高层建筑设计与抗震设计

合集下载

高层建筑抗震设计

高层建筑抗震设计

高层建筑抗震设计在现代城市中,高层建筑的兴起成为城市发展的重要标志之一。

然而,面对地震等自然灾害,高层建筑的结构抗震性能显得尤为重要。

本文将探讨高层建筑抗震设计的原理和方法。

I. 抗震设计的背景和意义高层建筑的抗震设计是为了减少地震对建筑物造成的破坏和危险。

地震是一种极具破坏性的自然灾害,对于高层建筑来说尤其具有挑战性。

通过合理的抗震设计,能够提高建筑物的地震安全性,保护人民的生命财产安全。

II. 抗震设计的原则1. 结构配置合理性原则高层建筑的结构配置非常关键,必须根据地震区域的特点和设计要求,选择合适的结构形式。

一般而言,常用的结构形式包括框架结构、筒体结构、剪力墙结构等。

对于高层建筑来说,通常采用钢筋混凝土框架结构更为常见。

2. 材料可靠性原则抗震设计中材料的可靠性至关重要。

建筑材料应符合地震区域的要求,选用具有较好抗震性能和耐久性的材料,如高强度混凝土、钢结构等。

同时,在建筑施工过程中,应严格控制材料的质量,确保所有使用的材料符合设计要求。

3. 连接可靠性原则连接件的可靠性对于高层建筑的抗震性能起着重要作用。

连接件必须能够承受剪力、弯矩和轴力等作用,以保证整体结构的稳定性。

在抗震设计中,需要合理选择连接件的类型和数量,并且进行合理的布局。

4. 防护措施可行性原则除了结构本身的抗震设计,还需要采取其他防护措施来增加建筑物的抗震能力。

例如,可以设置减震装置、隔震装置、剪切支撑等,通过减少地震荷载的传递或改变其传递途径,降低地震对建筑物的破坏。

III. 抗震设计的方法1. 抗震设计的震级选取抗震设计的第一步是根据地震区域的震级选择适当的设计地震动参数。

根据地震带的划分以及历史地震数据的分析,确定不同设计地震动参数,如地震基本加速度和地震分组等。

2. 结构的抗震设计计算基于选择的设计地震动参数,进行抗震设计计算。

根据建筑物的结构形式和配置,进行静力分析或动力分析,计算各种荷载在结构中的传递和影响。

高层建筑的抗震设计与结构分析

高层建筑的抗震设计与结构分析

高层建筑的抗震设计与结构分析高层建筑作为现代城市的标志性建筑,承载着人们的居住、工作和娱乐等活动。

然而,地震作为一种自然灾害,对高层建筑的稳定性和安全性提出了严峻的挑战。

因此,高层建筑的抗震设计与结构分析显得尤为重要。

一、高层建筑抗震设计的原则在进行高层建筑的抗震设计时,需满足以下原则:1.地震荷载计算:首先,需要根据建筑所处地区的地震烈度、地质条件以及建筑材料的特性来确定地震荷载的大小。

