八年级下册图形的平移与旋转教案

合集下载

八年级数学下册3图形的平移与旋转教案

八年级数学下册3图形的平移与旋转教案

第三章图形的平移与旋转1.通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.2.认识并欣赏平移在自然界和现实生活中的应用.3.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.4.在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.5.通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.6.了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.7.认识并欣赏自然界和现实生活中的中心对称图形.8.运用图形的平移、旋转、轴对称进行图案设计.1.经历有关平移与旋转的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.2.经历借助图形思考问题的过程,初步建立几何直观.3.通过具体实例认识平移与旋转,探索它们的基本性质,会进行简单的平移、旋转画图.4.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.5.在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.6.了解中心对称、中心对称图形的概念,探索它的基本性质.1.在研究平移与旋转的过程中,进一步发展空间观念.2.认识并欣赏平移、旋转在自然界和现实生活中的应用,认识并欣赏自然界和现实生活中的中心对称图形.在前面的学习中学生已对诸如翻折、平移、旋转、轴对称等知识有了一定的认识与理解,只是平移和旋转的知识没有正式出现罢了,但这些变换的意识学生已经有了.学生学习了本章知识后对平移与旋转以及轴对称这三种常用的全等变换有了系统的认识,但学生把握这些全等变换的能力有待提升,特别是对组合图案的形成过程的分析是学生把握不好的地方,应加强训练.立足于学生已有的生活经验和初步的数学活动经验,首先从观察生活中的平移、旋转现象开始,直观的认识平移、旋转,并在此基础上,分析生活中的平移现象和旋转现象各自的规律,得到平移和旋转的基本性质;然后利用平移和旋转的基本性质进行简单的平移作图、旋转作图,通过分析简单平面图形的平移、旋转等变化关系,进一步体会平移、旋转的应用价值和丰富内涵;最后,通过简单的图案设计,将图形的平移、旋转、轴对称融合在图案的欣赏和设计活动中.具体地,教科书设计了4节内容:第1节“图形的平移”,立足于学生小学阶段的学习基础和已有的生活经验,通过分析各种平移现象的共性,直观地认识平移,探索平面图形平移的基本性质,利用平移的基本特征研究简单的平移画图.在此基础上,进一步研究沿坐标轴方向平移后的图形与原图形对应点坐标之间的关系,探索依次沿两个坐标轴方向平移后所得到的图形与原来图形之间的关系.第2节“图形的旋转”,通过具体活动认识平面图形的旋转,探索平面图形旋转的基本性质,利用旋转的基本特征研究简单的旋转画图.第3节“中心对称”,认识中心对称,探索成中心对称的基本性质,利用中心对称的基本特征研究中心对称的画图,认识并欣赏自然界和现实生活中的中心对称图形.第4节“简单的图案设计”,将图形的平移、旋转、轴对称融合在图案的欣赏和设计活动之中.应当指出的是,本章不同于变换几何中的平移、旋转变换,而是先通过观察具体的平移、旋转现象,分析、归纳并概括出平移、旋转的整体规律和基本性质,然后在平移和旋转的图案设计、欣赏、简单应用中,进一步深化对图形的三种基本变换的理解和认识.【重点】1.平移的定义.2.平移的性质及应用.3.简单的平移作图.4.旋转的定义.5.旋转的性质及应用.6.简单的旋转作图.7.中心对称和中心对称图形.【难点】1.平移作图.2.旋转作图.3.中心对称和中心对称图形的区别和联系.4.利用平移、旋转、轴对称进行简单的图案设计.1.着眼于发展学生的空间观念.使学生具备良好的空间观念是义务教育阶段数学教育的一个重要目标,培养学生的空间观念必须使学生经历、体验图形运动变化的过程,本章所研究的平移、旋转及中心对称是反映空间观念的重要内容.为此,教科书设计了一系列的实验、探索活动,如“探索平移基本性质的实验活动”“探索旋转基本性质的实验活动”“探索中心对称基本性质的实验活动”及“图形平移与坐标变化的关系的探索活动”“简单的图案设计活动”等.在这些活动中,学生将会想象物体与物体之间的位置关系,描述图形的运动和变化,依据语言的描述画出图形等,所有这些都是空间观念的重要表现.因此,教师应想方设法鼓励学生积极参与这些活动,通过观察、操作、归纳、猜想、交流等获得结论,并运用自己的语言描述探索过程和所得到的结论,发展空间观念.需要指出的是,培养空间观念是一种个人体验,需要大量的实践活动,以被动听讲和练习为主的方式,是难以形成空间观念的.学生要有充分的时间和空间观察、动手操作,对周围环境和实物产生直接感知,这些都不仅需要自主探索、亲身实践,更离不开大家一起动手、共同参与.观察、操作、归纳、类比、猜想、直观思考等对形成空间观念具有重要作用,只有在学生共同探讨、合作解决问题的过程中才能不断生成和发展,并得到提升.2.