最新八年级图形的平移与旋转(提高)
八年级下图形的平移和旋转(教案和习题)
知识点:图形的平移与旋转目录知识点总结常见考法误区提醒知识点难易度 (易)知识点总结一、平移变换:1.概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
2.性质:(1)平移前后图形全等;(2)对应点连线平行或在同一直线上且相等。
3.平移的作图步骤和方法:(1)分清题目要求,确定平移的方向和平移的距离;(2)分析所作的图形,找出构成图形的关健点;(3)沿一定的方向,按一定的距离平移各个关健点;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论。
二、旋转变换:1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.2.性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.常见考法(1)把平移旋转结合起来证明三角形全等;(2)利用平移变换与旋转变换的性质,设计一些题目。
§3.1 生活中的平移一、新知要点(1)平移的概念(2)平移的特点 (3)平移的基本性质1.图形的平移例1:(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小。
2)平移的特点:①平移是指整个图形平行移动,包括图形的每一条线段,每一个点。
八年级数学学案图形平移与旋转知识点考点
第三讲:图形的平移与旋转【知识精讲】知识点1 平移、旋转和轴对称的区别和联系(1)区别。
①三者概念的区别:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移;在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;在平面内,将一个图形沿着某条直线折叠。
如果它能够与另一个图形重合,则这两个图形成轴对称。
②三者运动方式不同:平移是将图形沿某个方向移动一定的距离。
旋转是将一个图形绕一个定点沿某个方向转动一个角度;轴对称是将图形沿着某一条直线折叠。
③对应线段、对应角之间的关系不同:平移变换前后图形的对应线段平行(或共线)且相等;对应点所连的线段平行且相等;对应角的两边分别平行且对应角的方向一致。
轴对称的对应线段或延长线相交,交点在对称轴上:对应点的连线被对称轴垂直平分。
旋转变换前后图形的任意一对对应点与旋转中心的距离相等、与旋转中心的连线所成的角是旋转角。
④三者作图所需的条件不同:平移要有平移的方向和平移的距离,旋转要有旋转中心、旋转方向和旋转角:轴对称要有对称轴。
(2)联系。
①它们都在平面内进行图形变换②它们都只改变图形的位置不改变图形的形状和大小,因此变换前后的两个图形全等。
③都要借助尺规作图及全等三角形的知识作图。
知识点2 组合图案的形成(1)确定图案中的“基本图案”。
(2)发现该图案各组成部分之间的内在联系。
(3)探索该图案的形成过程:运用平移、旋转、轴对称分析各个组成部分如何通过“基本图案”演变成“形”的。
要用运动的观点、整体的思想分析“组合图案”的形成过程。
运动的观点就是要求我们不能静止地挖掘“基本图案”与“组合图案”的内在联系,头脑中应想象、再现图案形成的过程,做到心中有数,特别是有的图案含有不同的“基本图案”其形成的方式也多种多样,可以通过平移、旋转、轴对称变换中的一种或两种变换方式来实现,也可以通过同一种变换方式的重复使用来实现。
整体的思想包括整体的构思和“基本图案”的组合。
八年级上第十一章平移与旋转课件
5.2 个人思考与感想
思考平移和旋转对我们生活 和学习的重要性,并分享个 人的思考和感想。
5.3 下一步学习计划
制定下一步学习计划,明确 未来在几何学习中的重点和 目标。
3. 平移与旋转的组合
3.1 平移与旋转的基本概念
了解平移和旋转相结合的基本概念,如平移中 心、旋转中心等。
3.2 平移与旋转的性质
深入研究平移与旋转的性质,包括它们的可逆 性和运算法则。
3.3 平移与旋转的表示方法
掌握如何同时使用向量和角度等工具来表示和 操作平移和旋转。
3.4 平移与旋转的相互转化
4
探索将多个平移操作合成为一个平移 操作的方法,以便更高效地进行几何
变换。
1.1 平移的概念
了解什么是平移,平移是一个物体在 平面上不改变形状和大小的情况下, 沿着一个方向移动一定距离。
1.3 平移的表示方法
学习如何用向量和坐标表示平移,从 而能够准确地描述平移的过程。
2. 旋转
2.1 旋转的概念
八年级上第十一章平移与 旋转ppt课件
在这个八年级上第十一章平移与旋转的PPT课件中,我们将学习平移和旋转 的基本概念、性质、表示方法以及它们在几何中和生活中的应用。
1. 平移
1
1.2 平移的性质
2
通过平移操作,物体的位置发生改变,
但是其他特征,如长度、角度、形状
等都保持不变。
3
1.4 平移的合成
学习如何在平移和旋转之间进行相互转化,以 及转化的方4.1 平移与旋转在几何中的应用
探索平移和旋转在几何形状的对称性、相似性和变换等方面的应用。
2
4.2 平移与旋转在生活中的应用
八年级图形的平移与旋转(提高)
个性化教学辅导教案学科:数学年级:八年级任课教师:授课时间:2018 年春季班第1周教学课题图形的平移与旋转教学目标1、平移图形中对应点的连线、对应角、对应线段对的关系,2、直角坐标系中平移图形点的坐标变化规律3、旋转的定义,旋转的三要素,会根据要求画旋转图形,4、对应点、对应角、对应线段的关系。
教学重难点重点:平移图形与旋转图形中对应点、对应线段、对应角的关系;难点:图形的平移与旋转的性质的运用。
教学过程知识点:1.平移的定义:将一个图形沿某个方向移动一定的距离,这样的移动称为平移,平移不改变图形的形状和大小;只改变图形的位置。
2.平移的性质:一个图形和它经过平移得到的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等。
3.点A(x,y)向上(下)平移a个单位,右(左)平移b个单位后对应点的坐标A’(byax±±,)(沿正方向加,负方向减)4.旋转三要素:旋转中心,旋转方向,旋转角5.旋转的性质:一个图形和他经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一对对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。
例1.如图所示,通过平移,△ABC的顶点A移到点D,画出平移后的图形,并找出图中所有平行且相等的线段.例2.如图.将三角形ABC沿着从B到D的方向平移后得到三角形EDF,若AB=8cm,AE=6cm,CE=2cm.(1)写出点A、B、C的对应点;(2)写出平移的距离是多少?(3)求线段BD、DE、EF的长度例3.(1)通过平移把点A(2,-3)移到点A′(4,-2),按同样的平移方式,点B(3,1)移到点B′,则点B′的坐标是_____.(2)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A. 2B. 3C. 4D. 5例4.如图,已知△ABC各顶点的坐标分别为A(-2,5)B(-5,-2),C(3,3).将△ABC先向右平移4个单位长度,再向下平移3个单位长度,得到△A′B′C′.(1)在图中画出第二次平移之后的图形△A′B′C′;(2)如果将△A′B′C′看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.例5.如图,将△ABC绕某点顺时针旋转得到△AED,(1)旋转中心是点;(2)经过旋转,点B,C分别移动到的位置;(3)对应线段:线段BC与线段,线段AB与线段,线段AC与线段;(4)对应角是:;(5)旋转角是:;(6)若旋转角是60°,线段AB=3,则BE= 。
4.1图形的平移+课件-2024-2025学年鲁教版(五四制)八年级数学上册
A
D
A
D
B
E
C
F
B
C
E
F
大胆猜想: 平移具有怎样的性质 ?
验证猜想 三角形平移几何画板演示
二、类比思考 探究性质
大胆猜想
验证猜想
得出结论
平移的 基 本性质
一个图形和他经过平移所得的图形,对应点所连的线段平
行(或在同一条直线上)且相等;对应线段平行且相等,对应
角相等。
A
D
A
D
B
E
C
F
B
C
E
F
性质应用 巩固新知
四 达标测评
1.判断下面几组图形运动是不是平移?
2.△DEF是△ABC平移到的,∠ABC=82°,∠BAC=56° 则∠DEF=( )
3.小明和小华在手工课上用铁丝制作楼梯模型如图所示,那么他们用的铁丝( )
A.一样多 C.小华的多
B.小明的多 D.不能确定
五、评价提升 学有所获
六、作业设计 巩固新知
1.如图是一块长方形的草地, 长为21m.宽为15m. 在草地上有两条宽为1
米的小道,长方形的草地上除小道外长满青草.求长草部分的面积为多少?
