x n n =-->与x 轴交于,A B 两点(A 点在B 点的左边),与y 轴交于点C . (1)如图1,若△ABC 为直角三角形,求n 的值;(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是平行四边形,求P 点的坐标;(3)如图2,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴于点E ,若AE ﹕ED =1﹕1. 求n 的值.24.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.求y与x之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.(10分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)26.(12分)平面直角坐标系xOy(如图),抛物线y=﹣x2+2mx+3m2(m>0)与x轴交于点A、B(点A 在点B左侧),与y轴交于点C,顶点为D,对称轴为直线l,过点C作直线l的垂线,垂足为点E,联结DC、BC.(1)当点C(0,3)时,①求这条抛物线的表达式和顶点坐标;②求证:∠DCE=∠BCE;(2)当CB平分∠DCO时,求m的值.27.(12分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选C .2.B【解析】【分析】由弧长的计算公式可得答案.【详解】 解:由圆弧长计算公式l=180n r π,将l=3π代入, 可得n =90o ,故选B.【点睛】 本题主要考查圆弧长计算公式l=180n r π,牢记并运用公式是解题的关键. 3.D【解析】【分析】分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.【详解】解:A,-11=22(),故此选项错误; B,222a 4a =(),故此选项错误; C ,2222x x x +=,故此选项错误;D ,a a =-,故此选项正确.所以D 选项是正确的.【点睛】灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案. 4.C【解析】【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三角形的判定定理可得ACE BDE ∆~∆,然后由相似三角形的性质可得AC CE BD DE =,同理可得AB AE CD CE =;又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案. 【详解】如图,连接BD 、CD ,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDE AEC BED∠=∠⎧⎨∠=∠⎩ ACE BDE ∴∆~∆AC CE BD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CE BD ∴= 同理可得:ABE CDE ∆~∆ AB AE CD CE ∴=,即8AB CD CE = AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∴∠=∠=∠=∠= 8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅= 故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.5.A【解析】【分析】由图像经过点(0,m )、(4、m )可知对称轴为x=2,由n <m 知x=1时,y 的值小于x=0时y 的值,根据抛物线的对称性可知开口方向,即可知道a 的取值.【详解】∵图像经过点(0,m )、(4、m )∴对称轴为x=2,则-22b a=, ∴4a+b=0∵图像经过点(1,n ),且n <m∴抛物线的开口方向向上,∴a >0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.6.C【解析】【分析】通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1.. ∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B时,用5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.7.B【解析】【分析】由科学记数法的定义可得答案.【详解】解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,故选B.【点睛】科学记数法表示数的标准形式为10na⨯(1n≤<10且n为整数).8.D【解析】【分析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.【详解】∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分线上的点到角的两边距离相等),∴点E到AB的距离等于CE的长,故③选项正确,故正确的有3个.故选D.【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.9.D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D .10.D【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D .11.D【解析】【分析】依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.【详解】A .正比例函数y=2x 与x 轴交于(0,0),不合题意;B .一次函数y=-3x+1与x 轴交于(13,0),不合题意; C .二次函数y=x 2与x 轴交于(0,0),不合题意;D .反比例函数y=1x与x 轴没有交点,符合题意; 故选D .12.A【解析】【分析】根据线段垂直平分线的性质得到AD=DC ,根据等腰三角形的性质得到∠C=∠DAC ,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN 是AC 的垂直平分线,则AD=DC ,故∠C=∠DAC ,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A .【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】试题分析:利用同号两数相加的法则计算即可得原式=﹣(3+9)=﹣1,故答案为﹣1.14.12 5【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=3,CE=5,DF=4,即可求得BD的长.【详解】解:由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BD CE DF=,又由AC=3,CE=5,DF=4可得:354BD =解得:BD=12 5.故答案为12 5.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.15.【解析】试题解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴考点:平行线分线段成比例.16.1【解析】【分析】把点(m ,0)代入y =x 2﹣x ﹣1,求出m 2﹣m =1,代入即可求出答案.