重视学生的观察、操作、探索和交流活动.教师创设情境、设计问题,引导学生自主探索、合作交流,让学生经历观察、操作、探索和交流的过程,能有效地激发学生的思考,有助于真正落实学生在学习活动中的主体地位,有助于学生理解和掌握基本知识和基本技能,同时也有助于学生感悟数学思想,积累数学活动经验.本章有许多内容需要学生对图形进行观察、操作、探索和交流,教学时不宜用教师的课堂讲解和演示代替学生的动手操作、主动探究与讨论交流.例如,有关平移、旋转的性质,教科书都设计了相应的实验过程,力图让学生通过动手操作,配合直观的观察和理性的思考探索相关的结论.教学时可以让学生分组进行,每组选用的图形形状可以不同,每次变化的方式也可以不同.学生的这些实验结果为接下来进行的抽象概括提供了很好的素材.在此基础上,全班交流,概括出图形变化(平移、旋转)的基本性质.在这一过程中,学生的手、眼、脑等多种感官都能得到较为充分的运用,既有助于学生理解和掌握相关知识的内涵,也可以使学生在做的过程和思考的过程中积累一定的数学活动经验,并逐步感悟其中所蕴含的数学思想.3.创造性地利用与图形平移、旋转有关的资源进行教学.在教学中,教师应根据学生实际、教学实际和当地实际,充分挖掘和利用现实生活中大量存在的平移、旋转及中心对称现象,尤其是具有地方特色的素材(如北方地区的雪橇、辘轳,农村地区的水车、石碾、风车,城市里的缆车、电梯等),并引导学生对其中的一些共同特征加以分析、总结.4.合理运用现代信息技术,注重教学手段的多样化.本章主要研究图形的变化,对图形的动态展示的要求更为强烈.因此,在条件允许的情况下,教学中都应合理运用现代信息技术,注重信息技术与本章内容的整合,以便有效地改变教与学的方式,提高课堂教学的效率.需要说明的是,现代信息技术真正的价值在于实现原有的教学手段难以达到的甚至达不到的效果,它不应、也不可能完全替代常规的教学手段.例如,教师可以在学生动手实践的基础上,借助计算机、多媒体向学生展示更加丰富的几何图形的运动变化过程,这样不仅为学生理解和掌握相关知识提供形象的支持,有利于增强学生的空间观念,同时也可以让学生获得视觉上的愉悦,增强好奇心,激发学习兴趣.但不能用计算机、多媒体的演示完全取代学生的动手操作活动.5.关注学生情感态度的发展.教师要把落实情感态度的目标作为自己的责任和义务,努力把情感态度目标有机地融合在本章教学过程之中.例如,在设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:如何引导学生积极参与教学过程?如何组织学生观察、操作、探索、归纳?如何使学生愿意学、喜欢学,对本章内容感兴趣?如何让学生体验成功的喜悦,从而增强学好本章内容的自信心?如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑?如何培养学生良好的学习习惯?1图形的平移3课时2图形的旋转2课时3中心对称1课时4简单的图案设计1课时回顾与思考1课时1图形的平移1.通过具体实例认识平移,理解平移的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.2.通过“变化的鱼”探究横向(或纵向)平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.1.经历观察、分析、操作、欣赏以及抽象、概括等过程,探索图形平移的基本性质.2.经历沿x轴、y轴方向和综合方向平移时位置和数量的关系,通过观察、分析以及抽象、概括等过程,发现平移时坐标变化的特点.通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中图形平移的现象与学生自己设计的平移图案,使学生感受数学的美.【重点】探索和理解平移的基本性质.【难点】坐标变换和图形平移的关系.第课时1.认识平移,说出平移的定义,理解平移的基本内涵.2.理解并能说出平移的性质,即一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.1.经历观察、分析、操作、欣赏以及抽象、概括等过程,探索图形平移的基本性质.2.感悟平移前后图形的变化,从点、线、角、位置、大小等不同角度说出平移前后图形的变化关系.通过探究,归纳平移的定义、特征、性质,积累数学活动经验,进一步发展空间观念,增强空间想象力.【重点】1.认识平移在现实生活中的广泛应用.2.探索和理解平移的基本性质.【难点】平移基本性质的探索和理解.【教师准备】实际生活中的平移图片.【学生准备】复习翻折、平移、旋转、轴对称等知识.导入一:1.同学们,你们小时候去过游乐园吗?在游乐园中你们玩过哪些游乐项目?在玩这些游乐项目时你们想过什么?你们想过它里面蕴含着数学知识吗?2.找一找这些项目中,哪些项目的运动形式是一样的,观看游乐园内的一些项目,引出第三章内容,并进行初步分类,引出本节课研究内容:板书课题——图形的平移.[设计意图]由学生喜闻乐见的游乐场引入课题,容易激发学生的学习兴趣.导入二:请你判断: 小明跟着妈妈乘观光电梯上楼,一会儿,小明兴奋地大叫起来:“妈妈!妈妈!你看我长高了!我比对面的大楼还要高!”小明说的对吗?为什么?[设计意图]较好地发挥了“情景导入”的作用,却又找不到足够的理由说服持有不同观点的同学.