1m A
D
A
1米 D
21m
1m
15m
15m
B 21m
C
B
C
2.收集生活中的平移现象, 拍成视频和同学们分享。
轴对称图形 几何图形的平移 几何图形的旋转
利用轴对称设计 平移作图
旋转作图
应用
学习目标
1.通过实例认识图形的平移,理解并掌握平移的概念,
图 发展抽象能力。
形 2.经理观察、猜想、操作、验证等过程,探索并掌握
2020-2021学年北师大版八年级数学下册第3章图形的平移与旋转期中综合周末提升训练(附答案)
2021年北师大版八年级数学下册第3章图形的平移与旋转期中综合周末提升训练(附答案)1.如图是一块电脑主板的示意图,每一转角处都是直角,数据如图(单位:mm),则该主板的周长是()A.88mm B.96mm C.80mm D.84mm2.如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF的位置,AB=10,DH=4,BC=15,平移距离为6,则阴影部分的面积()A.40B.42C.45D.483.如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则CF的长为()A.3B.4C.5D.64.如图,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(﹣1,0)C.(1,0)D.(3,0)5.如图,已知一个斜边长为2的直角三角板的直角顶点与原点重合,两直角边分别落在两个坐标轴上.现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A.(1,0)B.(,)C.(1,)D.(﹣1,)6.如图,△ABC中∠BAC=100°,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B、C、D恰好在同一直线上,则∠E的度数为()A.50°B.75°C.65°D.60°7.下列图形中,旋转120°后可以和原图形重合的是()A.正七边形B.正方形C.正五边形D.正三角形8.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合()A.90°B.135°C.180°D.270°9.如图,AB∥CD∥EF,AF∥ED∥BC,若画一条直线MN将这个图形分成面积相等的两个部分,则下列画法不一定正确的是()A.B.C.D.10.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.11.已知点P关于x轴对称的点的坐标为(2,﹣1),那么点P关于原点对称的点的坐标是()A.(1,﹣2)B.(2,1)C.(﹣2,﹣1)D.(﹣2,1)12.已知点A关于x轴的对称点坐标为(﹣1,2),则点A关于原点的对称点的坐标为()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)13.如图是4×4的网格图.将图中标有①、②、③、④的一个小正方形涂灰,使所有的灰色图形构成中心对称图形,则涂灰的小正方形是()A.①B.②C.③D.④14.如图,△ABC绕点A逆时针旋转40°得到△ADE,∠BAC=50°,则∠DAC的度数为()A.10°B.15°C.20°D.25°15.某小区有一块长方形的草地(如图),长18米,宽10米,空白部分为两条宽度相等的小路,则草地的实际面积m2.16.如图,三角形ABC的周长为24cm,现将三角形ABC沿AB方向平移3cm至三角形A′B′C′的位置,连接CC′,则四边形AB′C′C的周长是.17.时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角为度,从上午9时到下午5时时针旋转的旋转角为度.18.如图所示,一块长为18m,宽为12m的草地上有一条宽为2m的曲折的小路,求这块草地的绿地面积.19.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)直线OC与AB有何位置关系?请说明理由.(2)求∠EOB的度数;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.20.如图,三角形A′B'C'是由三角形ABC平移得到的.(1)若点P(a,b)是三角形ABC内部一点,求平移后三角形A′B′C'内的对应点P′的坐标(2)画出将三角形ABC向左平移4个单位,再向下平移1个单位得到的三角形A1B1C1.21.如图1,直线MN∥PQ、△ABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ 相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.22.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.23.在平面直角坐标系中,如图所示A(﹣2,1),B(﹣4,1),C(﹣1,4).(1)△ABC向上平移一个单位,再向左平移一个单位得到△A1B1C1,那么C的对应点C1的坐标为;P点到△ABC三个顶点的距离相等,点P的坐标为;(2)△ABC关于第一象限角平分线所在的直线作轴对称变换得到△A2B2C2,那么点B 的对应点B2的坐标为;(3)△A3B3C3是△ABC绕坐标平面内的Q点顺时针旋转得到的,且A3(1,0),B3(1,2),C3(4,﹣1),点Q的坐标为.参考答案1.解:把凹进去的边向外平移,得矩形周长是矩形的周长+4×2,(24+20)×2+8=96mm故选:B.2.解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48,故选:D.3.解:由平移的性质可知,BC=EF,∴BE=CF,∵BF=8,EC=2,∴BE+CF=8﹣2=6,∴CF=BE=3,故选:A.4.解:观察图像可知,B1(﹣1,0).故选:B.5.解:在Rt△AOB中,∠AOB=90°,AB=2,∠ABO=30°,∴AO=AB=1,∴OB=OA=,∵△OB′C是由∠ABO平移得到,∴OC=OA=1,B′C=OB=,∴B′(1,).故选:C.6.解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∠E=∠ACB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°﹣∠BAD)=15°,∴∠E=∠ACB=180°﹣∠BAC﹣∠B=180°﹣100°﹣15°=65°,故选:C.7.解:∵正三角形的中心角为120°,∴正三角形旋转120°可以和原图形重合,故选:D.8.解:图案可以被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90度的整数倍,就可以与自身重合,故选:B.9.解:因为平行四边形是中心对称图形,所以直线经过两个平行四边形的对角线的交点即可,观察图象可知,选项B,C,D符合题意,故选:A.10.解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.11.解:根据轴对称的性质,得P点的坐标是(2,1).再根据中心对称的性质,得点P关于原点对称的点的坐标是(﹣2,﹣1).故选:C.12.解:∵点A关于x轴的对称点坐标为(﹣1,2),∴点A坐标为(﹣1,﹣2);∴点A关于原点的对称点的坐标为(1,2).故选:A.13.解:如图,观察图象可知,把③涂灰,所有的灰色图形构成中心对称图形.故选:C.14.解:由旋转的性质可知,∠BAD=40°,∵∠BAC=50°,∴∠DAC=∠BAC﹣∠BAD=50°﹣40°=10°,故选:A.15.解:由题意,得草地的实际面积为:(18﹣2)×(10﹣2)=16×8=128(m2).故答案为128.16.解:根据题意,得A的对应点为A′,B的对应点为B′,C的对应点为C′,所以BC=B′C′,BB′=CC′,∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=24+6=30cm.故答案为:30cm.17.解:从上午6时到上午9时时针转过3个大格,所以,3×30°=90°,上午9时到下午5时时针转过8个大格,所以,8×30°=240°.故答案为:90;240.18.解:绿地的面积为:(18﹣2)×(12﹣2)=160(m2),答:这块草地的绿地面积是160m2.19.解:(1)AB∥OC,理由如下:∵CB∥OA,∴∠ABC+∠OAB=180°,∵∠C=∠OAB=100°,∴∠C+∠ABC=180,∴AB∥OC;(2)∵CB∥OA,∠C=100°,∴∠AOC=80°,又∵∠FOB=∠AOB,OE平分∠COF,∴∠EOB=∠BOF+∠EOF=(∠AOF+∠COF)=×80°=40°;(3)存在,∵在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.20.解:(1)由题意三角形A′B'C'是由三角形ABC向左平移5个单位,向上平移4个单位得到的,∴点P′的坐标为(a﹣5,b+4);(2)如图所示,△A1B1C1即为所求.21.解:(1)连接DE,如答图1:∵MN∥PQ,∴∠MDE+∠PED=180°,即∠CDM+∠CEP+∠CDE+∠CED=180°,∵∠CDE+∠CED+∠ACB=180°,∠ACB=90°,∴∠CDE+∠CED=90°,∴∠CDM+∠CEP=90°,∵∠CDM=40°,∴∠CEP=90°﹣∠CDM=90°﹣40°=50°;(2)过C作CF∥MN,如答图2:∵MN∥PQ,CF∥MN,∴MN∥PQ∥CF,∴∠CB'E=∠FCB′,∠CDM=∠DCF,∵∠CB'E=22°,∠CDM=40°.∴∠FCB′=22°,∠DCF=40°,∵∠A′CB′=90°,∴∠A′CA=90°﹣∠FCB′﹣∠DCF=28°,∴∠A'CB=∠A′CA+∠ACB=118°.22.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据图形可知:旋转中心的坐标为:(﹣3,0).23.解:(1)如图,△A1B1C1即为所求,那么C的对应点C1的坐标为(﹣2,5)P,点P 的坐标为(﹣3,3).故答案为(﹣2,5),(﹣3,3).(2)△A2B2C2如图所示,那么点B的对应点B2的坐标为(1,﹣4).故答案为(1,﹣4).(3)△A3B3C3即为所求,Q(﹣1,﹣1),故答案为(﹣1,1).。
北师大版八年级数学下册 《图形的平移与旋转》全章复习与巩固(提高)巩固练习 含答案解析
