2017-2018学年河北省阜城中学高一下学期期末考试数学(理)试题
河北省2017—2018学年高一数学下学期期末考试试卷(二)
河北省2017—2018学年高一数学下学期期末考试试卷(二)(理科)(考试时间120分钟满分150分)一、单项选择题(本大题包括12小题,每小题5分,共60分)1.已知集合A={x|﹣1<x<2},B={x|x≥﹣1},则A∩B=()A.(﹣1,1] B.(﹣1,2)C.∅D.[﹣1,2]2.直线y=﹣2x+3与直线y=kx﹣5互相垂直,则实数k的值为()A.B.2 C.﹣2 D.﹣13.已知等比数列{a n}的各项均为正数,且a2,a3,2a1成等差数列,则该数列的公比为()A.1+B.1±C.﹣1 D.14.设a>b>0,c∈R,则下列不等式恒成立的是()A.a|c|>b|c|B.ac2>bc2C.a2c>b2c D.<5.设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.106.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()A. B. C. D.7.在△ABC中,若=2,则△ABC的形状是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定8.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m9.设实数x,y满足约束条件,则x2+(y+2)2的取值范围是()A.[,17] B.[1,17]C.[1,]D.[,]10.已知函数f(x)=sin(2x+)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为πB.函数f(x)是偶函数C.函数f(x)的图象关于直线对称D.函数f(x)在区间[0,]上是增函数11.设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)12.在△ABC中,∠C=,∠B=,AC=2,M为AB中点,将△ACM沿CM折起,使A,B之间的距离为2,则三棱锥M﹣ABC的外接球的表面积为()A.12πB.16πC.20πD.32π二、填空题(本大题包括4小题,每小题5分,共20分)13.点(﹣1,2)到直线y=x的距离是______.14.已知关于x的不等式﹣2x2+mx+n≥0的解集为[﹣1,],则m+n=______.15.已知△ABC是边长为1的正三角形,动点M在平面ABC内,若,,则的取值范围是______.16.函数的图象形如汉字“囧”,故称其为“囧函数”.下列命题正确的是______.①“囧函数”的值域为R;②“囧函数”在(0,+∞)上单调递增;③“囧函数”的图象关于y轴对称;④“囧函数”有两个零点;⑤“囧函数”的图象与直线y=kx+b(k≠0)的图象至少有一个交点.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.已知函数f(x)=lg(2+x)+lg(2﹣x).(1)求函数f(x)的定义域;(2)若不等式f(x)>m有解,求实数m的取值范围.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且csinB=bcos C=3.(I)求b;(Ⅱ)若△ABC的面积为,求c.19.如图所示,在正方体ABCD﹣A1B1C1D1中,M是AB上一点,N是A1C的中点,MN ⊥平面A1DC.(1)求证:AD1⊥平面A1DC;(2)求MN与平面ABCD所成的角.20.在等差数列{a n}中,a1=1,又a1,a2,a5成公比不为1的等比数列.(Ⅰ)求数列{a n}的公差;(Ⅱ)设b n=,求数列{b n}的前n项和.21.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且,若E、F分别为PC、BD的中点.(Ⅰ)证明:EF∥平面PAD;(Ⅱ)求二面角B﹣PD﹣C的正切值.22.过点O(0,0)的圆C与直线y=2x﹣8相切于点P(4,0).(1)求圆C的方程;(2)在圆C上是否存在两点M,N关于直线y=kx﹣1对称,且以MN为直径的圆经过原点?若存在,写出直线MN的方程;若不存在,说明理由.参考答案一、单项选择题1.B.2.A.3.A.4.D.5.B 6.D.7.C.8.B 9.A.10.C.11.D 12.B.二、填空题13.答案为:.14.答案为:015.答案为:[﹣1,﹣)16.答案为:③⑤;三、解答题17.解:(1)要使函数的解析式有意义,自变量x须满足:,可得﹣2<x<2.故函数f(x)=lg(2+x)+lg(2﹣x)的定义域为(﹣2,2).(2)∵不等式f(x)>m有解,∴m<f(x)max,令t=4﹣x2,∵﹣2<x<2,∴0<t≤4,∵y=lgx,为增函数,∴f(x)的最大值为lg4,∴m的取值范围为m<lg4.18.解:(Ⅰ)由正弦定理得sinCsinB=sinBcosC,又sinB≠0,所以sinC=cosC,C=45°.因为bcosC=3,所以b=3.…(Ⅱ)因为S=acsinB=,csinB=3,所以a=7.据余弦定理可得c2=a2+b2﹣2abcosC=25,所以c=5.…19.(1)证明:由ABCD﹣A1B1C1D1为正方体,得CD⊥平面ADD1A1,AD1⊂平面ADD1A1,∴CD⊥AD1,又AD1⊥A1D,且A1D∩CD=D,∴AD1⊥平面A1DC;(2)解:∵MN⊥平面A1DC,又由(1)知AD1⊥平面A1DC,∴MN∥AD1,∴AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,∵D1D⊥平面ABCD,∴∠D1AD即为AD1与平面ABCD所成的角,由正方体可知,∴MN与平面ABCD所成的角为.20.解:(I)设等差数列{a n}的公差为d,因为a1=1,所以a n=1+d(n﹣1)…又a1,a2,a5成公比不为1的等比数列,则…所以(1+d)2=1×(1+4d),解得d=2或d=0(舍…(Ⅱ)由(Ⅰ)得,a n=1+2(n﹣1)=2n﹣1,所以…则…21.解:方法1:(Ⅰ)证明:连结AC,在正方形ABCD中,F为BD中点∴F为AC中点又E是PC中点,在△CPA中,EF∥PA…且PA⊆平面PAD,EF⊄平面PAD∴EF∥平面PAD….(Ⅱ)解:设PD的中点为M,连结EM,MF,则EM⊥PD易知EF⊥面PDC,EF⊥PD,PD⊥面EFM,PD⊥MF∴∠EMF是二面角B﹣PD﹣C的平面角….Rt△FEM中,,所以.故所求二面角的正切值为….方法2:另解:如图,取AD的中点O,连结OP,OF.∵PA=PD,∴PO⊥AD.∵侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD,而O,F分别为AD,BD的中点,∴OF∥AB,又ABCD是正方形,故OF⊥AD.∵,∴PA⊥PD,.以O为原点,直线OA,OF,OP为x,y,z轴建立空间直线坐标系,则有,,,,,.∵E为PC的中点,∴.(Ⅰ)易知平面PAD的法向量为而,且,∴EF∥平面PAD.(Ⅱ)∵,∴,∴,从而PA⊥CD,又PA⊥PD,PD∩CD=D,∴PA⊥平面PDC,而PA⊂平面PAD,∴平面PDC⊥平面PAD,所以平面PDC的法向量为.设平面PBD的法向量为.∵,∴由可得,令x=1,则y=1,z=﹣1,故,∴,即二面角B﹣PD﹣C的余弦值为,二面角B﹣PD﹣C的正切值为.22.解:(1)由已知得圆心经过点P(4,0)、且与y=2x﹣8垂直的直线上,它又在线段OP的中垂线x=2上,所以求得圆心C(2,1),半径为,所以圆C的方程为(x﹣2)2+(y﹣1)2=5.…(2)假设存在两点M,N关于直线y=kx﹣1对称,则y=kx﹣1通过圆心C(2,1),求得k=1,所以设直线MN为y=﹣x+b,代入圆的方程得2x2﹣(2b+2)x+b2﹣2b=0.设M(x1,﹣x1+b),N(x2,﹣x2+b),又•=x1•x2+(b﹣x1)(b﹣x2)=2x1•x2﹣b(x1+x2)=b2﹣3b=0,解得b=0或b=3,这时△>0,符合条件,所以存在直线MN,它的方程为y=﹣x,或y=﹣x+3符合条件.…。
河北省2017—2018学年高一数学下学期期末考试试卷(共4套)
河北省2017—2018学年高一数学下学期期末考试试卷(一)(考试时间120分钟满分150分)一、单项选择题(每题5分,共60分)1.若a>b>c,且a+b+c=0,则下列不等式中正确的是()A.ab<ac B.ac<bc C.a|b|>c|b|D.a2>b2>c22.设α、β表示不同的平面,l表示直线,A、B、C表示不同的点,给出下列三个命题:①若A∈l,A∈α,B∈l,B∈α,则l⊂α②若A∈α,A∈β,B∈α,B∈β,则α∩β=AB③若l∉α,A∈l,则A∉α其中正确的个数是()A.1 B.2 C.3 D.43.已知等差数列{a n}中,a3=8,a8=3,则该数列的前10项和为()A.55 B.45 C.35 D.254.已知直线2x+2my﹣1=0与直线3x﹣2y+7=0垂直,则m的值为()A.﹣ B.3 C.D.5.在△ABC中,若,则△ABC的形状一定是()A.等腰三角形B.钝角三角形C.等边三角形D.直角三角形6.圆x2+y2﹣4y=0被过原点且倾斜角为45°的直线所截得的弦长为()A.B.2C.D.27.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.1 C.6 D.48.若圆O1:(x﹣3)2+(y﹣4)2=25和圆O2:(x+2)2+(y+8)2=r2(5<r<10)相切,则r等于()A.6 B.7 C.8 D.99.△ABC的内角A,B,C所对的边长分别为a,b,c,若acosC+ccosA=2bsinA,则A的值为()A. B.C. D.或10.已知点P(x,y)在不等式组表示的平面区域上运动,则z=的取值范围是()A.[1,]B.[0,1]C.[1,]D.[0,]11.在正项等比数列{a n}中,已知a4=,a5+a6=3,则a1a2…a n的最小值为()A. B. C.D.12.已知三棱锥P﹣ABC的四个顶点都在球O的球面上,△ABC是边长为2的正三角形,PA⊥平面ABC,若三棱锥P﹣ABC的体积为2,则球O的表面积为()A.18πB.20πC.24πD.20π二、填空题(每题5分,共20分)13.底面半径为,母线长为2的圆锥的体积为.14.设a>0,则9a+的最小值为.15.已知a,b,c是三条不同的直线,α,β是两个不同的平面,给出下列命题:①a⊂α,α∥β,则a∥β;②若a∥α,α∥β,则a∥β;③若α∥β,a⊥α,则a⊥β;④若a∥β,a∩α=A,则a与β必相交;⑤若异面直线a与b所成角为50°,b∥c,a与c异面,则a与c所成角为50°.其中正确命题的序号为.16.已知数列{a n}满足a1=2且a n+1=a n﹣a n(n≥2),则a10=.﹣1三、解答题(共70分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=sinB,c=6,B=30°.(1)求b的值;(2)求△ABC的面积.18.平行四边形ABCD的一组邻边所在直线的方程分别为x﹣2y﹣1=0与2x+3y﹣9=0,对角线的交点坐标为(2,3).(1)求已知两直线的交点坐标;(2)求此平行四边形另两边所在直线的方程.19.已知等差数列{a n}满足a1=2,a2n﹣a n=2n.(1)求该数列的公差d和通项公式a n;(2)设S n为数列{a n}的前n项和,若S k=110,求k的值.20.已知圆C:x2+y2+4x﹣6y﹣3=0(1)求过点M(﹣6,﹣5)的圆C的切线方程;(2)若圆C上有两点P(x1,y1)、Q(x2,y2)关于直线x+my+5=0对称,且x1+x2+2x1x2=﹣14,求m的值和直线PQ的方程.21.如图,直三棱柱ABC﹣A1B1C1的底面为正三角形,E、F分别是BC、CC1的中点(1)证明:平面AEF⊥平面B1BCC1;(2)若D为AB中点,∠CA1D=45°且AB=2,设三棱锥F﹣AEC的体积为V1,三棱锥F﹣AEC与三棱锥A1﹣ACD的公共部分的体积为V2,求的值.22.设数列{a n}的前n项和为S n,且2S n=a n+1﹣2n+1+1(n∈N*),a1=1.(1)求证:数列{+1}为等比数列,并求a n;(2)设数列{b n}满足b n(3n﹣a n)=,数列{b n}的前n项和为T n,求证;T n<1.参考答案一、单项选择题1.A.2.B.3.A.4.C.5.A.6.D.7.A.8.C.9.D.10.B.11.C.12.B.二、填空题13.答案为:π.14.答案为:13.15.答案为:①③④⑤.16.答案为:﹣2.三、解答题17.解:(1)由正弦定理可得:,可得:a=,…2分由余弦定理可得:b2=a2+c2﹣2accosB,即b2=3b2+36﹣2×,…4分整理可得:b2﹣9b+18=0,解得:b=6或3…6分(2)当b=6时,a=6,所以S=acsinB=9…9分当b=3时,a=3,所以S=acsinB=…12分18.解:(1)由,解得:,即两直线的交点坐标是(3,1);(2)由(1)得已知两直线的交点坐标为(3,1),对角线的交点坐标为(2,3),因此,与点(3,1)相对的一个顶点为(1,5),由平行四边形的性质得另两边与已知两边分别平行,因此另两边所在直线方程分别是:y﹣5=﹣(x﹣1)与y﹣5=(x﹣1),即x﹣2y+9=0与2x+3y﹣17=0.19.解:(1)数列{a n}等差数列,d==2,∴数列的公差d=2,由等差数列通项公式可知:a n=a1+(n﹣1)d=2+2(n﹣1)=2n,通项公式a n=2n;(2)由等差数列前n项和公式S n==n2+n,S k=110,即k2+k=110,解得k=10,或k=﹣11(舍去),∴k的值10.20.解:(1)由圆C:x2+y2+4x﹣6y﹣3=0,得(x+2)2+(y﹣3)2=16,∴圆C的圆心坐标C(﹣2,3),半径为4,当过点M的圆C的切线的斜率不存在时,切线方程为x=﹣6,符合题意;当过点M的圆C的切线的斜率存在时,设切线方程为y+5=k(x+6),即kx﹣y+6k﹣5=0.由题意得:d==4,解得k=.∴过点M的圆C的切线方程为y+5=(x+6),即3x﹣4y﹣2=0,综上,过点M的圆C的切线方程为x=﹣6或3x﹣4y﹣2=0;(2)∵点P、Q在圆上且关于直线x+my+5=0对称,∴圆心(﹣2,3)在直线上,代入得m=﹣1,∵直线PQ与直线y=x+5垂直,∴设PQ方程为y=﹣x+b,将直线y=﹣x+b代入圆方程,得2x2+2(5﹣b)x+b2﹣6b﹣3=0,△=4(5﹣b)2﹣4×2×(b2﹣6b﹣3)>0,得1﹣4<b<1+4,由韦达定理得x1+x2=b﹣5,x1•x2=,∵x1+x2+2x1x2=﹣14,∴b﹣5+2×=﹣14,即b2﹣5b+6=0,解得b=2或b=3,成立,∴所求的直线方程为y=﹣x+2或y=﹣x+3.21.证明:(1)∵BB1⊥平面ABC,AE⊂平面ABC,∴AE⊥BB1,∵△ABC是等边三角形,E是BC的中点,∴AE⊥BC,又BC⊂平面B1BCC1,BB1⊂平面B1BCC1,BC∩BB1=B,∴AE⊥平面B1BCC1,又AE⊂平面AEF,∴平面AEF⊥平面B1BCC1.(2)由(1)得AE⊥平面B1BCC1,同理可得:CD⊥平面AA1B1B,∴CD⊥A1D,∵AB=2,∴AD=1,CD=,∵∠CA1D=45°,∴A1D=CD=,∴AA1==.∴FC==.∴V1=V F﹣AEC===.