此情此景,在好奇心的驱动之下,学生欲罢不能,很容易就产生了继续学习、探索新知识的欲望.导入三:请大家仔细观察如图所示的图案,你觉得漂亮吗?这个图案的特点是由一个“基本图案”通过平移得到的,你能找到这个“基本图案”吗?这节内容我们就来研究一种几何变换——平移.[过渡语](针对导入三)刚才我们看到的美丽图案,它是由12个完全一样的图形组成的,这个图案可以看成是由一个基本图形按照一定方式移动得到的.这样的图形运动称作什么呢?这就是我们本课时要研究的——图形的平移.思路一(1)我们再来感受一下平移.上面我们提到的游乐场中的滑梯等,你们在上面玩耍的时候,哪些方面是不变的?哪些方面是变化的?(2)什么是平移呢?引导学生探讨并在班内交流,达成共识后,得出平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.[设计意图]引导学生通过观察,发现图形间的变化规律,得出平移的定义.思路二教师通过多媒体展示(展示画面)现实生活中平移的具体实例:(1)箱子在传送带上移动的过程.(2)手扶电梯上人移动的过程.教师提问:①你能发现传送带上的箱子、手扶电梯上的人在移动前后什么没有改变,什么发生了改变吗?②在传送带上,如果箱子的某一部分向前移动了80cm,那么箱子的其他部位向什么方向移动?移动了多少距离?学生自由发言,各抒己见.平移前后两个图形的形状和大小没有改变,位置发生了改变.根据上述分析,你能说明什么样的图形运动称为平移吗?平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.平移三要素: 基本图形,平移方向,平移距离.[设计意图]数学来源于实际生活,使学生感受到生活中处处有数学.利用课本上的两个实例,进一步感受平移的实质,渗透平移的三要素,即“基本图形、平移方向、平移距离”.如图所示,△ABC经过平移得到△A'B'C'.我们把点A与点A'叫做对应点,线段AB与线段A'B'叫做对应线段,∠A与∠A'叫做对应角.此时:点B的对应点是点B' ;点C的对应点是点C' ;线段AC的对应线段是线段A'C' ;线段BC的对应线段是线段B'C' ;∠B的对应角是∠B' ;∠C的对应角是∠C' .△ABC平移的方向就是由点B到点B'的方向,平移的距离就是线段BB'的长度.[过渡语]一个图形和它经过平移所得到的图形中,对应点所连的线段有什么关系,对应线段和对应角有什么关系?同学们通过刚才的观察,总结出一个结论,即:“图形的位置改变了,但形状和大小没有改变”.现在我们一起来探索:平移前后对应点、对应线段以及对应角之间在做怎样的变化.教师提出问题:想一想,将左图的四边形硬纸片按某一方向平移一定的距离,右图画出了平移前的四边形ABCD和平移后的四边形EFGH.问题:(1)在上图中,线段AE,BF,CG,DH有怎样的关系?(2)图中每对对应线段之间有怎样的关系?(3)图中有哪些相等的线段、相等的角?学生分成四人一组,共同探讨平移的性质.讨论分析:①变换前后对应点所连线段平行(或在一条直线上)且相等.平移变换是图形的每一个点的变换,一个图形沿某个方向移动一定距离,那么每一个点也沿着这个方向移动相同距离,所以对应点所连线段平行(或在一条直线上)且相等.②变换前后的图形全等.平移变换是由一个图形沿着某个方向移动一定距离,所以平移前后的图形是全等的.③变换前后对应角相等.④变换前后对应线段平行(或在一条直线上)且相等.学生归纳总结,教师板书平移的性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.[设计意图]这个活动是探索平移的性质,对学生有点难度,通过设置问题的回答,使学生直接观察得出性质.操作性强又富有挑战性的数学活动,激发了学生学习的兴趣,对平移的基本内涵和基本性质这两个重点,学生能掌握得更好.[过渡语]刚才我们了解了平移的相关概念和平移的基本性质,我们能用学到的知识解答一些问题吗?ABC A D.(1)指出平移的方向和平移的距离;(2)画出平移后的三角形;(3)请在图(2)中找出平行且相等的线段,以及相等的角(找出对应角即可).解:(1)如图(2)所示,连接AD,平移的方向是点A到点D的方向,平移的距离是线段AD 的长度.(2)如图(2)所示,分别过点B,C按射线AD的方向作线段BE,CF,使得它们与线段AD平行且相等,连接DE,DF,EF,△DEF就是△ABC平移后的图形.(3)图中平行且相等的线段有:AB与DE,BC与EF,AC与DF,AD与BE,AD与CF,BE与CF;相等的角有:∠BAC与∠EDF,∠ABC与∠DEF,∠ACB与∠DFE.[设计意图]让学生进一步体会确定平移的两个要素:平移的方向和平移的距离,加深对平移性质的理解和应用.[知识拓展]平移作图.平移作图是平移基本性质的应用,利用平移可以得到许多美丽的图案.在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺序连接对应点.说明:平移作图实际上是平移基本性质的实际应用.注意:(1)平移作图的方法是由平移的性质而来,但必须注意两个条件,一是平移的方向,二是平移的距离.(2)平移的作图要抓住以下几个特征:①平移前后对应点连线平行(或共线)且相等.②对应线段平行(或共线)且相等.③对应角相等.1.平移是运动的一种形式,是图形变换的一种.2.