《图形的平移与旋转》全章复习与巩固(提高)巩固练习【巩固练习】 一、选择题1.轴对称与平移、旋转的关系不正确的是( ).A .经过两次翻折(对称轴平行)后的图形可以看作是原图形经过一次平移得到的B .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过一次平移得到的C .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D .经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过一次平移得到的 2.在旋转过程中,确定一个三角形旋转的位置所需的条件是( ). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角. A .①②④ B .①②③ C .②③④ D .①③④3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( ).A B C D4.(2016·株洲)如图,在△ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 顺时针方向旋转后得到△A ’B ’C ’,若点B ’恰好落在线段AB 上,AC 、A ’B ’交于点O ,则∠COA ’的度数是( )A .50°B .60°C .70°D .80°5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处, 若90FPH =o∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ). A.20 B.22 C.24 D.30第4题 第5题6.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼 成如下图的一座“小别墅”,则图中阴影部分的面积是( ). A .2 B .4 C .8 D .107. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC=2,将Rt △ABC 绕A 点按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( ).A.6π B.3π C.16π+ D.18.如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE. 过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是( ). A .①③④ B .①②⑤ C .③④⑤ D .①③⑤二、填空题9. 如图,图B 是图A 旋转后得到的,旋转中心是 ,旋转了 .10.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.第9题第10题第12题11.(2016•大连)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .12. 如图,正方形ABCD经过顺时针旋转后到正方形AEFG的位置,则旋转中心是,旋转角度是度.13. 时钟的时针不停地旋转,从上午8:30到上午10:10,时针旋转的旋转角是 .14. 如图所示,可以看作是一个基本图形经过次旋转得到的;每次旋转了度.15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是 .16.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、…所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a 与数轴上的数5对应,则a=_________;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是_________(用含n的代数式表示).三、解答题17. 如图,在正方形ABCD中,F是AD的中点,E是BA延长线上一点,且AE=12 AB.①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF变到△ADE的位置?若是旋转,指出旋转中心和旋转角.②线段BF和DE之间有何数量关系?并证明.18.阅读:我们把边长为1的等边三角形PQR沿着边长为整数的正n(n>3)边形的边按照如图1的方式连续转动,当顶点P回到正n边形的内部时,我们把这种状态称为它的“点回归”;当△PQR回到原来的位置时,我们把这种状态称为它的“三角形回归”.例如:如图2,边长为1的等边三角形PQR的顶点P在边长为1的正方形ABCD内,顶点Q与点A重合,顶点R与点B重合,△PQR沿着正方形ABCD的边BC、CD、DA、AB…连续转动,当△PQR连续转动3次时,顶点P回到正方形ABCD内部,第一次出现P的“点回归”;当△PQR连续转动4次时△PQR回到原来的位置,出现第一次△PQR的“三角形回归”.操作:如图3,如果我们把边长为1的等边三角形PQR沿着边长为1的正五边形ABCDE的边连续转动,则连续转动的次数k= 时,第一次出现P的“点回归”;连续转动的次数k= 时,第一次出现△PQR的“三角形回归”. 猜想:我们把边长为1的等边三角形PQR 沿着边长为1的正n (n >3)边形的边连续转动, (1)连续转动的次数k= 时,第一次出现P 的“点回归”; (2)连续转动的次数k= 时,第一次出现△PQR 的“三角形回归”;(3)第一次同时出现P 的“点回归”与△PQR 的“三角形回归”时,写出连续转动的次数k 与正多边形的边数n 之间的关系.19.(2015春•凉山州期末)如图,长方形ABCD 在坐标平面内,点A 的坐标是A (2,1),且边AB 、CD 与x 轴平行,边AD 、BC 与x 轴平行,点B 、C 的坐标分别为B (a ,1),C (a ,c ),且a 、c 满足关系式c=++3.(1)求B 、C 、D 三点的坐标;(2)怎样平移,才能使A 点与原点重合?平移后点B 、C 、D 的对应分别为B 1C 1D 1,求四边形OB 1C 1D 1的面积;(3)平移后在x 轴上是否存在点P ,连接PD ,使S △COP =S 四边形OBCD ?若存在这样的点P ,求出点P 的坐标;若不存在,试说明理由.20. 如图,P 是等边三角形ABC 中的一点,PA =2,PB =32,PC =4,求BC 边得长是多少?【答案与解析】 一.选择题 1.【答案】B.【解析】A 、多次平移相当于一次平移,故正确;B 、必须是对称轴有偶数条且平行时,才可以看作是原图形经过一次平移得到的,故错误;C 、一个图形围绕一个定点旋转一定的角度,得到另一个图形,这种变换称为旋转变换,故正确;D 、对称轴有偶数条且平行时,可以看作是原图形经过一次平移得到的,故正确. 故选B . 2.【答案】A. 3.【答案】B.BP4.【答案】B.【解析】解:由题意知:∠A=90°-50°=40°,由旋转性质可知:∴BC=B C′,∴∠B=∠BB ’C=50°,∵∠BB ′C =∠A +∠ACB ’=40°+∠ACB ’, ∴∠ACB ’=10°,∴∠COA ’=∠AOB ’=∠OB ’C+∠ACB ’=∠B+∠ACB ’=60°. 故选B .5.【答案】C.【解析】Rt △PHF 中,有FH=10,则矩形ABCD 的边BC 长为PF+FH+HC=8+10+6=24,故选C . 6.【答案】B.【解析】阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一, 正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4. 故选B .7. 【答案】B.【解析】阴影部分的面积等于扇形DAB 的面积,首先利用勾股定理即可求得AB 的长,然后利用扇形的面积公式即可求得扇形的面积.8.【答案】D.【解析】①利用同角的余角相等,易得∠EAB=∠PAD ,再结合已知条件利用SAS 可证两三角形全等;③利用①中的全等,可得∠APD=∠AEB ,结合三角形的外角的性质,易得∠BEP=90°,即可证;②过B 作BF ⊥AE ,交AE 的延长线于F ,利用③中的∠BEP=90°,利用勾股定理可求BE ,结合△AEP 是等腰直角三角形,可证△BEF 是等腰直角三角形,再利用勾股定理可求EF 、BF ;⑤在Rt △ABF 中,利用勾股定理可求AB 2,即是正方形的面积;④S △APD +S △APB = S △AP E +S △EPB =12. 二.填空题 9.【答案】X ;180°.【解析】观察图形中Z 点对应点的位置是图A 绕旋转中心X 按逆时针旋转180°得到的.故答案为:X ;180°.10.【答案】30°.【解析】解法一、在Rt △ABC 中,∠A <∠B∵CM 是斜边AB 上的中线, ∴CM=AM , ∴∠A=∠ACM ,将△ACM 沿直线CM 折叠,点A 落在点D 处 设∠A=∠ACM=x 度, ∴∠A+∠ACM=∠CMB , ∴∠CMB=2x ,如果CD 恰好与AB 垂直 在Rt △CMG 中, ∠MCG+∠CMB=90°即3x=90°x=30°则得到∠MCD=∠BCD=∠ACM=30°根据CM=MD,得到∠D=∠MCD=30°=∠A∠A等于30°.解法二、∵CM平分∠ACD,∴∠ACM=∠MCD∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°11.【答案】2.12.【答案】A,45.【解析】∵正方形ABCD经过顺时针旋转后得到正方形AEFG,∴旋转中心为点A,旋转角为∠CAD,∵AC是正方形ABCD的对角线,∴∠CAD=45°,∴旋转角为45°.故答案为:A,45.13.【答案】50°.【解析】从上午8:30到上午10:10,共1个小时40分钟;时针旋转了536圆周,故旋转角的度数是50度.故答案为:50°.14.【答案】3;90.【解析】如图所示的图形可以看作按照逆时针(或顺时针)旋转3次,且每次旋转了90°而成的.故答案是:3;90.15.【答案】6.【解析】如图,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG=4,再根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.16.【答案】(1)a=2,(2)3n+1.【解析】根据正半轴上的整数与圆周上的数字建立的这种对应关系可以发现:圆周上了数字0、1、2与正半轴上的整数每3个一组012;345;678…分别对应.三.解答题17.【解析】解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;(2)线段BF和DE的数量关系是相等.理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAF=∠EAD,∵F是AD的中点,AE=12 AB,∴AE=AF,∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,∴BF与DE为对应线段,∴BF=DE.18.【解析】解:操作:3,5.猜想:(1)第一次点回归,连续转动的次数都是3次,故填3;(2)第一次出现△PQR的“三角形回归”,连续转动的次数就是多边形的边数,故填n;(3)当n不是3的倍数时,k=3n,当n是3的倍数时,k=n.19.【解析】解:(1)由题意得,a﹣6≥0且6﹣a≥0,所以,a≥6且a≤6,所以,a=6,c=3,所以,点B(6,1),C(6,3),∵长方形ABCD的边AB、CD与x轴平行,边AD、BC与x轴平行,∴点D(2,3);(2)∵平移后A点与原点重合,∴平移规律为向左2个单位,向下1个单位,∴B1(4,0),C1(4,2),D1(0,2);(3)平移后点C到x轴的距离为2,∵S△COP=S四边形OBCD,∴×OP×2=4×2,解得OP=8,若点P在点O的左边,则点P的坐标为(﹣8,0),若点P在点O的右边,则点P的坐标为(8,0).综上所述,存在点P(﹣8,0)或(8,0).20.【解析】解:如图,将△ABP绕点B逆时针旋转60°得△BCQ,连接PQ.再过B作CQ的延长线的垂线BD,垂足为D,∴BQ=PB=23,∠PQB =60°,∴△PBQ是等边三角形,∴PQ=PB=23,∠QPC=60°.在△PCQ中,∵CQ=PA=2,,PQ=23,PC=4,∴CQ2+ PQ2=PC2,∴∠PQC=90°,∴∠CQB=∠PQB+∠PQC=150°,∴∠BQD=30°.在Rt△BQD中,BD=12BQ=3,QD=3,则CD=5.在Rt△BCD中,BC=32527+=.。