通过合理计算地震荷载,可以为建筑的结构稳定性提供参考依据。

2.结构形式选择:不同的结构形式具有不同的抗震能力。

常见的高层建筑结构形式包括框架结构、筒体结构、剪力墙结构等。

根据具体情况选择适合的结构形式,能够提高建筑的抗震性能。

3.材料选择:高层建筑中,混凝土、钢材等作为主要结构材料。

在抗震设计中,需要选择具有良好抗震性能的材料,如高强度混凝土和钢材等。

合理的材料选择对于提高建筑的抗震性能至关重要。

4.结构设防:通过采取一些特殊的结构措施,如加强柱底节点、设置耗能器等,可以增加建筑的抗震能力。

结构设防是抗震设计中的重要环节,对于确保建筑的安全性有着不可忽视的作用。

二、高层建筑结构分析的方法在高层建筑的结构分析中,常用的方法有:1.静力分析:静力分析是指根据结构受力平衡的原理,通过静力学的知识计算结构的内力和变形。

通过静力分析,可以获得结构在静力荷载下的响应,为结构的合理设计提供参考。

2.动力分析:动力分析是指通过模拟结构在地震作用下的动态响应,对结构的抗震性能进行评估。

常见的动力分析方法包括模态分析、时程分析等。

动力分析结果能够反映结构在地震加载下的位移、加速度和剪力等参数,对高层建筑的设计与改进提供指导。

3.数值模拟:数值模拟是通过计算机仿真手段对建筑结构进行分析。

利用有限元方法等数值方法,可以模拟结构在地震荷载下的响应,分析结构的强度、刚度等性能,并对结构进行优化设计。

三、高层建筑抗震设计的案例以某高层办公楼的抗震设计为例,该建筑采用的是钢筋混凝土框架结构。

高层建筑的防震设计与抗震措施

高层建筑的防震设计与抗震措施

高层建筑的防震设计与抗震措施在现代城市化进程中,高层建筑的发展成为了城市 skyline 上一道亮丽的风景线。

然而,高楼大厦面临的一个重要挑战就是地震活动对其结构的威胁。

为了确保居民和员工的安全,并保持建筑的稳定性,科学的防震设计和抗震措施变得至关重要。

首先,高层建筑的设计需要考虑到地震力的影响。

地震力是由地壳运动造成的,其动能可引起建筑物的震动,甚至导致倒塌。

因此,在设计阶段,工程师需要准确预测地震力,并将其纳入建筑物的结构设计中。

这些预测通常依赖于地质勘测和地震学研究的结果,以了解所在地的地震潜力和历史地震数据。

其次,建筑物的设计需要采用适当的结构形式。

在地震发生时,建筑物的整体结构是承受地震力的主要部分。

传统的砖石和混凝土结构相对脆弱,容易受到地震力的破坏。

因此,现代高层建筑更多地采用了钢结构或钢混凝土结构,以提供更大的强度和抗震能力。

此外,采用悬挂式建筑结构可以减少地震时的惯性力,从而降低建筑物的摇晃程度。

另一个重要的抗震措施是加强地基和基础工程。

地基是建筑物的支撑系统,而地震力会对其施加巨大的压力。

为了增强地基的稳定性,工程师采用了多种技术手段。

一种常用的方法是加固地基的基础,以抵抗地震力的冲击。

例如,工程师会使用钢筋混凝土桩或地基橡胶隔离器来增强地基的强度和稳定性。

此外,作为防震设计的一部分,建筑物中还应设置抗震设备。

最常见的抗震设备是阻尼器和隔震器。

阻尼器通过吸收地震能量来减轻建筑物的摇晃,从而降低损坏的风险。

而隔震器则采用弹簧和减震器等组件,将建筑物与地面隔离,减少地震波传递到建筑物的能量。

这些设备可以显著降低建筑物的震动幅度,提高其整体的抗震能力。

此外,建筑物的逃生系统也是防震设计的重要组成部分。

在地震发生时,如果人们无法安全逃离建筑物,后果将会非常严重。

因此,建筑物应配备紧急疏散通道、避难场所和防火设备,以便在紧急情况下提供安全和保护。

综上所述,高层建筑的防震设计和抗震措施是确保城市安全的重要因素。

高层建筑结构抗震设计存在的问题及解决对策

高层建筑结构抗震设计存在的问题及解决对策

高层建筑结构抗震设计存在的问题及解决对策【摘要】高层建筑在抗震设计中存在诸多问题,如设计标准滞后、结构设计不合理、施工工艺不当、监理不严格等。

为提高抗震性能,需加强设计标准修订、优化结构设计、控制施工质量、严格监理、协调抗震与节能设计。

通过这些对策,能有效提升高层建筑的抗震能力,确保建筑安全稳定。

【关键词】高层建筑、结构、抗震设计、设计标准、抗震性能、施工工艺、材料选择、监理、质量控制、节能设计、对策、修订、更新、优化、施工质量、监理力度、协调、双赢。

1. 引言1.1 高层建筑结构抗震设计存在的问题及解决对策高层建筑作为城市的地标性建筑,其结构抗震设计至关重要。

在实际工程实践中,高层建筑结构抗震设计存在着诸多问题,需要采取相应的对策进行解决。

设计标准滞后,无法满足实际需求。

当前的抗震设计标准与高层建筑结构的复杂性和变化性不相适应,需要加强标准的修订和更新。

结构设计不合理,抗震性能不足。

一些高层建筑的结构设计存在缺陷,导致其在地震等自然灾害中易受损,需要优化结构设计,提高抗震性能。

施工工艺和材料选择不当也会影响结构抗震性能。

在施工过程中,需严格控制施工工艺和材料质量,确保符合抗震要求。

监理不到位、质量控制不严格也是问题之一,需要加强监理力度,确保施工质量。

抗震设计与节能设计之间存在矛盾,需要协调抗震设计与节能设计,实现双赢。

为了提高高层建筑结构的抗震性能,需要全面思考这些问题,并采取相应的对策,以确保高层建筑结构在面对各种自然灾害时能够安全稳固地屹立不倒。

2. 正文2.1 问题一:设计标准滞后,无法满足实际需求设计标准滞后是高层建筑结构抗震设计面临的主要问题之一。

由于抗震设计标准的滞后,很多高层建筑的结构设计并不能满足当前社会的实际需求,造成了抗震性能不足的情况。

设计标准的滞后意味着设计中所采用的抗震参数和计算方法可能已经过时,无法充分考虑到地震对建筑结构的影响。

随着地震工程领域的不断发展和新技术的涌现,原有的设计标准已经难以满足当前的抗震需求。

高层建筑的建筑物结构安全与抗震设计

高层建筑的建筑物结构安全与抗震设计

高层建筑的建筑物结构安全与抗震设计在对高层建筑的建筑物结构安全与抗震设计进行探讨之前,我们首先要了解高层建筑的定义。

根据国际标准,高层建筑是指地面高度超过35米,或者有超过9层的建筑物。

由于高层建筑所面临的风险较大,如火灾、地震等,因此其结构安全和抗震设计成为关键的工程要素。

1. 高层建筑的结构安全设计高层建筑的结构安全设计是保障建筑物在使用寿命内无脱层、无倾斜、无垮塌的基本前提。

安全设计主要包括以下几个方面:1.1 框架结构设计高层建筑常使用钢结构、钢筋混凝土结构或者混合结构,这些结构形式能够提供较好的抗震性能。

在设计时,需要考虑建筑物的受力分析、材料的强度和刚度等因素,确保结构的稳定性和安全性。

1.2 基础设计高层建筑的基础设计是承受建筑物自身重量以及外部荷载并将其传递到地基的重要环节。

基础应根据地质调查结果合理设计,采用深基础或者承台式基础,以确保建筑物的稳定性和安全性。

1.3 防火设计高层建筑所面临的火灾风险较大,因此防火设计在结构安全中起着重要作用。