图形的平移有两个要素:一是图形平移的方向;二是图形平移的距离.这两个要素是图形平移的依据.3.图形的平移是指图形整体的平移.经过平移后的图形与原图形相比,只改变了位置,而不改变图形的形状和大小,这个特征是得出图形平移的基本性质的依据.1.下列运动属于平移的是()A.急刹车时汽车在地面上的滑动B.冷水加热中,小气泡上升为大气泡C.随风飘动的风筝在空中的运动D.随手抛出的彩球的运动解析:A中汽车向前滑动,方向和大小都没有改变,属于平移;B中气泡大小发生了变化,不属于平移;C中风筝在空气中运动方向不断变化,不属于平移;D中彩球运动方向不能确定.故选A.2.如图所示,O是正六边形ABCDEF的中心,下列图形中可由三角形OBC平移得到的是()A.三角形OCDB.三角形OABC.三角形FAOD.以上都不对解析:根据平移的定义与特征知,平移后图形的形状、大小不改变,对应线段平行(或在一条直线上)且相等,对应角相等,三角形OBC是等边三角形,与其他五个三角形的形状、大小相同,关键是看其他三角形的对应边是否符合平移的特征.故选C.3.如图所示的四个小三角形都是等边三角形,边长都为1cm,能通过平移三角形ABC得到三角形FAE和三角形ECD吗?若能,请指出平移的方向和平移的距离.解析:三角形FAE与三角形ABC都是等边三角形,则有AF=BA=BC=AE=FE=AC,满足平移后图形的大小和形状不变.平移的方向为点A到点F的方向,平移的距离为AF的长度(1cm).同理可得△ABC与△ECD的关系.解:能.三角形ABC平移到三角形FAE的平移方向为点A到点F的方向,平移的距离为1cm;三角形ABC平移到三角形ECD的平移方向为点A到点E的方向,平移的距离为1cm.4.如图所示,图形ABCD平移到图形EFGH,试根据该图,回答下列问题.(1)在图中,线段AE与BF,CG与DH有怎样的位置关系?(2)图中线段AB与EF,AD与EH有怎样的位置关系?(3)说出图中相等的角(说出对应角即可).解析:AE,BF,CG,DH是对应点所连的线段,AB与EF,AD与EH是对应线段,由平移的特征可知它们的位置关系是平行.对应角相等.解:(1)平行.(2)平行.(3)∠BAD=∠FEH,∠ADC=∠EHG,∠DCB=∠HGF,∠ABC=∠EFG.5.经过平移,三角形ABC的边AB移到了A'B',作出平移后的三角形A'B'C'.解析:本题已知原图形和平移后的一条线段,就相当于已知原图形和平移的方向、平移的距离,所以根据平移前后两三角形全等可以作出平移后的三角形,具体的作法有很多种.解法1:如图(1)所示,分别过点A',B',作出与AC,BC平行且相等的线段A'C',B'C',两条线段相交于点C',三角形A'B'C'即为所求.解法2:如图(2)所示,分别以A',B'为圆心,以线段AC,BC的长为半径画弧,交于点C',连接A'C',B'C'即得△A'B'C'.解法3:如图(3)所示,连接AA',过点C按照射线AA'的方向作射线CC',使CC'∥AA'并截取CC'=AA',则连接A'C',B'C'所得的三角形A'B'C'即为所求作的三角形.第1课时一、平移的定义二、平移的性质三、例题讲解一、教材作业【必做题】教材第67页习题3.1的1,2题.【选做题】教材第68页习题3.1的3,4题.二、课后作业【基础巩固】1.下列说法正确的是()A.两个全等的图形可看做其中一个是由另一个平移得到的B.由平移得到的两个图形对应点连线互相平行(或共线)C.由平移得到的两个等腰三角形周长一定相等,但面积未必相等D.边长相等的两个正方形一定可以通过平移得到2.如图所示,下列每组图形中的两个三角形不是通过平移得到的是()3.下列现象:①电风扇的转动;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动.其中属于平移的是.【能力提升】4.如图所示,一张白色正方形纸片的边长是10cm,被两张宽为2cm的阴影纸条分为四个白色的长方形部分,请你利用平移的知识求出图中白色部分的面积.5.如图所示,AD∥BC,∠ABC=80°,∠BCD=50°,利用平移的知识讨论BC与AD+AB的数量关系.6.如图所示,将Rt△ABC沿直角边AB的方向向右平移2个单位长度得到△DEF,如果BG=CG,AB=4,∠ABC=90°,且△ABC的面积为6,求图中阴影部分的面积.7.如图所示,△ABC沿射线MN方向平移一定距离后成为△A'B'C'.找出图中相等的线段以及全等的三角形.8.A,B两点间有一条传输速度为每分钟5米的传送带,由A点向B点传送货物.一只蚂蚁不小心爬到了传送带上,它以每分钟1.5米的速度从A点爬向B点,3分钟后,蚂蚁爬到了B 点,你能求出A,B两点间的距离吗?【拓展探究】9.如图所示,∠BAC=30°,∠B'A'C'=45°,且AB∥A'B',直线AC与直线A'C'相交于点O,求∠COC''的度数.10.如图所示,有一条光滑曲线,画出将它沿数轴向左平移2个单位长度后的图形.【答案与解析】1.B(解析:全等的图形不一定能通过平移得到,故A错;由平移的性质知平移得到的两个图形对应点连线互相平行(或共线),故B正确;由平移得到的两个等腰三角形周长一定相等,面积也相等,故C错;边长相等的两个正方形不一定能通过平移得到,故D错.)2.B(解析:由平移的性质可知,A,C,D均可通过平移得到,B不能通过平移得到.故选B.)。