八年级数学上册《图形的平移与旋转》教案北师大版
八年级数学上册《图形的平移与旋转》教案北师大版一、教学目标:1. 让学生理解平移和旋转的概念,掌握它们的基本性质和特点。
2. 培养学生运用平移和旋转变换解决实际问题的能力。
3. 引导学生通过观察、操作、思考、交流等活动,体会数学与生活的联系。
二、教学重点与难点:1. 教学重点:(1) 理解平移和旋转的概念及性质。
(2) 掌握平移和旋转变换的数学表达方法。
(3) 能够运用平移和旋转变换解决实际问题。
2. 教学难点:(1) 对平移和旋转的理解及在实际问题中的运用。
(2) 对旋转变换数学表达方法的掌握。
三、教学方法与手段:1. 教学方法:(1) 采用观察、操作、思考、交流等教学方法,引导学生主动参与学习过程。
(2) 运用问题驱动,激发学生探究欲望,培养学生解决问题的能力。
2. 教学手段:(1) 利用多媒体课件,展示图形平移和旋转的过程。
(2) 利用几何画板,让学生直观地感受平移和旋转变换。
四、教学过程:1. 导入新课:(1) 利用多媒体课件,展示生活中的平移和旋转现象。
(2) 引导学生观察、思考:这些现象有什么共同特点?2. 探究新知:(1) 介绍平移的概念及性质。
(2) 介绍旋转变换的概念及性质。
(3) 讲解平移和旋转变换的数学表达方法。
3. 巩固新知:(1) 学生自主完成课后练习,巩固所学知识。
(2) 教师选取典型题目进行讲解,提高学生解题能力。
4. 应用拓展:(1) 学生分组讨论,运用平移和旋转变换解决实际问题。
(2) 各组汇报讨论成果,交流解题方法。
五、课后作业:1. 完成课后练习题。
2. 运用平移和旋转变换设计一个几何图案。
3. 思考:在日常生活中,还有哪些现象可以用平移和旋转变换来解释?六、教学评价:1. 通过课堂提问、作业批改、学生汇报等方式,评价学生对平移和旋转变换的理解和掌握程度。
2. 关注学生在解决问题时的思维过程和方法,评价其应用能力。
3. 结合学生的课堂表现、作业完成情况以及实践活动成果,综合评价学生的学习效果。
鲁教版八年级数学上册第四章图形的平移与旋转单元综合能力提升练习题3(附答案)
鲁教版八年级数学上册第四章图形的平移与旋转单元综合能力提升练习题3(附答案)一.选择题(共10小题)1.汉字“王、人、木、水、口、立”中能通过单独平移组成一个新的汉字的有()A.1个B.2个C.3个D.4个2.如图,三角形ABC经过平移后得到三角形DEF,下列说法:①AB∥DE;②AD=BE;③∠ACB=∠DFE;④BC=DE.其中正确的有()A.1个B.2个C.3个D.4个3.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)4.如图,表示直线a平移得到直线b的两种画法,下列关于三角板平移的方向和移动的距离说法正确的是()A.方向相同,距离相同B.方向不同,距离不同C.方向相同,距离不同D.方向不同,距离相同5.在下列四个图案中,不能用平移变换来分析其形成过程的是()A.B.C.D.6.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转7.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,B1C1交AC于点D,如果AD=2,则△ABC的周长等于()A.6+2B.4+2C.12+D.6+8.如图所示的图案,其外轮廓是一个正五边形,绕它的中心旋转一定的角度后能够与自身重合,则这个旋转角可能是()A.90°B.72°C.60°D.36°9.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有()A.①②B.①③C.②③D.①②③10.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个二.填空题(共10小题)11.如图所示的是一块矩形ABCD的场地,AB=102m,AD=51m,从A,B两地入口的路宽都为1m,两小路汇合处的路宽为2m,其余部分种植草坪,则草坪的面积为m2.12.如图,在三角形ABC中,AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,得到三角形A′B′C′,连接A′C,则三角形A′B′C的面积为.13.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.在y轴上存在一点P,连接P A,PB,使S△P AB=S四边形ABDC.则点P的坐标为.14.如图,将△ABP放在每个小正方形的边长为1的网格中,点A、B、P均落在格点上.(1)△ABP的面积等于;(2)若线段AB水平移动到A′B′,且使P A′+PB′最短,请你在如图所示的网格中,用直尺画出A′B′,并简要说明画图的方法(不要求证明).15.平移边长为1的小菱形◇可以得到美丽的“中国结”图案,如四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(n)个图形中含边长为1的菱形的个数是.16.如图,五角星也可以看作是一个三角形绕中心O旋转次得到的,每次旋转角度是.17.如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B 顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为.18.在下列图形:“角、射线、线段、等腰三角形、平行四边形”中,既是轴对称图形又是旋转对称图形的为.19.如图,在△ABC中,点O是AC的中点,△CDA与△ABC关于点O中心对称,若AB =6,∠BAC=40°,则CD的长度为,∠ACD的度数为°.20.在平行四边形、等边三角形、圆、线段中,是中心对称图形的有.三.解答题(共7小题)21.如图,在Rt△ABC中,∠C=90°,∠A=33°,将△ABC沿AB方向向右平移得到△DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm.请求出CF的长度.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO向下平移3个单位再向右平2个单位后得△DEF.(1)直接写出A、B、O三个对应点D、E、F的坐标;(2)求△DEF的面积.23.如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为.24.为迎接全运会,体育迷小强利用网格设计了一个“火炬”图案,请你帮帮他:(1)将“火炬”图案先向右平移7格,再向上平移6格,画出平移后的图案;(2)如果图中每个小正方形的边长是1,求其中一个火炬图案的面积.25.在等腰Rt△ABC中,∠ABC=90°,AB=BC,在等腰Rt△BDE中,∠BDE=90°,BD=DE,连接AD,点F是AD的中点.(1)如图①,当点E和点F重合时,若BD=,求CD的长;(2)如图②,当点F恰好在BE上,并且AB=AD,若AG⊥BD,求证:AG=DE+CD.26.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.27.若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.参考答案与试题解析一.选择题(共10小题)1.汉字“王、人、木、水、口、立”中能通过单独平移组成一个新的汉字的有()A.1个B.2个C.3个D.4个【解答】解:“人”平移得到“从”,“木”平移得到“林”,“水”平移得到“淼”,“口”平移得到“品”,所以通过平移组成一个新的汉字的有4个.故选:D.2.如图,三角形ABC经过平移后得到三角形DEF,下列说法:①AB∥DE;②AD=BE;③∠ACB=∠DFE;④BC=DE.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:△ABC平移到△DEF的位置,其中AB和DE,AC和DF,BC和EF是对应线段,AD、BE和CF是对应点所连的线段,则①AB∥DE,②AD=BE,③∠ACB=∠DFE均正确,④BC=DE不一定正确;故选:C.3.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)【解答】解:由A(﹣3,5),A1(3,3)可知四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,∵B(﹣4,3),∴B1的坐标为(2,1),故选:B.4.如图,表示直线a平移得到直线b的两种画法,下列关于三角板平移的方向和移动的距离说法正确的是()A.方向相同,距离相同B.方向不同,距离不同C.方向相同,距离不同D.方向不同,距离相同【解答】解:由图和平移可得:三角板平移的方向不同,距离相同,故选:D.5.在下列四个图案中,不能用平移变换来分析其形成过程的是()A.B.C.D.【解答】解:由图可知,ACD三个图形通过平移而成,B中图案通过旋转而成.故选:B.6.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转【解答】解:四个小五角星通过旋转可以得到.故选:C.7.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,B1C1交AC于点D,如果AD=2,则△ABC的周长等于()A.6+2B.4+2C.12+D.6+【解答】解:∵∠ABC=90°,∠C=30°,∴∠BAC=60°,∵∠BAB1=15°,∴∠B1AD=45°,∴△AB1D是等腰直角三角形,∵AD=2,∴AB1=DB1=2,∴AB=AB1=2,∴AC=2AB=4,BC=AB=2,∴△ABC的周长=2+4+2=6+2,故选:A.8.如图所示的图案,其外轮廓是一个正五边形,绕它的中心旋转一定的角度后能够与自身重合,则这个旋转角可能是()A.90°B.72°C.60°D.36°【解答】解:∵正五边形的中心角==72°,∴绕它的中心旋转72°角度后能够与自身重合,故选:B.9.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有()A.①②B.①③C.②③D.①②③【解答】解:根据题意分析可得:△DEC可以由△ABC经过:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°得到,正确;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称的变化得到,正确;③将△ABC向下向左各平移1个单位,所得△DEC与原△ABC为轴对称图形,并非由旋转得到,错误.故选:A.10.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个【解答】解:矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选:C.二.填空题(共10小题)11.如图所示的是一块矩形ABCD的场地,AB=102m,AD=51m,从A,B两地入口的路宽都为1m,两小路汇合处的路宽为2m,其余部分种植草坪,则草坪的面积为5000m2.【解答】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:102﹣2=100,宽为51﹣1=50.所以草坪的面积应该是长×宽=100×50=5000.故选:5000.12.