【详解】∵二次函数y =x 2﹣x ﹣1的图象与x 轴的一个交点为(m ,0),∴m 2﹣m ﹣1=0,∴m 2﹣m =1,∴m 2﹣m+2017=1+2017=1.故答案为:1.【点睛】本题考查了抛物线与x 轴的交点问题,求代数式的值的应用,解答此题的关键是求出m 2﹣m =1,难度适中.17.()2 1.8250x x ++=【解析】【分析】河北四库来水量为x 亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.【详解】河北四库来水量为x 亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,由题意得:x+(2x+1.82)=50,故答案为x+(2x+1.82)=50.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.18.15°【解析】【分析】根据平行四边形的性质和圆的半径相等得到△AOB 为等边三角形,根据等腰三角形的三线合一得到∠BOF =∠AOF =30°,根据圆周角定理计算即可.【详解】解答:连接OB ,∵四边形ABCO 是平行四边形,∴OC=AB ,又OA=OB=OC ,∴OA=OB=AB ,∴△AOB 为等边三角形.∵OF ⊥OC,OC ∥AB ,∴OF ⊥AB ,∴∠BOF=∠AOF=30°.由圆周角定理得1152BAF BOF∠=∠=o,故答案为15°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)【解析】【分析】(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE ﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.【详解】(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,∴﹣a+3=2,b=﹣×4+3,∴a=2,b=1,∴点A的坐标为(2,2),点B的坐标为(4,1),又∵点A(2,2)在反比例函数y=的图象上,∴k=2×2=4,∴反比例函数的表达式为y=(x>0);(2)延长CA交y轴于点E,延长CB交x轴于点F,∵AC∥x轴,BC∥y轴,则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)∴四边形OECF为矩形,且CE=4,CF=2,∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣×2×2﹣×4×1=4,设点P的坐标为(0,m),则S△OAP=×2•|m|=4,∴m=±4,∴点P的坐标为(0,4)或(0,﹣4).【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.20.(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案. 【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得,解得:,∴该一次函数解析式为y=﹣x+1;(2)当y=﹣x+1=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.21.(1)P(抽到数字为2)=13;(2)不公平,理由见解析.【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P=13; (2)由题意画出树状图如下:一共有6种情况, 甲获胜的情况有4种,P=4263=, 乙获胜的情况有2种,P=2163=, 所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.22..【解析】试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答. 试题解析:原式==. 考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.23. (1) 2n =;(2) 1139(,)28和(-539,)28;(3) 278n = 【解析】【分析】(1)设1(,0)A x ,2(,0)B x ,再根据根与系数的关系得到122x x n =-,根据勾股定理得到:2221AC x n =+、2222BC x n =+,根据222AC BC AB +=列出方程,解方程即可;(2)求出A 、B 坐标,设出点Q 坐标,利用平行四边形的性质,分类讨论点P 坐标,利用全等的性质得出P 点的横坐标后,分别代入抛物线解析式,求出P 点坐标;(3)过点D 作DH ⊥x 轴于点H ,由AE :1ED =:4,可得AO :1OH =:4.设(0)OA a a =>,可得 A 点坐标为(,0)a -,可得4,5OH a AH a ==.设D 点坐标为2(4,86)a a a n --.可证△DAH ∽△CBO ,利用相似性质列出方程整理可得到 2111220a a n --=①,将(,0)A a -代入抛物线上,可得21322n a a =+②,联立①②解方程组,即可解答.【详解】解:(1)设1(,0)A x ,2(,0)B x ,则12,x x 是方程213022x x n --=的两根, ∴122x x n =-.∵已知抛物线213(0)22y x x n n =-->与y 轴交于点C . ∴(0,-)C n 在Rt △AOC 中:2221AC x n =+,在Rt △BOC 中:2222BC x n =+,∵△ABC 为直角三角形,由题意可知∠90ACB =°,∴222AC BC AB +=,即222221221()x n x n x x +++=-,∴212n x x =-,∴22n n =,解得:120,2n n ==,又0n >,∴2n =.(2)由(1)可知:213222y x x =--,令0,y =则2132022x x --=, ∴11,x =-24x =, ∴(1,0),(4,0)A B -.①以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是四边形CBPQ 时,设抛物线的对称轴为32l = ,l 与BC 交于点G ,过点P 作PF ⊥l ,垂足为点F ,即∠90PFQ =°=∠COB .∵四边形CBPQ 为平行四边形,∴,PQ BC PQ =∥BC ,又l ∥y 轴,∴∠FQP =∠QGB =∠OCB ,∴△PFQ ≌△BOC ,∴4PF BO ==,∴P 点的横坐标为311+4=22, ∴211131139()2,22228y =⨯-⨯-= 即P 点坐标为1139(,)28. ②当以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是四边形CBQP 时,设抛物线的对称轴为32l = ,l 与BC 交于点G ,过点1P 作11P F ⊥l ,垂足为点1F , 即∠1190=PF Q °=∠COB . ∵四边形11CBQ P 为平行四边形,∴1111,=PQ BC PQ ∥BC ,又l ∥y 轴, ∴∠111=F Q P ∠1Q GB =∠OCB ,∴△111PF Q ≌△BOC ,∴114==PF BO ,∴1P 点的横坐标为35-4=-22,∴2515339()2,22228⎛⎫ ⎪=⨯--⨯-=⎝⎭y 即1P 点坐标为39(-,25)8∴符合条件的P 点坐标为1139(,)28和39(-,25)8. (3)过点D 作DH ⊥x 轴于点H ,∵AE :1ED =:4,∴AO :1OH =:4.设(0)OA a a =>,则A 点坐标为(,0)a -,∴4,5OH a AH a ==.