图形的平移与旋转 教案

图形的平移与旋转 教案

图形的平移与旋转教案教案标题:图形的平移与旋转教案目标:1. 理解图形的平移和旋转的概念。

2. 掌握平移和旋转的基本操作方法。

3. 能够应用平移和旋转的知识解决实际问题。

教学准备:1. 教学投影仪或白板。

2. 平移和旋转的示例图形。

3. 学生练习册。

教学过程:引入:1. 利用投影仪或白板展示一些图形,并引导学生观察这些图形。

2. 提问:你们观察到这些图形有什么特点?是否可以通过移动或旋转来改变它们的位置或方向?讲解平移:1. 解释平移的概念:平移是指将一个图形沿着某个方向上移动一定距离,而不改变其形状和大小。

2. 展示一个平移的示例图形,并说明平移的基本操作方法:选择一个参考点,然后指定平移的方向和距离。

3. 引导学生进行实际操作:在练习册上完成几个平移练习题,要求学生标出参考点、指定平移的方向和距离。

讲解旋转:1. 解释旋转的概念:旋转是指将一个图形以某个点为中心,按照一定角度转动,而不改变其形状和大小。

2. 展示一个旋转的示例图形,并说明旋转的基本操作方法:选择一个旋转中心点,然后指定旋转的角度。

3. 引导学生进行实际操作:在练习册上完成几个旋转练习题,要求学生标出旋转中心点和旋转的角度。

综合练习:1. 提供一些综合性的练习题,要求学生结合平移和旋转的知识,解决实际问题。

2. 鼓励学生互相交流和讨论解题思路,激发学生的思维能力和创造力。

总结:1. 总结平移和旋转的概念和基本操作方法。

2. 强调平移和旋转在几何学和实际生活中的重要性。

3. 鼓励学生在日常生活中观察和应用平移和旋转的知识。

拓展活动:1. 鼓励学生自主探索其他图形变换的知识,如缩放和镜像等。

2. 提供一些拓展性的练习题,让学生进一步巩固和应用所学的知识。

评估方法:1. 在课堂上观察学生的参与情况和操作技能。

2. 收集学生完成的练习册,评估他们对平移和旋转的理解和应用能力。

教学反思:1. 教师应根据学生的实际情况和理解程度,适当调整教学内容和难度。

八年级数学下册第三章图形的平移与旋转2图形的旋转教案

八年级数学下册第三章图形的平移与旋转2图形的旋转教案

2图形的旋转一、教学目标(1)经历对生活中旋转现象的观察分析过程,引导学生用数学的眼光看待生活中的有关问题;(2)通过具体实例认识旋转,知道旋转的性质;(3)经历对具有旋转现象的图形的观察,操作,画图等过程,掌握好作图的基本技能. 二、教学重点、难点重点:通过具体实例认识旋转的性质.难点:探索旋转的性质,并能应用性质掌握作图技能.三、教具准备课件.四、教学过程(一)情境创设展示一些图片创设情境,让学生说说这些旋转现象有什么共同特征,还能不能再举出一些类似的例子?从学生熟悉的生活现象入手,帮助学生通过具体实例认识旋转,理解旋转的基本涵义,同时引导学生用数学的观点看待生活中的有关问题,发展学生的数学观.(二)探索活动(多媒体出示)活动一:将△ABC绕着点C旋转,记旋转后的三角形为△DEC.(如图2-1)问题1:你能说说BC旋转到了什么位置吗?AC旋转到了什么位置?问题2:点A与哪个点对应?点B与哪个点对应呢?问题3:旋转前与旋转后的两个三角形,什么发生了改变?又有哪些没有改变?学生小组内交流、讨论,教师巡视、指导.C BECO图2-1 图2-2(多媒体出示)活动二:将△ABC绕着点O旋转,记旋转后有的三角形为△DEF.(如图2-2)问题1:你知道点A旋转到了哪个点的位置吗?点B呢?点C呢?问题2:旋转前与旋转后的两个三角形,什么发生了改变?又有哪些没有改变?问题3:根据这两个活动,你知道什么叫做旋转吗?问题4:观察边AC的旋转痕迹,你能求出边AC旋转了多少度吗?BC呢?A点旋转到D点,转了多少度?B点转到E点,又转了多少度?问题5:如果继续旋转,你发现了什么?教师多媒体演示旋转,让学生仔细观察.师生共同探究.问题1:观察点C的旋转痕迹,你能测量出C点旋转了多少度吗?点A旋转了多度?点B 呢?问题2:如果取AC的中点M,那么点M会旋转到什么位置?你能画出来吗?那点M旋转了多少度?再继续旋转,你发现了什么?问题3:观察点C的旋转痕迹,你能说说点C是如何运动的吗?根据这个运动特点,你能说说点C与对应点F有什么关系吗?点A与点D,点B与点E是否也具有这种关系?讨论:你能说说旋转前与旋转后的两个之间有哪些会改变?又有哪些无论你怎么旋转,也不会改变?(三)新授通过以上探究活动,得出定义:在平面内,将一个图形绕着一个定点旋转一定的角度,这样的图形运动就叫做图形的旋转.这个定点就叫旋转中心,旋转的角度就叫旋转角.图形的旋转不改变图形大小与形状.性质:旋转前,旋转后的两个图形全等.对应点到旋转中心的距离相等.每一对对应点与旋转中心的连线所成的角彼此相等.思考:已知图形的旋转,如何测量出旋转角呢?(四)巩固练习1.如图2-3,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转一定的角度得到的.请指出图中的哪一点是旋转中心?测量旋转的角度.( A′ )D′C′图2-32.(1)如图2-4,画出将△ABC绕点A按逆时针方向旋转90°后的对应三角形.CA图2-4(2)如果点D是AC的中点,那么经过上述旋转后,点D旋转到什么位置?请在所画图中将点D的对应点D′表示出来.3.如图2-5,在正方形ABCD中,E是BC上一点,将△AB E旋转后得到△A DF.FDGB图2-5(1)旋转中心是哪一点?旋转了多少度?说说你是怎么测量的.(2)如果G点是AB上的一点,点G应旋转到什么时候位置?请在图中将点G的对应点G′表示出来.(五)操作训练已知A点与点O,画出点A绕着点O旋转30°后的点A′.拓展一:已知线段AB与点O,画出将线段AB绕着点O按逆时针方向旋转80°后得到的图形.拓展二:已知△ABC和点O,画出将△ABC绕着点O按逆时针方向旋转80°后得到的图形. 拓展三:若改成多边形呢?你能总结出旋转作图的方法吗?4.思考:如图2-6,△ABC绕着点O旋转后,点A到达点D的位置,你能画出旋转后的三角形吗?D图2-6(六)课堂小结通过本节课的学习,你知道什么是旋转了吗?你认为旋转有哪些性质?,你能作出符合某一条件旋转后的图形吗?。