需要采取各种措施,如设置消防门、消防通道和灭火系统等,以防止或延缓火灾的蔓延,保护建筑物结构的完整性。

2. 抗震设计在地震活跃区,高层建筑的抗震设计尤为重要。

抗震设计的目标是保障建筑物在地震作用下不发生局部或整体倾覆、倒塌的情况。

主要包括以下几个方面:2.1 地震设计参数在抗震设计中,需要根据地震地区的地质特点和历史地震数据,确定适当的地震设计参数。

这些参数包括地震烈度、设计地震加速度、地震波谱等,是进行结构抗震分析和设计的基础。

2.2 结构抗震设计高层建筑的结构抗震设计应满足抗震强度、刚度、稳定性和层间位移等要求。

采用合适的抗震措施,如使用剪力墙、加设防震支撑、增加结构刚性等,以提高建筑物的抗震能力。

2.3 防震设备在高层建筑中,可以安装防震设备,如减震器、阻尼器等,用于降低地震对建筑物的影响。

这些设备能够减少结构受力、减小位移,并提供更安全、舒适的使用环境。

高层建筑的抗震设计原理与技术

高层建筑的抗震设计原理与技术

高层建筑的抗震设计原理与技术随着城市化进程的加快,高层建筑在现代城市中得到广泛应用。

然而,高层建筑由于其高度和体量的特殊性,地震对其安全性构成了较大的威胁。

因此,高层建筑的抗震设计成为了至关重要的一环。

本文将介绍高层建筑的抗震设计原理和常用的抗震技术,以期为相关领域的人员提供参考。

一、抗震设计原理1.结构强度与刚度:高层建筑的结构必须具备足够的强度和刚度,以承受地震力引起的振动。

在设计过程中,需要根据建筑的高度和使用功能来确定结构的强度和刚度要求。

2.地基条件评估:地基是高层建筑抗震设计的基础,其稳定性和承载力直接影响建筑的抗震性能。

在设计中,需要进行详细的地质勘探和地震灾害评估,以确定地基的条件和选择合适的抗震措施。

3.减震措施:为了降低地震对高层建筑的影响,减震措施被广泛应用。

常见的减震措施包括负摆控制、摩擦阻尼器、液体阻尼器等。

这些措施能够有效地吸收和分散地震能量,减少建筑结构的震动反应。

二、常用抗震技术1.钢结构:钢结构是一种常见的高层建筑抗震技术。

相比传统的混凝土结构,钢结构具有较高的强度和韧性,能够更好地抵抗地震力的作用。

此外,钢结构可以采用更轻的构件,减少建筑的自重,从而降低地震荷载。

2.混凝土剪力墙: 剪力墙是一种传统的高层建筑抗震技术。

通过在建筑的主体结构中设置混凝土墙体,起到增加结构刚度和强度的作用,从而提高抗震性能。

在设计中,需要根据建筑的布置和使用功能来确定剪力墙的位置和尺寸。

3.基础隔震技术:基础隔震技术将建筑与地面分离,通过设置隔震层来减少地震荷载传递到建筑上。

常见的基础隔震技术包括弹簧隔震、橡胶隔震和液体隔震等。

4.消能装置:消能装置通过吸收地震震动的能量,减少地震对建筑的影响。

常用的消能装置有液体阻尼器、摩擦阻尼器和形状记忆合金等。

5.桥梁技术应用于高层建筑:将桥梁技术应用于高层建筑抗震设计中是一种有效的方式。

桥梁结构具有较强的抗震性能,可以借鉴其设计原理和技术,提高高层建筑的抗震能力。

高层建筑的抗震设计与抗震结构分析

高层建筑的抗震设计与抗震结构分析

高层建筑的抗震设计与抗震结构分析摘要:随着中国经济的快速发展,城市的高层以及超高层建筑大量涌现,地震灾害对这类建筑的威胁越来越严重,对高层建筑的抗震分析也越来越成为目前国内外的科研热点问题。

本文对高层建筑的抗震设计进行了分析和探讨。

关键词:高层建筑抗震探讨1 高层建筑抗震性能的影响因素新世纪以来,各大中城市普遍兴建高度在l00m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化,抗震的设计难度不断增大。

1.1 抗震设防标准抗震不仅仅是取决于建筑的抗震设防标准,还要严格的遵循建筑抗震设计规范。

国家根据地震发生的可能性和震害的严重性确定各地区基本设防烈度,这是各地区抗震设计的基本参数,主要代表地面加速度的大小。

对具体房屋。

需要结合建筑使用功能的重要性确定建筑的抗震设防标准,即确定设计烈度和抗震等级。

对一般建筑,设计烈度就是本地区设防烈度。

设计烈度愈高,抗震能力愈强,但建筑造价也愈高。

1.2合理的抗震设计抗震设计就是要选择合适的结构形式,确定合理的抗震措施,保证结构的抗震性能,确保建筑物满足“小震不坏、中震可修、大震不倒”的抗震目标。

高层住宅主要采用现浇剪力墙结构、框架一核心筒或框架一剪力墙结构,具有较好的强度和变形能力,抗震性能相对较好。

因此,无论板式住宅还是点式住宅,只要设计合理,都可满足抗震要求。

多层住宅大部分采用砖混结构,目前多采用现浇楼板,并采取设构造柱和圈粱等抗震措施,或者采用框架结构,大大增强了抗震能力。

2高层建筑抗震设计常见的问题(1)缺乏岩土工程勘察资料或资料不全,有的在扩初设计阶段还缺建筑场地岩土工程的勘察资料,有的在扩初设计会审之后就直接进入了施工图设计,有的在规划设计或方案设计会审后就直接进入了施工图设计。

无岩土工程勘察资料,设计缺少了必要的依据。

(2)结构的平面布置,外形不规则、不对称、凹凸变化尺度大、形心质心偏心大,同一结构单元内,结构平面形状和刚度不均匀不对称,平面长度过长等。

高层建筑结构抗震设计现状及措施分析

高层建筑结构抗震设计现状及措施分析

05
高层建筑结构抗震设计的优化 建议与发展方向
高层建筑结构抗震设计的优化建议
优化结构体系
加强构件设计
采用合理的结构体系,如框架-核心筒结构 、筒中筒结构等,以提高结构的整体性和 抗震性能。
对关键构件进行详细设计,如梁、柱、墙 等,确保其具有足够的承载力和延性,以 防止构件在地震中发生破坏。
考虑地震动特性
高层建筑结构的消能减震措施
阻尼器
通过在建筑物结构中设置阻尼器,吸 收和消耗地震能量,降低结构的地震 反应。
调谐质量阻尼器
通过在建筑物顶部设置调谐质量阻尼 器,利用地震时产生的惯性力来抵消 地震能量,降低结构的地震反应。
高层建筑结构的加固措施
抗震加固
通过加强结构构件的连接和支撑 ,提高结构的整体性和抗震能力
02
高层建筑在地震中容易产生过大 的加速度和位移,导致结构破坏 和倒塌。
高层建筑结构抗震设计的基本原则
采取合理的建筑结构 形式和体系,增强结 构的整体性和稳定性 。
考虑地震动特性,采 取有效的抗震措施, 如隔震、减震等。
提高结构构件的强度 和刚度,确保构件之 间连接的可靠性和稳 定性。
高层建筑结构抗震设计的现状和发展趋势
细化,提高设计效率和准确性。
绿色环保
注重绿色环保理念,采用环保材料和节能 技术,降低高层建筑在建设和使用过程中 的能耗和环境影响。
多元化结构体系
探索和发展多种结构体系,以满足高层建 筑多样化的功能和造型需求,同时提高结
构的抗震性能。
跨学科合作
加强与地震工程、岩土工程等相关学科的 合作,共同研究高层建筑结构抗震设计的 关键技术和方法,推动该领域的发展。
国内外高层建筑抗震设计规范 和标准不断完善,强调结构的 性能设计和细部构造。

