电磁兼容标准和测量

合集下载

电子产品电磁兼容性测试标准

电子产品电磁兼容性测试标准

电子产品电磁兼容性测试标准引言:随着科技的进步和人们对生活质量的提高,电子产品在人们的日常生活中扮演着越来越重要的角色。

然而,电子产品的频繁使用也带来了一些问题,比如电磁干扰。

为了确保电子产品的正常运行并保障用户的安全,制定了电磁兼容性测试标准。

本文将对电子产品电磁兼容性测试标准进行全面而深入的介绍。

一、产品分类与测试标准在电磁兼容性测试中,电子产品被分为不同的分类,每个分类有相应的测试标准。

这些测试标准主要包括以下几个方面:1. 发射性能测试这一测试标准旨在测量电子产品产生的电磁辐射是否在合理范围内。

主要包括电磁能量测量、频谱分析和辐射抑制等指标。

比如,对于手机等无线通信设备,需要对其发射的无线电频率进行测试,确保其发射功率在规定范围内。

2. 抗扰度测试抗扰度测试主要针对电子产品在电磁环境中的抵抗能力。

通过模拟不同的干扰源,比如电源脉冲、静电放电等,测试电子产品的抗干扰能力。

在测试中,还需要对电子产品的传导抗扰度和辐射抗扰度进行分析。

3. 地址性能测试地址性能测试主要是评估电子产品在电磁环境中的地址能力,也就是产品对外界电磁干扰的敏感程度。

通过模拟不同的场景,比如电源脉冲、雷电等,测试电子产品的地址性能,以确保产品能够正常工作并保护用户的安全。

二、测试方法和过程电子产品电磁兼容性测试的主要内容是测试方法和过程。

测试方法是指在测试中采用的技术手段和工作步骤,而测试过程是指在测试中要执行的具体操作。

1. 测试方法在电磁兼容性测试中,主要采用以下几种测试方法:(1)频谱扫描法:通过对电子产品发射的频率进行扫描,测量其功率谱分布,判断其是否在规定的频率范围内。

(2)传导扫描法:通过在电子产品周围的传导媒介上扫描电磁场,测量电磁场强度,判断是否有过高的干扰。

(3)辐射扫描法:通过在电子产品周围的空间中扫描电磁场,测量电磁场强度,判断是否有过高的辐射。

2. 测试过程在进行电磁兼容性测试时,需要按照以下步骤进行:(1)准备测试设备和测试样品,并进行相关的校准。

emc电磁兼容2级测试标准

emc电磁兼容2级测试标准

EMC电磁兼容2级测试标准是一个重要的规范,它规定了电磁兼容性测试的严格要求和标准。

以下是一个关于EMC电磁兼容2级测试标准的800字说明:一、测试范围EMC电磁兼容2级测试标准适用于所有在电子设备中使用的材料和组件,包括微处理器、半导体器件、电源模块、电路板等。

这些设备必须符合EMC标准,以确保它们在各种环境下都能正常工作,并且不会对周围环境造成干扰。

二、测试项目1. 辐射骚扰测试:测试设备在向外发射电磁辐射时,其产生的骚扰是否符合标准。

2. 传导骚扰测试:测试设备在向外部电源线传输电磁骚扰时,其产生的骚扰是否符合标准。

3. 谐波电流辐射测试:测试设备在谐波电流辐射方面是否符合标准。

4. 静电抗扰电压测试:测试设备在受到静电电压干扰时,其设备能否正常工作。

三、测试方法和要求在测试过程中,需要严格按照测试方法和要求进行操作。

对于不同的测试项目,需要使用不同的测试仪器和方法。

例如,对于辐射骚扰测试,需要使用辐射骚扰测试仪进行测量,并且需要保证被测设备的周围环境符合标准要求。

对于静电抗扰电压测试,需要将被测设备放在一个静电屏蔽室中,并且需要保证室内的湿度和电压符合标准要求。

四、测试结果判定根据测试结果,如果被测设备符合EMC电磁兼容2级测试标准,则可以认为该设备是合格的。

如果被测设备不符合标准,则需要进行相应的整改和调试,直到符合标准为止。

五、实际应用EMC电磁兼容2级测试标准在实际应用中非常重要。

许多电子设备制造商都需要通过EMC 认证才能进入市场销售。

因此,EMC电磁兼容2级测试标准是电子设备制造商必须遵守的重要规范之一。

此外,EMC电磁兼容2级测试标准也是保证电子设备正常运行的重要保障之一。

只有通过严格的EMC测试,才能确保电子设备的性能和可靠性,并降低因电磁干扰而导致的问题和风险。

总之,EMC电磁兼容2级测试标准是保证电子设备正常运行的重要保障之一,需要严格遵守测试方法和要求,确保设备符合标准要求。

电磁兼容试验和测量技术

电磁兼容试验和测量技术

电磁兼容试验和测量技术电磁兼容试验和测量技术是电磁兼容性领域中不可或缺的重要方面,它对于保障电子设备的正常运行以及维护通信系统的稳定性发挥着关键作用。

电磁兼容试验和测量技术可具备以下几个方面:1. 电磁兼容试验技术电磁兼容试验技术是指对电子设备进行电磁兼容性试验,以评估其在电磁环境下的工作能力。

其中包括:(1) 辐射发射试验:通过外部电磁波源在电磁环境下对待测设备的辐射发射进行测试。

(2) 抗干扰试验:是针对设备在电磁环境中承受外界电磁影响而采取的试验措施。

(3) 静电放电试验:在模拟静电放电干扰环境下,对设备进行静电放电测试,以模拟实际工作环境。

2. 电磁兼容测量技术电磁兼容测量技术是指测量电磁环境下设备的电磁参数,以验证其符合电磁兼容性要求,包括:(1) 辐射场测量:是对电子设备周围辐射场进行的测量,并对其辐射程度进行分析。

(2) 反射场测量:是对电子设备所反射出来的信号进行的测量,可通过调整反射屏幕的结构改变设备的反射特性。

(3) 传导场测量:是对电子设备周围传导场强度的测量,以确定其对设备的影响。

3. 电磁兼容性评估电磁兼容性评估是根据电磁兼容性试验和测量的结果来对设备进行评估,以确定其是否符合要求,包括:(1) 辐射发射评估:通过对设备的辐射发射测试,评估设备对周围环境的辐射干扰程度,以确定是否满足相关标准和要求。

(2) 抗干扰评估:通过对设备的抗干扰试验和测量,评估设备的抗干扰能力,以确保其能够在恶劣环境下正常工作。

(3) 辐射耐受性评估:根据设备在电磁环境中的工作特性,对其所能接受的辐射程度进行评估,以确保设备能够在不同强度的辐射环境下均能正常工作。

综上所述,电磁兼容试验和测量技术是保障电子设备正常工作和维护通信系统稳定性的关键技术之一。

在实际应用中,需要综合运用多种方法和技术手段,确保设备的电磁兼容性能得到充分保证。

电力设备的电磁兼容性测试

电力设备的电磁兼容性测试

电力设备的电磁兼容性测试电力设备的电磁兼容性测试是为了评估设备对于电磁干扰的抵抗能力以及其自身产生的电磁干扰水平。

这项测试能够保证电力设备在各种工作环境中能够正常运行,并且不对周围的其他设备产生干扰。

本文将详细介绍电力设备电磁兼容性测试的内容和常见的测试方法。

一、电磁兼容性测试的定义和意义电磁兼容性(Electromagnetic Compatibility,简称EMC)是指设备在电磁环境中,能够以设计时的指标和要求的功能正常运行,同时不对其他设备造成不可接受的干扰的能力。

电磁兼容性测试旨在评估设备是否符合EMC的要求。

电力设备的电磁兼容性测试具有重要的意义。

首先,合格的电力设备能够在电网的各个环节中发挥作用并保持可靠运行。

其次,电力设备产生的电磁干扰会对周围的其他设备、通信系统和无线电频谱造成干扰,可能导致通信故障和安全隐患。

通过进行电磁兼容性测试,可以确保电力设备在工作环境中的稳定性和可靠性。

二、电磁兼容性测试的内容及标准电磁兼容性测试的内容包括电磁干扰抵抗性测试、电磁辐射测试和静电放电测试等。

其中,电磁干扰抵抗性测试主要评估设备对于来自外部电磁干扰的抵抗能力;电磁辐射测试主要评估设备产生的电磁辐射水平;静电放电测试用于评估设备在静电放电环境中的抵抗能力。

根据不同国家和地区的要求,电磁兼容性测试需要符合相关的标准和规范。

国际电工委员会(IEC)的IEC 61000系列标准是电磁兼容性测试中最为广泛使用的标准。

IEEE(电气和电子工程师协会)和CISPR(国际无线电干扰特别委员会)也发布了一系列与电磁兼容性测试相关的标准。

三、电磁兼容性测试的方法和流程电磁兼容性测试的方法可以分为实验室测试和实地测试两种。

实验室测试通常在受控的环境中进行,确保测试的可重复性和可比较性;而实地测试则是在实际工作现场进行,模拟真实的工作环境。

电磁兼容性测试的流程包括以下几个步骤:1.准备测试环境:确定测试设备的布置和测试场地的电磁环境。

我国现行的电磁兼容标准(EMC)