设AE,CD的交点为O,AF,A1C的交点为G,过G作GH⊥AC于H,∵△A1GA∽△CGF,∴,∴GH==,∵OD=OC,∴S△AOC =S△ACD==,∴V2=V G﹣AOC===.∴==.22.证明:(1)∵2S n=a n+1﹣2n+1+1(n∈N*),∴n≥2时,2S n﹣1=a n﹣2n+1,相减可得2a n=a n+1﹣2n﹣a n,化为: +1=, +1=,∴数列{+1}为等比数列,首项与公比都为.∴+1=,化为:a n=3n﹣2n.(2)b n(3n﹣a n)=,∴b n===﹣.∴数列{b n}的前n项和为T n=++…+=1﹣<1,∴T n<1.河北省2017—2018学年高一数学下学期期末考试试卷(二)(理科)(考试时间120分钟满分150分)一、单项选择题(本大题包括12小题,每小题5分,共60分)1.已知集合A={x|﹣1<x<2},B={x|x≥﹣1},则A∩B=()A.(﹣1,1] B.(﹣1,2)C.∅D.[﹣1,2]2.直线y=﹣2x+3与直线y=kx﹣5互相垂直,则实数k的值为()A.B.2 C.﹣2 D.﹣13.已知等比数列{a n}的各项均为正数,且a2,a3,2a1成等差数列,则该数列的公比为()A.1+B.1±C.﹣1 D.14.设a>b>0,c∈R,则下列不等式恒成立的是()A.a|c|>b|c|B.ac2>bc2C.a2c>b2c D.<5.设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.106.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()A. B. C. D.7.在△ABC中,若=2,则△ABC的形状是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定8.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m9.设实数x,y满足约束条件,则x2+(y+2)2的取值范围是()A.[,17]B.[1,17]C.[1,]D.[,]10.已知函数f(x)=sin(2x+)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为πB.函数f(x)是偶函数C.函数f(x)的图象关于直线对称D.函数f(x)在区间[0,]上是增函数11.设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)12.在△ABC中,∠C=,∠B=,AC=2,M为AB中点,将△ACM沿CM折起,使A,B之间的距离为2,则三棱锥M﹣ABC的外接球的表面积为()A.12πB.16πC.20πD.32π二、填空题(本大题包括4小题,每小题5分,共20分)13.点(﹣1,2)到直线y=x的距离是______.14.已知关于x的不等式﹣2x2+mx+n≥0的解集为[﹣1,],则m+n=______.15.已知△ABC是边长为1的正三角形,动点M在平面ABC内,若,,则的取值范围是______.16.函数的图象形如汉字“囧”,故称其为“囧函数”.下列命题正确的是______.①“囧函数”的值域为R;②“囧函数”在(0,+∞)上单调递增;③“囧函数”的图象关于y轴对称;④“囧函数”有两个零点;⑤“囧函数”的图象与直线y=kx+b(k≠0)的图象至少有一个交点.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.已知函数f(x)=lg(2+x)+lg(2﹣x).(1)求函数f(x)的定义域;(2)若不等式f(x)>m有解,求实数m的取值范围.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且csinB=bcos C=3.(I)求b;(Ⅱ)若△ABC的面积为,求c.19.如图所示,在正方体ABCD﹣A1B1C1D1中,M是AB上一点,N是A1C的中点,MN ⊥平面A1DC.(1)求证:AD1⊥平面A1DC;(2)求MN与平面ABCD所成的角.20.在等差数列{a n}中,a1=1,又a1,a2,a5成公比不为1的等比数列.(Ⅰ)求数列{a n}的公差;(Ⅱ)设b n=,求数列{b n}的前n项和.21.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且,若E、F分别为PC、BD的中点.(Ⅰ)证明:EF∥平面PAD;(Ⅱ)求二面角B﹣PD﹣C的正切值.22.过点O(0,0)的圆C与直线y=2x﹣8相切于点P(4,0).(1)求圆C的方程;(2)在圆C上是否存在两点M,N关于直线y=kx﹣1对称,且以MN为直径的圆经过原点?若存在,写出直线MN的方程;若不存在,说明理由.参考答案一、单项选择题1.B.2.A.3.A.4.D.5.B 6.D.7.C.8.B 9.A.10.C.11.D 12.B.二、填空题13.答案为:.14.答案为:015.答案为:[﹣1,﹣)16.答案为:③⑤;三、解答题17.解:(1)要使函数的解析式有意义,自变量x须满足:,可得﹣2<x<2.故函数f(x)=lg(2+x)+lg(2﹣x)的定义域为(﹣2,2).(2)∵不等式f(x)>m有解,∴m<f(x)max,令t=4﹣x2,∵﹣2<x<2,∴0<t≤4,∵y=lgx,为增函数,∴f(x)的最大值为lg4,∴m的取值范围为m<lg4.18.解:(Ⅰ)由正弦定理得sinCsinB=sinBcosC,又sinB≠0,所以sinC=cosC,C=45°.因为bcosC=3,所以b=3.…(Ⅱ)因为S=acsinB=,csinB=3,所以a=7.据余弦定理可得c2=a2+b2﹣2abcosC=25,所以c=5.…19.(1)证明:由ABCD﹣A1B1C1D1为正方体,得CD⊥平面ADD1A1,AD1⊂平面ADD1A1,∴CD⊥AD1,又AD1⊥A1D,且A1D∩CD=D,∴AD1⊥平面A1DC;(2)解:∵MN⊥平面A1DC,又由(1)知AD1⊥平面A1DC,∴MN∥AD1,∴AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,∵D1D⊥平面ABCD,∴∠D1AD即为AD1与平面ABCD所成的角,由正方体可知,∴MN与平面ABCD所成的角为.20.解:(I)设等差数列{a n}的公差为d,因为a1=1,所以a n=1+d(n﹣1)…又a1,a2,a5成公比不为1的等比数列,则…所以(1+d)2=1×(1+4d),解得d=2或d=0(舍…(Ⅱ)由(Ⅰ)得,a n=1+2(n﹣1)=2n﹣1,所以…则…21.解:方法1:(Ⅰ)证明:连结AC,在正方形ABCD中,F为BD中点∴F为AC中点又E是PC中点,在△CPA中,EF∥PA…且PA⊆平面PAD,EF⊄平面PAD∴EF∥平面PAD….(Ⅱ)解:设PD的中点为M,连结EM,MF,则EM⊥PD易知EF⊥面PDC,EF⊥PD,PD⊥面EFM,PD⊥MF∴∠EMF是二面角B﹣PD﹣C的平面角….Rt△FEM中,,所以.故所求二面角的正切值为….方法2:另解:如图,取AD的中点O,连结OP,OF.∵PA=PD,∴PO⊥AD.∵侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD,而O,F分别为AD,BD的中点,∴OF∥AB,又ABCD是正方形,故OF⊥AD.∵,∴PA⊥PD,.以O为原点,直线OA,OF,OP为x,y,z轴建立空间直线坐标系,则有,,,,,.∵E为PC的中点,∴.(Ⅰ)易知平面PAD的法向量为而,且,∴EF∥平面PAD.(Ⅱ)∵,∴,∴,从而PA⊥CD,又PA⊥PD,PD∩CD=D,∴PA⊥平面PDC,而PA⊂平面PAD,∴平面PDC⊥平面PAD,所以平面PDC的法向量为.设平面PBD的法向量为.∵,∴由可得,令x=1,则y=1,z=﹣1,故,∴,即二面角B﹣PD﹣C的余弦值为,二面角B﹣PD﹣C的正切值为.22.解:(1)由已知得圆心经过点P(4,0)、且与y=2x﹣8垂直的直线上,它又在线段OP的中垂线x=2上,所以求得圆心C(2,1),半径为,所以圆C的方程为(x﹣2)2+(y﹣1)2=5.…(2)假设存在两点M,N关于直线y=kx﹣1对称,则y=kx﹣1通过圆心C(2,1),求得k=1,所以设直线MN为y=﹣x+b,代入圆的方程得2x2﹣(2b+2)x+b2﹣2b=0.设M(x1,﹣x1+b),N(x2,﹣x2+b),又•=x1•x2+(b﹣x1)(b﹣x2)=2x1•x2﹣b(x1+x2)=b2﹣3b=0,解得b=0或b=3,这时△>0,符合条件,所以存在直线MN,它的方程为y=﹣x,或y=﹣x+3符合条件.…河北省2017—2018学年高一数学下学期期末考试试卷(三)(文科)(考试时间120分钟满分150分)一、单项选择题(本大题包括12小题,每小题5分,共60分)1.已知集合A={x|﹣1<x<2},B={x|x≥﹣1},则A∩B=()A.(﹣1,1] B.(﹣1,2)C.∅D.[﹣1,2]2.直线y=﹣2x+3与直线y=kx﹣5互相垂直,则实数k的值为()A.B.2 C.﹣2 D.﹣13.已知等比数列{a n}的各项均为正数,且a2,a3,2a1成等差数列,则该数列的公比为()A.1+B.1±C.﹣1 D.14.设a>b>0,c∈R,则下列不等式恒成立的是()A.a|c|>b|c|B.ac2>bc2C.a2c>b2c D.<5.设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.106.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()A. B. C. D.7.在△ABC中,若=2,则△ABC的形状是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定8.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m9.设实数x,y满足约束条件,则x2+(y+2)2的取值范围是()A.[,17]B.[1,17]C.[1,]D.[,]10.已知函数f(x)=sin(2x+)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为πB.函数f(x)是偶函数C.函数f(x)的图象关于直线对称D.函数f(x)在区间[0,]上是增函数11.设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)12.在△ABC中,∠C=,∠B=,AC=2,M为AB中点,将△ACM沿CM折起,使A,B之间的距离为2,则三棱锥M﹣ABC的外接球的表面积为()A.12πB.16πC.20πD.32π二、填空题(本大题包括4小题,每小题5分,共20分)13.点(﹣1,2)到直线y=x的距离是______.14.已知关于x的不等式﹣2x2+mx+n≥0的解集为[﹣1,],则m+n=______.15.已知△ABC是边长为1的正三角形,动点M在平面ABC内,若,,则的取值范围是______.16.函数的图象形如汉字“囧”,故称其为“囧函数”.下列命题正确的是______.①“囧函数”的值域为R;②“囧函数”在(0,+∞)上单调递增;③“囧函数”的图象关于y轴对称;④“囧函数”有两个零点;⑤“囧函数”的图象与直线y=kx+b(k≠0)的图象至少有一个交点.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=lg(2+x)+lg(2﹣x).(1)求函数f(x)的定义域;(2)若不等式f(x)>m有解,求实数m的取值范围.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且csinB=bcos C=3.(I)求b;(Ⅱ)若△ABC的面积为,求c.19.如图所示,在正方体ABCD﹣A1B1C1D1中,M是AB上一点,N是A1C的中点,MN ⊥平面A1DC.(1)求证:AD1⊥平面A1DC;(2)求MN与平面ABCD所成的角.20.在等差数列{a n}中,a1=1,又a1,a2,a5成公比不为1的等比数列.(Ⅰ)求数列{a n}的公差;(Ⅱ)设b n=,求数列{b n}的前n项和.21.如图,平面PAD⊥平面ABCD,ABCD是正方形,∠PAD=90°,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.(1)求异面直线EG、BD所成角的余弦值.(2)求三棱椎E﹣FGC的体积.22.过点O(0,0)的圆C与直线y=2x﹣8相切于点P(4,0).(1)求圆C的方程;(2)在圆C上是否存在两点M,N关于直线y=kx﹣1对称,且以MN为直径的圆经过原点?若存在,写出直线MN的方程;若不存在,说明理由.参考答案一、单项选择题1.B.2.A.3.A.4.D.5.B 6.D.7.C.8.B 9.A.10.C.11.D 12.B.二、填空题13.答案为:.14.答案为:015.答案为:[﹣1,﹣)16.答案为:③⑤;三、解答题17.解:(1)要使函数的解析式有意义,自变量x须满足:,可得﹣2<x<2.故函数f(x)=lg(2+x)+lg(2﹣x)的定义域为(﹣2,2).(2)∵不等式f(x)>m有解,∴m<f(x)max,令t=4﹣x2,∵﹣2<x<2,∴0<t≤4,∵y=lgx,为增函数,∴f(x)的最大值为lg4,∴m的取值范围为m<lg4.18.解:(Ⅰ)由正弦定理得sinCsinB=sinBcosC,又sinB≠0,所以sinC=cosC,C=45°.因为bcosC=3,所以b=3.…(Ⅱ)因为S=acsinB=,csinB=3,所以a=7.据余弦定理可得c2=a2+b2﹣2abcosC=25,所以c=5.…19.(1)证明:由ABCD﹣A1B1C1D1为正方体,得CD⊥平面ADD1A1,AD1⊂平面ADD1A1,∴CD⊥AD1,又AD1⊥A1D,且A1D∩CD=D,∴AD1⊥平面A1DC;(2)解:∵MN⊥平面A1DC,又由(1)知AD1⊥平面A1DC,∴MN∥AD1,∴AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,∵D1D⊥平面ABCD,∴∠D1AD即为AD1与平面ABCD所成的角,由正方体可知,∴MN与平面ABCD所成的角为.20.解:(I)设等差数列{a n}的公差为d,因为a1=1,所以a n=1+d(n﹣1)…又a1,a2,a5成公比不为1的等比数列,则…所以(1+d)2=1×(1+4d),解得d=2或d=0(舍…(Ⅱ)由(Ⅰ)得,a n=1+2(n﹣1)=2n﹣1,所以…则…21.解:(1)如图,取BC中点N,连结NG,∵BD∥NG,∴∠EGN就是异面直线EG,BD的夹角.取NG的中点O,连结AO,EO,由已知可求得:∴即为所求;(2)过E做EM⊥PD于M,∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,CD⊥AD,∴CD⊥面PAD,∵EM⊂面PAD,∴EM⊥CD,∵CD∩PD=D,∴EM⊥面PCD,∵PA=AD=2,∠PAD=90°,∴∠APD=45°,又∵E、F、G分别是线段PA、PD、CD的中点,∴..22.解:(1)由已知得圆心经过点P(4,0)、且与y=2x﹣8垂直的直线上,它又在线段OP的中垂线x=2上,所以求得圆心C(2,1),半径为,所以圆C的方程为(x﹣2)2+(y﹣1)2=5.…(2)假设存在两点M,N关于直线y=kx﹣1对称,则y=kx﹣1通过圆心C(2,1),求得k=1,所以设直线MN为y=﹣x+b,代入圆的方程得2x2﹣(2b+2)x+b2﹣2b=0.