高层建筑结构设计与抗震性能分析

高层建筑结构设计与抗震性能分析

高层建筑结构设计与抗震性能分析高层建筑在现代都市中起到了举足轻重的作用,但由于其复杂的结构以及高度,抗震性能成为设计和建造过程中不可忽视的重要因素。

本文将对高层建筑结构设计与抗震性能进行分析,并探讨相关的优化技术。

一、高层建筑结构设计要点高层建筑的结构设计要点包括以下几个方面:1. 基础设计:高层建筑的基础设计应考虑地质条件、土壤承载力以及建筑的荷载等因素。

采用适当的基础形式和深度可以提高建筑的稳定性和抗震性能。

2. 结构体系:高层建筑的结构体系应选用抗震性能良好的方案,如剪力墙结构、框架-剪力墙结构、框架-筒状墙结构等。

这些结构体系具备较好的抗震性能,能够有效吸收和分散地震作用。

3. 材料选择:高层建筑结构的材料选择对于提高抗震性能至关重要。

采用高强度、高韧性的钢材或混凝土材料,可以提高结构的整体强度和延性,从而提高抗震性能。

二、高层建筑抗震性能分析方法高层建筑的抗震性能可以通过以下几种方法进行分析:1. 静力分析:静力分析是一种简化的抗震性能分析方法,通过计算建筑在地震作用下的静力响应来评估其抗震性能。

该方法适用于低层建筑或对于结构刚度较为均匀的高层建筑。

2. 动力分析:动力分析是一种较为准确的抗震性能分析方法,通过计算建筑在地震作用下的动力响应来评估其抗震性能。

该方法适用于高层建筑或对于结构刚度较为不均匀的情况。

3. 数值模拟:数值模拟是一种基于有限元原理的抗震性能分析方法,通过建立结构的数值模型来模拟地震作用下的动力响应。

该方法能够更加准确地评估结构的抗震性能,并可用于优化结构设计。

三、高层建筑抗震性能的优化技术为了进一步提高高层建筑的抗震性能,可以采用以下优化技术:1. 设计合理的剪力墙布置:剪力墙是高层建筑中一种常用的抗震结构形式,其布置合理与否直接关系到结构的抗震性能。