如图,在三角形ABC中,AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,得到三角形A′B′C′,连接A′C,则三角形A′B′C的面积为6.【解答】解:∵AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,∴BB'=2,△ABC的高AD=△A'B'C'的高=△A'B'C的高=3,∴B'C=BC﹣BB'=6﹣2=4,∴三角形A′B′C的面积=,故答案为:613.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.在y轴上存在一点P,连接P A,PB,使S△P AB=S四边形ABDC.则点P的坐标为(0,﹣4)或(0,4).【解答】解:由平移可得,C(0,2),D(4,2),∴CD=AB=4,CD∥AB,∴四边形ABCD为平行四边形,∴四边形ABCD面积=4×2=8,又∵S△P AB=S四边形ABDC,∴△P AB的面积为8,即×AB×OP=8,∴OP=4,∴当点P在AB下方时,P(0,﹣4);当点P在AB上方时,P(0,4),故答案为:(0,﹣4)或(0,4).14.如图,将△ABP放在每个小正方形的边长为1的网格中,点A、B、P均落在格点上.(1)△ABP的面积等于2;(2)若线段AB水平移动到A′B′,且使P A′+PB′最短,请你在如图所示的网格中,用直尺画出A′B′,并简要说明画图的方法(不要求证明).【解答】解:(1)S△ABC=×2×2=2.故答案为:2;(2)如图所示,A′B′=AB==.易证△PBB′≌△HAA′,可得PB′=HA′,∴P A′+PB′=P A′+A′H=PH,∴当H、A′、P共线时,P A′+PB′的值最小,最小值=PH==故答案为:.15.平移边长为1的小菱形◇可以得到美丽的“中国结”图案,如四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(n)个图形中含边长为1的菱形的个数是2n2.【解答】解:第(1)个图形:2=2=2×12;第(2)个图形:8=2×4=2×22;第(3)个图形:18=2×9=2×32;…第(n)个图形为2n2个,故答案为:2n216.如图,五角星也可以看作是一个三角形绕中心O旋转四次得到的,每次旋转角度是72°,144°,216°,288°.【解答】解:由于有五个星,所以要由一个三角形绕中心点旋转四次,每次旋转的角度分别为等360°÷5=72°,72°×2=144°,72°×3=216°,72°×4=288°.故答案为:四,72°,144°,216°,288°.17.如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为45°,75°,165°.【解答】解:①如图1中,当DE∥AB时,易证∠ABD=∠D=45°,可得旋转角α=45°②如图2中,当DE∥BC时,易证∠ABD=∠ABC+∠CBD=∠ABC+∠D=75°,可得旋转角α=75°③如图3中,当DE∥AC时,作BM∥AC,则AC∥BM∥DE,∴∠CBM=∠C=90°,∠DBM=∠D=45°,∴∠ABD=30°+90°+45°=165°,可得旋转角α=165°,综上所述,满足条件的旋转角α为45°,75°,165°故答案为45°,75°,165°.18.在下列图形:“角、射线、线段、等腰三角形、平行四边形”中,既是轴对称图形又是旋转对称图形的为线段.【解答】解:线段是轴对称图形,也是中心对称图形,符合题意;等腰三角形、角是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.射线既不是轴对称图形又不是中心对称图形,不符合题意;故既是轴对称图形又是中心对称图形的是:线段.故答案为:线段.19.如图,在△ABC中,点O是AC的中点,△CDA与△ABC关于点O中心对称,若AB =6,∠BAC=40°,则CD的长度为6,∠ACD的度数为40°.【解答】解:∵点O是AC的中点,△CDA与△ABC关于点O中心对称,∴四边形ABCD是平行四边形,∴AB=DC=6,AB∥DC,∴∠BAC=∠ACD=40°.故答案为:6,40.20.在平行四边形、等边三角形、圆、线段中,是中心对称图形的有平行四边形、圆、线段.【解答】解:在平行四边形、等边三角形、圆、线段中,是中心对称图形的有:平行四边形、圆、线段.故答案为:平行四边形、圆、线段.三.解答题(共7小题)21.如图,在Rt△ABC中,∠C=90°,∠A=33°,将△ABC沿AB方向向右平移得到△DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm.请求出CF的长度.【解答】解:(1)∵在Rt△ABC中,∠C=90°,∠A=33°,∴∠CBA=90°﹣33°=57°,由平移得,∠E=∠CBA=57°;(2)由平移得,AD=BE=CF,∵AE=9cm,DB=2cm,∴AD=BE=×(9﹣2)=3.5cm,∴CF=3.5cm.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO向下平移3个单位再向右平2个单位后得△DEF.(1)直接写出A、B、O三个对应点D、E、F的坐标;(2)求△DEF的面积.【解答】解:(1)∵点A(1,3),B(3,1),O(0,0),∴把△ABO向下平移3个单位再向右平移2个单位后A、B、O三个对应点D(1+2,3﹣3)、E(3+2,1﹣3)、F(0+2,0﹣3),即D(3,0)、E(5,﹣2)、F(2,﹣3);(2)△DEF的面积:3×3﹣×1×3﹣×1×3﹣×2×2=4.23.如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为4.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,CD、CE即为所求;(3)△BCD的面积为×4×4﹣×1×3﹣×1×3﹣1=4,故答案为:424.为迎接全运会,体育迷小强利用网格设计了一个“火炬”图案,请你帮帮他:(1)将“火炬”图案先向右平移7格,再向上平移6格,画出平移后的图案;(2)如果图中每个小正方形的边长是1,求其中一个火炬图案的面积.【解答】解:(1)如图所示:(2)一个火炬图案的面积为:9+×3+(4﹣1﹣×1×2﹣×1×2)=11.5.25.在等腰Rt△ABC中,∠ABC=90°,AB=BC,在等腰Rt△BDE中,∠BDE=90°,BD=DE,连接AD,点F是AD的中点.(1)如图①,当点E和点F重合时,若BD=,求CD的长;(2)如图②,当点F恰好在BE上,并且AB=AD,若AG⊥BD,求证:AG=DE+CD.【解答】(1)解:如图1中,作CM⊥BD交BD的延长线于M.∵∠ADB=∠ABC=90°,∴∠ABD+∠CBM=90°,∠ABD+∠BAD=90°,∴∠CBM=∠BAD,在△CBM和△BAD中,,∴△CBM≌△BAD(AAS),∴BD=CM,AD=BM,∵AE=DE=BD,∴AD=2BD,BM=2BD,∴BD=DM=CM=,∴△DCM是等腰直角三角形,∴CD=CM=;(2)证明:如图②中,作CM⊥BD于M.由(1)可知△CBM≌△BAG,∴BG=CM,AG=BM,∵AB=AD,AG⊥BD,∴BG=DG,∵ED⊥BD,∴AG∥DE,∴∠GAF=∠FDE,BH=HE,∴DE=2GH,在△AHF和△DEF中,,∴△AHF≌△DEF(AAS),∴AH=DE=BD,∴AG=3BG,BM=3CM,∵BG=DG,∴DM=CM,∴△CDM是等腰直角三角形,∴DM=CD,∵AG=BM=BD+DM,∴AG=DE+CD.26.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.【解答】解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8.27.若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.【解答】解:∵点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,∴a﹣2=﹣(﹣1),3=﹣(2b+2),解得a=3,b=﹣。
八年级数学上册《图形的平移与旋转》教案北师大版
教案:八年级数学上册《图形的平移与旋转》教案北师大版一、教学目标1. 让学生理解平移和旋转的定义,了解它们的基本性质和特点。
2. 培养学生观察、分析、归纳的能力,能够运用平移和旋转的知识解决实际问题。
3. 培养学生的空间想象能力,提高学生的数学思维水平。
二、教学重点与难点1. 教学重点:平移和旋转的定义及其性质平移和旋转在实际问题中的应用2. 教学难点:对平移和旋转的理解和运用空间想象能力的培养三、教学方法1. 采用直观演示法,通过实物和图形,让学生直观地理解平移和旋转的概念。
2. 采用问题驱动法,引导学生观察、分析、归纳平移和旋转的性质,培养学生的解决问题的能力。
3. 采用案例教学法,结合实际问题,让学生学会运用平移和旋转的知识解决实际问题。
四、教学准备1. 教师准备PPT,包括平移和旋转的定义、性质和实际应用案例。
2. 准备一些实物和图形,用于直观演示平移和旋转。
五、教学过程1. 导入新课通过实物或图形,引导学生观察并思考:如何将一个图形平移或旋转到另一个位置?让学生感受到平移和旋转在现实生活中的应用。
2. 探究平移和旋转的定义及性质引导学生分析平移和旋转的特点,如方向、距离等。
引导学生归纳平移和旋转的性质,如图形的大小、形状不变等。
3. 练习与讲解让学生进行一些简单的练习题,巩固对平移和旋转的理解。
教师选取一些典型的练习题进行讲解,引导学生运用平移和旋转的知识解决问题。
4. 实际应用案例分析教师展示一些实际问题,让学生运用平移和旋转的知识解决。
学生分组讨论,分享解题过程和答案。
5. 课堂小结6. 布置作业布置一些有关平移和旋转的练习题,让学生课后巩固所学知识。
六、教学拓展1. 引导学生思考:除了平移和旋转,还有哪些几何变换?如何描述这些变换?2. 简要介绍其他几何变换,如对称、翻转等,让学生了解数学中的几何变换范畴。
七、课堂练习1. 设计一些有关平移和旋转的练习题,让学生独立完成。
2. 选取一些学生的作业进行点评,重点关注学生对平移和旋转的理解和运用。
八年级上册数学教案平移与旋转
八年级上册数学教案平移与旋转一、教学目标:1. 让学生理解平移与旋转的概念,能识别生活中的平移与旋转现象。
2. 让学生掌握平移与旋转的性质,能运用平移与旋转解决实际问题。
3. 培养学生的观察能力、操作能力和解决问题的能力。
二、教学内容:1. 平移与旋转的概念及性质。
2. 平移与旋转在实际问题中的应用。
三、教学重点与难点:1. 重点:平移与旋转的概念、性质和应用。
2. 难点:平移与旋转在实际问题中的运用。
四、教学方法:1. 采用问题驱动法,引导学生探究平移与旋转的性质。
2. 利用信息技术手段,展示平移与旋转现象,提高学生的直观感受。
3. 通过实例分析,让学生学会运用平移与旋转解决实际问题。
五、教学过程:1. 导入:通过展示生活中的平移与旋转现象,引导学生思考平移与旋转的定义。
2. 新课导入:介绍平移与旋转的概念及性质。
3. 实例分析:分析平移与旋转在实际问题中的应用。
4. 课堂练习:让学生运用平移与旋转解决实际问题。
5. 总结与反思:回顾本节课所学内容,巩固知识点。
6. 布置作业:让学生课后巩固平移与旋转的知识。
1. 通过课堂提问、作业批改等方式,了解学生对平移与旋转概念的理解程度。
2. 设计一些实际问题,检验学生运用平移与旋转解决问题的能力。