设M(x1,﹣x1+b),N(x2,﹣x2+b),又•=x1•x2+(b﹣x1)(b﹣x2)=2x1•x2﹣b(x1+x2)=b2﹣3b=0,解得b=0或b=3,这时△>0,符合条件,所以存在直线MN,它的方程为y=﹣x,或y=﹣x+3符合条件.…河北省2017—2018学年高一数学下学期期末考试试卷(四)(文科)(考试时间120分钟满分150分)一、单项选择题(共12小题,每小题5分,满分60分)1.设S n是等差数列{a n}的前n项和,若=()A.1 B.﹣1 C.2 D.2.从集合A={﹣1,1,2}中随机选取一个数记为k,从集合B={﹣2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为()A.B.C.D.3.在等比数列{a n}中,若a1+a4=18,a2+a3=12,则这个数列的公比为()A.2 B.C.2或D.﹣2或4.已知a,b,c分别是△内角A,B,C的对边,且(b﹣c)(sinB+sinC)=(a﹣)•sinA,则角B的大小为()A.30°B.45°C.60°D.120°5.在△ABC中,角A,B,C所对的边分别为a,b,c.且c=4,B=45°,面积S=2,则b等于()A.5 B.C. D.256.若x,y满足约束条件,则z=x﹣y的最大值为()A.B.1 C.3 D.﹣17.我校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到编号之和为48,则抽到的最小编号为()A.2 B.3 C.4 D.58.执行如图所示的程序框图,则输出的结果是()A.B.C.D.9.设点A(﹣2,3),B(3,2),若直线ax+y+2=0与线段AB没有交点,则a的取值范围是()A.(﹣∞,﹣]∪[,+∞)B.(﹣,)C.[﹣,]D.(﹣∞,﹣]∪[,+∞)10.若当方程x2+y2+kx+2y+k2=0所表示的圆取得最大面积时,则直线y=(k﹣1)x+2的倾斜角α=()A. B.C. D.11.已知直线ax+by+c﹣1=0(b、c>0)经过圆x2+y2﹣2y﹣5=0的圆心,则的最小值是()A.9 B.8 C.4 D.212.若圆(x﹣5)2+(y﹣1)2=r2上有且仅有两点到直线4x+3y+2=0的距离等于1,则r的取值范围为()A.[4,6]B.(4,6)C.[5,7]D.(5,7)二、填空题(本大题共有4小题,每小题5分,共20分)13.已知A={(x,y)|x+y≤8,x≥0,y≥0},B={(x,y)|x≤2,3x﹣y≥0},若向区域A随机投一点P,则点P落入区域B的概率为______.14.已知样本数据如表所示,若y与x线性相关,且回归方程为,则=______.,则x+2y的最小值是______.16.若关于x的不等式组的整数解集为{﹣2},则实数k的取值范围是______.三、解答题(本大题共有5小题,共70分)17.已知三点A(1,0),B(0,),C(2,),求△ABC外接圆的方程.18.已知公差不为0等差数列{a n}满足:a1,a2,a7成等比数列,a3=9.(1)求{a n}的通项公式;(2)若数列{a n}的前n项和S n,求数列{}的前n项和T n.19.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且a=2csinA.(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a+b的值.20.某园林基地培育了一种新观赏植物,经过一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中x、y的值;(Ⅱ)在选取的样本中,从高度在80厘米以上以上(含80厘米)的植株中随机抽取2株,求所抽取的2株中至少有一株高度在[90,100]内的概率.21.某厂家拟在2010年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=3﹣(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2010年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2010年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2010年的促销费用投入多少万元时,厂家的利润最大.22.已知数列{a n}是首项为a1=,公比q=的等比数列,设b n+2=3log a n(n∈N*),数列{c n}满足c n=a n•b n.(Ⅰ)求数列{c n}的前n项和S n;(Ⅱ)若c n≤m2+m﹣1对一切正整数n恒成立,求实数m的取值范围.参考答案一、单项选择题1.A.2.A.3.C.4.A.5.A 6.A.7.B.8.B 9.B.10.A 11.A 12.B.二、填空题13.答案为:.14.答案为:﹣.15.答案为:4.16.答案为﹣3≤k<2.三、解答题17.解:设圆的一般方程为x2+y2+Dx+Ey+F=0,由题意知当y=,关于x的方程x2+Dx+3+F+E=0 的两个根为0,2,因此有D=﹣2,F+3+E=0,由(1,0)在圆上可得1+D+F=0,∴D=﹣2,E=﹣,F=1,∴圆的方程为.18.解:(1)设等差数列{a n}的公差是d(d≠0),∵a1,a2,a7成等比数列,a3=9,∴,解得,∴a n=a1+(n﹣1)d=4n﹣3;…6 分(2)由(1)可得,S n═=2n2﹣n,∴=2n﹣1,则数列{}是以2为公差、1为首项的等差数列,∴T n==n2,…12 分.19.解:(1)由及正弦定理得:,∵sinA≠0,∴在锐角△ABC中,.(2)∵,,由面积公式得,即ab=6①由余弦定理得,即a2+b2﹣ab=7②由②变形得(a+b)2=25,故a+b=5.20.解:(1)由题意得:样本容量n==50,y==0.004,x=0.100﹣0.004﹣0.010﹣0.016﹣0.040=0.030;(2)由题意得:高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,在这7株中随机抽取2株,共=21种方法,其中2株的高度都不在[90,100]内的情况有=10种,故所抽取的2株中至少有一株高度在[90,100]内的概率是1﹣=.21.解:(1)由题意可知当m=0时,x=1(万件),∴1=3﹣k⇒k=2.∴x=3﹣.每件产品的销售价格为1.5×(元),∴2010年的利润y=x•﹣(8+16x+m)=4+8x﹣m=4+8﹣m=﹣+29(m≥0).(2)∵m≥0时, +(m+1)≥2=8,∴y≤﹣8+29=21,当且仅当=m+1⇒m=3(万元)时,y max=21(万元).所以当该厂家2010年的促销费用投入3万元时,厂家的利润最大.22.解:(Ⅰ)∵数列{a n}是首项为a1=、公比q=的等比数列,∴a n=,又∵b n+2=3log a n=3n(n∈N*),∴b n=3n﹣2,c n=(3n﹣2),∴S n=1×+4×+…+(3n﹣5)+(3n﹣2),S n=1×+4×+…+(3n﹣5)+(3n﹣2),两式相减得:S n=+3(++…+)﹣(3n﹣2)=+3×﹣(3n﹣2)=﹣(3n+2),∴S n=﹣×;(Ⅱ)由(I)可知,c n=(3n﹣2),显然c n≤c1=c2=,又∵c n≤m2+m﹣1对一切正整数n恒成立,∴m2+m﹣1≥,即m2+4m﹣5≥0,解得:m≤﹣5或m≥1.。
河北省阜城中学2017-2018学年高一上学期第四次月考数学(理)试题 (2)
2017学年高一年级第4次月考试题数学理科1. 已知集合,集合,则等于()A. B. C. D.【答案】D【解析】由得:,结合可得,故选D.2. 下列函数中,既是奇函数又在区间上是增函数的是()A. B. C. D.【答案】A【解析】对于A,既是奇函数在区间上又是增函数,故A正确;对于B,为非奇非偶函数,故B错误;对于C,为偶函数,故C错误;对于D,为偶函数,故D错误;故选A.3. 一个水平放置的平面图形的直观图是一个底角为,腰和上底长均为1的等腰梯形,则该平面图形的面积等于()A. B. C. D.【答案】D【解析】试题分析:把直观图还原出原平面图象,如图所示,所以这个平面图形是一个直角梯形,它的面积为,故选D.考点:斜二测画法画直观图.4. 设,,,则()A. B. C. D.【答案】A【解析】已知底数和真数在1的两侧,,底数小于1,次数大于0,故,底数大于1,次数大于0,故>1.故可以得到。
故答案选A。
5. 如图,,,,,,直线,过三点确定的平面为,则平面的交线必过()A. 点B. 点C. 点,但不过点D. 点和点【答案】D【解析】由题意知,,,∴,又,∴,即在平面与平面的交线上,又,,∴点C在平面与平面的交线上,即平面的交线必过点和点,故选D.点睛:本题主要考查了平面的基本性质及推论.公理三是:如果两个平面有一个公共点则它们有一条公共直线且所有的公共点都在这条直线上,它是判断两个平面交线的依据,欲寻找平面与平面的交线,根据平面的基本性质中公理三,只须找出这两个平面的公共点即可. 6. 如图是一正方体被过棱的中点和顶点的两个截面截去两个角后所得的几何体,则该几何体的正视图为()【答案】B【解析】试题分析:棱看不到,故为虚线;棱AM可以看到,故为实线;显然正视图为答案B。
考点:三视图。
7. 两个平面平行的条件是()A. 一个平面内一条直线平行于另一个平面B. 一个平面内两条直线平行于另一个平面C. 一个平面内的任意一条直线平行于另一个平面D. 两个平面都平行于同一条直线【答案】C【解析】对于A,如图,,但,却相交,故A错误;对于B,如图8. 点分别是三棱锥的棱的中点,,,,则异面直线与所成的角为()A. B. C. D.【答案】A【解析】如图,取中点,连结、,∵、分别是三棱锥的棱、的中点,,,,∴,且,,且,∴为异面直线与所成的角或所成角的补角,∵,∴,∴异面直线与所成的角为,故选A.9. 如图,在四棱锥中,分别为上的点,且平面,则()A. B. C. D. 以上均有可能【答案】B【解析】∵MN∥平面PAD,平面PAC∩平面PAD=PA,MN⊂平面PAC,∴MN∥PA. 故选B.考点:直线与平面平行的性质.10. 已知正三棱锥的侧棱长是底面边长的2倍,则侧棱与底面所成的角的余弦值为()A. B. C. D.【答案】A【解析】已知正三棱锥的侧棱长是底面边长的2倍,设底面边长为1,侧棱长为2,连接顶点与底面中心,如图所示:则侧棱在底面上的射影长为,所以侧棱与底面所成角的余弦值等于,故选A. 11. 正三棱锥中,,,的中点为,一小蜜蜂沿锥体侧面由爬到点,最短路程是()A. B. C. D.【答案】A【解析】由题意,将侧面,,展开到一个平面,如下图所示:则中,,,,,,故,∴,即最短路线长是,故选A.点睛:多面体和旋转体表面上的最短距离问题的解法:求多面体表面上两点间的最短距离,一般将表面展开为平面图形,从而把它转化为平面图形内两点连线的最短长度问题,要注意的是,如果不是指定的两点间的某种特殊路径,其表面上两点间的距离应是按各种可能方式展开成平面图形后各自所得最短距离中的最小者.旋转体侧面上两点间的最短距离,如同多面体一样,将侧面展开,转化为展开面内两点连线的最短长度问题来解决.12. 方程的解的个数是()A. 0B. 1C. 2D. 3【答案】C【解析】在同一坐标系中画出函数与的图象,如图所示:易判断其交点个数为2个,则方程的解的个数也为2个,故选C.13. 设是定义在上的奇函数,当时,(为常数),则__________.【答案】考点:本题主要考查了函数奇偶性和解析式的求值运用。
〖数学期末〗2017-2018学年高一下期末考试数学试题含答案
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin 585的值为( )A .2 B .2- C .2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537 C.37.378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式;(II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)44cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ=18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x π⎛⎫-⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫-⎪⎝⎭,.因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-.. 19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
2017-2018学年高一数学下学期期末考试试题理 (VI)
2017-2018学年高一数学下学期期末考试试题理 (VI)说明:本卷满分150分,考试时间为2小时。
一、选择题:本大题共12小题,每小题5分,共60分。
1.设,,若,则( )A. B. C. D.2. 某中学有老教师25人,中年教师35人,青年教师45人,用分层抽样的方法抽取21人进行身体状况问卷调查,则抽到的中年教师人数为( )A. B. C. D. 3.若直线与直线垂直,则的值是( )A.或B.或C.或D.或14.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为( )A. B. C. 或 D. 或5. 已知四棱锥的三视图如图所示,则四棱锥的五个面中面积的最大值是( )A. 3B. 6C. 8D. 106.设,是两条不重合的直线, ,是两个不同的平面,有下列四个命题: ①若, ,则;②若, , ,则; (第5题) ③若, , ,则;④若, , ,则. 则正确的命题为( )A. ①②③B. ②③C. ③④D. ①④ 7.若, , ,则的最小值为( )A. B. C. D.8.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当否i > 4?x = 2x-1i = i +1i =1输入x 开 始原多少酒?”用程序框图表达如下图所示,即最终输出的,则一开始输入的的值为()A. B. C. D.9.正方体中,为棱的中点,则异面直线与所成角的余弦值为()A. B. C. D.(第8题)10. 已知的三边长构成公差为2的等差数列,且最大角为120°,则这个三角形的周长为()A. 15B. 18C. 21D. 2411.如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,其中恒成立的为()A. ①③B. ③④C. ①④D. ②③12.和点,使得,则实数的取值范围是()A. B. C. D.二、填空题:本大题共4小题,每小题5分,共20分。
2018学年河北省,高一下学期期末考试,数学试题 ,解析版10