通过优化剪力墙的位置和布置方式,可以提高结构的整体刚度和延性,增强其抗震性能。

2. 采用抗震支撑系统:抗震支撑系统能够在地震发生时提供额外的支撑和稳定性,对高层建筑的抗震性能具有重要影响。

施工方案高层住宅的抗震与安全设计

施工方案高层住宅的抗震与安全设计

施工方案高层住宅的抗震与安全设计随着城市发展和人口增长,高层住宅的建设已成为现代化城市的常态。

然而,高层建筑面临着更高的抗震和安全挑战。

本文将探讨高层住宅的抗震和安全设计方案。

一、规划阶段在规划阶段,施工方应该充分考虑地理条件、土壤类型以及台风和地震等可能的自然灾害。

此外,施工方还应该进行详细的地质勘测,以了解建筑物所在地的地质构造和土壤条件,从而设计出适应当地条件的抗震方案。

二、结构设计1. 基础设计:高层住宅的抗震设计的核心是基础设计。

施工方应根据地质条件和建筑荷载,确定合适的基础形式和尺寸,并做好地基处理工作,以确保建筑物的稳定性。

2. 结构系统:高层住宅的结构系统应选择适应高层建筑的特点的设计方案,如框架结构、剪力墙结构或悬挂系统等。

在设计过程中,应注重结构的整体稳定性和承载能力。

3. 抗震措施:施工方应采取适当的抗震措施来提高建筑物的抗震性能。

例如,采用抗震隔震系统、加固设计等,以有效减少地震对建筑物的破坏。

三、建造过程1. 施工材料:高层住宅的建造材料应符合相关的建筑标准,并经过质量检测。

施工方应确保材料的合理搭配和质量可靠,以提高建筑物的安全性。

2. 施工质量:施工方应严格按照建筑施工规范进行操作,在施工过程中严格控制质量,保证施工质量的可靠性和稳定性。

3. 安全管理:施工方应建立健全的安全管理体系,包括工人的安全教育培训、安全设施的设置以及建筑工地的安全监控等。

通过全面的安全管理,提高工人在高层建筑施工中的安全防护水平。

四、使用阶段1. 定期检测维护:为确保高层住宅的长期稳定性和安全性,施工方应定期进行建筑物的结构检测和维护,及时发现和解决潜在的安全问题。

2. 灾害预防措施:施工方应与相关部门合作,制定应急预案,并设置适当的灾害预防和撤离设施,以提供居民在自然灾害发生时的安全保障。

综上所述,高层住宅的抗震与安全设计需要从规划阶段开始,结合地理和地质条件进行详细的设计,并在建造过程中严格控制质量和进行安全管理。

高层建筑的抗震设计

高层建筑的抗震设计

高层建筑的抗震设计高层建筑是现代城市发展中不可或缺的一部分,它们不仅提供了大量的办公和居住空间,也是城市地标和人们生活的象征。

然而,由于地震的频发和破坏力,高层建筑的抗震设计显得尤为重要。

本文将探讨高层建筑的抗震设计原则、技术以及未来的发展趋势。

一、抗震设计原则1. 结构合理性高层建筑的结构设计应合理,结构形式选择应考虑各种力的影响,如竖向荷载、水平荷载以及地震荷载。

2. 隔震设计隔震设计是高层建筑抗震的关键措施之一。

通过设置隔震装置,能有效减轻地震对建筑物的冲击。

常见的隔震装置包括橡胶隔震支座和钢球隔震装置等。

3. 抗震墙抗震墙是高层建筑中常见的抗震设计手段。

通过将抗震墙布置在建筑的关键部位,可以提高建筑的整体抗震能力。

4. 钢结构设计钢结构在高层建筑中的应用越来越广泛,其强度和韧性使其成为抗震设计的理想选择。

钢结构能够在地震中更好地吸收能量,并分散到整个结构中。

5. 增加结构强度通过增加材料的强度和截面尺寸,可以提高高层建筑的抗震能力。

在设计过程中,应根据地震的烈度和建筑物的高度,选择适当的强度和截面尺寸。

二、抗震设计技术1. 数值模拟数值模拟是高层建筑抗震设计中常用的技术手段之一。

通过计算机模拟地震力对建筑物的作用,可以评估不同结构形式和材料参数的抗震性能。

2. 结构监测与预警系统结构监测与预警系统可以实时监测高层建筑的结构状态,并在地震发生前提供预警信息。

这为人们提供了逃生和避险的宝贵时间。

3. 新型材料的应用随着科技的进步,新型材料如碳纤维复合材料等逐渐应用到高层建筑的抗震设计中。

这些材料具有更好的抗震性能和轻质高强的特点。

4. 钢筋混凝土结构的优化在高层建筑的抗震设计中,钢筋混凝土结构是最常见的结构形式之一。

通过优化设计方法和加强施工质量管理,可以提高钢筋混凝土结构的抗震性能。

三、未来的发展趋势1. 结构柔性化未来的高层建筑抗震设计将朝着结构柔性化发展。

通过使用可调节的结构和材料,在地震发生时,建筑物可以自动调整结构形态,减少地震荷载对建筑的影响。

高层建筑结构抗震设计

高层建筑结构抗震设计

高层建筑结构抗震设计随着城市的发展和人口的增长,高层建筑在现代社会中越来越常见。

然而,这些高耸的建筑在面临地震等自然灾害时,面临着巨大的挑战。

因此,高层建筑结构的抗震设计至关重要,它关系到人们的生命财产安全和城市的可持续发展。

地震是一种不可预测的自然灾害,其能量巨大,能够对建筑物造成严重的破坏。

在地震作用下,高层建筑会受到水平和竖向的地震力,这些力会导致结构的变形、开裂甚至倒塌。

因此,抗震设计的首要目标是确保建筑物在地震发生时能够保持结构的完整性和稳定性,为人们提供足够的逃生时间和安全空间。

高层建筑结构抗震设计的第一步是进行场地选择和评估。

选择合适的建筑场地对于减少地震灾害的影响至关重要。

应避免在地震活动频繁、地质条件不稳定的区域建造高层建筑。

同时,要对场地的土壤类型、地形地貌等进行详细的勘察和分析,以确定其对地震波的传播和放大效应。

结构体系的选择也是抗震设计的关键。

常见的高层建筑结构体系包括框架结构、剪力墙结构、框架剪力墙结构和筒体结构等。

不同的结构体系在抗震性能上各有优缺点。

例如,框架结构具有较好的灵活性,但抗震能力相对较弱;剪力墙结构则具有较强的抗侧力能力,但空间布置不够灵活。

在实际设计中,往往需要根据建筑的功能要求、高度、地质条件等因素综合考虑,选择最合适的结构体系。

在结构设计中,要合理确定结构的刚度和强度分布。

刚度分布均匀的结构能够有效地抵抗地震力的作用,减少扭转效应。

强度的合理设计则能够保证结构在地震作用下不会发生脆性破坏,而是呈现出延性破坏的特征,从而吸收更多的地震能量。

此外,还需要注重节点的设计,确保节点具有足够的承载能力和变形能力,以保证整个结构的整体性和稳定性。

为了提高高层建筑的抗震性能,还需要采用一些抗震措施和技术。

例如,设置抗震缝可以将复杂的建筑结构分成若干个相对简单的独立单元,减少地震作用下的相互影响;采用耗能减震装置,如阻尼器,可以有效地消耗地震能量,降低结构的响应;加强结构的薄弱部位,如加强角柱、短柱等,可以提高结构的抗震能力。

高层建筑结构设计的特点及注意事项

高层建筑结构设计的特点及注意事项

高层建筑结构设计的特点及注意事项
1.抗震设计:高层建筑的抗震设计是结构设计的重要内容,需要采用合理的结构体系和抗震构造设计,以确保建筑物在地震等自然灾害中的稳定性和安全性。

2. 稳定性设计:由于高层建筑的高度和结构复杂性,其结构稳定性设计需要考虑多种因素,如水平荷载、风荷载、自重等,以确保建筑物的整体稳定性。

3. 选材:高层建筑结构设计需要选用合适的材料,如钢材、混凝土等,以满足建筑物的强度和稳定性要求。

4. 细化设计:高层建筑结构设计需要进行细化的设计,包括材料的选用、构造的设计、节点的布置等,以确保建筑物在使用寿命内的稳定性和安全性。

5. 维护保养:高层建筑结构设计需要考虑维护保养的问题,以确保建筑物长期稳定和安全运行。

总之,高层建筑结构设计需要综合考虑多种因素,以确保建筑物的安全稳定和长期使用寿命。

- 1 -。

《高层建筑与抗震设计》期末考试复习题及参考答案

《高层建筑与抗震设计》期末考试复习题及参考答案

高层建筑与抗震设计复习题(课程代码252282)1.一、判断题(正确的画√, 错误的画×)2.建筑物主要是通过抗震构造措施保证结构构件的变形能力, 来提高结构的安全性, 防止建筑物倒塌。

( √) 框架剪力墙结构中. 主要利用剪力墙来承担大部分竖向荷载和水平剪力。

( ×) 3.改正: 房屋的竖向荷载分别由框架和剪力墙共同承担, 而水平作用主要由抗侧刚度较大的剪力墙承担。

4.一般情况下, 风荷载作用下的多层多跨框架内柱轴力小于外柱轴力(√)5.分层法中, 除底层柱外, 各层柱的弯矩传递系数为1/3。

( √)6.在由节点弯矩平衡求各梁端弯矩时, 中间节点处的梁端弯矩可将该节点柱端不平衡弯矩按梁的相对线刚度进行分配。

( √)7.框架结构是由梁和柱为主要构件组成的承受竖向和水平作用的结构, 节点一般为刚性节点。

( √)8.地震烈度是指地震时震中的强烈程度。

( ×)9.改正: 地震烈度是指地震时某一地区的地面和各类建筑物遭受到一次地震影响的强弱程度。

10.结构基本周期计算的能量法是根据体系振动过程中能量守导出了单质点体系基本频率的简化计算方法。

( ×)11.改正: 多质点体系体型复杂的结构, 质量和刚度分布明显不均匀、不对称的结构, 在地震作用下会发生水平振动。

( ×)12.改正: 扭转振动。

13.地震时结构所承受的地震作用实际上是地震动输入结构后产生的静态反应。

( ×)14.改正: 动态反应房屋在地震作用下引起扭转振动的主要原因是结构扭转中心与刚度中心不重合,使得结构除产生平移振动外, 还围绕刚心作扭转振动, 形成平扭耦联振动( ×)15.改正: 质量中心。