八年级数学平移及旋转教案

八年级数学平移及旋转教案

八年级数学平移及旋转教案一、教学目标:1. 知识与技能:(1)理解平移和旋转的定义及其性质;(2)掌握平移和旋转的计算方法;(3)能够运用平移和旋转解决实际问题。

2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力;(2)运用图形软件,演示平移和旋转的过程,提高学生的操作技能。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、合作学习的良好习惯。

二、教学重点与难点:1. 教学重点:(1)平移和旋转的定义及其性质;(2)平移和旋转的计算方法;(3)运用平移和旋转解决实际问题。

2. 教学难点:(1)平移和旋转的计算方法;(2)运用平移和旋转解决实际问题。

三、教学准备:1. 教师准备:(1)教材、教具;(2)多媒体教学设备;(3)图形软件。

2. 学生准备:(1)预习相关知识;(2)准备笔记本、文具。

四、教学过程:1. 导入新课:(1)复习相关知识,如坐标系、直线等;(2)提问:什么是平移?什么是旋转?它们有什么特点?2. 探究平移:(1)讲解平移的定义及其性质;(2)示例演示平移的过程;(3)让学生动手操作,体会平移的变化规律。

3. 探究旋转:(1)讲解旋转的定义及其性质;(2)示例演示旋转的过程;(3)让学生动手操作,体会旋转的变化规律。

4. 练习与巩固:(1)布置练习题,让学生独立完成;(2)挑选学生上台演示平移和旋转的过程;(3)讲解练习题,解答学生疑问。

五、课堂小结:2. 强调平移和旋转在实际生活中的应用;3. 鼓励学生在课后继续探索平移和旋转的奥秘。

六、教学拓展:1. 探讨平移和旋转的其他性质,如平移不改变图形的大小和形状,旋转不改变图形的大小但改变形状等;2. 引导学生思考:在实际生活中,我们何时会遇到平移和旋转的现象?如何运用平移和旋转解决问题?七、应用实践:1. 布置应用题,让学生运用平移和旋转的知识解决实际问题;2. 挑选学生上台演示解题过程,并讲解思路;3. 讲解应用题,解答学生疑问。

《八下第三章平移与旋转》优秀教案

《八下第三章平移与旋转》优秀教案

图形的平移与旋转一、学习方法1学习本章知识要多观察分析和动手操作,探究图形之间的联系与基本特征,有利于知识的发现与探究,提高操作技能。

2要运用对比法学习图形的平移与旋转,将变换前后的图形相互对比,可以发现平移、旋转前后的图形只存在位置上的不同,从中抽象出平移、旋转的定义及特征,进一步发展空间观念,提升设计图案的能力。

3在平移、旋转及中心对称(图形)的简单应用过程中,进一步深化对图形的基本变换、转化思想的理解。

二、知识点(一)课标要求:1图形的平移①通过具体实例认识平移,探索它的基本性质。

②认识并欣赏平移在自然界和现实生活中的应用。

③运用图形的轴对称、旋转、平移进行图案设计。

2图形的旋转①通过具体实例认识平面图形关于旋转中心的旋转。

探索它的基本性质。

②了解中心对称、中心对称图形的概念,探索它的基本性质③探索线段、平行四边形、正多边形、圆的中心对称性质。

④认识并欣赏自然界和现实生活中的中心对称图形。

(二)本章知识框架:三、易错点1错认为形状相同的图形都可以通过平移得到例:下列图形中,是由1仅通过平移得到的是C剖析:本题时常错认为四个图形都可以由(1)所示的图形平移得到,容易与旋转问题弄混。