第二学期期末考试高一年级数学试卷一、选择题1. 两直线与平行,则它们之间的距离为()A. B. C. D.2. 将边长为的正方形沿对角线折成一个直二面角.则四面体的内切球的半径为()A. 1B.C.D.3. 下列命题正确的是()A. 两两相交的三条直线可确定一个平面B. 两个平面与第三个平面所成的角都相等,则这两个平面一定平行C. 过平面外一点的直线与这个平面只能相交或平行D. 和两条异面直线都相交的两条直线一定是异面直线4. 在空间中,给出下面四个命题,则其中正确命题的个数为( )①过平面外的两点,有且只有一个平面与平面垂直;②若平面内有不共线三点到平面的距离都相等,则∥;③若直线与平面内的无数条直线垂直,则;④两条异面直线在同一平面内的射影一定是两平行线;A. 3B. 2C. 1D. 05. 已知直线与平行,则的值是()A. 0或1B. 1或C. 0或D.6. (文科)如果圆上总存在到原点的距离为的点,则实数的取值范围是()A. B. C. D.7. 若圆上有且只有一点到直线的距离为,则实数的值为()A. B. C. 或 D. 或8. 已知二面角为为垂足,,则异面直线与所成角的余弦值为()A. B. C. D.9. 如图所示,在圆的内接四边形中,平分,切于点,那么图中与相等的角的个数是()A. 4B. 5C. 6D. 710. 点是双曲线右支上一点,是圆上一点,点的坐标为,则的最大值为()A. 5B. 6C. 7D. 811. 为不重合的直线,为不重合的平面,则下列说法正确的是()A. ,则B. ,则C. ,则D. ,则12. 曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是()A. B. C. D.二、填空题13. 如图,网格纸上每个小正方形的边长为,若粗线画出的是某几何体的三视图,则此几何体的体积为__________.14. 若过定点且斜率为的直线与圆在第一象限内的部分有交点,则的取值范围是____________.15. 若点在圆上,点在圆上,则的最小值是__________.16. 直线截圆所得的两段弧长之差的绝对值是__________.三、解答题17. 已知三边所在直线方程:,,().(1)判断的形状;(2)当边上的高为1时,求的值.18. 如图,在三棱柱中,底面,且为等边三角形,,为的中点.求证:直线平面;求证:平面平面;(3)求三棱锥的体积.第二学期期末考试高一年级数学试卷一、选择题1. 两直线与平行,则它们之间的距离为()A. B. C. D.【答案】D【解析】试题分析:由两直线平行可知,所以距离为考点:直线方程及平行线间的距离2. 将边长为的正方形沿对角线折成一个直二面角.则四面体的内切球的半径为()A. 1B.C.D.【答案】D【解析】试题分析:设球心为,球的半径为,由,知,故选D.考点:1.球的切接问题;2.等体积转换.3. 下列命题正确的是()A. 两两相交的三条直线可确定一个平面B. 两个平面与第三个平面所成的角都相等,则这两个平面一定平行C. 过平面外一点的直线与这个平面只能相交或平行D. 和两条异面直线都相交的两条直线一定是异面直线【答案】C【解析】试题分析:A.三线交于一点时不一定在一个平面,故A不正确;B.正四棱锥中,侧面和底面所成角相等但不平行,故B不正确;C.直线和平面的位置关系只能是在面内或面外,因为直线经过平面外一点,故不在面内,必在面外,在面外包括平行和相交,故C正确;D.可以交于一点,则共面,故D不正确.考点:直线和平面的位置关系;平面和平面的位置关系.4. 在空间中,给出下面四个命题,则其中正确命题的个数为( )①过平面外的两点,有且只有一个平面与平面垂直;②若平面内有不共线三点到平面的距离都相等,则∥;③若直线与平面内的无数条直线垂直,则;④两条异面直线在同一平面内的射影一定是两平行线;A. 3B. 2C. 1D. 0【答案】D【解析】当过平面外的两点在垂直于平面的直线上时,命题①不成立;不共线三点在平面的两侧时,②不成立;无数条直线平行时,③不成立;在正方体中中,与是异面直线,在面中的射影是点,故④错。
【全国市级联考】河北省2017-2018学年高一下学期期末考试数学试题+答案
2017-2018学年高一下学期期末考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B. C. D.2. 已知向量,若,则()A. B. C. D.3. 如图是2017年某校在元旦文艺晚会上,七位评委为某同学舞蹈打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A. B. C. D.4. 已知圆圆心是直线与轴的交点,且圆与直线相切,则圆的方程是()A. B.C. D.5. 若以连续掷两次骰子分别得到的点数作为点的坐标,则点落在圆外部的概率是()A. B. C. D.6. 要得到函数的图象,只需将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度7. 如图是计算的值的程序框图,在图中①、②处应填写的语句分别是()A. B.C. D.8. 任取,则使的概率是()A. B. C. D.9. 平面上有四个互异的点,已知,则的形状为()A. 直角三角形B. 等腰三角形C. 等腰直角三角形D. 等边三角形10. 已知,函数在上单调递减,则的取值范围是()A. B. C. D.11. 已知直线与圆交于不同的两点是坐标原点,且有,那么的取值范围是()A. B. C. D.12. 已知定义在上的奇函数,满足,且当时,,若方程在区间上有四个不同的根,则的值为()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在一次对人体脂肪百分比和年龄关系的研究中,研究人员获得如下一组样本数据:由表中数据求得关于的线性回归方程为,若年龄的值为,则脂肪含量的估计值为__________.14. 已知,则的值为__________.15. 若圆与恒过点的直线交于两点,则弦的中点的轨迹方程为__________.16. 如图,半径为的扇形的圆心角为,点在上,且,若,则__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知为两个非零向量,且.(1)求与的夹角;(2)求.18. 某地政府调查了工薪阶层人的月工资收人,并根据调查结果画出如图所示的频率分布直方图,其中工资收人分组区间是.(单位:百元)(1)为了了解工薪阶层对工资收人的满意程度,要用分层抽样的方法从调查的人中抽取人做电话询问,求月工资收人在内应抽取的人数;(2)根据频率分布直方图估计这人的平均月工资为多少元.19. 已知,且.(1)求的值;(2)若,求的值.20. 某游乐场推出了一项趣味活动,参加活动者需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为,奖励规则如下:①若,则奖励玩具一个;②若,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.21. 已知,函数(其中,且图象在轴右侧的第一个最高点的横坐标为,并过点.(1)求函数的解析式及单调增区间;(2)若对任意都有,求实数的取值范围.22. 如图,在平面直角坐标系中,已知以为圆心的圆及其上一点.(1)是否存在直线与圆有两个交点,并且,若有,求此直线方程,若没有,请说明理由;(2)设点满足:存在圆上的两点和使得,求实数的取值范围.第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B. C. D.【答案】B【解析】试题分析:。
2017-2018学年高一数学下学期期末考试试题 理 (IV)
2017-2018学年高一数学下学期期末考试试题 理 (IV)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC 中,B = 60那么角A 等于: ··················· ( )A .135B .90C .45D .302. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-a 2=3bc 且b =3a ,则△ABC 不可能...是( ) A .等腰三角形 B .钝角三角形 C .直角三角形D .锐角三角形3. 如果命题“p 且q ”与命题“p 或q ”都是假命题,那么 ( )(A ) 命题“非p ”与命题“非q ”的真值不同(B ) 命题“非p ” 与命题“非q ”中至少有一个是假命题 (C ) 命题p 与命题“非q ”的真值相同 (D ) 命题“非p 且非q ”是真命题 4. .已知命题,,则( ) A ., B . , C .,D .,5. 已知, 且, 则 ( )A. 6B. -6C. 4D.-46.设0<b <a <1,则下列不等式成立的是: ·················· ( ) A . ab <b 2<1B .C . a 2<ab <1D .7. 已知满足:=3,=2,=4,则=( )A .B .C .3D 8. 某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A .2+ 5B .4+ 5C .2+2 5D .59. 已知数列{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于( ) A .1 B.53 C .2 D .310. 在各项均为正数的等比数列中,若 , 则……等于( ) A.5B. 6C. 7D.811. 的( )条件A.充分不必要B.必要不充分C.充分且必要D.既不充分也不必要 12.若x , y 是正数,且 ,则xy 有 ( )A.最大值16 B.最小值 C.最小值16 D.最大值第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 13. 不等式的解为 。
河北省阜城中学2017-2018学年高一10月月考数学(理)试题 Word版含答案
2017-2018学年高一年级10月考试数学试题(理)时间:120分钟 分数:150分注意:第ⅠⅡ卷都写在答题卡上第Ⅰ卷(共60分)一、选择题:(共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合A ={0,1},则下列式子错误的是( )A .0∈AB .{1}∈AC .∅⊆AD .{0,1}⊆A2.集合{}y x A ,,1=,{}y x B 2,,12=,若B A =,则实数x 的取值集合为( ) A .⎭⎬⎫⎩⎨⎧21 B .⎭⎬⎫⎩⎨⎧-21,21 C .⎭⎬⎫⎩⎨⎧21,0 D .⎭⎬⎫⎩⎨⎧-21,21,0 3. 已知全集{}1,2,3,4U =,集合{}{}1,2,2,3A B ==,则()U C A B = ( )A .{}2B .{}3C .{}2,3D .{}2,3,44.若集合}65432{,,,,=P ,}753{,,=Q ,若Q P M =,则M 的子集个数为( )A .5 B .4 C .3 D .25.(112 )0-(1-0.5-2)÷(278)23 的值为( ) A .-13 B.13 C.43 D.736.下列各组函数中的两个函数是相等函数的是( )A .()()()011f x x g x =-=与B .()()f x x g x ==与C .()()2f x xg x ==与 D.()()f x g x == 7.设()1,00,01,0x f x x x >⎧⎪==⎨⎪-<⎩,()1,0,x g x x ⎧=⎨⎩为有理数为无理数,则()()f g π=( )A .1B .0C .-1D .π8..二次函数f(x)=ax 2+2a 是区间[-a ,a 2]上的偶函数,又g(x)=f(x-1),则g(0),g ⎝ ⎛⎭⎪⎫32,g(3)的大小关系为( ) A .g ⎝ ⎛⎭⎪⎫32<g(0)<g(3) B .g(0)<g ⎝ ⎛⎭⎪⎫32<g(3) C .g ⎝ ⎛⎭⎪⎫32<g(3)<g(0) D .g(3)<g ⎝ ⎛⎭⎪⎫32<g(0) 9.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为( )A .g(x)=2x 2-3xB .g(x)=3x 2-2xC .g(x)=3x 2+2xD .g(x)=-3x 2-2x10.函数f(x)=⎩⎪⎨⎪⎧2x -x 2,0≤x≤3,x 2+6x ,-2≤x<0的值域是( ) A .RB .[1,+∞)C .[-8,1]D .[-9,1]11.函数y =(12)x -2的图象必过( ) A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限12.函数f(x)是定义在R 上的奇函数,下列说法:①f(0)=0;②若f(x)在[0,+∞)上有最小值-1,则f(x)在(-∞,0]上有最大值1; ③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数. 其中正确的个数是( ) A .0 B .1 C .2 D .3第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分).13.用列举法表示集合M =⎩⎨⎧⎭⎬⎫m ⎪⎪⎪10m +1∈Z ,m ∈Z =________. 14.已知f(x)=ax 3+bx -4,其中a ,b 为常数,若f(-2)=2,则f(2)的值等于________.15.若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.16.已知函数f (x )=⎩⎪⎨⎪⎧(2a -1)x +7a -2(x <1),a x (x ≥1)在(-∞,+∞)上单调递减,则实数a 的取值范围是________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)设A ={x|2x 2+ax +2=0},B ={x|x 2+3x +2a =0},且A∩B ={2}.(1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A)∪(∁U B)18.(本小题12分)(1)求函数y 的定义域.(2)已知函数()2y f x =-定义域是[]0,4,求()11f x y x +=-的定义域. 19.(本小题12分)设集合A ={x|0<x -m<3},B ={x|x≤0或x≥3},分别求满足下列条件的实数m 的取值范围:(1)A∩B =∅;(2)A ∪B =B.20.(本小题12分)已知函数f(x)=4x 2-kx -8.(1)若y =f(x)在区间[2,10]上具有单调性,求实数k 的取值范围;(2)若y=f(x)在区间(-∞,2]上有最小值为-12,求实数k的值.21.(本小题12分)已知函数f(x)=x m-2x且f(4)=72.(1)求m的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.22.(本小题12分)若函数y=f(x)=a·3x-1-a3x-1为奇函数.(1)求a的值;(2)求函数的定义域;(3)求函数的值域.2017-2018学年高一年级10月考试数学试题答案(理)1.B.2.A3.D4.B5.D6.B7.B8.A.9.B 10.C. 11.D 12.C.13.{-11,-6,-3,-2,0,1,4,9} 14.-1015.解析 因为函数y =ax +1ax 2+2ax +3的定义域为R , 所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点.当a =0时,函数y =13的图象与x 轴无交点; 当a ≠0时,则Δ=(2a)2-4·3a<0,解得0<a<3.综上所述,a 的取值范围是[0,3).16.[解析] 由题意知⎩⎪⎨⎪⎧ 2a -1<0,0<a <1,9a -3≥a ,解得38≤a <12. [答案] [38,12) 17.解:(1)由交集的概念易得2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={-5,2}. (2)由并集的概念易得U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2. 由补集的概念易得∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12.所以(∁U A)∪(∁U B)=⎩⎨⎧⎭⎬⎫-5,12.18试题分析:(1)由于2249(2)50x x x -+=-+>对于x R ∈恒成立。