16.高层剪力墙结构中每个独立剪力墙段的高度与长度之比不应小于2, 墙肢截面高度不宜大于8m。

( √)17.高层剪力墙结构混凝土强度等级不应低于C15。

( ×)18.改正: 不应低于C2019.高层框架柱的反弯点位置取决于该柱上下端侧移的比值。

高层建筑中的建筑地震与抗震设计

高层建筑中的建筑地震与抗震设计

高层建筑中的建筑地震与抗震设计随着城市化进程的加速和人口的不断增长,高层建筑在现代城市中扮演着重要的角色。

然而,地震作为一种自然灾害,对于高层建筑而言存在着巨大的风险。

因此,对于高层建筑的抗震设计显得尤为关键。

本文将探讨高层建筑中的建筑地震对结构的影响,并介绍一些常见的抗震设计方法。

首先,让我们了解高层建筑中的建筑地震对结构的影响。

相对于低层建筑,高层建筑所面临的地震力会更加巨大。

这主要是由于高层建筑的自重和惯性力相对较大。

当地震发生时,地震波向上传播,当遇到高层建筑时会产生反射和折射现象,进而导致建筑物受力不均衡。

这种不均衡的受力会使得高层建筑的结构产生变形和破坏,从而威胁到人们的生命财产安全。

为了确保高层建筑在地震中的安全性,抗震设计变得至关重要。

抗震设计的目标是通过优化结构、增加耐震性和减小震害来保护建筑物和居民的安全。

下面介绍几种常见的抗震设计方法。

首先,合理的地基设计是抗震设计中的关键步骤之一。

地基的稳定性不仅关系到建筑物的整体结构,还关系到建筑物与地面的相互作用。

合理的地基设计可以通过增加基础的承载力和刚度来提高建筑物的抗震性能。

常见的地基设计方法包括深基坑技术、地基处理以及地基加固等。

其次,结构的设计和材料的选择也是保证高层建筑抗震性能的重要因素。

对于高层建筑的结构设计,应该考虑到建筑物的整体刚度和稳定性。

传统的加筋混凝土结构往往被用于高层建筑的建设,但这种结构在地震中容易发生裂缝和破坏。

新型结构材料如高性能混凝土、钢筋混凝土框架以及钢结构等,可以有效提高高层建筑的抗震性能。

另外,引入减震设备也是提高高层建筑抗震性能的常见方法。

减震设备通过吸收和分散地震能量,减小建筑物的震动幅度和响应。

常见的减震设备包括阻尼器、减振器以及隔震层等。

这些设备的应用可以有效地降低地震对建筑物的冲击,保护结构不受损害。

最后,建筑地震与抗震设计的研究也应该与现代科技相结合。

数字化建模、计算机仿真以及数据分析等技术的应用,可以帮助工程师更加准确地评估高层建筑的抗震性能,并根据实际情况进行相应的优化设计。

论述某高层建筑结构概念设计与抗震设计原则

论述某高层建筑结构概念设计与抗震设计原则

(二)桥墩内力计算墩桩顶的最大竖向力计算比较简单,这里不再赘述;墩桩顶水平力计算,运用柔性墩理论中的集成刚度法,将桥面汽车制动力及梁体混凝土收缩、徐变、温差、地震产生的水平力在全联墩台进行分配,最后根据不同组合的墩桩顶水平力、弯矩及对应墩桩顶竖向力进行桩基各截面内力计算。

对于横向陡边坡上的桥墩设计,同一墩位2个(3个)墩柱存在较悬殊的无支长度差异,因刚度差异造成桥墩横桥向受力分配的不均匀。

(三)桥台内力计算除了受与桥墩相似的荷载之外,桥台竖向还受土压力、负摩阻力、搭板自重等荷载的作用;水平荷载增加了土压力,其影响复杂,设计时需注意以下几点:1.软土地基上带基桩的钢筋混凝土薄壁桥台土压力计算按深层考虑。

2.软基路段桥台应尽量设置为与路线正交的形式,减小台身长度,在适当的位置设置伸缩缝,以缩短受拉区长度,减小台身砼的收缩变形量,抑制台身的竖向、斜向裂缝的发生。

3.埋置式桥台土压力一般是以原地面或一般冲刷线起计算的,对较差土质,需要进行验算,确定是否考虑地面以下台后深层土对桩水平力的影响。

4.桥头路基沉降、滑动验算。

首先,路基沉降过大、桥头跳车、台背和梁端过早损坏,加大竖向土压力及负摩阻力,造成桥台盖梁开裂及桩基不均匀下沉、路面开裂及路基渗水,促使路基失稳。

其次,由于路基滑动使桥台所承受的水平土压力已远大于计算值,对于桥头高路基和处于改河、填沟段或路基外不远处有沟、河的,更要注意深层滑动的验算。

(四)桩筋及桩长设计注意事项1.理论上说,应根据桩内弯矩包络图进行桩基各截面的配筋计算,实际中通常是根据最大负弯矩处进行配筋,从桩顶一直伸到最大负弯矩一半处以下一定锚固长度位置,减少一半配筋再一直伸至弯矩为零以下一定锚固长度位置,再以下为素混凝土,对于软基,桩主筋最好穿过软土层。