我国现行的电磁兼容标准(EMC)

我国现行的电磁兼容标准(EMC) 标准代号标准名称对应国际/国外标准GB/T4365-1996 电磁兼容术语 IEC50、IEC161(90)GJB76-85 电磁干扰和电磁兼容性名词术语--GB/T6113-1995 无线电干扰和抗扰度测量设备规范--GB 3907-83* 工业无线电干扰基本测量方法--GB 4859-84*电气设备的抗干抗扰度性基本测量方法--GB/T15658-1995 城市无线电噪声测量方法--GB8702-88 电磁辐射防护规定--GB/T13926.1-92工业过程测量和控制装置的电磁兼容性总论--GB/T13926.2-92工业过程测量和控制装置的电磁兼容性静电放电要求--GB/T13926.3-92工业过程测量和控制装置的电磁兼容性辐射电磁场要求--GB/T13926.4-92工业过程测量和控制装置的电磁兼容性电快速瞬变脉冲群要求--GB/T 14431-93无线电业务要求的信号/干扰保护比和最小可用场强--GB4824-1996工业、科学和医疗(ISM)射频设备电磁骚扰特性的测量方法和限值CISPRII(90)GB4343-1995家用和类似用途电动、电热器具、电动工具以及类似电器无线电干扰特性测量方法和允许值CISPR14(93)GB4343.2-1999电磁兼容家用电器、电动工具和类似器具的要求第2 部分:抗扰度-产品类标准CISPR14-2:1997GB/T6113-1995 无线电干扰和抗扰度测量设备规范-- GB/T6113.2-1998 无线电干扰和抗扰度测量方法-- GB/T17618-1998 信息技术设备抗扰度限值和测量方法CISPR24(97)GB/T17619-1998 机动车电子器组件的电磁辐射抗扰性限值和测量方法GB/T17624.1-1998 电磁兼容综述电磁兼容基本术语和定义的应用与解释IEC61000-1-1GB17625.1-1998低压电气及电子设备发出的谐波电流限值(设备每相输入电流<16A)IEC61000-3-2(1995)标准代号标准名称对应国际/国外标准GB17625.2-1999电磁兼容限值对额定电流不大于16A 的设备在低压供电系统中产生的电压波动和闪烁的限制--GB/T17626.1-1998 电磁兼容试验和测量技术抗扰度试验总论IEC61000-4-1(1992)GB/T17626.2-1998 电磁兼容试验和测量技术静电放电抗扰度试验IEC61000-4-2(1995)GB/T17626.3-1998 电磁兼容试验和测量技术射频电磁场抗扰度试验IEC61000-4-3(1995)GB/T17626.4-1998 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验IEC61000-4-4(1995)GB/T17626.5-1999 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验--GB/T17626.6-1998 电磁兼容试验和测量技术射频场感应的传导抗扰度IEC61000-4-6(1996)GB/T17626.7-1998电磁兼容试验和测量技术供电系统及所连设备谐波、谐间波的测量和测量仪器导则IEC61000-4-7(1991)GB/T17626.8-1998 电磁兼容试验和测量技术工频磁场抗扰度试验IEC61000-4-8(1993)GB/T17626.9-1998 电磁兼容试验和测量技术脉冲磁场抗扰度试验IEC61000-4-9(1993)GB/T17626.10-1998 电磁兼容试验和测量技术阻屁振荡磁场抗扰度试验IEC61000-4-10(1993)GB/T17626.12-1998 电磁兼容试验和测量技术振荡波抗扰度试验IEC61000-4-12(1995)GJB/Z17-1991 军用装备电磁兼容性管理指南-- GJB/Z25-1991 电子设备和设施的接地、搭接和屏蔽设计指南--GJB/Z54-1994 系统预防电磁能量效应的设计和试验指南--GJB/Z105-1998 电子产品防静电控制手册--GJB1210-1991 接地、搭接和屏蔽设计的实施-- GJB1389-1992 系统电磁兼容性要求--标准代号标准名称对应国际/国外标准GJB2079-1994 无线电系统间干扰的测量方法-- GJB2081-199487~108MHz 频段广播业务和108~137MHz 频段航空业务之间的兼容--GJB2926-1997 电磁兼容性测试试验室认可要求-- GJB3007-1997 防静电工作区技术要求--GJB151A-97军用电子设备和分系统电磁发射和敏感度要求--GJB152A-97军用电子设备和分系统电磁发射和敏感度测量--GB12190-90 高性能屏蔽室屏蔽效能的测量方法--GB6833.1-86* 电子测量仪器电磁兼容性试验规范总则-- GB6833.2-87*电子测量仪器电磁兼容性试验规范磁场敏感度试验--GB6833.3-87*电子测量仪器电磁兼容性试验规范静电放电敏感度试验--GB6833.4-87*电子测量仪器电磁兼容性试验规范电源瞬态敏感度试验--GB6833.5-87*电子测量仪器电磁兼容性试验规范辐射敏感度试验--GB6833.6-87*电子测量仪器电磁兼容性试验规范传导敏感度试验--GB6833.7-87*电子测量仪器电磁兼容性试验规范非工作状态磁场干扰试验--GB6833.8-87*电子测量仪器电磁兼容性试验规范工作状态磁场干扰试验--GB6833.9-87*电子测量仪器电磁兼容性试验规范传导干扰试验--GB6833.10-87*电于测量仪器电磁兼容性试验规范辐射干扰试验--GB7343-87*10kHZ~30MHZ 无源无线电干扰滤波器和抑制元件抑制特性的测量方法--标准代号标准名称对应国际/国外标准GB7434-87*架空明线载波通信系统抗无线电广播和通信干扰的指标--GB7495-87 架空电力线路与调幅广播收音台的防护问距-- GB13613-92 对海中远程无线电导航台站电磁环境要求-- GB13614-92 短波无线电测向台(站)电磁环境要求-- GB13615-92 地球站电磁环境保护要求--GB13616-92 微波接力站电磁环境保护要求--GB13617-92 短波无线电收信台(站)电磁环境要求-- GB13618-92 对空情报雷达站电磁环境防护要求--GB/T13620-92卫星通信地球站与地面微波站之间协调区的确定和干扰计算方法--GB9254-1998 信息技术设备的无线电骚扰限值和测量方法CISPR22(1997)GB17743-1999电气照明和类似设备的无线电干扰特性的限值和测量方法CISPR15(1996)*QJ 1211-870122;V06航天系统地面设施接地要求国内QJ 1213-870122;V06电磁屏蔽室屏蔽效能的测量方法国内*QJ 1539-880122;V751航天遥测系统的电磁兼容性要求和测量方法国内*QJ 1692-890122;V06航天系统地面设施电磁兼容性要求国内QJ 1693--890122;V06电子元器件防静电要求国内QJ 1760-89用频谱仪测量电磁干扰的方法国内标准代号标准名称对应国际/国外标准*QJ 1874-900122;V06接地、搭接和屏蔽的设计应用国内*QJ 1875-900122;V06静电测试方法国内QJ 1875A-980122;V06静电测试方法国内QJ 1950-900122;V06防静电操作系统技术要求国内QJ 2177-910122;V06防静电安全工作台技术要求国内QJ 2245-920122;V06电子仪器和设备防静电要求国内QJ 2256-920122;V06系统预防电磁能量效应的设计和试验指南国内QJ 2266-92 航天系统电磁兼容性要求国内0122;V06*QJ 2268-920122;V711地(舰)空导弹武器系统抗干扰性能要求国内QJ 2350-920122;V06电磁辐射敏感度的测试方法横电磁波传输室测量国内QJ 2892-970122;V06EMI 衬垫的测量与评价方法国内QJ 3035-980122;V27电子机柜电磁屏蔽要求和测试方法国内标准代号标准名称对应国际/*QJ 1874-900122;V06接地、搭接和屏蔽的设计应用国内*QJ 1875-900122;V06静电测试方法国内QJ 1875A-980122;V06静电测试方法国内QJ 1950-900122;V06防静电操作系统技术要求国内QJ 2177-910122;V06防静电安全工作台技术要求国内QJ 2245-920122;V06电子仪器和设备防静电要求国内QJ 2256-920122;V06系统预防电磁能量效应的设计和试验指南国内QJ 2266-920122;V06航天系统电磁兼容性要求国内*QJ 2268-920122;V711地(舰)空导弹武器系统抗干扰性能要求国内QJ 2350-920122;V06电磁辐射敏感度的测试方法横电磁波传输室测量国内QJ 2892-970122;V06EMI 衬垫的测量与评价方法国内QJ 3035-980122;V27电子机柜电磁屏蔽要求和测试方法国内。