∵D 点在抛物线213(0)22y x x n n =-->上, ∴D 点坐标为2(4,86)a a a n --,由(1)知122x x n =-,∴2n OB a=, ∵AD ∥BC ,∴△DAH ∽△CBO ,∴AH DH BO CO=, ∴25862a a a n n na--=, 即2111220a a n --=①,又(,0)A a -在抛物线上,∴21322n a a =+②, 将②代入①得:221311122()022a a a a --+=, 解得10a =(舍去),232a =把32a =代入②得:278n =. 【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.24.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.25.1.9米【解析】试题分析:在直角三角形BCD 中,由BC 与sinB 的值,利用锐角三角函数定义求出CD 的长,在直角三角形ACD 中,由∠ACD 度数,以及CD 的长,利用锐角三角函数定义求出AD 的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=, ∴CD=BC•sinB=10×0.2=5.9,∵在Rt △BCD 中,∠BCD=90°﹣∠B=90°﹣36°=54°, ∴∠ACD=∠BCD ﹣∠ACB=54°﹣36°=18°, ∴在Rt △ACD 中,tan ∠ACD=, ∴AD=CD•tan ∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD 的长约为1.9米.考点:解直角三角形的应用26.(1)y=﹣x 2+2x+3;D (1,4);(2)证明见解析;(3)m=33; 【解析】【分析】(1)①把C 点坐标代入y=﹣x 2+2mx+3m 2可求出m 的值,从而得到抛物线解析式,然后把一般式配成顶点式得到D 点坐标;②如图1,先解方程﹣x 2+2x+3=0得B (3,0),则可判断△OCB 为等腰直角三角形得到∠OBC=45°,再证明△CDE 为等腰直角三角形得到∠DCE=45°,从而得到∠DCE=∠BCE ;(2)抛物线的对称轴交x 轴于F 点,交直线BC 于G 点,如图2,把一般式配成顶点式得到抛物线的对称轴为直线x=m ,顶点D 的坐标为(m ,4m 2),通过解方程﹣x 2+2mx+3m 2=0得B (3m ,0),同时确定C (0,3m 2),再利用相似比表示出GF=2m 2,则DG=2m 2,接着证明∠DCG=∠DGC 得到DC=DG ,所以m 2+(4m 2﹣3m 2)2=4m 4,然后解方程可求出m .【详解】(1)①把C (0,3)代入y=﹣x 2+2mx+3m 2得3m 2=3,解得m 1=1,m 2=﹣1(舍去),∴抛物线解析式为y=﹣x 2+2x+3;∵()222314y x x x =-++=--+,∴顶点D 为(1,4);②证明:如图1,当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3,则B (3,0),∵OC=OB ,∴△OCB 为等腰直角三角形,∴∠OBC=45°,∵CE ⊥直线x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE 为等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE ;(2)解:抛物线的对称轴交x 轴于F 点,交直线BC 于G 点,如图2,()2222234y x mx m x m m =++=--+﹣,∴抛物线的对称轴为直线x=m ,顶点D 的坐标为(m ,4m 2),当y=0时,﹣x 2+2mx+3m 2=0,解得x 1=﹣m ,x 2=3m ,则B (3m ,0),当x=0时,y=﹣x 2+2mx+3m 2=3m 2,则C (0,3m 2),∵GF ∥OC , ∴,GF BF OC BO =即22,33GF m m m= 解得GF=2m 2, ∴DG=4m 2﹣2m 2=2m 2,∵CB 平分∠DCO ,∴∠DCB=∠OCB ,∵∠OCB=∠DGC ,∴∠DCG=∠DGC ,∴DC=DG ,即m 2+(4m 2﹣3m 2)2=4m 4, ∴213m ,=而m >0,∴3m =【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;灵活应用等腰直角三角形的性质进行几何计算;理解坐标与图形性质,记住两点间的距离公式.27.25°【解析】【分析】先利用正方形的性质得OA=OC,∠AOC=90°,再根据旋转的性质得OC=OF,∠COF=40°,则OA=OF,根据等腰三角形的性质得∠OAF=∠OFA,然后根据三角形的内角和定理计算∠OFA的度数.【详解】解:∵四边形OABC为正方形,∴OA=OC,∠AOC=90°,∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=12(180°-130°)=25°.故答案为25°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.。
吉林省长春市2019-2020学年中考数学一模考试卷含解析
吉林省长春市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A .B .C .D .2.若关于x 的分式方程的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3B .1,2C .1,3D .2,33.人的头发直径约为0.00007m ,这个数据用科学记数法表示( ) A .0.7×10﹣4 B .7×10﹣5 C .0.7×104 D .7×1054.在直角坐标系中,设一质点M 自P 0(1,0)处向上运动一个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处……,如此继续运动下去,设P n (x n ,y n ),n =1,2,3,……,则x 1+x 2+……+x 2018+x 2019的值为( )A .1B .3C .﹣1D .20195.下列各点中,在二次函数2y x =-的图象上的是( ) A .()1,1B .()2,2-C .()2,4D .()2,4--6.如图,ABC ∆中,6AB =,4BC =,将ABC ∆绕点A 逆时针旋转得到AEF ∆,使得//BC AF ,延长BC 交AE 于点D ,则线段CD 的长为( )A .4B .5C .6D .77.已知反比例函数y =﹣6x,当﹣3<x <﹣2时,y 的取值范围是( ) A .0<y <1B .1<y <2C .2<y <3D .﹣3<y <﹣28.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=34,EF=,则AB的长为()A.533B.536C.1 D.1729.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A.8073 B.8072 C.8071 D.807010.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=10011.如图,直线a,b被直线c所截,若a∥b,∠1=50°,∠3=120°,则∠2的度数为()A.80°B.70°C.60°D.50°12.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=13CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.10 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:7+(-5)=______.14.