【全国百强校】河北省2017-2018学年高一下学期期末考试数学试题+答案
2017—2018学年高一年级下学期期末考试数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,则( )A. B. C. D.2. 设等差数列的前项和为,已知,则的值为( )A. 38B.C.D. 193. 下列函数中同时具有以下性质:“①最小正周期为;②图象关于直线对称;③在上是增函数”的一个函数是( )A. B. C. D.4. 已知为空间中两条不同的直线,为空间中两个不同的平面,下列命题正确的是( )A. 若,,,则B. 若,,则C. 若在平面内的射影互相平行,则D. 若,,则5. 已知直线与平行,则的值是( )A. 1或3B. 1或5C. 3或5D. 1或26. 直线绕着其上一点沿逆时针方向旋转,则旋转后得到的直线的方程为( )A. B. C. D.7. 已知某几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D.8. 若圆上有且只有两个点到直线的距离等于,则半径的取值范围是( )A. B. C. D.9. 已知,则( )A. 3B.C.D.10. 设正实数满足,则当取得最大值时,的最大值为( )A. 1B. 0C.D.11. 已知在三棱锥中,两两垂直,,是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球表面积是( )A. B. C. D.12. 已知定义在上的函数满足,且当时,,其中,若方程恰有3个不同的实数根,则的取值范围是( )A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知圆的半径为2,圆心在轴的正半轴上,直线与圆相切,则圆的一般方程是__________.14. 如图,三棱锥中,,,点分别是的中点,则异面直线所成角的余弦值为__________.15. 在平面区域内取点,过点作曲线的两条切线,切点分别为,设,则当角最小时,的值为__________.16. 已知数列的首项为,且,若,则数列的前项和__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,分别是角的对边,且.(1)求的大小;(2)若,,求的面积.18. 如图,在三棱柱中,底面是边长为2的等边三角形,为的中点.(1)求证:平面;(2)若四边形是正方形,且,求直线与平面所成角的正弦值.19. 已知,点.(1)求过点的圆的切线方程;(2)若点是坐标原点,连接,求的面积.20. 已知等比数列的公比,且,.(1)求数列的通项公式;(2)设,是数列的前项和,若对任意正整数不等式恒成立,求实数的取值范围.21. 如图,在四棱锥中,底面,,,,,.(1)求证:平面平面;(2)试在棱上确定一点,使截面把该几何体分成的两部分与的体积之比为;(3)在(2)的条件下,求二面角的余弦值.22. 已知函数在上有最大值1和最小值0,设.(1)求的值;(2)若不等式在上有解,求实数的取值范围;(3)若方程(为自然对数的底数)有三个不同的实数解,求实数的取值范围.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,则( )A. B. C. D.【答案】D【解析】本题选择D选项.2. 设等差数列的前项和为,已知,则的值为( )A. 38B.C.D. 19【答案】C【解析】由等差数列的性质可知.即..故本题答案选.3. 下列函数中同时具有以下性质:“①最小正周期为;②图象关于直线对称;③在上是增函数”的一个函数是( )A. B. C. D.【答案】A【解析】对于,其周期,为最大值,故其图象关于对称,由得,,∴在上是增函数,即具有性质①②③,本题选择A选项.4. 已知为空间中两条不同的直线,为空间中两个不同的平面,下列命题正确的是( )A. 若,,,则B. 若,,则C. 若在平面内的射影互相平行,则D. 若,,则【答案】A【解析】由题知,则,又,则.正确;,可能会现,错误;若在内的射影互相平行,两直线异面也可以,错误;若,可能会出现,错误.故本题选.5. 已知直线与平行,则的值是( )A. 1或3B. 1或5C. 3或5D. 1或2【答案】C【解析】由两直线平行得,当k−3=0时,两直线的方程分别为y=−1 和,显然两直线平行。
河北省阜城中学2017-2018学年高一下学期第八次月考数
2017-2018学年第二学期第8次月考试(文数)高一文科数学试题第Ⅰ卷(共60分)一、选择题(共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.﹣1060o 的终边落在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.sin600°=( )A .2 B .2- C .12 D .12-3.如果点P (sinθ,cosθ)位于第四象限,那么角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.若角α终边经过点P (sin ),则sinα=( )A .B .C .12-D .2-5.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关; ④若sinα=sinβ,则α与β的终边相同; ⑤若cosθ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( ) A .1 B .2 C .3 D .46.若sinα>0且tanα<0,则2α的终边在( )A .第一象限B .第二象限C .第一象限或第三象限D .第三象限或第四象限7.化简=( )A .1B .﹣1C .tanαD .﹣tanα8.若θ是△ABC 的一个内角,且sinθcosθ=﹣,则sinθ﹣cosθ的值为( )A . 2- B .C .2-D .9.若,化简=( )A .sinθ﹣cosθB .sinθ+cosθC .()+-cos θsin θD .cosθ﹣sinθ 10.已知x ∈(﹣,0),tanx=﹣,则sin (x +π)等于( ) A . B .﹣C .﹣D .11.若函数f (x )=sin (2x +φ)在上单调递减,则φ的值可能是( )A .2πB .πC .D .2π-12.已知函数 ()2sin()25f x x ππ=+,若对任意实数x ,都有f (x 1)≤f (x )≤f(x 2),则|x 2﹣x 1|的最小值是( ) A .π B .2π C .2 D .4第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分).13.已知α是第二象限角,4cos()25πα-=,则tanα= .14.已知sin cos αα+=,且α∈(0,),则1tan tan αα+的值为 .15.已知23cos 4a x a -=-,x 是第二、三象限角,则a 的取值范围是 .16.若函数y=sin (2x +φ)(0<φ<π)的图象关于直线x=对称,则φ的值为 .三、解答题(共70分).17.(10分)已知扇形的圆心角为α(α>0),半径为R . (1)若α=60°,R=10cm ,求圆心角α所对的弧长. (2)若扇形的周长是8cm ,面积是4cm 2,求α和R . 18.(12分)(1)计算:cos (﹣);(2)已知[]232ππ∈x ,,且sinx=﹣,求tanx 的值.19.(12分)已知tanθ=﹣2,求值: (1);(2)sin 2θ﹣2cos 2θ20.(12分)已知α为第三象限角,(1)化简f (α) (2)若31cos()25πα-=,求f (α)的值.21.(12分)已知(2)6f x π=-x 2sin (). (1) 求函数f (x )的单调递增区间与对称轴方程; (2)当x ∈[0,]时,求f (x )的最大值与最小值.22.(12分)已知x ∈[﹣,].(1)求函数y=cosx 的值域;(2)求函数y=﹣3sin 2x ﹣4cosx +4的最大值和最小值.2017-2018学年高一年级第8次月考试(文数)答案一. 选择题二.填空题13.﹣.14.2.15.(﹣1,).16..三、解答题.17.(10分)已知扇形的圆心角为α(α>0),半径为R.(1)若α=60°,R=10cm,求圆心角α所对的弧长.(2)若扇形的周长是8cm,面积是4cm2,求α和R.【解答】解:(1)α=60°=,∴弧长==.(2)由题意可得:2R+Rα=8,=4,联立解得α=R=2.18.(1)计算:cos(﹣);(2)已知x∈[,],且sinx=﹣,求tanx的值.【解答】解:(Ⅰ)cos(﹣)===﹣.(Ⅱ)∵x∈[,],且sinx=﹣,∴,∴cosx==﹣.∴tanx==.19.(12分)已知tanθ=﹣2,求值:(1);(2)sin2θ﹣2cos2θ【解答】解:∵tanθ=﹣2,∴(1)==﹣;(2)sin2θ﹣2cos2θ===.20.(12分)已知α为第三象限角,(1)化简f(α)(2)若,求f(α)的值.【解答】解:(1)∵α为第三象限角,==﹣cosα.(2)∵,∴﹣sinα=,解得:sinα=﹣,可得:cosα=﹣=﹣.∴f(α)=﹣cosα=.21.(12分)已知f(x)=2sin(2x﹣).(Ⅰ)求函数f(x)的单调递增区间与对称轴方程;(Ⅱ)当x∈[0,]时,求f(x)的最大值与最小值.【解答】解:(Ⅰ)因为,由,求得,可得函数f(x)的单调递增区间为,k∈Z.由,求得.故f(x)的对称轴方程为,其中k∈Z.(Ⅱ)因为,所以,故有,故当即x=0时,f(x)的最小值为﹣1,当即时,f(x)的最大值为2.22.(12分)已知x∈[﹣,].(1)求函数y=cosx的值域;(2)求函数y=﹣3sin2x﹣4cosx+4的最大值和最小值.【解答】解:(1)∵x∈[﹣,],∴当x=时,函数y=cosx取最小值cos=﹣,当x=0时,函数y=cosx取最大值cos0=1,∴函数y=cosx的值域为[﹣,1];(2)化简可得y=﹣3sin2x﹣4cosx+4=﹣3(1﹣cos2x)﹣4cosx+4令cosx=t,由(1)知t∈[﹣,1];代入可得y=3t2﹣4t+1由二次函数的性质可知,当t=时,y取最小值,当t=﹣时,y取最大值.。
河北省阜城中学2017-2018学年高一上学期第五次月考数学(理)试题
2017学年高一年级第5次月考试题理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】D【解析】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.视频2.函数的定义域是()A. B. C. D.【答案】D【解析】试题分析:因为要使函数有意义,则满足,解得x 的取值范围是,选D.考点:本题主要考查了函数定义域的求解问题的运用。
点评:解决该试题的关键是理解对数真数大于零,同时偶此根式下被开方数为非负数,并且从内向外依次保证表达式有意义即可。
易错点就是忽略对数真数大于零这个前提条件。
3.函数的零点所在的大致区间是()A. B. C. D.【解析】∵,∴,由函数零点判定定理可得函数的零点所在的大致区间为.选B.4.已知,则的值为()A. -2B. 2C. -3D. 3【答案】C【解析】由题意得,∴.选C.5.直线经过原点和,则它的倾斜角是()A. B. C. 或 D.【答案】B【解析】由题意得直线的斜率为,故其倾斜角为135°.选B.6.与直线y=2x+1垂直,且在y轴上的截距为4的直线的斜截式方程是( )A. y=x+4B. y=2x+4C. y=-2x+4D. y=-x+4【答案】D【解析】设与直线垂直的直线的斜截式方程为∵与直线垂直的直线在轴上的截距为4∴∴与直线垂直的直线的斜截式方程为故选D7.不重合的三个平面最多可以把空间分成()个部分A. 4B. 5C. 7D. 8【解析】①三个平面两两平行时,可以把空间分成四部分;②当两个平面平行,第三个平面同时与两个平面相交时,把空间分成6部分;③当两个平面相交,第三个平面同时与两个平面相交时,且交线互相平行时,把空间分成7部分;④当两个平面相交,第三个平面同时与两个平面相交时,且交线互不平行时,把空间分成8部分.故不重合的三个平面最多可以把空间分成8个部分.选D.点睛:解题时要分别讨论三个平面的位置关系,根据它们位置关系的不同,来确定平面把空间分成的部分数目.同时在解题时要三个平面的所有的位置关系都要考虑全面,避免因考虑不全而造成的错误.8.半径为的半圆卷成一个圆锥的侧面,则这个圆锥的体积为()A. B. C. D.【答案】A【解析】,选A.9.若点到直线的距离为1,则的值为()A. B. C. 或 D. 或【答案】D【解析】由题意得,即,解得或.选D.10.设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是( )A. ①和②B. ②和③C. ③和④D. ①和④【解析】 由题意,若,则是正确的; 若,则,因为,则是正确的;若,则与可能平行、相交或异面,所以是错误的; 若,则,此命题不正确,因为垂直于同一平面的两个平面可能平行、相交,不能确定两个平面之间的平行关系,所以是错误的。
2017-2018学年高一下学期期末考试数学(理)试卷
2017—2018学年度第二学期期末考试高一数学试题(理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名.准考证号等填写在答题卷规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卷规定的位置上. 4.考试结束后,将答题卷交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求的。
