核电站运行原理讲解105页PPT

合集下载

核电站工作原理

核电站工作原理

核电站工作原理
核电站的工作原理是利用核反应产生热能,然后将热能转化为电能。

核电站主要由核反应堆、冷却系统、蒸汽发生器和涡轮发电机组成。

核反应堆中含有可裂变的核燃料,一般是铀-235或钚-239。

当裂变产生的中子被吸收时,会进一步裂变其他核燃料原子,产生大量的热能。

这种连锁反应可以持续进行,使得核反应堆中的燃料产生较高的热效率。

为了防止核反应过热,核电站需要使用冷却系统来控制反应堆温度。

冷却剂一般是水或重水,其流动通过吸收和带走反应堆中的热能,保持反应堆的运行温度在安全范围内。

热能转换是核电站中的另一个重要过程。

核反应堆中的热能被传递给冷却剂,使其变为蒸汽。

这些蒸汽被导入蒸汽发生器,与另一侧的冷却剂交换热能。

通过这种方式,蒸汽发生器将热能传递给涡轮发电机,使其转动。

涡轮发电机通过转动,驱动发电机发电。

发电机中的导体线圈与磁场相互作用,产生电流。

这些电流经过变压器的升压处理后,输送到电力网络中,供应给大量用户使用。

总之,核电站利用核反应堆产生的热能通过冷却系统、蒸汽发生器和涡轮发电机转化为电能,最终供应给人们使用。

核电站工作原理

核电站工作原理

核电站工作原理引言概述:核电站是一种利用核能产生电能的设施,它的工作原理基于核裂变和核聚变的过程。

核电站的运行不仅能够提供大量清洁能源,还能有效降低温室气体的排放,对于解决能源和环境问题具有重要意义。

正文内容:1. 核裂变过程1.1 核燃料的选择核电站使用的核燃料主要是铀-235和钚-239。

这些核燃料具有较高的裂变截面,使得核裂变反应更容易发生。

1.2 中子的引起核裂变反应需要中子的引起。

在核电站中,中子通常通过反应堆中的中子源(如铀-238)产生。

中子源会释放出中子,并将其引导到燃料棒中。

1.3 裂变链反应之中子与核燃料中的核子碰撞时,核燃料原子会发生裂变,释放出大量的能量和更多的中子。

这些中子又会继续引起其他核燃料原子的裂变,形成裂变链反应。

2. 热能转换2.1 燃料棒和冷却剂核电站使用燃料棒来装载核燃料,同时使用冷却剂来吸收燃料棒中释放出的热能。

常用的冷却剂有水、重水温和体等。

2.2 热能转换核裂变释放的热能通过燃料棒和冷却剂的热交换,将冷却剂加热并转化为高温高压的蒸汽。

这些蒸汽驱动汽轮机转动,产生机械能。

2.3 电能产生机械能通过发机电转化为电能。

发机电中的转子与汽轮机相连,当转子旋转时,导线中的电子将产生电流,从而产生电能。

3. 安全措施3.1 反应堆压力控制核电站中的反应堆压力必须保持在安全范围内。

过高的压力可能导致爆炸,而过低的压力则可能导致反应堆住手工作。

因此,核电站会安装压力控制系统,确保反应堆始终处于安全状态。

3.2 燃料棒管理燃料棒在使用一段时间后会产生放射性废料和燃料衰变产物。

核电站会定期更换燃料棒,并将使用过的燃料棒储存起来进行处理和处理。

3.3 辐射防护核电站会采取多层次的辐射防护措施,以减少辐射对工作人员和周围环境的影响。

这包括使用厚重的混凝土屏蔽、防护服和辐射监测设备等。

总结:核电站工作原理基于核裂变和热能转换的过程。

核裂变反应产生的热能通过燃料棒和冷却剂的热交换转化为蒸汽,再通过发机电转化为电能。

核电站原理及系统PPT

核电站原理及系统PPT
核电站原理及系统
CH-11-VVP
4.压水堆核电厂二回路系统和设备
4.1 二回路热力系统 4.2 核电厂汽轮机工作原理及构造 4.3 主蒸汽系统 4.4 汽轮机旁路系统 4.5 汽水别离再热器系统 4.6 汽轮机轴封系统
4.1 二回路热力系统
4.1.1 二回路系统功能 将核蒸汽供给系统产生的热能转变成电能; 在停机或事故工况下,保证核蒸汽供给系统的冷
安装在通向凝汽器的管道上,使旁路来的高温高压蒸汽在其中 降温降压,以防止损坏凝汽器。
4.5 汽水别离再热器系统
4.5.1 系统功能
除去高压缸排汽中约98%的水分; 加热高压缸排汽,提高进入低压缸蒸汽的温度,使其 具有一定的过热度。
4.5.2 系统构造
汽水别离器、第一级再热器和第二级再热器都安装在一个圆筒形 的压力容器内; 第一级再热器使用高压缸抽汽加热; 第二级再热器使用新蒸汽加热。
新蒸汽参数低,通常为饱和蒸汽 ——必须考虑湿度对汽轮机效率和平安性的影响
理想焓降小,容积流量大 ——同等功率下,比火电机组构造尺寸大
汽轮机及其附属设备中积聚的水份多,甩负荷时容易 引起主机超速
——凝结水的再沸腾和汽化 半速机组与全速机组
4.3 主蒸汽系统
4.3.1 系统功能 将蒸汽发生器产生的蒸汽输送到以下设备和系统: 主汽轮机 汽水别离再热器〔GSS〕 除氧器〔ADG〕 给水泵汽轮机〔APP〕 蒸汽旁路系统〔GCT〕 汽轮机轴封系统〔CET〕 其他辅助蒸汽用汽单元〔STR〕
1-主轴 2-叶轮
转子 3-动叶栅 4-喷嘴(静叶栅) 5-汽缸 6-排汽口
4.2.2 冲动式汽轮机
4.2.3 反动式汽轮机
反动度:蒸汽在动叶通道内膨 胀时的理想焓降和在整个级的 滞止理想焓降之比,即