因式分解:2312x-=____________.15.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.16.在实数范围内分解因式:x2y﹣2y=_____.17.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD 相交于O,则tan∠BOD的值等于__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=kx(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=kx(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=92时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.20.(6分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.2 9.69.67.89.3 4 6.58.59.99.6乙 5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲 1 0 1 2 1 5乙____ ____ _____ ______ _____ _______(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示:结论:人员平均数(万元)中位数(万元)众数(万元)甲8.2 8.9 9.6乙8.2 8.4 9.7(1)估计乙业务员能获得奖金的月份有______个;(2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)21.(6分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.i)求证:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且AB EFkBC FC==时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)22.(8分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.23.(8分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤10050 0.25根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?24.(10分)先化简2211a a a a⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 25.(10分)如图,⊙O 的直径AD 长为6,AB 是弦,CD ∥AB ,∠A=30°,且CD=3. (1)求∠C 的度数;(2)求证:BC 是⊙O 的切线.26.(12分)已知四边形ABCD 为正方形,E 是BC 的中点,连接AE ,过点A 作∠AFD ,使∠AFD=2∠EAB ,AF 交CD 于点F ,如图①,易证:AF=CD+CF .(1)如图②,当四边形ABCD 为矩形时,其他条件不变,线段AF ,CD ,CF 之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD 为平行四边形时,其他条件不变,线段AF ,CD ,CF 之间又有怎样的数量关系?请直接写出你的猜想.图① 图② 图③27.(12分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件) 40 90售价(元/件) 60 120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图2.C【解析】试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知关于x的分式方的解为正数,得m=1,m=3,故选C.考点:分式方程的解.3.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.C 【解析】 【分析】根据各点横坐标数据得出规律,进而得出x 1 +x 2 +…+x 7 ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:x 1、x 2、x 3、x 4、x 5、x 6、x 7、x 8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5; ∴x 1+x 2+…+x 7=﹣1∵x 1+x 2+x 3+x 4=1﹣1﹣1+3=2; x 5+x 6+x 7+x 8=3﹣3﹣3+5=2; …x 97+x 98+x 99+x 100=2…∴x 1+x 2+…+x 2016=2×(2016÷4)=1. 而x 2017、x 2018、x 2019的值分别为:1009、﹣1009、﹣1009, ∴x 2017+x 2018+x 2019=﹣1009,∴x 1+x 2+…+x 2018+x 2019=1﹣1009=﹣1, 故选C . 【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律 5.D 【解析】 【分析】将各选项的点逐一代入即可判断. 【详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象; 当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象;故答案为:D . 【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式. 6.B 【解析】 【分析】先利用已知证明BAC BDA :△△,从而得出BA BCBD BA=,求出BD 的长度,最后利用CD BD BC =-求解即可. 【详解】//AF BC QFAD ADB ∴∠=∠BAC FAD ∠=∠Q BAC ADB ∴∠=∠B B ∠∠=QBAC BDA ∴V :VBA BCBD BA ∴= 646BD ∴= 9BD ∴=945CD BD BC ∴=-=-=故选:B . 【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键. 7.C 【解析】 分析:由题意易得当﹣3<x <﹣2时,函数6y x=-的图象位于第二象限,且y 随x 的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了. 详解: ∵在6y x=-中,﹣6<0, ∴当﹣3<x <﹣2时函数6y x=-的图象位于第二象限内,且y 随x 的增大而增大, ∵当x=﹣3时,y=2,当x=﹣2时,y=3,∴当﹣3<x <﹣2时,2<y <3, 故选C .点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键. 8.B 【解析】 【分析】由平行四边形性质得出AB=CD ,AB ∥CD ,证出四边形ABDE 是平行四边形,得出DE=DC=AB ,再由平行线得出∠ECF=∠ABC ,由三角函数求出CF 长,再用勾股定理CE ,即可得出AB 的长. 