电磁兼容国家标准分类和电磁兼容的通用标准

电磁兼容国家标准分类和电磁兼容的通用标准

电磁兼容国家标准分类和电磁兼容的通用标准(一)参照国际上的标准分类方法,电磁兼容国家标准分为四类,组成了中国的电磁兼容标准体系。

(1)基础标准属于基础标准的有电磁兼容名词术语、电磁环境、电磁兼容测量设备规范和测量方法等。

这类标准的特点是不给出指令性限值,也不给出产品性能的直接判据,但它是编制其他各类标准的基础。

如GB/T 4365--1995《电磁兼容术语》,GB/T 6113 系列标准《无线电骚扰和抗扰度测量设备规范和测量方法》,GB/T17626 系列标准《电磁兼容试验方法和测试技术》等等。

(2)通用标准通用标准是对给定环境中所有产品给出一系列最低的电磁兼容性能要求。

通用标准中的各项试验方法可以在相应的基础标准中找到,通用标准可以成为编制产品族标准和专用产品标准的导则。

通用标准对那些暂时还没有相应标准的产品有极好的参考价值,可用作进行电磁兼容摸底试验。

通用标准讲述住宅、商业、轻工业环境等两种不同环境,考虑到电磁兼容有电磁骚扰发射和抗扰度两个不同方面。

因此通过不同组合,通用标准实际上有四个分标准。

我国的电磁兼容通用标准选自IEC61000-6 系列标准,对应的通用国家标准的系列号为GB/T17799 。

(3)产品族标准产品族标准针对特定的产品类别,规定他们的电磁兼容性能要求及详细测量方法。

产品族标准规定的限值应与通用标准相一致,但不同的产品族产品有它的特殊性,必要时可增加试验项目和提高试验限值。

产品族标准是电磁兼容标准中所占份额最多的标准。

如GB9254-1998《信息技术设备的无线电骚扰限值和测量方法》,GB4343-1995 《家用和类似用途电动、电热器具、电动工具以及类似电器无线电干扰特性测量方法和允许值》等。

(4)专用产品标准专用产品标准通常不单独形成电磁兼容标准,而以专门条款包含在产品通用技术条件中,专用产品标准的电磁兼容要求与产品族标准相一致(在考虑到产品的特殊性后,对其电磁兼容性要求也可作某些更改),但产品标准对电磁兼容的要求更加明确,还要增加产品性能和价格的判据。

电磁兼容测试标准

电磁兼容测试标准

声明:此为A级产品,在生活环境中,该产品可能会造成无线电干扰。在 这种情况下,可能需要用户对其干扰采取切实可行的措施。 电磁兼容测试标准
2016/4/20.3.1.1 试验时要求的一般环境条件为:

温度:15~35℃
湿度:45~75%RH
气压:86~106kPa
A级ITE限额值 频率 MHz 准峰值dBμV 平均值dBμV 频率 MHz B级ITE限额值 准峰值dBμV 平均值dBμV
0.15~0.50
0.50~30
97~87
87
84~74
74
0.15~0.50
0.50~30
84~74
74
74~64
64
注:1、在0.15~0.50MHz频率范围内,限值随频率的对数呈线性减少; 2、对B级设备,对于该频段内具备有效谱密度的快速业务目前暂定允许在 6MHz~30MHz频段内放宽限值10dB,但仅限于通过电缆由有用信号转换成的 共模骚扰。
2016/4/20
电磁兼容测试标准
2/273
1.GB9254-1998 idt:CISPR22:1997 (EN55022)
《信息技术设备的无线电骚扰限值和测量方法》 1.1 适用范围 适用于30MHz~1GHz声音和电视信号的电缆分配系统的设计、验收时对系 统抗扰度的评价。 1.1.1 适用产品 适用于所有信息技术设备的相应无线电骚扰性能测试。 信息技术设备是满足条件a)和条件b)的任何设备: a)能对数据和电信消息进行录入、存储、显示、检索、传递、处理、交 换或控制(或几种功能的组合),该设备可以配置一个或多个通常用于 信息传递的终端端口; b)额定电压不超过600V。 信息技术设备可包括数据处理设备、办公设备、电子商用设备、电信设备 等。 1.1.2 适用频率范围 9kHz~400GHz,目前只规定150kHz~1000MHz内的限值和测量方法。

电磁兼容 试验和测量技术 静电放电抗扰度试验

电磁兼容 试验和测量技术 静电放电抗扰度试验

电磁兼容(Electromagnetic Compatibility,EMC)是指电子设备在其工作环境中,既不会对外部环境产生有害的电磁干扰,也能抵抗来自外部环境的电磁干扰的能力。