3. 观察学生在课堂上的参与程度,了解学生的学习兴趣和积极性。
七、教学反馈:1. 针对学生的疑问,进行解答和辅导。
2. 对于学生作业中出现的问题,及时进行反馈和指导。
3. 根据学生的学习情况,调整教学方法和策略。
八、教学拓展:1. 引导学生思考平移与旋转在生活中的应用,如建筑设计、艺术创作等。
2. 介绍平移与旋转在其他学科领域的应用,如物理学、计算机科学等。
3. 鼓励学生进行课后探究,发现平移与旋转的更多有趣现象。
九、教学资源:1. 教材:八年级上册数学教材。
2. 课件:平移与旋转的PPT课件。
3. 视频资料:平移与旋转现象的短视频。
4. 练习题:平移与旋转的相关练习题。
八年级上第十一章平移与旋转课件
旋转的性质
01
02
03
04
旋转不改变图形的形状 和大小。
旋转不改变图形中任意 两点间的距离。
旋转不改变图形中任意 两线段间的夹角。
旋转改变图形中对应点 的坐标。
平移与旋转的性质对比
01
平移和旋转都不会改变图形的形 状和大小,以及图形中任意两点 间的距离和任意两线段间的夹角 。
02
平移不会改变图形中对应点的坐 标,而旋转会改变对应点的坐标 。
03
平移与旋转的应用
平移的应用
图形变换
实际应用
平移可以将一个图形沿某一方向移动 一定的距离,常用于图形的对称、平 移和旋转等变换。
平移在日常生活中应用广泛,如电梯 上下移动、传送带上的物品移动等。
坐标变换
在平面直角坐标系中,平移可以改变 点的坐标位置,通过平移可以将一个 点或图形从一个位置移动到另一个位 置。
01
02
详细描述
分析平移与旋转的基本概念和性质;
03
04
比较平移与旋转在操作过程中的异同点;
探讨平移与旋转在实际问题中的应用场景 ;
05
06
通过实例分析,加深对平移与旋转的理解 和掌握。
THANKS
旋转的性质
旋转不改变图形的形状、大小和方向,只是改变了图形的 位置和方向。旋转后,图形与原图形是全等的。
旋转的分类
根据转动的角度,旋转可以分为顺时针旋转和逆时针旋转 。顺时针旋转是按逆时针方向转动,逆时针旋转是按顺时 针方向转动。
平移与旋转的对比
相同点
平移和旋转都是图形的位置和方 向发生变化,但不会改变图形的 大小和形状。
平移是刚性变换,不改变物体的形状和大小;而旋转则会产生形变,改变物体的形 状和大小。
《图形的平移与旋转》全章重点题型-提高
《图形的平移与旋转》全章复习与巩固(提高)知识讲解【学习目标】1.了解平移、旋转、中心对称,探索它们的基本性质;2.能够按要求作出简单平面图形经过平移、旋转后的图形,能作出简单平面图形经过一次或两次图形变换后的图形;3.利用平移、旋转、中心对称、轴对称及其组合进行图案设计;4.认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【要点梳理】要点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.要点诠释:(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的形状和大小.2.平移的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.要点诠释:(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行(或在一条直线上)且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.3. 平移与坐标变换:(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的变化引起的点相应的平移变换.(2)图形的平移平移是图形的整体运动.在平面直角坐标系内,一个图形进行了平移变化,则它上面的所有点的坐标都发生了同样的变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.要点诠释:(1)上述结论反之亦成立,即如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(2)一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.●要点二、旋转变换1.旋转概念:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.要点诠释:(1)旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定能通过旋转得到. (2)旋转的角度一般小于360°.(3)旋转的三个要素:旋转中心、旋转角度和旋转方向(即顺时针或逆时针方向)2.旋转变换的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.3.旋转作图步骤:①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.●要点三、中心对称与图案设计1.中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心,这两个图形称为成中心对称的.要点诠释:中心对称的性质:成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.2. 中心对称图形:把一个图形绕着某点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做它的对称中心.要点诠释:中心对称作图步骤:①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.3.图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.4.平移、轴对称、旋转三种变换的关系:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的.【典型例题】➢类型一、平移变换1. 阅读理解题.(1)两条直线a,b相交于一点O,如图①,有两对不同的对顶角;(2)三条直线a,b,c相交于点O,如图②,则把直线平移成如图③所示的图形,可数出6对不同的对顶角;(3)四条直线a,b,c,d相交于一点O,如图④,用(2)的方法把直线c平移,可数出对不同的对顶角;(4)n条直线相交于一点O,用同样的方法把直线平移后,有对不同的对顶角;(5)2013条直线相交于一点O,用同样的方法把直线平移后,有对不同的对顶角.【思路点拨】(3)画出图形,根据图形得出即可;(4)根据以上能得出规律,有n(n-1)对不同的对顶角;(5)把n=2013代入求出即可.【答案与解析】解:(3)如图有12对不同的对顶角,故答案为:12.(4)有n(n-1)对不同的对顶角,故答案为:n(n-1);(5)把n=2013代入得:2013×(2013-1)=4050156,故答案为:4050156.【总结升华】本题考查了平移与对顶角的应用,关键是能根据题意得出规律.举一反三:【变式】(2017·莒县模拟)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为().A.6 B.8 C.10 D.12【答案】C2.(2015春•召陵区期中)如图①,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分),在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用阴影表示;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积(设长方形水平方向长均为a,竖直方向长均为b):S1= ,S2= ,S3= ;(3)如图④,在一块长方形草地上,有一条弯曲的小路(小路任何地方的水平宽度都是2个单位),请你求出空白部分表示的草地面积是多少?(4)如图⑤,若在(3)中的草地又有一条横向的弯曲小路(小路任何地方的度都是1个单位),请你求出空白部分表示的草地的面积是多少?【思路点拨】(1)根据题意,直接画图即可,注意答案不唯一,只要画一条有两个折点的折线,得到一个封闭图形即可.(2)结合图形,根据平移的性质可知,①②③中阴影部分的面积都可看作是以a﹣1为长,b为宽的长方形的面积.(3)结合图形,通过平移,阴影部分可平移为以a﹣2米为长,b米为宽的长方形,根据长方形的面积可得小路部分所占的面积.(4)结合图形可知,小路部分所占的面积=a米为长,b米为宽的长方形的面积﹣a米为长,1米为宽的长方形的面积﹣2米为长,b米为宽的长方形的面积+2米为长,1米为宽的长方形的面积.【答案与解析】解:(1)画图如下:(2)S1=ab﹣b,S=ab﹣b,S2=ab﹣b,S3=ab﹣b猜想:依据前面的有关计算,可以猜想草地的面积仍然是ab﹣b方案:1、将“小路”沿着左右两个边界“剪去”;2、将左侧的草地向右平移一个单位;3、得到一个新的矩形理由:在新得到的矩形中,其纵向宽仍然是b.其水平方向的长变成了a﹣1,所以草地的面积就是:b(a﹣1)=ab﹣b.(3)∵小路任何地方的水平宽度都是2个单位,∴空白部分表示的草地面积是(a﹣2)b;(4)∵小路任何地方的宽度都是1个单位,∴空白部分表示的草地面积是ab﹣a﹣2b+2.【总结升华】本题主要考查了利用平移设计图案,用到的知识点是矩形的性质和平移的性质,能利用平移的性质把不规则的图形拆分或拼凑为简单图形来计算草地的面积是解题的关键.举一反三:【变式】如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移距离是边BC长的两倍,则图中四边形ACED的面积为().A.24cm2 B.36cm2 C.48cm2 D.无法确定【答案】B.四边形ABED是平行四边形且S四边形ABED=S四边形ACFD,而S四边形ACED=S四边形ABED-S△ABC.➢类型二、旋转变换3.正方形ABCD中对角线AC、BD相交于点O,E是AC上一点,F是OB上一点,且OE=OF,回答下列问题:(1)在图中1,可以通过平移、旋转、翻折中的哪一种方法,使△OAF变到△OBE的位置.请说出其变化过程.(2)指出图(1)中AF和BE之间的关系,并证明你的结论.(3)若点E、F分别运动到OB、OC的延长线上,且OE=OF(如图2),则(2)中的结论仍然成立吗?若成立,请证明你的结论;若不成立,请说明你的理由.【思路点拨】(1)根据图形特点即可得到答案;(2)延长AF交BE于M,根据正方形性质求出AB=BC,∠AOB=∠BOC,证△AOF≌△BOE,推出AF=BE,∠FAO=∠EBO,根据三角形内角和定理证出即可;(3)延长EB交AF于N,根据正方形性质推出∠ABD=∠ACB=45°,AB=BC,得到∠ABF=∠BCE,同法可证△ABF ≌△BCE,推出AF=BE,∠F=∠E,∠FAB=∠EBC,得到∠E+∠FAB+∠BAO=90°即可.【答案与解析】解:(1)旋转,以点O为旋转中心,逆时针旋转90度.(2)图(1)中AF和BE之间的关系:AF=BE;AF⊥BE.证明:延长AF交BE于M,∵正方形ABCD,∴AC⊥BD,OA=OB,∴∠AOB=∠BOC=90°,在△AOF和△BOE中∴△AOF≌△BOE(SAS),∴AF=BE,∠FAO=∠EBO,∵∠EBO+∠OEB=90°,∴∠FAO+∠OEB=90°,∴∠AME=90°,∴AF⊥BE,即AF=BE,AF⊥BE.