【详解】∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AB=CD , ∵AE ∥BD ,∴四边形ABDE 是平行四边形, ∴AB=DE ,∴AB=DE=CD ,即D 为CE 中点, ∵EF ⊥BC , ∴∠EFC=90°, ∵AB ∥CD , ∴∠ECF=∠ABC , ∴tan ∠ECF=tan ∠ABC=34,在Rt △CFE 中,tan ∠ECF=EF CF =CF =34,∴CF=3,根据勾股定理得,3,∴AB=12CE=6, 故选B . 【点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=12CE 是解决问题的关键. 9.A【解析】【分析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1;第2个图案中涂有阴影的小正方形个数为:9=4×2+1;第3个图案中涂有阴影的小正方形个数为:13=4×3+1;…发现规律:第n个图案中涂有阴影的小正方形个数为:4n+1;∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1.故选:A.【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.10.A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.11.B【解析】【分析】直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.【详解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.12.C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=12AB=1.又CE=13 CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】根据有理数的加法法则计算即可.【详解】()752+-=.故答案为:2.【点睛】本题考查有理数的加法计算,熟练掌握加法法则是关键.14.3(x-2)(x+2)【解析】【分析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.【详解】原式=3(x2﹣4)=3(x-2)(x+2).故答案为3(x-2)(x+2).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.15.1【解析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×12=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.16.y()(x)【解析】【分析】先提取公因式y后,再把剩下的式子写成x2)2,符合平方差公式的特点,可以继续分解.【详解】x2y-2y=y(x2-2)=y()().故答案为y((.【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止. 17.2122+或1 【解析】 【分析】图1,∠B’MC=90°,B’与点A 重合,M 是BC 的中点,所以BM=121222BC =+, 图2,当∠MB’C=90°,∠A=90°,AB=AC, ∠C=45°,所以Rt 'CMB V 是等腰直角三角形,所以BM=2+1,所以CM+BM=2BM+BM=2+1, 所以BM=1.【详解】 请在此输入详解! 18.3 【解析】试题解析:平移CD 到C′D′交AB 于O′,如图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考点:解直角三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=9x(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t(t>3);当S=92时,对应的t值为32或6;(3)当t=32或322或3时,使△FBO为等腰三角形.【解析】【分析】(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.(2)由题意得P(t,9t),然后分别从当点P1在点B的左侧时,S=t•(9t-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•9t=9-27t去分析求解即可求得答案;(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【详解】解:(1)∵正方形OABC的面积为9,∴点B的坐标为:(3,3),∵点B 在反比例函数y=kx(k >0,x >0)的图象上, ∴3=3k , 即k=9,∴该反比例函数的解析式为:y= y=9x(x >0); (2)根据题意得:P (t ,9t), 分两种情况:①当点P 1在点B 的左侧时,S=t•(9t﹣3)=﹣3t+9(0≤t≤3); 若S=92, 则﹣3t+9=92,解得:t=32;②当点P 2在点B 的右侧时,则S=(t ﹣3)•9t =9﹣27t; 若S=9t ,则9﹣27t =92, 解得:t=6;∴S 与t 的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t(t >3); 当S=9t 时,对应的t 值为32或6; (3)存在.若CF=BC=3, ∴OF=6,∴6=9t, 解得:t=32;若,则9t,解得:t=2; 若BF=OF ,此时点F 与C 重合,t=3;∴当t=323时,使△FBO 为等腰三角形. 【点睛】此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.20.填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.【解析】【分析】(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,(2)根据中位数和平均数即可解题.【详解】解:如图,(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.【点睛】本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键. 21.(1)i)证明见试题解析;ii;(2;(3)222(2p n m-=+.【解析】【分析】(1)i)由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于AC CEBC CF==故△CAE∽△CBF;ii)由AEBF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,进一步可得到∠EBF=1°,从而有222222()6CE EF BE BF==+=,解得CE=(2)连接BF,同理可得:∠EBF=1°,由AB EFkBC FC==,得到::1:BC AB AC k=::1:CF EF EC k=,故AC AEBC BF==BF=2222222211()k k CE EF BE BF k k++=⨯=+,代入解方程即可;(3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,故22222222(22)(22)()(22)()(22)22p EF BE BF m m n =+=++=++=+++, 从而有222(22)p n m -=+. 