核电站工作原理介绍

核电站工作原理介绍

核电站工作原理介绍
核电站的工作原理基于核裂变反应。

核电站中的核反应堆使用铀等放射性物质的裂变来产生热能。

这个热能用来转化水为高温高压的蒸汽,驱动涡轮机转动并生成电力。

整个过程包括以下几个步骤:
1. 燃料装载:核反应堆中的燃料一般是铀,燃料在进入反应堆之前需要加工和质量检验,随后再安装到反应堆中。

2. 核反应:当核燃料在反应堆中暴露于恰当条件下(如水或重水模块化炉中的中子),核燃料中的铀原子裂变,释放出大量的热能。

3. 冷却剂循环:产生的热能使水变为高温高压的蒸汽。

这个蒸汽在旋转涡轮机的同时被冷却,随后再注入反应堆。

循环往复这个流程。

4. 电能转化:蒸汽推动的涡轮机转动一个巨大的电力发生器,产生大量电能。

5. 废物处理:核反应过程中产生的废物(如核燃料单元,反应生成的放射性物质,等等)需要进行处理和储存,以确保无害化。

核电站是高端复杂的工程,也是一种非常有效的清洁能源的发电方法。

尽管如此,核电站带有风险和挑战,因此必须轻重缓急地进行管理和保养。

图解核电站主要系统 PPT

图解核电站主要系统 PPT
图解核电站主要系统
PTR
RIS RRA
废物 处理
REA
核电站工作原理总图
厂用电
EAS
GEW
GSS
VVP
GEV
GPV
GEX
ARE RCP
GCT
AHP
ADG
CRF CEX
RCV
APP ABP
ASG
核电站主要系统

核岛主要系统
电气部分主要系统
1. 反应堆冷却剂系统 RCP 2. 化学和容积控制系统 RCV 3. 反应堆硼和水的补给系统 REA 4. 余热排出系统 RRA 5. 反应堆和乏燃料水池冷却和处

主泵2#轴封等)
(2)水容积变化的影响
一回路水容积变化→稳压 器水位的变化
§1.2 化学和容积控制系统RCV
0
300

0C

水的比容随温度的变化关系曲线
容积控制的方法
原理:通过上充下泄将稳压器的液位维持在“程序液位”。 上充补水,补偿一回路水的收缩和泄漏(REA系统执行) 下泄排水,吸收一回路水的膨胀,下泄流排往容控箱或TEP系统。
5、稳压器
功能: 1、压力控制 2、超压保护
Psatf(Tsa)t
一、核岛主要系统
§1.2 化学和容积控制系统 RCV
RCV系统的主要功能: 1、容积控制 2、化学控制 3、反应性控制
一、核岛主要系统
1、容积控制
(1)一回路水容积变化的原 积 容 因
– 水容积随温度的变化而变化
– 不可避免的泄漏(一号密封、 1.4m3/1T
一、核岛主要系统
§1.1 反应堆冷却剂系统 RCP
1、核反应堆
1、堆压力容器