静电放电抗扰度试验是评估电子设备抗静电放电干扰能力的一种重要测试。

静电放电是指人体或其他物体在与电子设备接触或靠近时,由于静电荷积累而发生放电现象,可能导致设备故障或数据损坏。

因此,进行静电放电抗扰度试验可以评估设备在面对静电放电时的表现和稳定性。

静电放电抗扰度试验通常包括以下步骤:
1. 试验设备准备:确保测试设备和环境符合相关标准要求,包括静电发生器、接地装置等。

2. 设备连接:将待测试设备与静电发生器和接地装置连接好,确保连接正确可靠。

3. 放电过程:在规定的条件下,通过控制静电发生器向设备施加静电放电,模拟真实环境中可能出现的静电放电情况。

4. 测量和评估:测试过程中记录设备的反应、性能以及任何异常情
况,评估设备的抗静电放电能力是否符合标准要求。

5. 结果分析:根据测试结果分析设备的抗静电放电性能,确定是否需要改进设计或采取其他措施提高设备的抗扰度。

通过静电放电抗扰度试验,可以帮助电子设备制造商评估设备在静电环境下的稳定性和可靠性,确保设备在实际使用中不受静电放电干扰的影响,提高设备的电磁兼容性。

IEC 61000-4-5 电磁兼容测试标准

IEC 61000-4-5 电磁兼容测试标准

前言本标准等同采用第部分试验和测量技术第分部分浪涌本标准是系列国家标准的之一电磁兼容试验和测量技术抗扰度试验总论电磁兼容试验和测量技术静电放电抗扰度试验电磁兼容试验和测量技术射频电磁场辐射抗扰度试验电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验电磁兼容试验和测量技术电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度电磁兼容试验和测量技术测量仪器导则电磁兼容试验和测量技术工频磁场抗扰度试验电磁兼容试验和测量技术脉冲磁场抗扰度试验电磁兼容试验和测量技术阻尼振荡磁场抗扰度试验电磁兼容试验和测量技术验电磁兼容试验和测量技术振荡波抗扰度试验本标准的附录本标准的附录本标准由中华人民共和国电子工业部提本标准由全国电磁兼容标准化联合工本标准起草单位电子工业部标准化研究工业部广州电器科学研究力工业部武汉高压研究本标准主要起草前言国际电工各个国家电工技术国家委员会的世界性的标准化其宗旨是在电气和电子技术领域内促进所有与标准化问题有关的国活动之还出版国际其制定工作由各技术所讨论内容感兴趣的国家委员会都可以参加这项工有联络的国府和非政府机构也参与制定工与国际标准个组织间的协议密切有关技术问题上的正式决定或协议是由技术委员会作出委员会代表了对这一问题有特别兴趣的所有国家可能地表达出对所涉及的问题在国际上的一这些决定或协议报告或指南的形式推荐形式供国际使在此意义上为各个国家委员会所为促进国际上国家委员会同意尽国际标准为它们的国家标准或地区在国家标准或地区标准中应明确指出与相应标准之间的任何不国际第技术业过程测量和控分统本标准第部分的第具有基础电磁兼容出版物的地本标准的文本基于下列文表决报告关于投票批准这个标准的全部资料可以在上表列出的表决报告中是本标准的一个组成仅作为参引言本标准是构成如下第一部分综述综合本定语第二部分环境环境的描述环境的分类兼容性电平第三部分限值发射限值抗扰度委员会的责任第四部分试验和测量技术测量技术试验技术第五部分安装和减缓导则安装导则减缓方法和装置第九部分其他每一部分被进一步分成标准或技术报告本分部分是一个国际出了与冲击流有关的抗扰度要求和试验程中华人民共和国国家标准电磁兼容试验和测量技术浪涌抗扰度试验范围本标准规定了设备对由开关和雷电瞬变过电压引起的单极性要方法和推荐的试验等级定了几个与不同环境和安装状态有关的试验等出的要求适用于电气本标准的目的是建立一个共同的基准以评定设备在遭受来自电力线和互连线上高能量骚扰时的性本标准规定了试验等级试验设备试验配置试验程在试验室试验的任务就是要找出在规定的工作状态下工作由开关或雷电作用所产生的有一定危害电平反本标准不对绝缘物耐高压的能力进行本标准不考虑直击本标准不对特殊设备或系统的试验作出规目的是为有关专业标准化技术委员会提供一个一般性的基本依专业标准化技术用户和设备制造商设备选择合适的试验项目和试验等引用标准下列标准所包含的条过在本标准中引用而构成为本标准的条本标准出版版本均为有所有标准都会用本标准的各方应探讨使用下列标准最新版本的可能电磁兼容术高电压试验技术第一部分一般试验要脉冲技术和设备第一部分脉冲术语和定义概述开关瞬态系统开关瞬态与以下内容有关主电源系统切换如电容器组的切国家质量技术监督局批准实施配电系统内在仪器附近的轻微开关动作或者负荷变与开关装置有关的谐振电各种系统如对设备组接地系统的短路和电雷电瞬态雷电产生主要原理如下直接雷击于外部电注入的大电流流过接地电阻或外部电路阻抗而产生在建筑物导体上产生感应电压和电流的间接雷之间或云层中的雷击或击于附近物体的雷种雷击产生电磁场附近直接对地放电的雷电入地电流耦合到设备组接地系统的公共接地当保护装置动作流可能发生迅速变可能耦合到内部电瞬态的模拟信号发生器的特性应尽可能地模拟上述如果干扰源与受试设备的端口在同一线路如在电源网络接耦发生器在受试设备的端口能够模拟一个低阻抗如果干扰源与受试设备的端口不在同一线路接耦发生器能够模拟一个高阻抗定义除非另有说述定义以及中的定义适用于平衡线一对被对称激励的导差模到共模的转换损失小于耦合网络将能量从一个电路传送到另一个电路的电去耦网络用于防止施加到上冲击其他不作试验的或系统的电持续时间规定波形或特征存在或持续受波前时间冲击前时间是一个虚拟参数定义为值和值两点之间所对应时间间的图冲击流的波前时间是一个虚拟参数定义为值和值两点之间所对应时间间的图抗扰度或系统面临电磁骚扰不降低运行性能的能见电气设备组用来实现某种特殊目的或多种目的并有协调特性的一组有关电气互连线包括入输出线路通信线平衡第一级保护防止大部分能量超越指定界面传播的上升时间脉冲瞬时值首次从给定下限值上升到给定上限值所经历见注除特别指明外下限值和上限值分别定为脉冲幅值的第二级保护抑制从第一级保护让通的能量的它可以是一个特可以是固有的特注是指有或几乎没有发生变化地通过冲击沿线路传送的电或功率的瞬态其特性是先快速上升后缓慢注以下简称系统通过执行规定的功能来达到特定目相互依赖部分组成的集注系统被认为用一假想的界面将其与环境和其他外部系统分离该界面切断了它们之间的联通过这些联系统受到环境和外部系统的影响或者系统本身对环境和外部系统产生半峰值时间浪涌的半峰值是一个虚拟参定义为虚拟起点到半峰值时的时间间瞬态在两相邻稳态之间变化的物理量或物理变化时间小于所关注的时间尺见试验等级优先选择的试验等级范围如表表试验等级等级开路试验电压特定注为开放等级可在产品要求中规定试验等级应根据安装情况装类别在附录的中给较低的试验等级也应得到对不同界面的试验等级的选择见附录试验设备组合发生图为组合波信号发生器的电路原理选择不同元的值以使信号发生器产生路状态的电流路时信号发生器的等效输出阻抗为为方便起义浪涌信号发生器的等效输出阻抗为开路输出电压峰值与短路输出电流峰值之能产生开路电压波短路电流波形的信号发生器被称为组合波浪涌信号发生混合信号发生注电压和电流波形是输入阻抗的函数当浪涌加至设备时由于安装的保护装置的适当没有保护装置或保护装置不动作而导致飞弧或击穿的输入阻抗可能发生变因此当负载瞬间变化时从同一试验信号发生器必须能输出负载瞬间变化所需的电压波和电流本标准中描述的组合波信号发生器与其他标准中规定的混合信号发生器相组合波信号发生器的特征与性能开路输出电压至少在范围内能输出浪涌电压波形见图和表开路输出电压容短路输出电流至少在范围内能输浪涌电流波形见图和表短路输出电流容极性相位偏移随交流电源相角在重复率每分钟至少一应该使用输出端浮地的信号发生对于专门的试验条第章和附录加或增加要求的等效源这时和耦合去耦网络相连的开路电压波和短路电流波不再分别是和合波形信号发生器特性的校验为了比较不同信号发生器的试验结校验信号发生器的特按下述程序测量信号发生器的最基本特信号发生器的输出应与有足够带宽和电压量程的测量系统连便监视波形的特信号发生器的特性应在充电电压相同时于开载大于或等于载小于或等于校注与开路电压对应的短路电流最小为路电压对应的短路电流最小为符合的试验信号发生器图为脉冲信号发生器的电路原理选择不同元使信号发生器产生注组织的简称其中文名称国际电报和电话咨询信号发生器的特征与性能开路输出电压至少在范围内能输出浪涌电压波形见图和表开路输出电压容短路输出电流至少在范围内能输浪涌电流波形见表短路输出电流容极性重复率每分钟至少一应该使用输出端浮地的信号发生信号发生器特性的校验信号发生器的校验状态同除外注与开路电压对应的短路电流最小为路电压对应的短路电流最小为耦耦网络耦合耦网络不应明显影响信号发生器的参数例如开路路电应在规定的容差范围例外用气体放电管耦注电感损耗材料会减轻耦合耦网络应满足以下要用于交直流电源线的耦去耦网适用于组合波信号发生电压和电流的波前时间和半峰值时间应分别在开路情况下和短路情况下校信号发生器的输出或其耦合网络应与有足够带宽和电压量程的测量系统连接以便监视开路电压