解决此类问题,要观察各个图形的位置,要注意平移不改变基本图形的方向。

2旋转作图时易弄错旋转角及旋转方向剖析:对于旋转作图题,若不能准确理解旋转方向及旋转角的含义,则非常容易出现旋转方向上的错误。

3图形变换时,不能正确确定基本图案例:扑克牌中的黑心5中的黑心是否可以看成是由某个基本图案通过旋转变换得到的。

解:不可能只通过旋转变换得到。

剖析:此类题因对图案观察不细,找不准“基本图案”,对平移、旋转、对称变换的特征把握不准而判断错误。

分析图形变换的第一步就是要确定“基本图案”,准确定位“基本图案”的关键因素是仔细观察图案,在针对评平移、旋转、对称的特征进行分析,探究。

4易混淆中心对称图形与轴对称图形的概念例:下面的图形中,既是轴对称图形又是中心对称图形的是(B)A (B)(C)(D)剖析:中心对称图形是绕对称中心旋转180º,而轴对称图形是沿对称轴折叠,其结果是:中心对称图形旋转前后互相重合,而轴对称图形的对称轴两旁的部分互相重合,掌握二者之间的区别可便于我们正确选择和设计所需图形。

北师大八年级数学下册教案:第3章 图形的平移与旋转

北师大八年级数学下册教案:第3章 图形的平移与旋转

北师大八年级数学下册教案:第3章图形的平移与旋转3.1图形的平移第1课时平移的认识1.理解并掌握平移的定义及性质;(重点)2.能够根据平移的性质进行简单的平移作图.一、情境导入观察下列图片,你能发现图中描绘的运动的共同点吗?二、合作探究探究点一:平移的定义下列各组图形可以通过平移互相得到的是()A. B.C. D.解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C,故选C.方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.探究点二:平移的性质【类型一】利用平移的性质进行计算如图,将等腰直角△ABC 沿BC 方向平移得到△A1B 1C 1,若BC =32,△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1等于()A .1 B.2 C.3D .2解析:设B 1C =2x ,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B 1C 边上的高为x ,∴12×x ×2x =2,解得x =2(舍去负值),∴B 1C =22,∴BB 1=BC -B 1C =2.故选B.方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.【类型二】平移性质的综合应用如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移线段BE 的距离,就得到此图形,下列结论正确的有()①AC ∥DF ;②HE =5;③CF =5;④阴影部分面积为552.A .1个B .2个C .3个D .4个解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF =BE =5,正确;④S 四边形HDFC =S 梯形ABEH =12(AB +EH )·BE =12×(8+5)×5=652,错误.故选C.方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.探究点三:简单的平移作图将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图第2课时坐标系中的点沿x轴、y轴的平移2.能够根据平移的性质解决点的坐标平移变化问题.(重点,难点)一、情境导入在如图所示的坐标系中标注出点A0(-2,-3),并按下列要求作图.(1)将A0向上平移3个单位长度,向右平移6个单位长度得到A1;(2)将A0向右平移6个单位长度,向上平移3个单位长度得到A2;(3)将A0向下平移2个单位长度,向左平移4个单位长度得到A3;(4)将A0向左平移4个单位长度,向下平移2个单位长度得到A4.观察每一次平移后得到的点的坐标,你能从中发现什么规律?二、合作探究探究点一:图形沿x轴或y轴方向的平移与点的坐标变化【类型一】沿x轴方向的平移的坐标变化在平面直角坐标系中,点A(-2,3)平移后能与原来的位置关于y轴对称,则应把点A()A.向右平移2个单位B.向左平移2个单位C.向右平移4个单位D.向左平移4个单位解析:关于y轴成轴对称的两个点的纵坐标相同,横坐标互为相反数,那么向右平移两个横坐标差的绝对值即可.∵点A(-2,3)平移后能与原来的位置关于y轴对称,∴平移后的坐标为(2,3).∵横坐标增大,∴点A是向右平移得到,平移距离为|2-(-2)|=4.故选C.方法总结:本题考查了平移中点的变化规律及点关于坐标轴对称的知识,用到的知识点为:两点关于y轴对称,纵坐标相同,横坐标互为相反数;点的左右移动只改变点的横坐标.【类型二】沿y轴方向的平移的坐标变化点P(-2,1)向下平移2个单位长度后,在x轴反射下的点P′的坐标为()C.(-2,1)D.(2,1)解析:把点P(-2,1)向下平移2个单位长度后,横坐标不变,纵坐标减去2即可得到平移后点的坐标(-2,-1),在x轴反射下的点P′与P关于x轴对称.点P(-2,1)向下平移2个单位长度后的坐标为(-2,-1),则在x轴反射下的点P′的坐标为(-2,1),故选C.方法总结:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).【类型三】根据平移判断点所在的位置将点M(-1,-5)向右平移3个单位长度得到点N,则点N所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限解析:先利用平移中点的变化规律求出点N的坐标,再根据各象限内点的坐标特点即可判断点N所处的象限.点M(-1,-5)向右平移3个单位长度,得到点N的坐标为(2,-5),故点N在第四象限.故选D.方法总结:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.探究点二:图形依次沿着x轴方向、y轴方向的平移与坐标变化【类型一】根据点的坐标变化判断平移方式将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC()A.向左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的解析:平移与点的变化规律:横坐标加上3,应向右移动;纵坐标不变.根据点的坐标变化与平移规律可知,当△ABC各顶点的横坐标加上3,纵坐标不变,相当于△ABC向右平移3个单位长度.故选B.方法总结:本题考查图形的平移变换,关键是要懂得左右平移时点的纵坐标不变,而上下平移时点的横坐标不变.【类型二】根据平移判断点所在的位置在平面直角坐标系上,点(4,6)先向左平移6个单位,再将得到的点的坐标关于x轴对称,得到的点位于()A.x轴上B.y轴上C.第三象限D.第四象限解析:首先根据图形平移点的坐标的变化规律可得点(4,6)先向左平移6个单位后点的坐标,再写出关于x轴对称的点的坐标,然后根据平面直角坐标系中各象限内点的坐标特征即可求解.∵将点(4,6)先向左平移6个单位后点的坐标为(-2,6),∴(-2,6)关于x轴对称的点的坐标(-2,-6),在第三象限.