(3)成立;证明:延长EB交AF于N,∵正方形ABCD,∴∠ABD=∠ACB=45°,AB=BC,∵∠ABF+∠ABD=180°,∠BCE+∠ACB=180°,∴∠ABF=∠BCE,∵AB=BC,BF=CE,∴△ABF≌△BCE,∴AF=BE,∠F=∠E,∠FAB=∠EBC,∵∠F+∠FAB=∠ABD=45°,∴∠E+∠FAB=45°,∴∠E+∠FAB+∠BAO=45°+45°=90°,∴∠ANE=180°-90°=90°,∴AF ⊥BE ,即AF=BE ,AF ⊥BE .【总结升华】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的内角和定理,旋转的性质等知识点的连接和掌握,综合运用这些性质进行推理是解此题的关键.4.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接 EF.将△EOF 绕点O 逆时针旋转角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明;(2)当=30°时,求证:△AOE 1为直角三角形.【思路点拨】(1)要证AE 1=BF 1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE 1为直角三角形,就要考虑证∠E 1AO =90°.【答案与解析】解:(1)AE 1=BF 1,证明如下:∵O 为正方形ABCD 的中心,∴OA=OB =OD.∴OE=OF .∵△E 1OF 1是△EOF 绕点O 逆时针旋转角得到,∴OE 1=OF 1.∵ ∠AOB=∠EOF=900, ∴ ∠E 1OA =900-∠F 1OA =∠F 1OB. 在△E 1OA 和△F 1OB 中,, ∴△E 1OA≌△F 1OB (SAS ).∴ AE 1=BF 1.(2)取OE 1中点G ,连接AG.∵∠AOD=900,=30° ,∴ ∠E 1OA =900-=60°. ααα1111OE OF E OA FOB O A OB⎧⎪∠∠⎨⎪⎩===αα∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】在等边三角形ABC中有一点P,已知PC=2, PA=4,PB=APB=.【答案】90°➢类型三、中心对称与图形设计5.如图,方格纸中四边形ABCD的四个顶点均在格点上,将四边形ABCD向右平移5格得到四边形A1B1C1D1.再将四边形A1B1C1D1,绕点A逆时针旋转180°,得到四边形A1B2C2D2.(1)在方格纸中画出四边形A1B1C1D1和四边形A1B2C2D2.(2)四边形ABCD与四边形A1B2C2D2.是否成中心对称?若成中心对称,请画出对称中心;若不成中心对称,请说明理由.【思路点拨】(1)首先把各个顶点平移,以及作出对称点,然后顺次连接各个对称点即可作出对称图形;(2)观察所作图形,对称点连线的交点就是对称中心.【答案与解析】解:(1)(2)两个图形关于点O对称中心.【总结升华】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键.举一反三:【变式】(罗平县校级期末)每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,①写出A、B、C的坐标.②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1.【答案】解:①A(1,﹣4),B(5,﹣4),C(4,﹣1);②A1(﹣1,4),B1(﹣5,4),C1(﹣4,1),如图所示:6.如图,这两幅图是怎样利用旋转、平移或轴对称进行设计的?你能依照其中的图案自己设计一个图案吗?【答案与解析】解:(1)答案不惟一,可以看作是一个小正方形图案连续平移48次,平移前后所有的图形共同组成的图案.(2)答案不唯一,可以看作是一组竖条线组成的等腰直角三角形,以直角顶点为中心、按同一个方向分别旋转,旋转前后的四个图形共同组成的图案.【总结升华】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,对于不同的基本图形需要作的几何变换也不同.举一反三:90180270、、(1)(2)【变式】下列图形中,能通过某个基本图形平移得到的是().A. B. C. D. 【答案】D.。
八年级数学平移及旋转教案
八年级数学平移及旋转教案一、教学目标1. 知识与技能:(1)理解平移和旋转的概念,掌握它们的性质和特点。
(2)学会运用平移和旋转进行图形的变换。
2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力和动手能力。
(2)学会用坐标表示平移和旋转后的图形。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的创新意识。
(2)培养学生团队协作和交流分享的能力。
二、教学内容1. 平移的概念和性质(1)定义:在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,叫做平移。
(2)性质:平移不改变图形的形状和大小,只改变图形的位置。
2. 旋转的概念和性质(1)定义:在平面内,将一个图形绕着某一点转动一个角度,叫做旋转。
(2)性质:旋转不改变图形的形状和大小,只改变图形的位置。
三、教学重点与难点1. 教学重点:(1)理解平移和旋转的概念,掌握它们的性质。
(2)学会运用平移和旋转进行图形的变换。
2. 教学难点:(1)坐标系中如何表示平移和旋转后的图形。
(2)如何运用平移和旋转解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究平移和旋转的性质。
2. 利用直观教具和多媒体辅助教学,帮助学生建立空间想象能力。
3. 创设实践操作活动,让学生动手操作,增强实践能力。
4. 采用小组合作学习,培养学生的团队协作和交流分享能力。
五、教学过程1. 导入新课:(1)复习相关概念:图形的变换、对称、轴对称。
(2)引入平移和旋转的概念,激发学生兴趣。
2. 自主学习:(1)学生自主探究平移和旋转的性质。
(2)学生用坐标表示平移和旋转后的图形。
3. 课堂讲解:(1)讲解平移的性质,举例说明。
(2)讲解旋转的性质,举例说明。
4. 实践操作:(1)学生进行平移和旋转的实践操作。
(2)学生用坐标表示平移和旋转后的图形。
5. 巩固练习:(1)学生完成课后练习题。
(2)学生互相讨论,解答疑问。
6. 课堂小结:(1)教师引导学生总结平移和旋转的性质。
《平移和旋转》教案五篇(教案)
其次,关注学生的个体差异。在课堂教学中,我发现有的学生对平移和旋转的理解较快,而有的学生则较慢。针对这种情况,我应适当调整教学节奏,给予理解较慢的学生更多的关注和指导,确保每个学生都能跟上教学进度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用纸张进行平移和旋转,这个操作将演示平移和旋转的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平移和旋转在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-突破方法:通过大量实例和练习,让学生掌握判断的技巧。
-实际问题中的应用:学生在将平移和旋转应用到解决具体问题时可能不知道如何入手。
-突破方法:通过案例分析,引导学生逐步分析问题,找到解决策略。
-创新设计:学生在利用平移和旋转进行创新设计时可能缺乏想象力。
-突破方法:鼓励学生进行头脑风暴,尝试不同的组合和变换,激发创造力。
今天的学习,我们了解了平移和旋转的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次《平移和旋转》的教学中,我发现学生们对平移和旋转的概念有了初步的理解,但真正应用到实际问题中时,还存在一些困难。我意识到,在今后的教学中,需要从以下几个方面进行改进和加强。
初二-第07讲-图形的平移与旋转(提高)-教案
学科教师辅导讲义学员编号:年级:八年级(下)课时数:3学员姓名:辅导科目:数学学科教师:授课主题第07讲-图形的平移与旋转授课类型T同步课堂P实战演练S归纳总结教学目标①认识图形的平移与旋转;②掌握图形的平移与旋转的性质;③掌握平移与旋转的作图步骤。
授课日期及时段T(Textbook-Based)——同步课堂一、平移1、平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形的形状和大小,只改变图形的位置。
2、平移的性质:①一个图形和它经过平移所得的图形中,对应点所连的线段平行且相等;②对应线段平行且相等,对应角相等。
3、平移作图的步骤与方法:一般步骤:(1)分析题目要求,找出平移的方向和平移的距离;(2)分析所作的图形,找出构成图形的关键点;(3)沿一定的方向,按一定的距离平移各个关键点;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论。
平移作图的方法:“对应点连接法”和“全等图形法”4、图形的坐标变化与平移:(1)纵坐标保持不变,横坐标分别加k①当k为正数时,原图形形状、大小不变,向右平移k个单位长度;②当k为负数时,原图形形状、大小不变,向左平移k个单位长度;(2)横坐标保持不变,纵坐标分别加k体系搭建①当k 为正数时,原图形形状、大小不变,向上平移k 个单位长度; ②当k 为负数时,原图形形状、大小不变,向下平移k 个单位长度; 5、图形平移的变换(1)图形在坐标系中的平移其实就是点的坐标平移;(2)一个图形依次沿x 轴方向、y 轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到。
变换的方法:①一次平移的方向是由原图形的点到平移后图形的对应点的方向;②若沿x 轴方向平移的单位长度为()0a a >,沿y 轴方向平移的单位长度为()0b b >,则原图形经过一次平移的距离为22a b +.二、 旋转1、旋转的概念(1)在平面内,将一个图形绕一个定点按某个方向旋转一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个性化教学辅导教案
学科: 数学 年级: 八年级 任课教师: 授课时间: 2018 年 春季班 第1周
教学
课题 图形的平移与旋转
教学 目标 1、平移图形中对应点的连线、对应角、对应线段对的关系,
2、直角坐标系中平移图形点的坐标变化规律
3、旋转的定义,旋转的三要素,会根据要求画旋转图形,
4、对应点、对应角、对应线段的关系。
教学 重难点 重点:平移图形与旋转图形中对应点、对应线段、对应角的关系;
难点:图形的平移与旋转的性质的运用。
教学过程
知识点:
1.平移的定义:将一个图形沿某个方向移动一定的距离,这样的移动称为平移,平移不改变图形的形状和大小;只改变图形的位置。
2.平移的性质:一个图形和它经过平移得到的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等。
3.点A (x,y )向上(下)平移a 个单位,右(左)平移b 个单位后对应点的坐标A ’(b y a x ±±,)(沿正方向加,负方向减)
4.旋转三要素:旋转中心,旋转方向,旋转角
5.旋转的性质:一个图形和他经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一对对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。
例1.如图所示,通过平移,△ABC 的顶点A 移到点D ,画出平移后的图形,并找出图中所有平行且相等的线段.