波用电流互感器测量短路电流波将耦合网络输出端子之间的短路连线穿过电流互感器的穿孔即在耦耦网络的输出端有波形参数和信号发生器的其他性能参数应与中规定的相同就如同在信号发生器本身输出的一注当信号发生器阻抗根据试验配置要求从增加到或时耦合网络输出的试验脉冲持续时间可能会明显变用于电源线的电容耦合在接入电源去耦网络以通过电容耦合将试验电压按线线或线地方式加单相电源系统试验配置如图和图电源系统试验配置如图和图耦合耦网络的额定参耦合电容或试验电源去耦当没有与去耦网络连接时在未加浪涌线路上的残余浪涌电压不应超过最大可施加电压的网络没有与去耦网络连接去耦网络电源输入端上的残余浪涌电压不应超过所施加试验电压的电源电压峰值的两者中取较上述单接地特性对三相线和保护样有用于电源线的电感耦合用于电源线的电感耦合正在考虑用于互连线的耦耦网络应根据线路功能和运行状态来选择耦合的方产品技术要求中应对此作出规耦合方法的示例如下电容耦合用气体放电管耦对端口试验时以下各条中规定的不同配置可能给不出可比较的结在产品技术要求和必须选择最合适的注图中的为电感的电阻部分电阻值的大小取决于传输信号所允许的衰减程用于互连线的电容耦合对非屏蔽不平衡线路当电容耦合对该线上的通信功能没有影响用此方其应用如图线线耦合和线耦电容耦去耦网络的额定参数耦合电容去耦电感有补偿电流注应考虑信号电流容量它取决于受试用气体放电管耦合对非屏蔽平衡用气体放电管耦合如图本方法也可用在因功能问题而不能使用电容耦合的场该功能问题是由将电容接至而引图就多芯电缆中的感应电压而合网络还具有调节浪涌电流分布的任因合网络中的电阻芯电示上信号发生值约为应超过用气体放电管进行的耦合可以通过并联电容来示例当线路传输信号频率在频率较高时不使耦合耦网络的额定参数为耦合电阻气体放电去耦电感型磁芯电流注在某些情况下由于功能原因需使用启动电压较高的气体放电管当运行状态不受太大影响时可使用气体放电管以外的其他元件其他耦合方法其他耦合方法正在考虑试验配置试验设备下述设备是试验配置的一部分受辅助电定的类型和长耦合或气体放电信号发生波信号发生信号发生器去耦网和附加的电源试验的配置浪涌经电容耦合网络加电源端图和图为了避免对由同一电源供电的非受试设备产生不利要使用去耦网便为浪涌波提供足够的去耦得能在受试线路上形成规定的波如果没有其他规和耦合耦网络之间的电源线长度为更为模拟典型耦合某些情况必须使用附加的规定说明见注某些美对交流电源要求按图和图配置但使用阻抗进行试验尽管这是一个更严格的试验一般要求是用非屏蔽不对称工作互连线试验的配置一般而图用电容向线路施加耦网络对受试线路的规定功能状态不应产生影图给出了另一个试验气体放电管耦具有较高信号传输频率的线路使根据传输频率下的容性负载来选择耦合方如果没有其他规和耦合耦网络之间的互连线长度为更非屏蔽对称工作互连线信线试验的对于平衡互信常不能使用电容耦合方此时耦合是由气体放电管来完成推荐标准不能对气体放电管触发气体放电管约为级作规定二级保护没有气体放电管的情况注应考虑两种试验布置对仅在有第二级保护的设备级抗扰度试验配置用较低的试验等级如或对有第一级保护的系统级抗扰度试验配置用较高的试验等级如或如没有其他规和耦耦网络之间的互连线长度为更屏蔽线试验的配置对于屏蔽合去耦网络不再适应根据图将浪涌施加属外线的屏蔽层对于屏蔽线一端接地的图进为了对安全地线去使用安全隔离正常情况使用规定的最长屏蔽电根据浪涌的频谱特使用长的规定屏蔽电考虑到电缆长度的原该电缆按非电感性的结构给屏蔽线施加浪涌的规则两端接地的屏蔽应按图给屏蔽层施加一端接地的屏蔽按图进行试验为电缆对地电容电容量的大小可按计如没有其他规为其典型在屏蔽层上施加的试验电平线地值施加电位差的试验配置如必须施加电位差来模拟在系统中可能出现对使用屏蔽线的系统可按图进行对非屏蔽线或屏蔽线仅在一端接地的系统按图进行其他试验配置如果试验配置中规定的某一种耦合方法由于功能原因不能使在专门的产品标准中应规定可替代的方合于特殊试验条件试验时的工作状态和安装情况应与产品技术要求一两个方面试验布试验程试验程序实验室条件为了使环境参数对试验结果的影响减至最在和规定的气候和电磁环境基准条件下进气候条件气候条件应满足以下要求环境温度相对湿度大气压注在产品技术条件中可以规定其他数应在预期的气候条件下工在试验报告中应记录温度和相对湿电磁环境实验室的电磁环境不应影响试验结在实验室内施加浪涌信号发生器的特性和性能应满足和的规定信号发生器的校验应按和进试验应根据试验方案进方案中应规定以下内容并参见附录信号发生器和其他使试验等电压电信号发生器的源浪涌的极性信号发生器的触发试验次数在选定点上至少加五次正极性和五次负极重复率最快为每分钟一注大多数常用的保护装置的平均功率容量较低尽管它们的峰值功率或峰值能量容量能承受较大的电因此最大重复次浪涌之间的时间和恢复决于内部的受试的输入端和输出注在有几个相同线路的情况下只需选择一定数量的线路进行典型的典型工作向线路施加浪涌的顺交流电源时的相角实际安装如交流中线直流模拟实际接地中给出了关于试验方式的如果没有其他规在交流和零值和峰值的电压相位处同步加应按线线和线地方式施加进行线地没有其他规必须依次地加到每根线和地注当使用组合波信号发生器对两根或多根信地进行试验时试验脉冲的持续时间可能会减少试验程序还应考虑受试设备的非线性电流电压特因只能由低等级逐步增加到产品标准或试验方案中规定的试验等所有较低等选择的试验等应满足要第二级保护发生器的输出电压应增加到第一级保护的最低电压击穿通如果没有实际工作信号源提供可以对其进级决不可超出产品技术要试验应按试验方案进为找到设备工作周期内的所有关键施加足够次数的极性于验收使用以前未曾加过则应替试验结果和试验报告本章给出了与本标准有关的试验结果的评定和试验报告的指导性原由于受试设备和系统种类繁异很得确定浪涌对设备和系统的影响的任务变得比较困除非有关专业标准化技术委员会或产品技术规范给出了不同的技术要求否则试验结果应按受试设备的工作情况和技术规范进行如下分在技术规范内性能正常功能或性能暂时降低或丧失但能自行恢复功能或性能暂时降低或丧操作者干预或系统复因软件损坏或数据丢失而造成不能自行恢复的功能降低或丧设备不应由于应用本标准规定的试验而出现危险或不安全的对于验收在专门的产品标准中规定试验程序和对试验结果的说一般地如果设备在整个试验期间表现出其抗扰度并且在试验结束以后满足技术规范中的功能要表明试验合技术规范可以确定一些产生了影响但被认为是不重要的因而是可以接受的效确认设备在试验结束后能自动恢复其工作能力应记录设备性能完全丧失这些对试验结果的最后评定是有约束力试验报告应包括试验状态和试验结高压充储能持续时间形成电阻阻抗匹配升时间形成电感图组合波信号发生器的电路原理图表波形参数的规定规定根据根据波前时间半峰值时间上升时间持续时间开路电压短路电流注在现行出版物中和波形通常按规定如图和图所示其他的推荐标准按规定波形如表所示本标准两种规定都是有效的但所指的是同一信号发生器波前半峰值时间图开路电压波的波形规波前半峰值时间图短路电流波的波形规高压充储能脉冲持续时间形成匹配上升时间形成用外部匹配电阻时开关合上图脉冲信号发生器的电路原理图第九表波形参数的规定规定根据蓝皮书第九卷根据波前时间半峰值时间上升时间持续时间开路电压短路电流注在现行和出版物中波形通常按规定如图所示其他的推荐标准按规定波形如表所示本标准两种规定都是有效的但所指的是同一信号发生器波前半峰值时间图开路电压波的波形规图交上电容耦合的试验配置示例线线耦图交上电容耦合的试验配置示例线地耦图交电容耦合的试验配置示例线耦开关地置开关置图交电容耦合的试验配置示例耦发生器输出接地开关线地置线置开关置与不在相同的位为图非屏蔽互连线试验配置示线线地耦耦合开关线地置线置开关置与不在相同的位为图非屏蔽不对称工作线路试验配置示例线线地耦气体放电管耦合开关地置线线置根线依次使用信号发生计算例如使用发生计算内部匹配阻抗外部匹配阻抗代于个导等于或大于例如应超过传输信号频率在较高频率时不取决于传输信号所允许的衰图非屏蔽对称工作线路试验配置示线线地耦气体放电管耦合图屏蔽线施加电位配置示耦合图非屏蔽线和仅在一端接地的屏蔽和施加电位配置示耦合标准的附录信号发生器和试验等级的选择试验等级应根据安装情况使用表以及在附录给出的信息和示中类保护良好的电气在一间专用房间类有部分保护的电气类电缆隔离至短走线也隔离良好的电气类电缆平行敷设的电气类互连线按户外电缆沿电源电缆敷设并且这些电缆被作为电子和电气线路的电气类在非人口稠密区电子设备与通信电缆以及架空电力线路连接的电气产品技术要求中规定的特殊其他资料在附录的图中给为了证明系统级取与实际安装情况有关的其他如第一表试验等级的决于安装情况安装类别试验等级电源耦合方式不平衡工作电路线路耦合方式平衡工作电路线路耦合方式耦合方式线线线地线线线地线线线地线线线地距离从到最长有特别的结构并经过专门的布置对以下的互连电缆不做试验仅第二类适用取决于当地电力系统的等级通常带第一级保护进行试验注数据总线数据线短距离总线长距离总线不适用信号发生安装类别的关系如下类第类对电源线端口和短距离信号电路端口对长距离信号电端源阻抗应与各有关试验配置图中标明的一。