1.若0>>b a ,则下列不等式成立的是( )A .2211ba> B .33b a >C .bc ac >D .22bc ac >2.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( ) A . 至多有一次中靶 B . 只有一次中靶C . 两次都中靶D . 两次都不中靶3.某班一学习小组8位同学化学测试成绩用茎叶图表示(如图), 其中茎为十位数,叶为个位数,则这组数据的中位数是( )A .5.90B . 5.91C .92D .5.924.已知点()2,a 到直线012:=--y x l 的距离为5,则a 的值为( )A .1-或4B .1或4C .4D .1-5.执行如图所示的程序框图,若输入n 的值为5,则输出 的s 的值为( ) A . 15B . 11C . 7D . 46.由12,111+==+n n a a a 给出的数列{}n a 的第7项为( ) A .511 B .255 C .127D .637.某高中学校三个年级共有学生6000名,需要用分层抽样的方法抽取一个容量为40的样本,已知高一年级有学生1800名,高二年级抽出的样本人数占样本总数的103,则抽出的样本中高三年级学生人数为( ) A .14B .15C .16D .178.等差数列{}n a 中,0>n a 且前 10 项和2010=S ,则65a a ⋅的最大值是( ) A .2B .4C .9D .169.在ABC ∆中,三个内角C B A ,,所对的边分别为c b a ,,,若内角C B A ,,依次成等差数列,且不等式0652>-+-x x 的解集为{}c x a x <<,则b 等于( ) A .3B .5C .7D .310.在等比数列{}n a 中,5,254==a a ,则数列{}n a lg 的前8项和等于( )A .4B .5C .6D .711.设变量y x ,满足⎪⎩⎪⎨⎧≤+≤≥110y y x x ,则()122++y x 的最大值是( )A .4B .5C .16D .1712.实数y x ,满足0,0≥≥y x ,且2=+y x ,则1222+++y y x x 的最小值为( )A .54B .56C .53D .1第Ⅱ卷(选择题,共90分)二、填空题:(每小题5分,共20分)13.生物兴趣小组的同学到野外调查某种植物的生长情况,共测量了30株该植物的高度(单位:厘米),并画出样本频率分布直方图如下,则高度不低于25厘米的有 株.14.若向正ABC ∆内任意投入一点,则点恰好落在ABC ∆的内切圆内的概率为________.15.秦九韶算法是中国古代求多项式0111)(a x a x a x a x f n n n n ++++=-- 的值的优秀算法,直到今天仍很先进,若7030010002026)(2345++-+-=x x x x x x f则利用秦九韶算法易求得)7(f =__________. 16.给出以下四个结论:①若等比数列{n a }满足132,6a S 且==,则公比2q =-; ②数列{}n a 的通项公式12cos+=πn n a n ,前n 项和为n S 则1812=S ;③若数列)(22+∈+=N n n n a n λ为单调递增数列,则λ取值范围是6->λ;④若数列{}n a 的通项1123-=n a n ,其前n 项和为n S ,则使0>n S 的n 的最小值为12;其中正确结论的序号为_____________.(写出所有正确的序号).三 解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题12分)设ABC ∆中,三个内角C B A ,,所对的边分别为c b a ,,,且222a bc c b =-+(1)求角A 的大小;(2)若ABC S c b a ∆=+=求,4,3.18.(本小题12分)已知直线082:1=++y x l ,R m m y m x m l ∈=--+++,085)2()1(:2(1)若两直线平行,求实数m 的值;(2)设1l 与x 轴交于点A ,2l 经过定点B ,求线段AB 的垂直平分线的一般式方程.19.(本小题12分)某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,所得数据如表所示:(1)试根据最小二乘法原理,求出y 关于x 的线性回归方程a x b yˆˆˆ+=; (2)试根据(1)求出的线性回归方程,预测记忆力为9的学生的判断力.参考公式:线性回归方程系数公式:x b y a x n x yx n y x bnii nii i ˆˆ,ˆ1221-=-⋅-=∑∑==20.(本小题12分)设R m ∈,函数]33)14(lg[)(2+++-=m x m mx x f 的定义域记为集合P(1)若2-=m ,求集合P ;(2)当0>m 时,求集合P .21.(本小题12分)设数列{}n a 的前n 项和为n S ,),1(,22N n n a S n n ∈≥-=, 数列{}n b 中,),1(,2,3,12121N n n b b b b b n n n ∈≥+===++ (1)求n a 和n b ; (2) 令nn n a ba b a b T +++=2211,是否存在正整数M 使得M T n <对一切正整数n 都成立?若存在,求出M 的最小值;若不存在,请说明理由. (3)令111--=+n n n a a c ,证明:),1(,231221N n n nc c c nn ∈≥<+++<-22.(本小题10分)在最强大脑的舞台上,为了与国际x 战队PK ,假设某季Dr.魏要从三名擅长速算的选手321,,A A A ,三名擅长数独的选手321,,B B B ,两名擅长魔方的选手21,C C 中各选一名组成中国战队.假定每名选手入选的可能性相等,则(1)求1A 被选中而2B 不被选中的概率; (2)求11,C A 不全被选中的概率.高一数学(理科)答案一、选择题1—6 BDBACC 7—12 CBCADA 二、填空题 13.15 14.93π15.56070 16.(2)(3)三、解答题 17.解:(1)由题可知,2122cos 222==-+=bc bc bc a c b A ……3分 3π=∴A ……5分(2)93)(93222=-+⇒=-+⇒=bc c b bc c b a ……7分37=∴bc ……9分 1237sin 21==∴∆A bc S ABC ……12分 18.解: (1)由题可知30)1(8)85(20)1()2(2-=⇒⎩⎨⎧≠+---=+-+m m m m m ……5分(2)由方程可得:)0,4(-A ……6分而2l 可变为0)5()82(=-++-+y x m y x)3,2(05082B y x y x ⇒⎩⎨⎧=-+=-+∴……8分 AB ∴的中点为)23,1(-而其中垂线的斜率为21-=-AB k ……10分 AB ∴的中垂线方程为)1(223+-=-x y ,即0124=++y x ……12分 19.解:(1)由题知:446532,94121086=+++==+++=y x ……2分344,15841412==∑∑==ii i i i x y x ……4分7.09434449415844ˆ2412241=⨯-⨯⨯-=-⋅-=∴∑∑==ii ii i x x yx y x b……7分 3.27.0ˆ-=-=∴x y a 故线性回归方程为3.27.0ˆ-=x y ……9分(2)当9=x 时,43.297.0ˆ=-⨯=y ……11分即该同学的记忆力为9时,预测他的判断力为4……12分 20.解:(1)0372*******<+-⇒>-+-⇒-=x x x xm⎭⎬⎫⎩⎨⎧<<=⇒=+-3213,21的根为0372而2x x P x x ……4分 (2)不等式变形为[]0而0)3()1(>>-+-m x m mx ……6分⎭⎬⎫⎩⎨⎧+><=<<>+∴m x x x P m m11或3时,210即311当……8分 {}3且时,21即311当≠∈===+x R x x P m m……10分 ⎭⎬⎫⎩⎨⎧>+<=><+3或11时,21即311当x m x x P m m ……12分21.解:(1)22222111=⇒+=⇒+=a S a S a n n而n n n n n n a a a S a S 222,22111=⇒-=-=+++n n n a 2221=⋅=∴-……2分又 ),1(,2,3b ,12121N n n b b b b n n n ∈≥+===++则数列{}n b 是以2为公差、首项为1的等差数列,即12-=n b n ……3分 (2)nn n n n a b a b a b T 212252321322211-++++=++=132212232121+-+++=∴n n n T 32122132<---=∴-nn n n T ……6分 3≥⇒M即存在正整数M 的最小值为3,使得原结论成立……7分 (3)由(1)可知121221--=⇒=+n n nnn c a 212212121211=--<--++k k k k221212121n c c c n =+++<+++∴ ……9分 又2223121)12(21211221)12(2112121111-+⋅-=--=---=--++++kk k k k k k)2121(31)2121(231211212211nnk k k c c c ++-++≥+++⇒⋅-≥--∴+ 312231312211)211(21312->⋅+-=--⋅-=n n n nn 综上,),1(,231221N n n nc c c nn ∈≥<+++<-成立。
2017—2018学年度第二学期高一数学期末考试(含答案)
2017—2018学年度第二学期教学质量检查高一数学考生注意:本卷共三大题,22小题,满分150分,时间120分钟.不准使用计算器.参考公式:用最小二乘法求线性回归方程a x b yˆˆˆ+=的系数公式: ()()()∑∑∑∑====-⋅⋅-=---=n i i ni ii ni i ni i ixn x yx n yx x x y y x xb1221121ˆ,x b y aˆˆ-=. 一、选择题:本大题共12小题,每小题5分,共60分. 每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号在答题卡中的相应位置涂黑. 1.︒135sin 的值是( ) A.22B.22-C.23-D.23 2.已知向量),4(),1,(x b x a ==ρρ,若5=⋅b a ρρ,则x 的值为( )A.1B.2C.1±D.53.若圆22240x y x y ++-=关于直线20x y a -+=对称,则a 的值为( ) A.3- B. 1- C. 0 D. 44.为了调查某班级的作业完成情况,将该班级的52名同学随机编号01~52,用系统抽样....的方法抽取一个容量为4的样本,已知05、18、44号同学在样本中,那么样本中还有一位同学的编号应该是( ) A.29 B.30 C.31 D.325.已知α是第四象限角,且tan 2α=-,则sin 2α=( ) A.25-B. 25C.45-D. 456.要得到曲线3sin(2)5y x π=-,只需把函数3sin 2y x =的图象( )A .向左平移5π个单位 B .向右平移5π个单位 C .向左平移10π个单位 D .向右平移10π个单位7.运行如右图所示的程序框图,则输出的结果S 为( ) A .1- B .0 C .21 D .23-7第题图否2019?n <8.从集合{2,3,4,5}中随机抽取一个数a ,从集合{4,6,8}中随机抽取一个数b ,则向量(,)m a b =u r与 向量(1,2)n =r平行的概率为( )A.16B.14C.13D.129.过原点的直线l 与圆4)2()1(22=-+-y x 相交所得的弦长为32,则直线l 的斜率为( )A. 2B. 1C.43 D.1210.如图,圆C 内切于扇形AOB ,3AOB π∠=,若在扇形AOB 内任取一点,则该点在圆C 外的概率为( ) A .14B.13C.23D.3411.已知0ω>,函数()sin()4f x x πω=+在42ππ(,)上单调递减,则ω的取值范围是( ) A . (0,2] B .1(0,]2 C .13[]22, D .5[1]2, 12.设2,1OA OB ==u u u r u u u r ,0OA OB ⋅=u u u v u u u v ,OP OA OB λμ=+u u u v u u u v u u u v,且1=+μλ,则向量OA 在OP u u u v 上的投影的取值范围( ) A.]2,552(-B.]2,552(C. ]2,554(-D. ]2,554( 二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. 13.在空间直角坐标系中,点)4,3,2(P 到y 轴的距离为________.14.已知,a b r u r 为单位向量,且,a b r r 所成角为3π,则2a b +r r 为_________.15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某天阅读时间及人数的数据,结果用条形图表示(如右图),根据条形图可知 这50名学生在这天平均每人的课外阅读时间为 小时.16.已知sin 2cos y θθ=+,且θπ∈(0,),则当y 取得最大值时sin θ= .0.511.5220151050小时人数第15题图第10题图三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. 17.(本小题10分)已知平面向量)2,1(=a ,),1(k -=.(1)当k 为何值时,向量a 与b a ρρ+2垂直;(2)当1=k 时,设向量与的夹角为θ,求θtan 及θ2cos 的值.18.(本小题12分)近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召n 名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第2组有70人.)(1)求该组织中志愿者人数;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,然后在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有一名志愿者被抽中的概率.19.(本小题12分)某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据()(),1,2,6i i x y i =⋯,如表所示:已知80y =.(1)求表格中q 的值;(2)已知变量,x y 具有线性相关关系,试利用最小二乘法原理,求产品销量y 关于试销单价x 的线性回归方程ˆˆˆybx a =+ ( 参考数据:662113050,271i i i i i x y x ====∑∑);(3)用(2)中的回归方程得到与i x 对应的产品销量的估计值记为i yˆ)6,...,2,1(=i , 当ˆ1i i y y -≤时,称(),i i x y 为一个“理想数据”.试确定销售单价分别为6,5,4时有哪些是“理想数据”.20.(本小题12分)设函数()2π2sin 24f x x x ⎛⎫=+⎪⎝⎭.(1)请把函数)(x f 的表达式化成)2||,0,0()sin()(πϕωϕω<>>++=A b x A x f 的形式,并求)(x f 的最小正周期;(2)求函数)(x f 在]2,4[ππ∈x 时的值域.21.(本小题12分)在平面内,已知点(1,1)A ,圆C :22(3)(5)4x y -+-=,点P 是圆C 上的一个动点,记线段PA 的中点为Q . (1)求点Q 的轨迹方程;(2)若直线:2l y kx =+与Q 的轨迹交于M N ,两点,是否存在直线l ,使得10OM ON •=u u u u r u u u r(O为坐标原点),若存在,求出k 的值;若不存在,请说明理由.22.(本小题12分)已知1≥a ,1)cos (sin cos sin )(-++-=x x a x x x f . (1)求当1=a 时,)(x f 的值域; (2)若函数)(x f 在3[0,]4π内有且只有一个零点,求a 的取值范围.2017—2018学年度第二学期教学质量检查 高一数学参考答案及评分标准二、填空题(每小题5分,满分20分)13.52 14.7; 15.0.95; 16.5三、解答题 17.(本小题满分10分)解:(1)Θ与2+a b r r 垂直,得2+0a a b ⋅=r r r() 即22+=0a a b r r rg……………………2分 即10120k -+= ……………………3分解得92k =-. ……………………4分(2)依题意,10102521||||cos =⨯+-==b a θ, ……………………6分因为[0,]θπ∈ sin 10θ∴==……………………7分 sin tan 3cos θθθ∴== ……………………8分 54110121cos 22cos 2-=-⨯=-=∴θθ ……………………10分18.