2.软土地质条件下,桥梁桩基计算不能简单地采用常规的计算方法,而应根据实际的受力特点进行分析。

用“假设有效桩长”的计算方法,计算出桩的最大弯矩及弯矩零点,而后进行配筋。

高层建筑结构设计难点分析

高层建筑结构设计难点分析

高层建筑结构设计难点分析
高层建筑的结构设计是建筑工程中的重要环节,也是一个有挑战性的任务。

以下是高
层建筑结构设计中的几个主要难点分析:
1. 抗震设计:高层建筑经常面临地震的挑战,因此抗震设计是高层建筑结构设计中
的重点难点。

抗震设计需要考虑地震力的作用,建筑结构的强度和刚度,以及地基的稳定性。

对于超高层建筑来说,还需要考虑到高层建筑震动与环境的相互作用以及风振效应。

2. 风力设计:高层建筑的高度使其容易受到风的影响,因此风力设计是高层建筑结
构设计的另一个难点。

风力设计需要考虑到建筑物的外形、物理特性以及周围环境的影响,以确定建筑物的抗风能力和稳定性。

3. 结构强度设计:高层建筑的结构强度设计需要考虑到建筑物自重、荷载、温度等
因素,以满足建筑物的安全性和稳定性要求。

在高层建筑中,由于结构自重和承载荷载的
增加,会给结构设计带来更大的困难。

4. 建筑材料选择:高层建筑结构设计中还需要考虑到合适的建筑材料选择。

建筑材
料需要满足高层建筑的强度、刚度和耐久性要求,并且还需要考虑到材料的重量、耐候性、施工方便性等因素。

5. 施工技术:高层建筑的施工过程对结构设计也会带来一定的挑战。

由于高层建筑
的高度和复杂性,施工过程需要采用先进的技术和方法,确保建筑物的结构安全和施工进
度的控制。

建筑知识:高层建筑的抗震设计和建设要点

建筑知识:高层建筑的抗震设计和建设要点

建筑知识:高层建筑的抗震设计和建设要点随着城市化进程的加速,高层建筑在城市中的比例也越来越大。

然而,地震是我们不能忽略的自然灾害。

建筑物的抗震稳定性是关键,并且对于高层建筑来说尤其重要。

本文将描述高层建筑的抗震设计和建设要点。

1.建筑基础设计建筑物基础是建筑承重的基础。

高层建筑的基础要求具有足够的强度、稳定性和抗振能力。

因此,在基础设计方面应尽可能选址到地质条件良好的地方,这样可以增强建筑抗震能力。

2.结构设计建筑物结构设计是确保建筑物在地震下抗震稳定性的重要因素。

因此,在结构设计方面,应有十分成熟的设计方案,用以增加建筑物在地震条件下的承载能力。

3.材料选择材料的选择对建筑物的抗震稳定性具有很大的影响。

建筑物各部分所使用的材料都有自己的强度、延展性、硬度和刚性。

为了确保建筑物在地震条件下抗震稳定性,应选用高强度、高耐久性和弹性大的材料来建造。

4.抗震支撑及耗能设计在设计建筑时,支撑和耗能器是重要部分。

支撑和耗能器可以在地震条件下减轻地震荷载,达到减小建筑物震动的效果。

支撑和耗能器在高层建筑的设计中则是重要步骤。

5.地震控制系统设计地震控制系统是高层建筑在地震条件下抗震稳定性的核心组成部分。

地震控制系统能够在地震时改变建筑物的固有频率,达到减轻地震荷载、减低地震影响的效果。

6.建筑结构刚度和稳定性设计建筑结构的刚度和稳定性是建筑物在地震条件下抗震稳定性的重要保证。

在设计时,应根据建筑物的高度和形状等因素来考虑建筑物的刚度和稳定性。

7.抗震设施的保养和修理高层建筑的抗震设施需要定期进行检查和维护,以确保在地震条件下,抗震设施能够起到预期的作用。

建筑物在日常维护和维修过程中,需要特别注意设备的使用,避免人为破坏,达到长远的使用效果。

总之,在高层建筑的设计和建设过程中,不仅要考虑到建筑的美观和实用性,更要充分考虑到建筑物的抗震稳定性。

抗地震设计的重要性应该无需强调,不仅对建筑本身的保护,也对于居住在其中的居民健康和生命安全具有至关重要的意义。

高层建筑结构抗震设计(全文)

高层建筑结构抗震设计(全文)

高层建筑结构抗震设计(全文)范本一:高层建筑结构抗震设计一:引言1.1 背景介绍1.2 目的和范围1.3 参考文献二:建筑设计概述2.1 建筑物特点2.2 结构形式选择2.3 抗震设计目标三:荷载计算3.1 建筑物自重计算3.2 预测地震作用3.3 设计地震动参数3.4 水平荷载计算3.5 竖向荷载计算4.1 设计方法选择4.2 结构材料选择4.3 基础设计4.4 框架结构设计4.5 剪力墙结构设计4.6 钢结构设计4.7 防护与加固五:结构分析5.1 静力分析5.2 动力分析5.3 稳定性分析六:局部构件设计6.1 梁柱设计6.2 墙体设计6.3 地板设计6.4 楼梯设计7.1 焊接连接设计7.2 螺栓连接设计7.3 锚固设计八:施工措施8.1 浇筑顺序8.2 材料验收8.3 施工工艺九:结构监测与维护9.1 测量方法9.2 监测周期9.3 维护注意事项十:风险评估与应急预案10.1 结构风险评估10.2 应急预案制定附件:结构设计图纸、计算表格等相关文件法律名词及注释:1. 抗震设计:根据地震动力学理论和规范要求,对建筑物进行设计,使其具有一定的抗震能力,能够在地震作用下保持稳定和安全。

2. 结构形式:建筑物的结构类型,如框架结构、剪力墙结构、框剪结构等。

3. 基础设计:建筑物的基础结构设计,包括承台、承台桩、基础柱等。

4. 静力分析:根据建筑物的几何和材料特性,通过静力学原理进行的结构分析。

5. 动力分析:根据地震动力学理论,通过模拟地震作用下的结构反应,进行的结构分析。

6. 锚固设计:对结构中的锚固件进行设计,保证其连接强度和稳定性。

范本二:高层建筑结构抗震设计一:序言1.1 文档背景1.2 文档目的和范围1.3 参考文献二:建筑设计概况2.1 建筑特点介绍2.2 结构形式选择说明2.3 抗震设计目标确定三:荷载计算3.1 建筑物自重计算方法3.2 预测地震作用3.3 设计地震动参数选取3.4 水平荷载计算过程3.5 竖向荷载计算分析四:结构设计4.1 结构设计方法选择 4.1.1 弹性设计方法 4.1.2 塑性设计方法4.2 结构材料选择与说明 4.2.1 混凝土的选用 4.2.2 钢材的选用4.3 基础设计与优化4.4 框架结构设计要点4.5 剪力墙结构设计方法4.6 钢结构设计与优化4.7 防护与加固策略五:结构分析5.1 静力分析方法与结果5.2 动力分析方法与结果5.3 稳定性分析方法与结果六:局部构件设计6.1 梁柱设计6.2 墙体设计6.3 地板设计6.4 楼梯设计七:连接件设计7.1 焊接连接件设计要点7.2 螺栓连接件设计要点7.3 锚固设计要点八:施工措施8.1 施工工艺流程8.2 建筑材料验收规范8.3 浇筑顺序与技术要求九:结构监测与维护9.1 结构监测方法及频率9.2 维护注意事项及要求十:风险评估与应急预案制定10.1 结构风险评估要点10.2 应急预案制定规则与流程附件:结构设计图纸、计算表格等相关文件法律名词及注释:1. 抗震设计:根据地震动力学理论和规范要求,对建筑物进行设计,使其具有一定的抗震能力,能够在地震作用下保持稳定和安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高层建筑设计与抗震设计
[摘要] 随着新型结构、高性能材料的出现人类建筑也势必再上新台阶,新型结构搞成建筑要求同时能满足建筑物的使用功能和外观要求,这就需要从目前抗震设计现状出发,本文首先从高层建筑抗震设计的特点出发,结合其设计的要点,最后具体阐述高层建筑设计与抗震设计。