电磁兼容试验和测量技术

电磁兼容试验和测量技术

电磁兼容试验和测量技术电磁兼容试验和测量技术是现代电子设备开发和应用中不可或缺的重要环节。

随着电子设备的广泛应用,电磁兼容性问题也日益突出,因此对电磁兼容性进行试验和测量显得尤为重要。

本文将对电磁兼容试验和测量技术进行详细介绍。

一、电磁兼容性概述电磁兼容性是指在特定的电磁环境下,各种电子设备能够在相互之间以及与环境中的其他电子设备之间正常工作,而不产生不可接受的电磁干扰。

在现代社会中,电子设备越来越多,各种设备之间相互干扰的问题也日益突出。

电磁兼容试验和测量技术的目的就是为了确保各种电子设备在不同的电磁环境下能够正常工作,而不会相互干扰。

二、电磁兼容试验技术1. 辐射发射试验:辐射发射试验是指对电子设备所产生的电磁辐射进行测试。

通过在特定的频率范围内对设备进行发射试验,可以评估设备对周围环境的电磁辐射程度。

常用的试验方法包括开路辐射试验和传导辐射试验。

2. 抗干扰能力试验:抗干扰能力试验是指对电子设备在外界电磁干扰下的抗干扰能力进行测试。

通过模拟外界电磁干扰,如电磁波、电磁脉冲等,对设备进行试验,评估设备的抗干扰能力。

常用的试验方法包括抗辐射干扰试验和抗传导干扰试验。

3. 静电放电试验:静电放电试验是指对设备在静电放电干扰下的抗干扰能力进行测试。

通过模拟人体静电放电,对设备进行试验,评估设备的抗静电放电能力。

常用的试验方法包括人体模拟静电放电试验和机器模拟静电放电试验。

三、电磁兼容测量技术1. 辐射发射测量:辐射发射测量是指对电子设备产生的电磁辐射进行测量。

通过使用频谱分析仪、天线等测量设备,对设备在特定频率范围内的辐射进行测量,并评估辐射的强度和频率分布。

2. 抗干扰能力测量:抗干扰能力测量是指对电子设备在外界电磁干扰下的抗干扰能力进行测量。

通过使用信号发生器、功率放大器等测量设备,模拟外界电磁干扰,对设备的工作状态和性能进行测量,并评估设备的抗干扰能力。

3. 静电放电测量:静电放电测量是指对设备在静电放电干扰下的抗干扰能力进行测量。

en50262标准

en50262标准

en50262标准EN50262标准是欧洲电信领域关于电磁兼容性(EMC)的最新标准,旨在为电信网络中的电磁兼容性提供统一的评估方法。

该标准适用于各种电信设备和系统,包括蜂窝网络、卫星通信、光纤网络等。

本篇文章将详细介绍EN50262标准的背景、内容、测试方法以及实施建议。

一、标准背景随着电信技术的不断发展,电磁兼容性问题日益突出。

为了解决这一问题,欧洲电信领域推出了一系列EMC标准,其中包括EN50262标准。

该标准旨在提供一个统一的评估方法,以便电信设备制造商和运营商能够更好地理解和控制电磁干扰(EMI)。

EN50262标准的实施,有助于提高电信网络的稳定性和可靠性,保障用户通信的质量。

二、标准内容EN50262标准包括以下主要内容:1. 测试标准:规定了电磁兼容测试的各项指标和要求,包括电场强度、磁场强度、谐波失真等。

2. 安全规定:对电信设备中可能产生电磁干扰的因素进行限制,以确保设备在正常使用过程中的安全性。

3. 发射标准:规定了电信设备的辐射发射要求,以确保设备在正常工作状态下不会对其他设备造成干扰。

4. 测试方法和程序:明确了如何进行电磁兼容测试,以及如何评估测试结果。

三、测试方法EN50262标准的测试方法包括以下几个方面:1. 测量场地和设备:测试场地应符合相关标准要求,测量设备应进行校准和验证。

2. 电磁干扰测试:包括电场强度、磁场强度、谐波失真等指标的测量,以确定设备是否产生电磁干扰。

3. 发射测试:对电信设备的辐射发射进行测量,以确定设备是否符合相关标准要求。

4. 接收机灵敏度测试:测试电信设备的接收机灵敏度,以确保其在不同环境下能够正常接收信号。

四、实施建议为了更好地实施EN50262标准,以下建议可供参考:1. 加强培训:组织相关人员参加EMC测试培训,提高测试技能和水平。

2. 规范生产过程:确保生产过程中的每个环节都符合EN50262标准的要求,从源头上控制电磁兼容性问题。

IEC 61000-4-5 电磁兼容测试标准

IEC 61000-4-5 电磁兼容测试标准

电磁兼容 试验和测量技术 浪涌 冲击 抗扰度试验
电磁兼容 试验和测量技术 射频场感应的传导骚扰抗扰度
电磁兼容 试验和测量技术 供电系统及所连设备谐波 谐间波的测量和
测量仪器导则
电磁兼容 试验和测量技术 工频磁场抗扰度试验
电磁兼容 试验和测量技术 脉冲磁场抗扰度试验
电磁兼容 试验和测量技术 阻尼振荡磁场抗扰度试验
定义
除非另有说明 下述定义以及
中的定义适用于本标准
平衡线
一对被对称激励的导体 其差模到共模的转换损失小于
耦合网络
将能量从一个电路传送到另一个电路的电路
去耦网络
用于防止施加到
上的浪涌 冲击 影响其他不作试验的装置 设备或系统的电路
持续时间
规定波形或特征存在或持续的时间
受试设备 波前时间 浪涌 冲击 电压的波前时间 是一个虚拟参数 定义为 峰值和 间间隔 的 倍 见图 浪涌 冲击 电流的波前时间 是一个虚拟参数 定义为 峰值和 间间隔 的 倍 见图 抗扰度 装置 设备或系统面临电磁骚扰不降低运行性能的能力 参见 电气设备组 用来实现某种特殊目的或多种目的并有协调特性的一组有关电气设备 互连线 包括

本标准规定了
试验等级
试验设备
试验配置
试验程序
在试验室试验的任务就是要找出
在规定的工作状态下工作时 对由开关或雷电作用所产生
的有一定危害电平的浪涌 冲击 电压的反应
本标准不对绝缘物耐高压的能力进行试验 本标准不考虑直击雷
本标准不对特殊设备或系统的试验作出规定 其主要目的是为有关专业标准化技术委员会提供一
电磁兼容 试验和测量技术 电压暂降 短时中断和电压渐变抗扰度试

电磁兼容 试验和测量技术 振荡波抗扰度试验

电磁兼容传导辐射EMI测试标准及测试方法介绍

电磁兼容传导辐射EMI测试标准及测试方法介绍

• 在该测量过程中,根据信号的重复出现频率,主要有两种,一种为宽带信号, 另一种是窄带信号,窄带信号是一种可以被频谱分析仪所分解的信号,不间 断波信号就是一种频率固定不变的窄带信号,宽带信号是一种不能被频谱分 析仪分解的信号。
• 如果是窄带信号,在Peak值,QP值以及平均值的测量中会产生相同的振幅, 如果是宽带信号,测量出的QP值就小于Peak值,信号的增加量(可以通过 QP值的测量电路中具体的充放电时间常量来解释)是被测信号的重复出现 频率的函数信号的重复出现频率越低QP什就越小。
电磁兼容 传导/辐射标准讲座
江苏省电气装备电磁兼容工程实验室
电磁兼容(EMC)试验包括干扰发射(EMI)试验和抗扰度(EMS) 试验。一般说来,EMI试验有两项,而EMS试验已制定了十 多项,并仍在继续发展,目前常用的有六项.
EMC: 设备在规定的电磁环境中正常工作而不对该环境或其 它设备造成不允许的扰动的能力.
电波暗室
Ground Plane
辐射发射试验测试方法
装置:EMI测试接收机、测试天线、转台/天线杆定位控制器等。 对于常见的台式设备,测量时将其置于80CM高的非金属转台 上,测试天线的测试基准点与被测设备的假想辐射中心(一般 也是其几何中心)的水平距离即测试距离为3M。 在测试过程中,转台在0~360°范围内旋转,而测试天线在 1~4M(水平极化)和2~4M(垂直极化)范围内升降,并分 别在天线水平极化和垂直极化状态下进行,以获得最大骚扰值。
2、准峰值定义?
• 准峰值(QP),所表现的是测量信号能量的大小。由于准峰值检波器的充电 时间要比放电时间快得多,因此信号的重复频率越高,得出的准峰值也就越 高。准峰值检波器还能以线性方式对不同幅度的信号起响应。这样,准峰值 既可以反映信号的幅度,也能反映出信号的时间分布。

电磁兼容试验和测量技术射频电磁场辐射抗扰度试验

电磁兼容试验和测量技术射频电磁场辐射抗扰度试验

电磁兼容试验和测量技术射频电磁场辐射抗扰度试验电磁兼容试验和测量技术是一种对设备、系统或产品在电磁环境中的抗扰度进行评估的方法。

射频电磁场辐射抗扰度试验是其中的一种重要测试,用于评估设备在射频电磁场辐射环境中的抗干扰能力。

本文将从电磁兼容试验和测量技术的理论基础、试验过程和应用前景等方面进行探讨,以期为相关领域的研究和工程应用提供一定的参考。

一、电磁兼容试验和测量技术的理论基础电磁兼容性是指设备、系统或产品在电磁环境中不受外界电磁场辐射或内部电磁干扰的影响,能够正常工作而不对周围其他设备产生干扰。

电磁兼容试验和测量技术主要包括电磁辐射抗干扰性能测试、电磁场辐射测量、电磁场防护效能检测等内容。

这些内容主要是通过一系列的试验手段,来对设备在电磁环境中的性能进行评估,并提出相应的改进措施,确保设备的正常运行和周围环境的安全。

二、射频电磁场辐射抗扰度试验的重要性射频电磁场辐射抗扰度试验是电磁兼容试验和测量技术中的一个重要环节,其重要性主要表现在以下几个方面:首先,射频电磁场辐射是目前电磁环境中最普遍和最强烈的一种电磁辐射,因此对设备在射频电磁场辐射环境中的抗干扰能力进行评估,对保障设备的正常运行有着重要的意义;其次,随着射频技术的不断发展和应用,射频电磁场辐射对设备的影响越来越大,因此射频电磁场辐射抗扰度试验的重要性也越来越凸显;最后,射频电磁场辐射抗扰度试验结果直接影响着设备的市场准入和使用范围,因此对设备进行相关试验是十分必要的。

三、射频电磁场辐射抗扰度试验的试验过程射频电磁场辐射抗扰度试验通常分为试验前准备、试验环境建立、试验参数设置、试验设备布置、试验数据采集和试验结果分析等步骤。

其中,试验前准备要求进行充分的试验方案设计和试验流程规划,以确保试验过程的合理性和有效性;试验环境建立要求在专门的试验室或试验场地内搭建符合要求的射频电磁场辐射环境;试验参数设置要求在试验过程中合理设置射频电磁场辐射的频率、功率、方向和持续时间等参数;试验设备布置要求将待测设备按照实际使用情况布置到射频电磁场辐射环境中;试验数据采集要求利用专业的测试设备对待测设备在射频电磁场辐射环境中的性能参数进行实时采集和记录;试验结果分析要求通过专业的数据处理和分析手段,对试验数据进行深入的分析和评估,得出相应的结论和建议。