(本小题满分l2分)解: (1)由题意:第2组的人数:7050.07n =⨯⨯,得到:=200n , 故该组织有200人.……………………3分(2)第3组的人数为0.3200=60⨯, 第4组的人数为0.2200=40⨯,第5组的人数为0.1200=20⨯. ∵第3,4,5组共有120名志愿者,∴利用分层抽样的方法在120名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:606=3120⨯;第4组:406=2120⨯;第5组:206=1120⨯. ……………………5分 记第3组的3名志愿者为1A ,2A ,3A ,第4组的2名志愿者为1B ,2B , 第5组的1名志愿者为C .则从6名志愿者中抽取2名志愿者有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C ,,()12B B ,,()1B C ,,()2B C ,, 共有15种.……………………8分其中第3组的3名志愿者为1A ,2A ,3A ,至少有一名志愿者被抽中的有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C , 共有12种.……………………10分则第3组的为至少有一名志愿者被抽中的概率为124155P ==. ……………………12分 [用间接法求解亦可以给满分] 19. (本小题满分l2分) 解:(1)66880838490+++++=q y Θ,又80y =Q ,75=∴q . ……………………3分(2)4567891362x +++++==, ……………………4分2133050680241327162b ∧-⨯⨯∴==-⎛⎫- ⎪⎝⎭……………………6分 ()138041062a ∧∴=--⨯= ……………………7分 4106y x ∧∴=-+ ……………………8分(3)4106y x ∧=-+Q1111410690,909001y x y y ∧∧∴=-+=-=-=<,所以()()11,4,90x y =是“理想数据”;2222410686,=868421y x y y ∧∧=-+=--=>,所以()()22,5,84x y =不是“理想数据”; 3333410682,838211y x y y ∧∧=-+=-=-==,所以()()33,6,83x y =是“理想数据”.所以所求的“理想数据”为)90,4( ,)83,6(. ……………………12分20. (本小题满分l2分) 解: (1)()2ππ2sin 1cos 242f x x x x x ⎛⎫⎛⎫=+-=-+⎪ ⎪⎝⎭⎝⎭π1sin22sin 213x x x ⎛⎫=+=-+ ⎪⎝⎭, ……………………4分∴函数()f x 最小正周期为22T ππ== ……………………5分 (2) ππ,42x ⎡⎤∈⎢⎥⎣⎦Q∴ππ2π2,363x ⎡⎤-∈⎢⎥⎣⎦, ……………………7分 ∴π1sin 2[,1]32x ⎛⎫-∈ ⎪⎝⎭ ∴π2sin 2[1,2]3x ⎛⎫-∈ ⎪⎝⎭……………………10分 ∴()[2,3]f x ∈……………………11分 ∴函数()f x 的值域是[2,3]……………………12分21. (本小题满分l2分)(1)解:设点(),Q x y 、()00,P x y .Q 点P 在圆C 上,∴2200(3)(5)4x y -+-=. ① ……………………1分又Q PA 中点为点Q∴002121x x y y =+⎧⎨=+⎩………………… 3分可得021x x =-,021y y =-代入①得22(2)(3)1x y -+-=∴点Q 的轨迹方程为22(2)(3)1x y -+-= …………………… 4分 (2)假设存在直线l ,使得6=•OM ,设()11,M x y ,()22,N x y ,由222(2)(3)1y kx x y =+⎧⎨-+-=⎩ 得22(1)(24)40k x k x +-++= …………………… 6分因为直线与Q 的轨迹交于两点所以22=(24)16(1)0k k ∆+-+> 得403k <<② …………………… 7分 且121222244,11k x x x x k k ++==++ …………………… 8分又212121212(1)2()4OM ON x x y y k x x k x x +=+•++=+u u u u r u u u r222424(1)24=1011k k k k k+=+⨯+⨯+++ …………………… 9分∴2410k k +-= 解得2k =-± …………………… 10分因为2k =--②, …………………… 11分所以存在直线l :(22y x =-++,使得=10OM ON •u u u u r u u u r……………………12分22. (本小题满分l2分)解:(1)当1=a 时,1cos sin cos sin )(-++-=x x x x x f ,令x x t cos sin +=,则]2,2[-∈t ,21cos sin 2-=t x x ,22)1(21121)(--=-+--=t t t t g , 当1=t 时,0)(max =t g ,当2-=t 时,223)(min --=t g , 所以)(x f 的值域为]0,223[--……………………4分 (2)1)cos (sin cos sin )(-++-=x x a x x x f ,令sin cos t x x =+,则当3[0,]4x π∈时,t ∈,21sin cos 2t x x -=, 2221111()1()2222t h t at t a a -=-+-=--++, …………………… 5分)(x f 在3[0,]4π内有且只有一个零点等价于()h t 在[0,1)I 内有且只有一个零点,)2,1[无零点.因为1≥a , ……………………6分 ∴()h t 在[0,1)内为增函数,①若()h t 在[0,1)内有且只有一个零点,)2,1[无零点,故只需10(1)01(0)0020302a h h h ⎧⎪->⎧>⎪⎪-⎪≤⇒≤⎨⎨⎪⎪>⎩->得423>a ;……………………10分 ②若2为()h t 的零点,)2,1[内无零点,则0232=-a ,得423=a , 经检验,423=a 不符合题意. 综上,423>a . ……………………12分。
河北省阜城中学2017_2018学年高一数学下学期第八次月考试题理PDF无答案
8.若函数 f(x)=4sin(ωx+φ)对任意的 x 都有 f
=f(-x),则 f
= ()
A.0
B.-4 或 0
C.4 或 0
D.-4 或 4
9.设ω>0,函数 y=sin
+2 的图象向右平移 个单位后与原图象重合,则ω的最小值是( )
A.
B.
C.
D.3
10.为使方程
cos 2
x
sin
x
a
0
在 0,
19.(12 分)已知函数 y=3tan
.
(1)求函数的最小正周期; (2)求函数的定义域; (3)说明此函数的图象是由 y=tan x 的图象经过怎样的变换得到的?
20.(12 分)已知 sin θ,cos θ是关于 x 的方程 x2-ax+a=0(a∈R)的两个根.
(1)求 cos3(π-θ)+sin3(π-θ)的值;
D.若 a b ,则 a 与 b 不是共线向量
2.向量(
)+(
)+ 化简后等于( )
A.
B.
C.
D.
3.在平行四边形 ABCD 中,若|
A.菱形
B.正方形
|=| C.矩形
|,则四边形 ABCD 是( ) D.梯形
A.第一、三象限 C.第一、三象限或 x 轴上
B.第二、四象限 D.第二、四象限或 x 轴上
2017-2018 学年第二学期第八次月考高一理数试题
第Ⅰ卷(共 60 分)
一、选择题:(共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合
题目要求的).
1.下列说法正确的是( )
A.若 a b , 则 a b
河北省阜城中学高一数学下学期期末考试试题 理
河北省阜城中学2017-2018学年高一数学下学期期末考试试题 理I 卷(总分60分)一、选择题(共12小题,每小题5分,每小题都只有一个正确选项)1.已知集合A={x|﹣2<x <4},B={x|y=lg (x ﹣2)},则A ∩(C R B )=( )A .(2,4)B .(﹣2,4)C .(﹣2,2)D .(﹣2,2]2.已知直线3x+4y+3=0与直线6x+my ﹣14=0平行,则它们之间的距离是( )A .2B .8C .D .3.函数f (x )=x -e ﹣x 的零点所在的区间是( )A .(﹣1,21-) B .(21-,0) C .(0,) D .(,1)4.设31log a 21=,b=2121⎪⎭⎫ ⎝⎛,c=3131⎪⎭⎫ ⎝⎛,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .b <c <aD .c <a <b5.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图的圆心角为( )A .120°B .150°C .180°D .240°6.如右图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AA 1=2,AC=BC=1,则异面直线A 1B 与AC 所成角的余弦值是( )A .B .B . D .7.已知s ,则=( )A .B .31- C . D .32-8.△ABC 中,AB=3,,AC=4,则△ABC 的面积是( )A .B .C .3D .9.已知单位向量满足,则与的夹角是( )A .B .C .D .10.已知四棱锥P﹣ABCD的三视图如图所示,则该四棱锥的五个面中的最大面积是()A.3 B.6C.8 D.1011.已知图①中的图象对应的函数y=f(x),则图②中的图象对应的函数是()A.y=f(|x|) B.y=|f(x)| C.y=f(﹣|x|) D.y=﹣f(|x|)12.已知函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,1.5)时f(x)=ln (x2﹣x+1),则方程f(x)=0在区间[0,6]上的解的个数是()A.3 B.5 C.7 D.9II卷(总分90分)二、填空题(共4小题,每小题5分)13.在等差数列{a n}中,a2=3,a1+a7>10,则公差d的取值范围是.14.已知角α的终边经过点P(4a,3a)(a<0),则25sinα﹣7tan2α的值为.15.函数为R上的单调函数,则实数a的取值范围是.16.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE(A1∉平面ABCD),若M为线段A1C的中点,则在△ADE翻折过程中,下列结论正确的是.(写出所有正确结论的序号)①V:V=1:3;②存在某个位置,使DE⊥A1C;③总有BM∥平面A1DE;④线段BM的长为定值.三、解答题(共6小题,除17题10分外,其余每题12分)17.已知点A(0,2),B(4,4),;(1)若t1=4cosθ,t2=sinθ,θ∈R,求在方向上投影的取值范围;(2)若t1=a2,求当,且△ABM的面积为12时,a和t2的值.18.已知正数等比数列{a n}的前n项和S n满足:.(1)求数列{a n}的首项a1和公比q;(2)若b n=na n,求数列{b n}的前n项和T n.19.如右图,在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosA=bcosC+ccosB.(1)求角A的大小;(2)若点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.20.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求函数y=g(x)在[0,π]上的单调递增区间.21.已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(1)证明:直线l恒过一定点P;(2)证明:直线l与圆C相交;(3)当直线l被圆C截得的弦长最短时,求m的值.22.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE沿线段DE折起到PDE的位置,如图2所示.(1)求证:DE⊥平面PCF;(2)证明:平面PBC⊥平面PCF;(3)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题)1.【解答】解:B={x|x>2};∴∁R B={x|x≤2};∴A∩(∁R B)=(﹣2,2].故选:D.2.【解答】解:直线3x+4y+3=0与直线6x+my﹣14=0平行,∴≠,解得m=8.直线6x+my﹣14=0,即直线6x+8y﹣14=0,化为3x+4y﹣7=0,∴它们之间的距离==2.故选:A.3.【解答】解:∵函数f(x)=e﹣x﹣x,画出y=e﹣x与y=x的图象,如下图:∵当x=时,y=>,当x=1时,y=<1,∴函数f(x)=e﹣x﹣x的零点所在的区间是(,1).故选:D.4.【解答】解:a=log=log23>1,1>b=()=>c=()=,则c<b<a,故选:B.5.【解答】解:设圆锥底面半径为r,母线长为l,侧面展开图扇形的圆心角为θ,根据条件得:πrl+πr2=3πr2,即l=2r,根据扇形面积公式得:=πrl,即==180°.故选:C.6.【解答】解:连结BC1,∵AC∥A1C1,∴∠C1A1B是异面直线A1B与AC所成角(或所成角的补角),∵在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,∴AB=,,BC1==,A1C1=1,∴cos∠C1A1B===,∴异面直线A1B与AC所成角的余弦值为.故选:D.7.【解答】解:∵s,∴=cos[+()]=﹣sin()=﹣.故选:B.8.【解答】解:根据题意,△ABC中,AB=3,,AC=4,则有cosC===,则sinC=,则△ABC的面积S=|AB||AC|×sinC=3,故选:A.9.【解答】解:∵,∴=,∴•=0,⊥,如图所示:则与的夹角是,故选:D.10.【解答】解:由三视图知:几何体为四棱锥,且四棱锥的一个侧面与底面垂直,底面为矩形,矩形的边长分别为2、4,底面面积=2×4=8;由正视图可得四棱锥的高为=,△SAD的面积为×4×=2,侧面SAB与侧面SCD为直角三角形,其面积为3×2×=3,侧面SBC为等腰三角形,底边上的高为=3,∴△SBC的面积为×4×3=6.故选:C.11.【解答】解:设所求函数为g(x),g(x)==f(﹣|x|),C选项符合题意.故选:C.12.【解答】解:∵当x∈(0,1.5)时f(x)=ln(x2﹣x+1),令f(x)=0,则x2﹣x+1=1,解得x=1又∵函数f(x)是定义域为R的奇函数,∴在区间∈[﹣1.5,1.5]上,f(﹣1)=f(1)=0,f(0)=0f(1.5)=f(﹣1.5+3)=f(﹣1.5)=﹣f(﹣1.5)∴f(﹣1)=f(1)=f(0)=f(1.5)=f(﹣1.5)=0又∵函数f(x)是周期为3的周期函数则方程f(x)=0在区间[0,6]上的解有0,1,1.5,2,3,4,4.5,5,6 共9个故选:D.二、填空题(共4小题)13.