核电站工作原理

核电站工作原理

核电站工作原理核电站是利用核能进行发电的设施,其工作原理主要包括核裂变反应、热能转换和发电三个步骤。

一、核裂变反应核电站使用铀或者钚等放射性核燃料作为燃料,通过核裂变反应产生热能。

核裂变是指重核(如铀-235)吸收中子后分裂成两个或者更多轻核的过程,同时释放出大量的能量和中子。

核电站中的反应堆是核裂变反应的场所,通过控制中子的释放和吸收,维持核链式反应的平衡。

二、热能转换核裂变反应释放的大量热能被用于产生蒸汽,进而驱动汽轮机转动。

核电站中的核反应堆通过燃料棒中的核燃料释放的热能,加热冷却剂(如水)并将其转化为高温高压的蒸汽。

这些蒸汽通过管道输送到汽轮机,使得汽轮机转动。

汽轮机通过转动的轴带动发机电,将机械能转化为电能。

三、发电核电站利用发机电将机械能转化为电能。

发机电是核电站中的关键设备,它通过转动的磁场和线圈之间的相互作用,将机械能转化为电能。

通过调节发机电的转速和磁场强度,可以控制输出的电压和频率。

发机电产生的电能经过变压器升压,然后通过输电路线输送到用户。

核电站的工作原理基于核裂变反应产生的热能,通过热能转换和发电的过程将核能转化为电能。

核电站具有许多安全措施,以确保核裂变反应的控制和稳定,防止辐射泄漏和核事故的发生。

同时,核电站还需要进行燃料的管理和处理,以及核废料的安全处理和储存。

总结:核电站工作原理主要包括核裂变反应、热能转换和发电三个步骤。

核裂变反应是指重核吸收中子后分裂成两个或者更多轻核的过程,释放出能量和中子。

热能转换通过核裂变反应释放的热能产生蒸汽,驱动汽轮机转动。

发电利用发机电将机械能转化为电能。

核电站的工作原理基于核裂变反应产生的热能,通过热能转换和发电的过程将核能转化为电能。

核电站具有多重安全措施,确保核裂变反应的控制和稳定,防止辐射泄漏和核事故的发生。

同时,核电站还需要进行燃料的管理和处理,以及核废料的安全处理和储存。

核电站工作原理

核电站工作原理

核电站工作原理核电站是利用核能进行发电的设施,其工作原理基于核裂变或核聚变反应。

核电站通常由核反应堆、冷却系统、发电机和控制系统等组成。

核反应堆是核电站的核心部分,其中包含燃料棒和反应堆压力容器。

燃料棒通常由铀或钚等放射性物质制成,这些物质在核反应中会发生裂变或聚变。

核裂变是指重核裂变成两个或更多轻核,释放出大量能量。

核聚变是指轻核聚变成重核,同样也会释放出巨大能量。

核反应堆内的燃料棒会产生大量的热能,这些热能需要通过冷却系统进行散热。

冷却系统通常使用水或气体作为冷却剂,将燃料棒周围的热能带走。

冷却剂在经过燃料棒后,会转化为蒸汽或气体,进而驱动发电机转动。

发电机是核电站中的另一个重要组成部分,它通过转动产生电能。

发电机通常由转子和定子组成,转子通过与发电机轴相连的涡轮旋转,而定子则包含线圈和磁铁。

当转子旋转时,磁铁会产生磁场,而线圈则会在磁场的作用下产生电流。

这样,机械能被转化为电能。

核电站的控制系统起着监控和控制核反应堆运行的作用。

控制系统通过监测燃料棒中的核反应和热能产生情况,以及调节冷却系统和发电机的运行状态,确保核反应堆的稳定和安全运行。

除了核反应堆、冷却系统、发电机和控制系统,核电站还包括其他辅助设施,如安全系统、辐射防护设备等,以确保核电站的安全性和环境保护。

总结起来,核电站的工作原理是利用核裂变或核聚变反应产生的热能,通过冷却系统带走热能,驱动发电机产生电能。

控制系统对核反应堆进行监控和控制,确保核电站的安全和稳定运行。

核电站的工作原理是一种高效、清洁的能源生产方式,对于满足能源需求和减少环境污染具有重要意义。

核电站工作原理与RCP课件

核电站工作原理与RCP课件

RCP系统的安全保障措施
高温高压保护
RCP系统设有高温高压保护措施,当系统温度或压力超过设定值 时,会自动触发安全阀或紧急停堆系统,确保系统安全。
泄漏监测
RCP系统设有泄漏监测系统,能够实时监测冷却剂的泄漏情况,及 时发现并处理泄漏问题。
备用电源
RCP系统设有备用电源系统,在主电源失效时能够自动切换到备用 电源,确保系统的正常运行。
记录与报告
根据实际情况,操作员需对控制系统进行 适当的调整,以优化系统性能。
对运行过程中的重要参数进行记录,并及 时报告异常情况。
RCP系统紧急停堆流程
紧急停堆命令发布
在发生紧急情况时,相关部门会发布紧急停 堆命令。
关闭热交换器
通过控制室快速关闭热交换器,防止热量继 续传递。
快速停运主泵
立即关闭主泵,并确保冷却剂停止流动。
和维护。
核电站安全检查与评估
03
定期对核电站进行安全检查和评估,确保核电站符合安全标准

核电站环境保护措施
放射性物质排放控制
通过有效的放射性物质处理和储存措施,减少核电站运行过程中对 环境的放射性污染。
废液处理与处置
对核电站产生的废液进行有效的处理和处置,防止废液对环境造成 污染。
固体废物管理
对核电站产生的固体废物进行分类、处理和处置,确保废物得到妥善 处理。
重水堆核电站
利用重水作为减速剂和冷却剂,能够 利用天然铀作为燃料,具有较高的燃 料利用率。
CHAPTER 02
核电站工作原理
核裂变原理
核裂变
是指由重的原子核分裂成 两个或多个较小的原子的 一种核反应形式。
链式反应
在裂变过程中,每一个裂 变原子核会产生更多的裂 变原子核,形成链式反应 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档