手机电磁兼容检测标准及测试内容

手机电磁兼容检测标准及测试内容
电磁兼 容检 测 主要检查 手 机是否 会产 生无 意发 射 的电磁骚 扰并 且考 察是 否能 在遭受 电磁 干扰 的情 况下保 持 正常 工作 。手机 电磁 兼容性 能 的好坏 不仅 影 响 我们生 活 的电磁 环境 .同时也会 影 响手机 的可 靠 性 以及用 户 的使用 感受 。在 手机 的 E MC检测 中 ,
21 MIf lc o Man t nefrn e . E et — g e cIt ee c )—— 电 磁 E r i r
骚 扰 测 试
此 测试 的 目的为 检测 电器产 品所 产生 的 电磁辐
及其辅助设备》
2 0 《 信 08 通 技 术 设 备 的
射 对人 体 、公共 电 网 以及 其它 正常 工作 之 电器 产 品
E MC的检 测 规 范 设 定 了设 备 能 正 常工 作 的 电
磁 环 境 的电磁 骚扰 限值 及必 要 的抗 干扰 能力 E MC 包 含 了电 磁 骚 扰 ( MI E )和 抗 扰 度 f MS E 1两个 部
分。 虽 然手机 的制式不 同 .但 是其 电磁兼 容 的测试 项 目是 相 同 的 .电磁 兼 容 测 试 项 目 E 骚 扰测 量 MI 项 目和 E MS抗扰 度试 验项 目见 表 2、3 。
在 E 测 试 中 .连 续骚 扰 是 指 对 一个 特 定 设 MI 备 的效应不 能分 解 为一 串能清 晰可 辨 的效应 的 电磁 骚 扰 杂散 骚扰 是 除载频 和与 正常 调制 相关 的频 带 以外 离 散 频 率 上 的骚 扰 .可 以分 为传 导 和 辐 射 两
种 杂 散 (p r u mi in )项 目是针 对手 机 而 S ui sE 8 o s o S
2 E MC测试 项 目及 测试 目的

GB-T17626-电磁兼容试验全标准简介

GB-T17626-电磁兼容试验全标准简介

GB-T17626-电磁兼容试验全标准简介电磁兼容性测试(简称EMC),是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的水平。

EMC设计与EMC测试是相辅相成的。

只有在产品的EMC设计和研制的全过程中,进行EMC的相容性预测和评估,才能及早发现可能存在的电磁干扰,并采取必要的抑制和防护措施,从而确保系统的电磁兼容性。

GB/T电磁兼容试验和测量技术系列标准包括以下部分:GB/T.1-26电磁兼容试验和测量技术抗扰度试验总论GB/T.2-26电磁兼容试验和测量技术静电放电抗干扰度试验GB/T.3-26电磁兼容试验和测量技术射频电磁场辐射抗干扰度试验GB/T.4-28电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验GB/T.5-28电磁兼容试验和测量技术浪涌(冲击)抗扰度试验GB/T.6-28电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度GB/T.7-28电磁兼容试验和测量技术供电系统及所连设备谐波、谐间波的测量和测量仪器导则GB/T.8-26电磁兼容试验和测量技术工频磁场抗扰度试验GB/T.9-1998电磁兼容试验和测量技术脉冲磁场抗扰度试验GB/T.1-1998电磁兼容试验和测量技术阻尼振荡磁场抗扰度试验GB/T.11-28电磁兼容试验和测量技术电压暂降、短时中断和电压变化的抗扰度试验GB/T.12-1998电磁兼容试验和测量技术振荡波抗扰度试验GB/T.13-26电磁兼容试验和测量技术交流电源端口谐波、谐间波及电网信号的的低频抗扰度试验GB/T.14-25电磁兼容试验和测量技术电压波动抗扰度试验GB/T.17-25电磁兼容试验和测量技术直流电源输入端口纹波抗扰度试验GB/T.27-26电磁兼容试验和测量技术三相电压不平衡抗扰度试验GB/T.28-26电磁兼容试验和测量技术工频频率变化抗扰度试验这些标准是评估设备或系统在其电磁环境中是否符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的重要指南。

电磁兼容测试标准和要求

电磁兼容测试标准和要求
电磁兼容测试标准和要求
本公司将提供电磁兼容项目的测试方案、项目集成和咨询培训工作:
标准编号
对应的国际标准
标准名称
军用标准
GJB151A-97
MIL-STD-461D
军用设备和分系统电磁发射和敏感度要求
GJB152A-97
MIL-STD-462D
军用设备和分系统电磁发射和rect Effects雷击直接作用
RTCA/DO-160-Section25
ESD静电放电
GJB5185-2003
小屏蔽体屏蔽效能测量方法
GJB5240-2004
军用电子装备通用机箱机柜屏蔽效能要求和测试方法
GJB3039-97
舰船屏蔽仓室要求和屏蔽效能测试方法
GJB2117-94
GJBZ20048-96
对空情报雷达电磁环境防护要求的测试方法
GJB1143-91
无线电频谱特性的测量
GJB2079-94
无线电系统间干扰的测量方法
GJB3198-98
无线电引信抗干扰性能评定方法
GJB476-88
生活区微波辐射测量方法
GJB911-90
电磁脉冲防护器件测试方法
GJB2038-94
雷达吸波材料发射率测试方法
航天系统电磁兼容性要求
GJB1696-93
航天系统地面设施电磁兼容性和接地要求
GJBZ20008-91
军用通信车电磁兼容性规范
GJB3622-99
通信和指挥自动化地面设施对高空核电磁脉冲的防护要求
GJBZ20206-94
军用机场指挥、通信、导航设施抗电磁干扰技术要求
GJB3909-99
指挥中心(所)电磁兼容性要求
对额定电流大于16A的设备在低压供电系统中产生的电压波动和闪烁的限制

电气设备的电磁兼容性设计与测试

电气设备的电磁兼容性设计与测试

电气设备的电磁兼容性设计与测试电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在电磁环境中能够正常工作,同时不对环境和其他设备造成无法接受的干扰。

为了确保电气设备的性能和可靠性,电磁兼容性设计与测试显得尤为重要。

本文将从设计和测试两个方面探讨电气设备的电磁兼容性。

一、电磁兼容性设计电磁兼容性设计旨在减少电气设备之间或设备与环境之间的电磁干扰。

以下是一些建议,可用于电磁兼容性设计:1.屏蔽设计:通过材料选择和结构设计来减少电磁辐射和电磁感应。

合理设计设备的外壳,采用合适的屏蔽材料和结构,以降低辐射和敏感到外界电磁场的影响。

2.地线设计:良好的地线设计有助于减少电气设备之间的干扰。

确保设备的接地系统连通良好,减少接地电阻,提高地线的导电性能。

3.滤波器设计:应用滤波器可减少设备对电源的电磁噪声和电源波动的影响。

通过选择合适的滤波器并按照规范进行连接,可以有效地减少共模噪声和差模噪声。

4.布线设计:合理的布线设计是减少电磁干扰的重要措施。

要避免长线和并行线的布线方式,减少回路面积和导线间的距离,以减少电磁感应。

二、电磁兼容性测试电磁兼容性测试可以帮助检测设备是否满足电磁兼容性要求,并找出可能存在的问题。

以下是一些常用的电磁兼容性测试方法:1.辐射测试:通过测量设备辐射的电磁场强度来评估其辐射干扰水平。

常用的辐射测试方法包括开路辐射测量和带载辐射测量。

2.传导测试:通过测量设备上的共模和差模传导噪声来评估其传导干扰水平。

常见的传导测试方法包括共模传导测试和差模传导测试。

3.抗扰度测试:通过模拟设备在外界电磁环境中的工作情况,评估其对干扰的抵抗能力。

常用的抗扰度测试包括快速变化干扰测试和电磁场干扰测试。

4.接地测试:通过测试设备接地系统的接地电阻和接地回路的连通性来评估接地性能。

确保设备的接地系统符合电磁兼容性的要求。

结语电气设备的电磁兼容性设计与测试是确保设备可靠性和性能的重要步骤。

电磁兼容测试标准大全!

电磁兼容测试标准大全!