【详解】解:(1)i )∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF ,又∵2AC CEBC CF==,∴△CAE ∽△CBF ; ii )∵2AEBF=,∴BF=2,∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴222222()6CE EF BE BF ==+=,解得6CE =;(2)连接BF ,同理可得:∠EBF=1°,∵AB EFk BC FC==,∴2::1::1BC AB AC k k =+,2::1::1CF EF EC k k =+,∴21AC AE k BC BF==+,∴21BF k =+,2221AE BF k =+,∴2222222211()k k CE EF BE BF k k ++=⨯=+,∴222222123(1)1k k k +=++,解得104k =; (3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,∴22222222(22)(22)()(22)()(22)22p EF BE BF m m n =+=++=++=+++, ∴222(22)p n m -=+.【点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质. 22.(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.【解析】【分析】(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据AD⋅BC=AP⋅BP,就可求出t的值.【详解】解:(2)如图2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(2)结论AD⋅BC=AP⋅BP仍成立;证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(3)如下图,过点D作DE⊥AB于点E,∵AD=BD=2,AB=6,∴AE=BE=3∴22,53∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值为2秒或2秒.【点睛】本题考查圆的综合题.23.(1)70,0.2;(2)补图见解析;(3)80≤x<90;(4)750人.【解析】分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m 的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.详解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x <90, ∴这200名学生成绩的中位数会落在80≤x <90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.24.-1【解析】【分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a ⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.25.(1)60°;(2)见解析【解析】【分析】(1)连接BD ,由AD 为圆的直径,得到∠ABD 为直角,再利用30度角所对的直角边等于斜边的一半求出BD 的长,根据CD 与AB 平行,得到一对内错角相等,确定出∠CDB 为直角,在直角三角形BCD 中,利用锐角三角函数定义求出tanC 的值,即可确定出∠C 的度数;(2)连接OB ,由OA=OB ,利用等边对等角得到一对角相等,再由CD 与AB 平行,得到一对同旁内角互补,求出∠ABC 度数,由∠ABC ﹣∠ABO 度数确定出∠OBC 度数为90,即可得证;【详解】(1)如图,连接BD ,∵AD 为圆O 的直径,∴∠ABD=90°,∴BD=12AD=3, ∵CD ∥AB ,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt △CDB 中,tanC=33BD CD == ∴∠C=60°;(2)连接OB ,∵∠A=30°,OA=OB ,∴∠OBA=∠A=30°,∵CD ∥AB ,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC ﹣∠ABO=120°﹣30°=90°,∴OB ⊥BC ,∴BC 为圆O 的切线.【点睛】此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.26.(1)图②结论:AF=CD+CF. (2)图③结论:AF=CD+CF.【解析】试题分析:(1)作DC ,AE 的延长线交于点G .证三角形全等,进而通过全等三角形的对应边相等验证AF CF CD ,,之间的关系;(2)延长FE 交AB 的延长线于点,H 由全等三角形的对应边相等验证AF CF CD ,,关系.试题解析:(1)图②结论:.AF CD CF =+证明:作DC ,AE 的延长线交于点G .∵四边形ABCD 是矩形,.G EAB ∴∠=∠22AFD EAB G FAG G ∠=∠=∠=∠+∠Q ,.G FAG ∴∠=∠.AF FG CF CG ∴==+由E 是BC 中点,可证CGE V ≌BAE V ,.CG AB CD ∴==.AF CF CD ∴=+(2)图③结论:.AF CD CF =+延长FE 交AB 的延长线于点,H 如图所示因为四边形ABCD 是平行四边形所以AB //CD 且AB CD =,因为E 为BC 的中点,所以E 也是FH 的中点,所以FE HF BH CF ==,,又因为2,AFD EAB ∠=∠,BAF EAB FAE ∠=∠+∠所以,EAB EAF ∠=∠又因为,AE AE =所以EAH △≌,EAF V所以,AF AH =因为,AH AB BH CD CF =+=+.AF CF CD ∴=+27. (Ⅰ)103000y x =-+;(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】【分析】(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x 的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:()()()604012090100103000y x x x =-+--=-+则y 与x 的函数关系式为103000y x =-+.(Ⅱ)()40901008000x x +-≤,解得20x ≥.∴至少要购进20件甲商品.103000y x =-+,∵100-<,∴y 随着x 的增大而减小∴当20x =时,y 有最大值,102030002800y =-⨯+=最大.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.。
2019年长春市中考数学试卷模拟试卷(4)含答案解析