例2.如图.将三角形ABC 沿着从B 到D 的方向平移后得到三角形EDF ,若AB=8cm ,AE=6cm ,CE=2cm .(1)写出点A 、B 、C 的对应点;(2)写出平移的距离是多少?
(3)求线段BD 、DE 、EF 的长度
例3.(1)通过平移把点A(2,-3)移到点A′(4,-2),按同样的平移方
式,点B(3,1)移到点B′,则点B′的坐标是_____.
(2)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,
则a+b的值为()
A. 2
B. 3
C. 4
D. 5
例4.如图,已知△ABC各顶点的坐标分别为A(-2,5)B(-5,-2),C(3,3).将△ABC先向
右平移4个单位长度,再向下平移3个单位长度,得到△A′B′C′.
(1)在图中画出第二次平移之后的图形△A′B′C′;
(2)如果将△A′B′C′看成是由△ABC经过一次平移得到的,请指出
这一平移的平移方向和平移距离.
例5.如图,将△ABC绕某点顺时针旋转得到△AED,
(1)旋转中心是点;
(2)经过旋转,点B,C分别移动到的位置;
(3)对应线段:线段BC与线段,线段AB与线段,线段AC与线段;(4)对应角是:;
(5)旋转角是:;
(6)若旋转角是60°,线段AB=3,则BE= 。
例6.画出ΔABC绕点O顺时针旋转60°后的ΔA’B’C’,并指出对应点对应角,对应线段,旋转角。
例7.如图,在△ABC中,∠BAC=120°,以BC为边向图形外作等边△BCD,把△ABD绕点D按顺时
针方向旋转60°到△ECD的位置,若AB=3,AC=2.
(1)求∠BAD的度数;
(2)求AD的长.
巩固练习
一、基础题
1.当一辆长为13米的豪华巴士在笔直的路面上朝前行驶200米时,坐在豪华巴士正中间的客人()
A.朝同一方向前进了213
B. 朝同一方向前进了200米
C. 朝同一方向前进了206.5米
D. 朝同一方向前进了193.5米
2. 下列运动属于平移的是()
A. 看书时候翻页
B. 人随着电梯在运动
3.如图,△ABC 沿着由点B 到点E 的方向,平移到△DEF ,已知BC=5.EC=2,
那么平移的距离为( )
A. 2
B. 3
C. 5
D. 7
4.下列说法正确的是( )
A. 经过平移,对应点所连的线段平行且相等
B. 经过平移,对应线段平行
C.平移中,图形上每个点移动的距离可以不同
D. 平移不改变图形的形状和大小
5.将线段AB 平移1cm ,得到线段A′B′,则对应点A 与A′的距离为_____cm .
6.如图,△A′B′C′是由△ABC 沿射线AC 方向平移2cm 得到,若AC=3cm ,则
A′C=_____cm .
7. 如将A (3,-1) 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A ′的坐标是( ) A. (6,1) B. (0,1) C. (0,-3) D. (6,-3)
8. 将线段AB 在坐标系中作平行移动,已知A (-1,2),B (1,1),将线段AB 平移后,其两个端点的坐标变为A′(-2,1),B′(0,0),则它平移的情况是( ) A.向上平移了1个单位长度,向左平移了1个单位长度
B.向下平移了1个单位长度,向左平移了1个单位长度
C.向下平移了1个单位长度,向右平移了1个单位长度
D.向上平移了1个单位长度,向右平移了1个单位长度
9.小雨将平面直角坐标系中的三角形ABC 进行平移,得到三角形A′B′C′,已知点A (2,-1)的对应点A′的坐标为(a ,-4),点B (5,-2)的对应点B′的坐标为(3,b ),则点C (a ,b )的对应点C′的坐标为( ) A. (3,-4) B. (-2,-8) C. (0,-5) D. 无法确定
10. 如图,在6×6方格中有两个涂有阴影的图形M 、N ,
①中的图形M 平移后位置如②所示,以下对图形M 的平
移方法叙述正确的是( ) A.向右平移2个单位,向下平移3个单位
B.向右平移1个单位,向下平移3个单位
C.向右平移1个单位,向下平移4个单位
C. 士兵听从口令向后转
D. 汽车到路口转弯
D.向右平移2个单位,向下平移4个单位
11.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四
个顶点的坐标为()
A. (2,2)
B. (3,2)
C. (3,3)
D. (2,3)
12. 在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C 的坐标是()
A. (-4,-2)
B. (2,2)
C. (-2,2)
D. (2,-2)
13.如图,将线段AB平移,使B点到C点,则平移后A点的坐标为_____
14. 如果两个图形可通过旋转而相互得到,则下列说法中错误的是()
A.对应点连线的中垂线必经过旋转中心
B.这两个图形大小、形状不变
C.对应线段一定相等且平行
D.将一个图形绕旋转中心旋转某个定角后必与另一个图形重合
15.如图,四边形ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过
下列哪种旋转可以得到△DOA()
A. 顺时针旋转90°
B. 顺时针旋转45°
C. 逆时针旋转90°
D. 逆时针旋转45°
16.一个图形无论是经过平移,还是经过旋转,下列结论:①对应线段平行;②对应线段
相等;③对应角相等④形状大小完全相同.其中正确的有()
A. 1个
B. 2个
C. 3个
D. 4个
17.如图,△ABC为等边三角形,D是BC边上的一点,△ABD经过旋转
后到达△ACE的位置.
(1)请说出旋转中心,旋转方向以及旋转角度;
(2)请找出AB.AD旋转后的对应线段;
(3)若∠BAD=25°,求∠AEC度数.
二、提高题
1、已知△ABC.(1)平移△ABC,使点A移到点A1的位置,画出平移后得到的△A1B1C1;(2)根据平移的性质,写出两条不同类型的正确结论.
2、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,将ABC
沿AB方向向右平移得到△DEF,若AE=8cm,DB=2cm.
(1)求△ABC向右平移的距离AD的长;(2)求四边形AEFC的周长
3、如图,在平面网格中每个小正方形边长为1.
(1)
(2)线段CD是线段AB经过怎样的平移后得到的;
(2)线段AC是线段BD经过怎样的平移后得到的.
4、如图,E、F分别是正方形ABCD的边AB、BC上的点,且BE=CF,连接CE、DF,
将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,则旋转角为()
A. 30°
B. 45°
C. 60°
D. 90°
5、如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点
A′的坐标是()
A. (2,5)
B. (5,2)
C. (2,-5)
D. (5,-2)
6、如图,正方形ABCD中,E在BC上,F在AB上且∠FDE=45°,△DEC按顺时针方向转动一个角度后成为△DGA.
(1)图中哪一个点是旋转中心?
(2)旋转了多少度?
(3)指出图中的对应点,对应线段和对应角;
(4)求∠GDF的度数。
7、如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=4,AD=7.
(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?。