【解答】解:∵a1+a7=2a4=2(a2+2d)=6+4d>10,∴d>1,故答案为:(1,+∞)14.【解答】解:∵角α的终边经过点P(4a,3a)(a<0),∴x=4a,y=3a,,∴,,∴,∴.故答案为:﹣39.15.【解答】解:①若f(x)在R上单调递增,则有,解得2<a≤3;②若f(x)在R上单调递减,则有,a无解,综上所述,得实数a的取值范围是(2,3].故答案为:(2,3]16.【解答】解:在①中,设A1到平面EBCD的距离为h,Dgc AB的距离为h′,则V:V=:=S△ADE:S梯形EBCD=:′=1:3,故①正确;在②中,A1C在平面ABCD中的射影为AC,AC与DE不垂直,∴DE与A1C不垂直,故②错误;在③中,取CD中点F,连接MF,BF,则MF∥A1D且MF=A1D,FB∥ED 且FB=ED,由MF∥A1D与FB∥ED,可得平面MBF∥平面A1DE,∴总有BM∥平面A1DE,故③正确;∴∠MFB=∠A1DE,由余弦定理可得MB2=MF2+FB2﹣2MF•FB•cos∠MFB是定值,故④正确.故答案为:①③④.四、解答题(共9小题)17.【解答】(1),,∴在方向上投影为||•cos<,>===4t2+t1=4(sinθ+cosθ)=8sin(θ+);∴在方向上投影的范围为[﹣8,8];(2),,且,∴,;∴点M到直线AB:x﹣y+2=0的距离为:;∴,解得a=±2,t2=﹣1.18.【解答】解:(1)∵,可知,,两式相减得:,∴,而q>0,则.又由,可知:,∴,∴a1=1.(2)由(1)知.∵,∴,.两式相减得=.∴.19.【解答】解:(1)∵2acosA=bcosC+ccosB,∴2sinAcosA=sinBcosC+sinCcosB=sin(B+C)=sinA,∵sinA≠0,∴cosA=,∴A=.(2)在△ABC中,由余弦定理的cosA==,解得AC=1+或AC=1﹣(舍).∵BD是∠ABC的平分线,∴=,∴AD=AC=.20.【解答】解:(1)由图象可知,A=2,周期T=[﹣(﹣)]=π,∴=π,ω>0,则ω=2,…(3分)从而f(x)=2sin(2x+φ),代入点(,2),得sin(+φ)=1,则+φ=+2kπ,k∈Z,即φ=﹣+2kπ,k∈Z,又|φ|<,则φ=﹣,∴f(x)=2sin(2x﹣),…(6分)(2)由(1)知f(x)=2sin(2x﹣),因此g(x)=2sin[2(x+)﹣]=2sin(2x﹣),…(8分)令2kπ﹣≤2x﹣≤2kπ+,k∈Z,可得:kπ﹣≤x≤kπ+,k∈Z,…(10分),故函数y=g(x)在[0,π]上的单调递增区间为[0,],[,π].…(12分)21.【解答】证明:(Ⅰ)直线l方程变形为(2x+y﹣7)m+(x+y﹣4)=0,由,得,∴直线l恒过定点P(3,1).…(4分)(Ⅱ)∵P(3,1),圆C:(x﹣1)2+(y﹣2)2=25的圆心C(1,2),半径r=5,∴,∴P点在圆C内部,∴直线l与圆C相交.…(8分)解:(Ⅲ)当l⊥PC时,所截得的弦长最短,此时有k l•k PC=﹣1,而,k PC=﹣,∴=﹣1,解得m=﹣.…(12分)22.【解答】证明:(Ⅰ)折叠前,因为四边形AECD为菱形,所以AC⊥DE;所以折叠后,DE⊥PF,DE⊥CF,又PF∩CF=F,PF,CF⊂平面PCF,所以DE⊥平面PCF…………………(4分)(Ⅱ)因为四边形AECD为菱形,所以DC∥AE,DC=AE.又点E为AB的中点,所以DC∥EB,DC=EB.所以四边形DEBC为平行四边形.所以CB∥DE.又由(Ⅰ)得,DE⊥平面PCF,所以CB⊥平面PCF.因为CB⊂平面PBC,所以平面PBC⊥平面PCF.…………………(9分)解:(Ⅲ)存在满足条件的点M,N,且M,N分别是PD和BC的中点.如图,分别取PD和BC的中点M,N.连接EN,PN,MF,CM.因为四边形DEBC为平行四边形,所以.所以四边形ENCF为平行四边形.所以FC∥EN.在△PDE中,M,F分别为PD,DE中点,所以MF∥PE.又EN,PE⊂平面PEN,PE∩EN=E,MF,CF⊂平面CFM,所以平面CFM∥平面PEN.…………………(14分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年河北省阜城中学高一下学期期末考试数学(理)试题I 卷(总分60分)一、选择题(共12小题,每小题5分,每小题都只有一个正确选项)1.已知集合A={x|﹣2<x <4},B={x|y=lg (x ﹣2)},则A ∩(C R B )=( ) A .(2,4) B .(﹣2,4) C .(﹣2,2) D .(﹣2,2] 2.已知直线3x+4y+3=0与直线6x+my ﹣14=0平行,则它们之间的距离是( ) A .2B .8C .D .3.函数f (x )=x -e ﹣x 的零点所在的区间是( ) A .(﹣1,21-) B .(21-,0) C .(0,) D .(,1) 4.设31log a 21=,b=2121⎪⎭⎫ ⎝⎛,c=3131⎪⎭⎫ ⎝⎛,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .b <c <a D .c <a <b 5.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图的圆心角为( ) A .120°B .150°C .180°D .240°6.如右图,在直三棱柱ABC ﹣A 1B 1C 1中, ∠ACB=90°,AA 1=2,AC=BC=1,则异面 直线A 1B 与AC 所成角的余弦值是( ) A . B . B .D .7.已知s,则=( )A .B .31- C . D .32-8.△ABC 中,AB=3,,AC=4,则△ABC 的面积是( ) A .B .C .3D .9.已知单位向量满足,则与的夹角是()A. B. C. D.10.已知四棱锥P﹣ABCD的三视图如图所示,则该四棱锥的五个面中的最大面积是()A.3 B.6C.8 D.1011.已知图①中的图象对应的函数y=f(x),则图②中的图象对应的函数是()A.y=f(|x|) B.y=|f(x)| C.y=f(﹣|x|) D.y=﹣f(|x|)12.已知函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,1.5)时f(x)=ln (x2﹣x+1),则方程f(x)=0在区间[0,6]上的解的个数是()A.3 B.5 C.7 D.9II卷(总分90分)二、填空题(共4小题,每小题5分)13.在等差数列{a n}中,a2=3,a1+a7>10,则公差d的取值范围是.14.已知角α的终边经过点P(4a,3a)(a<0),则25sinα﹣7tan2α的值为.15.函数为R上的单调函数,则实数a的取值范围是.16.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE(A1(写∉平面ABCD),若M为线段A1C的中点,则在△ADE翻折过程中,下列结论正确的是.出所有正确结论的序号)①V:V=1:3;②存在某个位置,使DE⊥A1C;③总有BM∥平面A1DE;④线段BM的长为定值.三、解答题(共6小题,除17题10分外,其余每题12分)17.已知点A(0,2),B(4,4),;(1)若t1=4cosθ,t2=sinθ,θ∈R,求在方向上投影的取值范围;(2)若t1=a2,求当,且△ABM的面积为12时,a和t2的值.18.已知正数等比数列{a n}的前n项和S n满足:.(1)求数列{a n}的首项a1和公比q;(2)若b n=na n,求数列{b n}的前n项和T n.19.如右图,在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosA=bcosC+ccosB.(1)求角A的大小;(2)若点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.20.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求函数y=g(x)在[0,π]上的单调递增区间.21.已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(1)证明:直线l恒过一定点P;(2)证明:直线l与圆C相交;(3)当直线l被圆C截得的弦长最短时,求m的值.22.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE沿线段DE折起到PDE的位置,如图2所示.(1)求证:DE⊥平面PCF;(2)证明:平面PBC⊥平面PCF;(3)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题)1.【解答】解:B={x|x>2};∴∁R B={x|x≤2};∴A∩(∁R B)=(﹣2,2].故选:D.2.【解答】解:直线3x+4y+3=0与直线6x+my﹣14=0平行,∴≠,解得m=8.直线6x+my﹣14=0,即直线6x+8y﹣14=0,化为3x+4y﹣7=0,∴它们之间的距离==2.故选:A.3.【解答】解:∵函数f(x)=e﹣x﹣x,画出y=e﹣x与y=x的图象,如下图:∵当x=时,y=>,当x=1时,y=<1,∴函数f(x)=e﹣x﹣x的零点所在的区间是(,1).故选:D.4.【解答】解:a=log=log23>1,1>b=()=>c=()=,则c<b<a,故选:B.5.【解答】解:设圆锥底面半径为r,母线长为l,侧面展开图扇形的圆心角为θ,根据条件得:πrl+πr2=3πr2,即l=2r,根据扇形面积公式得:=πrl,即==180°.故选:C.6.【解答】解:连结BC1,∵AC∥A1C1,∴∠C1A1B是异面直线A1B与AC所成角(或所成角的补角),∵在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,∴AB=,,BC1==,A1C1=1,∴cos∠C1A1B===,∴异面直线A1B与AC所成角的余弦值为.故选:D.7.【解答】解:∵s,∴=cos[+()]=﹣sin()=﹣.故选:B.8.【解答】解:根据题意,△ABC中,AB=3,,AC=4,则有cosC===,则sinC=,则△ABC的面积S=|AB||AC|×sinC=3,故选:A.9.【解答】解:∵,∴=,∴•=0,⊥,如图所示:则与的夹角是,故选:D.10.【解答】解:由三视图知:几何体为四棱锥,且四棱锥的一个侧面与底面垂直,底面为矩形,矩形的边长分别为2、4,底面面积=2×4=8;由正视图可得四棱锥的高为=,△SAD的面积为×4×=2,侧面SAB与侧面SCD为直角三角形,其面积为3×2×=3,侧面SBC为等腰三角形,底边上的高为=3,∴△SBC的面积为×4×3=6.故选:C.11.【解答】解:设所求函数为g(x),g(x)==f(﹣|x|),C选项符合题意.故选:C.12.【解答】解:∵当x∈(0,1.5)时f(x)=ln(x2﹣x+1),令f(x)=0,则x2﹣x+1=1,解得x=1又∵函数f(x)是定义域为R的奇函数,∴在区间∈[﹣1.5,1.5]上,f(﹣1)=f(1)=0,f(0)=0f(1.5)=f(﹣1.5+3)=f(﹣1.5)=﹣f(﹣1.5)∴f(﹣1)=f(1)=f(0)=f(1.5)=f(﹣1.5)=0又∵函数f(x)是周期为3的周期函数则方程f(x)=0在区间[0,6]上的解有0,1,1.5,2,3,4,4.5,5,6 共9个故选:D.二、填空题(共4小题)13.【解答】解:∵a1+a7=2a4=2(a2+2d)=6+4d>10,∴d>1,故答案为:(1,+∞)14.【解答】解:∵角α的终边经过点P(4a,3a)(a<0),∴x=4a,y=3a,,∴,,∴,∴.故答案为:﹣39.15.【解答】解:①若f(x)在R上单调递增,则有,解得2<a≤3;②若f(x)在R上单调递减,则有,a无解,综上所述,得实数a的取值范围是(2,3].故答案为:(2,3]16.【解答】解:在①中,设A1到平面EBCD的距离为h,Dgc AB的距离为h′,则V:V=:=S△ADE:S梯形EBCD=:′=1:3,故①正确;在②中,A1C在平面ABCD中的射影为AC,AC与DE不垂直,∴DE与A1C不垂直,故②错误;在③中,取CD中点F,连接MF,BF,则MF∥A1D且MF=A1D,FB∥ED 且FB=ED,由MF∥A1D与FB∥ED,可得平面MBF∥平面A1DE,∴总有BM∥平面A1DE,故③正确;∴∠MFB=∠A1DE,由余弦定理可得MB2=MF2+FB2﹣2MF•FB•cos∠MFB是定值,故④正确.故答案为:①③④.四、解答题(共9小题)17.【解答】(1),,∴在方向上投影为||•cos<,>===4t2+t1=4(sinθ+cosθ)=8sin(θ+);∴在方向上投影的范围为[﹣8,8];(2),,且,∴,;∴点M到直线AB:x﹣y+2=0的距离为:;∴,解得a=±2,t2=﹣1.18.【解答】解:(1)∵,可知,,两式相减得:,∴,而q>0,则.又由,可知:,∴,∴a1=1.(2)由(1)知.∵,∴,.两式相减得=.∴.19.【解答】解:(1)∵2acosA=bcosC+ccosB,∴2sinAcosA=sinBcosC+sinCcosB=sin(B+C)=sinA,∵sinA≠0,∴cosA=,∴A=.(2)在△ABC中,由余弦定理的cosA==,解得AC=1+或AC=1﹣(舍).∵BD是∠ABC的平分线,∴=,∴AD=AC=.20.【解答】解:(1)由图象可知,A=2,周期T=[﹣(﹣)]=π,∴=π,ω>0,则ω=2,…(3分)从而f(x)=2sin(2x+φ),代入点(,2),得sin(+φ)=1,则+φ=+2kπ,k∈Z,即φ=﹣+2kπ,k∈Z,又|φ|<,则φ=﹣,∴f(x)=2sin(2x﹣),…(6分)(2)由(1)知f(x)=2sin(2x﹣),因此g(x)=2sin[2(x+)﹣]=2sin(2x﹣),…(8分)令2kπ﹣≤2x﹣≤2kπ+,k∈Z,可得:kπ﹣≤x≤kπ+,k∈Z,…(10分),故函数y=g(x)在[0,π]上的单调递增区间为[0,],[,π].…(12分)21.【解答】证明:(Ⅰ)直线l方程变形为(2x+y﹣7)m+(x+y﹣4)=0,由,得,∴直线l恒过定点P(3,1).…(4分)(Ⅱ)∵P(3,1),圆C:(x﹣1)2+(y﹣2)2=25的圆心C(1,2),半径r=5,∴,∴P点在圆C内部,∴直线l与圆C相交.…(8分)解:(Ⅲ)当l⊥PC时,所截得的弦长最短,此时有k l•k PC=﹣1,而,k PC=﹣,∴=﹣1,解得m=﹣.…(12分)22.【解答】证明:(Ⅰ)折叠前,因为四边形AECD为菱形,所以AC⊥DE;所以折叠后,DE⊥PF,DE⊥CF,又PF∩CF=F,PF,CF⊂平面PCF,所以DE⊥平面PCF…………………(4分)(Ⅱ)因为四边形AECD为菱形,所以DC∥AE,DC=AE.又点E为AB的中点,所以DC∥EB,DC=EB.所以四边形DEBC为平行四边形.所以CB∥DE.又由(Ⅰ)得,DE⊥平面PCF,所以CB⊥平面PCF.因为CB⊂平面PBC,所以平面PBC⊥平面PCF.…………………(9分)解:(Ⅲ)存在满足条件的点M,N,且M,N分别是PD和BC的中点.如图,分别取PD和BC的中点M,N.连接EN,PN,MF,CM.因为四边形DEBC为平行四边形,所以.所以四边形ENCF为平行四边形.所以FC∥EN.在△PDE中,M,F分别为PD,DE中点,所以MF∥PE.又EN,PE⊂平面PEN,PE∩EN=E,MF,CF⊂平面CFM,所以平面CFM∥平面PEN.…………………(14分)。