2019年吉林省长春市中考数学试卷模拟试卷(4) 考试时间:100分钟 满分:120分一、选择题(本大题共8小题,每小题3分,共24分) 1. (2019·黄冈)-3的绝对值是( )A .-3B .-13 C .3 D .±3{答案}C2. (2019贵阳)32可表示为( ) A .3×2 B .2×2×2 C .3×3 D .3+3 {答案}C3. (2019·烟台,3)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是( )A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .主视图、左视图、俯视图 {答案}A4. (2019·宁波)不等式3-x2>x 的解为( )A .x <1B .x <-1C .x >1D .x >-1 {答案}A5. (2019·乐山)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( )A .1,11B .7,53C .7,61D .6,50 {答案} B6. (2019•长春一模)如图,为了保证道路交通安全,某段高速公路在A 处设立观测点,与高速公路的距离AC 为20米.现测得一辆小轿车从B 处行驶到C 处所用的时间为4秒.若∠BAC =α,则此车的速度为( )A .5tan α米/秒B .80tan α米/秒C .米/秒 D .米/秒7. (2019·长沙)如图,Rt △ABC 中,∠C =90°,∠B =30°,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数是( )A .20°B .30°C .45°D .60°{答案}B8. (2019·重庆A)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y =k x (k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为( )A .16B .20C .32D .40 {答案}B二、填空题:本大题共6小题,每小题3分,合计18分.9. (2019·衡阳)27-3=________.{答案}2 310. (2019·深圳)分解因式:ab 2-a =________________.{答案}a (b +1)(b -1)11. (2019·遂宁)若关于x 的方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围为________.{答案}k <112. (2019·兰州)如图,矩形ABCD ,∠BAC =60°,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于M ,N 两点,再分别以点M ,N 为圆心,以大于12MN 的长为半径作弧交于点P ,作射线AP 交BC 于点E ,若BE =1,则矩形ABCD 的面积等于________.{答案}3 313. (2019·龙东)一张直角三角形纸片ABC ,∠ACB =90°,AB =10,AC =6,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为________.{答案}3或24714. (2019·济宁)如图,抛物线y =ax 2+c 与直线y =mx +n 交于A (-1,p ),B (3,q )两点,则不等式ax 2+mx +c >n 的解集是________.{答案}x <-3或x >1三、解答题(本大题共10小题,满分78分,解答应写出文字说明、证明过程或演算步骤) 15. (6分)(2019·重庆A)计算:(1)(x +y )2-y (2x +y );{答案}解:(1)(x +y )2-y (2x +y ) =x 2+2xy +y 2-2xy -y 2 =x 2;16. (6分)(2017•淮安)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球. (1)用树状图或列表等方法列出所有可能出现的结果; (2)求两次摸到的球的颜色不同的概率. 【解答】解:(1)如图:;(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为.17.(6分)(2019·云南)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.{答案}解:设甲校师生所乘大巴车的平均速度为x km/h ,则乙校师生所乘大巴车的平均速度为1.5x km/h.根据题意得240x -2701.5x=1,解得x =60,经检验,x =60是原分式方程的解. x =60,1.5x =90.答:甲、乙两校师生所乘大巴车的平均速度分别为60 km/h 和90 km/h.18. (7分)(2019·北部湾)如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 直径,AB =6,AD 平分∠BAC ,交BC 于点E ,交⊙O 于点D ,连接BD .(1)求证:∠BAD =∠CBD ;(2)若∠AEB =125°,求BD ︵的长.(结果保留π).{答案}解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD , 又∵∠CBD =∠CAD ,∴∠BAD =∠CBD ; (2)∵∠AEB =125°,∴∠AEC =55°. ∵AB 为⊙O 的直径,∴∠ACE =90°, ∴∠CAE =35°,∴∠DAB =35°, 则BD 所对圆心角∠DOB =70°,∴BD 的长为70360×2π×3=76π19.(7分)(2018•宽城区一模)某中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如表(单位:颗):(1)对抽取的30株水稻稻穗谷粒数进行统计分析,得到不完整的统计图表,请补全表中空格,并完善直方图:(2)该试验田中共有有3000株水稻,据此估计,其中稻穗谷粒数不小于205颗的水稻的株数.【解答】解:(1)填表如下:如图所示:(2)3000900.即据此估计,稻穗谷粒数不小于205颗的水稻有900株.20.(7分)(2019•长春一模)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.【解答】解:(1)△A1BC1即为所求;(2)△A2B2C2即为所求,C2的坐标为(﹣6,4).21(8分)(2019年新疆T21)某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额y(元)与销售量x(千克)之间的关系如图所示.请根据图象提供的信息完成下列问题:(1)降价前苹果的销售单价是元/千克;(2)求降价后销售金额y(元)与销售量x(千克)之间的函数解析式,并写出自变量的取值范围;(3)该水果店这次销售苹果盈利了多少元?{答案}解:(1)640÷40=16(元/千克);所以降价前苹果的销售单价是16元/千克;(2)16-4=12元/千克y=640+12(x-40)即:y=12x+160令y=760,则12x+160=760解得:x=50所以,降价后y与x的函数关系式为y=12x+160(40<x≤50).(3)760-50×8=260(元)所以,该水果店这次销售盈利260元.22.(9分)(2019·赤峰)【问题】如图①,在Rt△ABC中,∠ACB=90°,AC=BC,过点C 作直线l平行于AB.∠EDF=90°,点D在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图②,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D移动到使点P 与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图③,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;【拓展引申】(3)如图④,在(1)的条件下,M是AB边上任意一点(不含端点A,B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q.这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.{答案}解:(1)证明:∵CD∥AB,∴∠DCB=∠ABC=45°,∴△BCD是等腰直角三角形,∴DP=DB.(2)∵CD∥AB,∴∠DCG=∠ABC=45°,则△CDG是等腰直角三角形,∴DC=DG,∠CGD=45°.