电磁兼容测试标准大全!本文对电磁兼容标准进行一个汇总,包括LED照明、新能源汽车、家用电器、通信设备、医疗设备以及低压电器相关的电磁兼容主要依据标准。

1、LED照明电磁兼容主要依据标准CISPR 15/GB 17743:《电气照明和类似设备的无线电骚扰特性的限值和测量方法》IEC 61547/GB T 18595:《一般照明用设备的电磁兼容抗扰度要求》IEC 61000-3-2/GB 17625.1:《电磁兼容限值谐波电流发射限值(设备每相输入电流≤16A)》IEC 61000-3-3/GB 17625.2:《电磁兼容限值对每相额定电流≤16A且无条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制》IEC 62493/GB T31275:《照明设备对人体电磁辐射的评价》2、新能源汽车电磁兼容主要依据GB T 18487.1-2015:《电动车辆传导充电系统一般要求》GB T 18487.2-2001:《一般照明用设备的电磁兼容抗扰度要求》GB T 18487.3-2001:《电动车辆传导充电系统电动车辆交流直流充电机(站)》GB/T 20234.1-2015:《电动汽车传导充电用连接装置第1部分:通用要求》GB/T 20234.2-2015:《电动汽车传导充电用连接装置第2部分:交流充电接口》GB/T 20234.3-2015:《电动汽车传导充电用连接装置第3部分:直流充电接口》GB/T 27930-2015:《电动汽车非车载传导式充电机与电池管理系统之间的通信协议》NB/T 33001-2010:《电动汽车非车载传导式充电机技术条件》NB/T 33002-2010:《电动汽车交流充电桩技术要求》NB/T 33008.1-2013:《电动汽车充电设备检验试验规范第一部分:非车载充电机》QC/T 895-2011:《电动汽车用传导车载充电机》3、车载电子电磁兼容主要依据标准CISPR 25、GB/T 18655:《车辆、船和内燃机无线电骚扰特性用于保护车载接收机的限值和测量方法》ISO11452-1/-2/-3/-4/-5/-7/-8/-9/-10/-11:《道路车辆电气/电子部件对窄带辐射电磁能的抗扰性试验方法》GB/T 17619:《机动车电子电器组件的电磁辐射抗扰性限值和测量方法》ISO7637-1/-2/-3 、GB/T 21437.1/.2/.3:《道路车辆由传导和耦合引起的电骚扰》ISO10605、 GB/T 19951:《道路车辆静电放电产生的电骚扰试验方法》ISO16750-2、GB/T 28046.2:《道路车辆电气及电子设备的环境条件和试验第2部分电气负荷》ISO21848:《道路车辆42V供电电压的电气和电子设备电气负荷》4、医疗设备电磁兼容主要依据标准CISPR 11/EN 55011/GB 4824:《工业、科学和医疗(ISM)射频设备电磁骚扰特性限值和测量方法》IEC 60601-1-2/YY 0505:《医用电气设备第1-2部分:安全通用要求并列标准:电磁兼容要求和试验》IEC 61326-1/GB T18268.1:《测量、控制和实验室用的电设备电磁兼容性要求第1部分:通用要求》IEC 61326-2-6/GB T18268.26:《测量、控制和实验室用的电设备电磁兼容性要求第26部分:特殊要求体外诊断(IVD)设备》IEC 61000-3-2/GB 17625.1:《电磁兼容限值谐波电流发射限值(设备每相输入电流≤16A)》IEC 61000-3-3/GB 17625.2:《电磁兼容限值对每相额定电流≤16A且无条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制》5、家用电器电磁兼容主要依据标准CISPR 14-1/GB 4343.1:《家用电气、电动工具和类似器具的电磁兼容要求第1部分:发射》CISPR 14-2/GB 4343.2:《家用电气、电动工具和类似器具的电磁兼容要求第2部分:抗扰度》IEC 61000-3-2/GB 17625.1:《电磁兼容限值谐波电流发射限值(设备每相输入电流≤16A)》IEC 61000-3-3/GB 17625.2:《电磁兼容限值对每相额定电流≤16A且无条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制》6、通信设备电磁兼容主要依据标准CISPR 22/EN 55022/GB 9254:《信息技术设备的无线电骚扰限值和测量方法》CISPR 24/GB/T 17618:《信息技术设备抗扰度限值和测量方法》7、低压电器电磁兼容主要依据标准CISPR11/GB 4824:《工业、科学和医疗(ISM)射频设备电磁骚扰特性限值和测量方法》IEC 60947-1/GB 10408.1:《低压开关设备和控制设备第1部分:总则》IEC 60947-2/GB 10408.2:《低压开关设备和控制设备第2部分:断路器》IEC 60947-3/GB 10408.3:《低压开关设备和控制设备第3部分:开关、隔离器、隔离开关、以及熔断器组合电器》IEC 60947-4/GB 10408.4:《低压开关设备和控制设备第4-1部分:接触器和电动机起动器机电式接触器和电动机起动器(含电动机保护器)》IEC 60947-5/GB 10408.5:《低压开关设备和控制设备第5-1部分:控制电路电器和开关元件机电式控制电路电器》IEC 60947-6/GB 10408.6:《低压开关设备和控制设备第4-2部分:接触器和电动机起动器交流半导体电动机控制器和起动器(含软起动器)》IEC 60947-10/GB 10408.10:《低压开关设备和控制设备第5-2部分:控制电路电器和开关元件接近开关》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/29
2020/4/29
1. 电磁兼容标准与测量
1.1 几个重要的电磁兼容标准对照表
2020/4/29
1.2 常用电磁兼容测量项目
• (1) 电源端子干扰电压。 • (2) 其它端子干扰电压或干扰电流。这些端子一般包括通讯端口、有
线广播端口和负载端口。
• (3) 辐射干扰场强及干扰功率。 • (4) 静电放电抗扰度 • (5) 射频电磁场抗扰度 • (6) 电快速瞬变脉冲群抗扰度 • (7) 冲击(雷击/浪涌)抗扰度 • (8) 由射频场感应的传导干扰抗扰度 • (9) 磁场(含工频磁场和脉冲磁场)抗扰度 • (10) 电源电压跌落、瞬时中断及电压变化抗扰度 • (11) 谐波电流发射 • (12) 电压闪烁和波动
(一)测量不确定度的概念 定义:源自与测量结果相关联的一个参数,用以表征 合理地赋予被测量之值的分散性。
(二)测量不确定度的分类: 1)不确定度的A类评定——用统计方法评定的分
量; 2)不确定度的B类评定——用非统计方法评定的
分量。
2020/4/29
2.1 不确定度来源
• 理论认识不足,对被测量的值定义不完善 • 实现被测量的定义不完善 • 抽样代表性不够 • 对模拟器具的读数存在人为的偏移,读数习惯
• CNAS-GL07-2019 电磁干扰测量中不确定度的评定指南
2020/4/29
2.4 测量仪器引入的不确定度
• 当要判定是否符合骚扰的允许极限要求时,必须考虑测量仪器引入的不确 定度。对检测实验室而言,应考虑下列各项测量不确定度分量,对每个影 响量的估计值xi应评定其标准不确定度u(xi)(以分贝表示)和灵敏系数
直流人工电源网络
2020/4/29
电流探头
2020/4/29
天线
2020/4/29
2020/4/29
喇叭天线(1GHz~40GHz)及其天线系数
2020/4/29
2020/4/29
骚扰功率吸收钳
2020/4/29
断续骚扰(喀呖声)分析仪
2020/4/29
2020/4/29
谐波电流分析仪
ci。
• 被测量的估计值y的合成标准不确定度 uc(y)按下式计算:
u( c y)
ci2u( 2 x) i
i
• 对检测实验室来说,扩展不确定度按下式计算,并应在检测报告中 说明。
ULAB2u( c y)
• 注1:对大多数测量结果近似正态分布的典型情况,包含因子取k
=2,其置信水平近似为95%。
2020/4/29
2020/4/29
此节内容到此结束
2020/4/29
• GB/Z 6113.401 (idt CISPR16-4-1:2019) 第4-1 部分: 不确定度、统计学和限值建模 标准化EMC 试验的不确定度
• GB/T 6113.402 (idt CISPR16-4-2:2019) 第4-2 部分: 不确定度、统计学和限值建模 测量设备和设施的不确定度
不同
• 仪器分辨力不够 • 环境条件认识不足 • 标准器具不确定、标准物质的值不准 • 引用于数据计算的常量和其他参量不准
2020/4/29
2.2 测量不确定度的评定流程
2020/4/29
建立数学模型
求最佳值
列出各不确定度分量的表达式
A类评定
B类评定
求出合成不确定度
评定扩展不确定度
2.3 电磁兼容不确定度相关标准和 文件
• GB/Z 6113.403 (idt CISPR16-4-3:2019) 第4-3 部分: 不确定度、统计学和限值建模 确定批量产品的EMC 符合性 的统计考虑
• GB/Z 6113.404 (idt CISPR16-4-4:2019) 第4-4 部分: 不确定度、统计学和限值建模 抱怨的统计和限值的计算模 型
2020/4/29
五大类产品标准干扰测试项目
2020/4/29
四类产品标准抗扰度测试项目
2020/4/29
标准查询
2020/4/29
2020/4/29
2020/4/29
2020/4/29
1.3 常用电磁兼容测试设备和场地
• EMI测量接收机
2020/4/29
交流人工电源网络
2020/4/29
2020/4/29
静电放电(ESD)抗扰度测试仪
2020/4/29
EFT抗扰度测试仪
2020/4/29
2020/4/29
浪涌抗扰度测试仪
2020/4/29
辐射抗扰度测试系统
2020/4/29
传导抗扰度测试系统
2020/4/29
2020/4/29
2020/4/29
2020/4/29
2020/4/29
2020/4/29
手机电磁兼容测试
2020/4/29
半电波暗室
2020/4/29
2020/4/29
全电波暗室
2020/4/29
马达驱动高度扫描 天线杆
开阔场
EUT防雨棚
天线
2020/4/29
转台和桌子 金属网地面 椭圆区内没有其它物体
2020/4/29
屏蔽室
2020/4/29
2 . EMC不确定度基础
相关文档
最新文档