[关键词] 高层建筑建筑设计抗震设计建筑结构
引言
随着我国建筑设计行业的飞速发展,对高层建筑的设计也越来越重视。

然而,对于一个高层结构的设计,遇到的问题可能错综复杂,只能具体问题具体分析。

工程实践表明在高层结构的设计过程中,设计人员只有抗震概念清晰,构造措施得当,应用合适的结构分析软件三者有机结合才能取得比较理想的结果,在这个过程中抗震构造重于结构计算。

本文对建筑抗震进行必要的理论分析,从而探索高层建筑的设计理念、方法,采取必要的抗震措施。

本文简单阐述高层建筑设计与抗震设计,从中领悟其要点。

一、高层建筑抗震设计的特点
1.1刚柔相济。

在建筑抗震设计过程中若一味的提高结构抗力,增加结构刚度,则会导致结构刚度大则在地震发生过程中地震作用也会相应增大,即在增加结构刚度的同时也增强了地震作用,
当地震发生时则往往造成建筑物局部受损最后导致建筑物各个
击破;而若建筑物刚度太柔虽然可以依靠其柔性消减外力,但容易导致建筑物过大形变而不能使用,甚至在地震发生时导致整体倾覆。

因此在高层建筑物设计过程中应坚持刚柔相济原则,即建筑物在地震过程中既能满足变形要求又能减小地震力的双重目标。

1.2多道设防。

由于每次强震之后都会伴随多次余震,
因此在建筑物的抗震设计过程中若只有一道设防,则其在首次被破坏后而余震来临时其结构将因损伤积累而倒塌,因此,建筑物的抗震结构体系应由若干个延性较好的分体系组成,在地震发生时由具有较好延性的结构构件协同工作来抵挡地震作用。

二、高层建筑抗震设计要点
2.1结构规则性
建筑物尤其是高层建筑物设计应符合抗震概念设计要求对建筑进行合理的布置。

大量地震灾害表明平立面简单且对称的结构类型建筑物在地震时具有较好的抗震性能,因为该种结构建筑容易估计出其地震反映易于采取相应的抗震构造措施并且进行细部处理。

建筑结构的规则性是指建筑物在平立面外形尺寸抗侧力构件布置、承载力分布等多方面因素要求。

要求建筑物平面对称均匀体型简单结构刚度质量沿建筑物竖向变化均匀,同时应保证建筑物有足够的扭转刚度以减小结构的扭转影响,并应尽量满足建筑物在竖向上重力荷载受力均匀以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。

2.2层间位移限制
高层建筑都具有较大的高宽比,其在风力和地震作用下往往能够产生较大的层间位移,甚至会超过结构的位移限值。

而国内普遍认为该位移限值大小与结构材料、结构体系甚至装修标准以及侧向荷载等诸多因素有关,其中钢筋混凝土结构的位移限值(一般在
1/400-1/700范围内)则比钢结构(1/200-1/500范围内)要求严格,风荷载作用下的限值比地震作用下的要求严格因此在进行高层建筑结构设计时应根据建筑物的实际情况以及所处的地理位置进行设计,既要满足其具有足够的刚度又要避免结构在水平荷载的作用下产生过大的位移而影响结构的承载力、稳定性以及正常使用功能等。

2.3控制地震扭转效应
大量事实表明,当建筑结构的平面布置等不规则、不对称导致建筑层间水平荷载合力中心与建筑结构刚度中心不重合,在地震发生时建筑结构除发生水平位移外还易发生扭转性破坏甚至会导致结构整体倒塌,因此在结构设计中应充分重视扭转的影响。

由于建筑物在扭转作用下各片抗侧力结构的层间变形不同,其中距刚心较远的结构边缘的抗侧力单元的层间侧移最大;同时在上下刚度不均匀变化的结构中,各层的刚度中心未能在同一轴线上,甚至会产生较大差距,以上情况都会使各层结构的偏心距和扭矩发生改变,因此,在设计过程中应对各层的扭转修正系数分别计算。

计算时应主要控制周期比、位移比两个重要指标,即当两个控制参数的计算结果不
能满足要求时则必须对其进行调整。

当周期比不满足要求时可采用加大抗侧力构件截面或增加抗侧力构件数量的方法,并应将抗侧力构件尽可能的均匀布置在建筑四周,以减小刚度中心与质量中心的相对偏心,若调整构件刚度不能满足效果时则应调整抗侧力构件布置,以增大结构抗扭刚度。

具体做法为当结构刚度富余量较小可采取均衡加强结构外围刚度,富余量较大则可采取在加强外围刚度的同时均衡的消弱结构内部中心抗侧力构件刚度的方法进行处理;当结构位移比不满足要求时则一般采取增加最大位移处构件刚度减小最小处位移构件刚度、在最大位移处局部加剪力墙、增加框架部分侧向刚度和设置防震缝将不规则平面重新划分为相对规则平面的方法进行处理。

三、高层建筑结构抗震设计
3.1 抗震措施
在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。

当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。

而且,强柱弱梁,强剪弱弯和强节点弱构件
在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计理念
我国《建筑抗震规范》(gb50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。

当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。

建筑物一般不受损坏或不需修理仍可继续使用。

因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。

当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。

但经一般修理或不需修理仍可继续使用。

因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。

当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。

不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。

因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:
第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算
出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准
的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造
措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。

第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。

并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3.3 高层建筑结构的抗震设计方法
我国的《建筑抗震设计规范》(gb50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

结束语
随着社会经济的发展和人们生活水平的提高,对高层建筑结构设计也提出了更高的要求。

发展先进计算理论,加强计算机的应用,
加快新型高强、轻质、环保建材的研究与应用,使建筑结构设计更加安全、适用、可靠、经济是当务之急。

其中,打破建筑结构设计中的墨守成规,充分发挥结构工程师的创新能力,是相当必要的。

因为他们是结构设计革命的推动者和执行者。

这则需要工程界和教育界进行共同的努力。

参考文献
1.戴国莹,李德虎,建筑结构抗震鉴定及加固的若干问题,建筑结构,1999(4)
2.高立人,王跃,结构设计的新思路——概念设计,工业建筑,1999(1)
3.朱镜清.结构抗震分析原理[m].地震出版社,2002.11.
作者简介:王浩宇(1985-),男,广东人,供职于广州江河幕墙系统工程有限公司。

相关文档
最新文档