∴∠PCD=∠PCB+∠DCG=135°,∠BGD=180°-∠DGC=135°,∴∠PCD =∠BGD .又∵∠CDG -∠PDG =∠PDB -∠PDG , ∴∠PDC =∠BDG .在△PCD 和△BGD 中,⎩⎪⎨⎪⎧∠PCD =∠BGD ,DC =DG ,∠PDC =∠BDG ,∴△PCD ≌△BGD (ASA),∴DP =DB .(3)2【解析】如答图,过点Q 作QG ⊥BM ,垂足为G ,则△BGQ 是等腰直角三角形.设BQ =y ,BM =x ,则QG =BG =22y ,AM =BN =42-x ,MG =x -22y . ∵CD ∥AB ,BD ⊥CD , ∴BD ⊥AB ,∴QG ∥BD , ∴GQ BN =MGMB ,即22y 42-x =x -22y x , 化简,得y =-14x 2+2x ,将该函数配方,得y =-14(x -22)2+2.又∵x 的取值范围为0<x <42,故当x =22时,y 有最大值,最大值为2,故BQ 的最大值为2.23.(10分)(2018•宽城区一模)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8.动点P 从点A 出发,沿AC ﹣CB 以秒5个单位的速度向终点B 运动,当点P 不与点A 、B 重合时,过点P 作PQ ⊥AB 于点Q ,将△APQ 绕点P 逆时针旋转90°得到△A 'PQ ′,设点P 的运动时间为t 秒.(1)求线段PQ 的长.(用含t 的代数式表示) (2)当点Q ′落在边BC 上时,求t 的值.(3)当点P 在边AC 上运动时,设线段A 'Q ′落在△ABC 内部的线段长为d (d >0),求d 与t 之间的函数关系式.(4)在点P 的整个运动过程中,当△A 'PQ ′与△ABC 重叠部分图形是三角形时,直接写出t的取值范围.【解答】解:(1)如图1中,当0<t时,在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB10,∵∠A=∠A,∠AQP=∠C=90°,∴△AQP∽△ACB,∴,∴,∴AQ=3t,PQ=4t.如图1﹣1中,当<t<时,PQ=PB•sin B(14﹣5t)=﹣3t.<.综上所述,PQ<<(2)如图2中,当点Q′在BC上时,∵PQ′∥AB,∴,∴,∴t.∴当点Q′落在边BC上时,t的值为s.(3)由如图1、2可知:当0<t时,d=3t.如图2﹣1中,当<t时,设AQ′交BC于H,作HK⊥P A′于K.∵四边形PCHK是矩形,∴PC=KH=6﹣5t,sin A′,∴d=HA′(6﹣5t)t.<综上所述,d.<(4)由(2)可知:当0<t时,重叠部分图形是三角形如图3中,当点A′落在AB上时,易证PQ=AQ.可得: (14﹣5t )=10 (14﹣5t ), 解得t ,观察图象可知,当 <t 时,重叠部分是三角形. 综上所述,当0<t 或 <t时,重叠部分是三角形. 24. (12分)(2019·新疆)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过点A (-1,0),B (4,0),C (0,4)三点.(1)求抛物线的解析式及顶点D 的坐标;(2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.{答案}解:(1)将A (-1,0),B (4,0),C (0,4)三点坐标代入抛物线y =ax 2+bx +c ,得⎩⎪⎨⎪⎧a -b +c =0,16a +4b +c =0,c =4,解得⎩⎪⎨⎪⎧a =-1,b =3,c =4.所以,抛物线的解析式为y =-x 2+3x +4.化为顶点式为y =-⎝⎛⎭⎫x -322+254, 所以顶点D 的坐标⎝⎛⎭⎫32,254.(2)∵254-154=52, ∴D ′⎝⎛⎭⎫32-h ,52.设直线AC 解析式为:y =kx +4,则-k +4=0,解得k =4.∴直线AC 的解析式为y =4x +4.把y =52代入,得4x +4=52,解得x =-38. 要使平移后点D ′在△ABC 内,则32-h >-38,解得h <158. 所以h 的取值范围为0<h <158. (3)∵OB =OC =4,∴∠OBC =∠OCB =45°.∵PQ ∥OC ,∴∠CPQ =∠OCB =∠OBC =45°,所以,要使△PQC 与△ABC 相似,只需两组对应边成比例即可. 由B (4,0),C (0,4)可得直线BC :y =-x +4,设P (m ,-m +4),则Q (m ,-m 2+3m +4),PQ =(-m 2+3m +4)-(-m +4)=-m 2+4m ,S △PCQ =12m (-m 2+4m )=12m 2(4-m ). 如答图,过点P 作PM ⊥y 轴,则PM =CM =m ,∴PC =2m ,AB =4-(-1)=5,BC =4 2.①若△CPQ ∽ABC ,则有CP AB =PQ BC, 即2m 5=-m 2+4m 42, 解得m 1=125,m 2=0(舍去). 此时S △PCQ =12×⎝⎛⎭⎫1252×⎝⎛⎭⎫4-125=576125. ②若△CPQ ∽CBA ,则有CP BC =PQ AB , 即2m 42=-m 2+4m 5,解得m 1=114,m 2=0(舍去). 此时S △PCQ =12×⎝⎛⎭⎫1142×⎝⎛⎭⎫4-114=605128. 所以,△PQC 的面积为576125或605128.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年吉林省长春市二道区中考数学一模试卷
一、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)互为相反数的两个数的和为()
A.0B.﹣1C.1D.2
2.(3分)国产电影《流浪地球》深受观众喜爱,截止到2019年4月15日,该电影票房已达到46.86亿元,46.86亿用科学记数法表示为()
A.0.4686×1010B.46.86×108
C.4.686×108D.4.686×109
3.(3分)某物体的三视图如图所示,则该物体的形状是()
A.正方体B.长方体C.圆柱体D.球体
4.(3分)点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B.
C.D.
5.(3分)若k>4,则关于x的一元二次方程x2+4x+k=0的根的情况是()
A.没有实数根B.有两个相等的实数根
C.有两个不相等的实数根D.无法判断
6.(3分)小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为∠α,已知tanα=,则点D到地面的距离CD是()
A.2.7米B.3.0米C.3.2米D.3.4米
7.(3分)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.
以下是甲、乙两同学的作业:
甲:
1.以点C为圆心,AB长为半径画弧;
2.以点A为圆心,BC长为半径画弧;
3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).
乙:
1.连接AC,作线段AC的垂直平分线,交AC于点M;
2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()
A.两人都对B.两人都不对
C.甲对,乙不对D.甲不对,乙对
8.(3分)数学课上,老师提出一个问题:如图①,在平面直角坐标系中,点A的坐标为(0,2),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使∠BAC=90°,点C在第一象限,设点B的横坐标为x,。