故选C.方法总结:此题主要考查了坐标与图形变化-平移,关于x轴对称的点的坐标规律,以及平面直角坐标系中各象限内点的坐标特征,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.【类型三】平移的综合应用如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)请直接写出△A′B′C′的面积为________.解析:(1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0-2)可得A、B、C三点的坐标变化规律,进而可得答案;(2)根据点的坐标的变化规律可得△ABC先向右平移5个单位,再向下平移2个单位;(3)把△A′B′C′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.解:(1)A′为(4,0)、B′为(1,3)、C′为(2,-2);(2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位);(3)△A′B′C′的面积为6.方法总结:熟练掌握平移的规律是解题的关键,上下平移,横坐标不变,纵坐标上加下减;左右平移,纵坐标不变,横坐标左加右减.三、板书设计1.图形沿x轴的平移的坐标变化在平面直角坐标系中,如果把图形中点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着x轴向右(或向左)平移a个单位长度.2.图形沿y轴的平移的坐标变化在平面直角坐标系中,如果把图形中点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着y轴向上(或向下)平移a个单位长度.3.图形依次沿着x轴方向、y轴方向的平移与坐标变化一个图形依次沿着x轴方向、y轴方向的平移后所得到的图形,可以看成是由原来的图形经过一次平移得到的.本课时的教学主要以学生为主体,鼓励学生主动参与到课堂互动中来,在学生讨论交流的基础上进行归纳总结,使学生对知识的认识从感性上升到理性,体会数形结合思想的应用,增强应用数学的意识,提高数学建模的能力,让学生学会探究,学会学习.3.2图形的旋转第1课时旋转的定义和性质1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用;2.掌握旋转的性质,应用概念及性质解决一些实际问题.(重点,难点)一、情境导入飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现象.你还能举出类似现象吗?二、合作探究探究点一:旋转的定义【类型一】旋转的认识如图,将左边叶片图案旋转180°后,得到的图形是()解析:将叶片图案旋转任何角度和A、B中的图案均不重合;不旋转或旋转360°后和C 中的图案重合,不合要求;顺时针或逆时针旋转180°后只和D中的图案重合,故选D.【类型二】旋转图形的识别下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解析:由旋转对称图形的定义逐一判断求解.解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.方法总结:判断一个图形是否是旋转对称图形,其关键是要看这个图形能否找到一个旋转中心,且图形能绕着这个旋转中心旋转一定角度与自身重合.【类型三】旋转角的判断如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°解析:对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以,旋转角∠BOD=90°.故选C.探究点二:旋转的性质【类型一】旋转性质的理解如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点,又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E 的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=2 2.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,体会图形变换思想.第2课时旋转作图1.复习旋转及旋转图形的概念与性质;2.能够根据旋转的性质进行简单的旋转作图.一、情境导入在钟面上,从1点到1点6分,分针转了多少度角?时针转了多少度角?1点6分时针与分针的夹角是多少度?二、合作探究探究点:简单的旋转作图【类型一】旋转作图在如图所示的网格图中按要求画出图形:(1)先画出△ABC向下平移5格后的△A1B1C1.(2)再画出△ABC以点O为旋转中心,沿顺时针方向旋转90°后的△A2B2C2.解:(1)如图,△A1B1C1即为△ABC向下平移5格后的图形.(2)△A2B2C2即为△ABC以点O为旋转中心,沿顺时针方向旋转90°后的图形.【类型二】作旋转图形如图,画出△ABC绕点O逆时针旋转90°后的△A′B′C′.解:(1)如图,连接OA,OB,OC.(2)分别以OA,OB,OC为一边作∠AOA′=∠BOB′=∠COC′=90°.(3)分别在射线OA′,OB′,OC′上截取OA′=OA,OB′=OB,OC′=OC.(4)依次连接A′B′,B′C′,C′A′.则△A′B′C′就是△ABC绕点O顺时针旋转90°后的图形.【类型三】图形旋转的应用如图①,分别以正方形ABCD的边AD和DC为直径画两个半圆交于点O.若正方形的边长为10cm,求阴影部分的面积.解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD 、AC ,由正方形的对称性可知,AC 与BD 必交于点O ,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O 逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O 顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O 逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O 顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm 2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.3.3中心对称1.理解并掌握中心对称及中心对称图形的概念及性质;(重点)2.能够根据中心对称及中心对称图形的性质进行作图.一、情境导入剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元6世纪.如图剪纸中两个金鱼之间有什么关系呢?二、合作探究探究点一:中心对称和中心对称图形的概念【类型一】中心对称的识别如下图所示的四组图形中,左边图形与右边图形成中心对称的有()A.1组B.2组C.3组D.4组解析:将选项中左边图形沿着某一点旋转180°能与右边图形重合的是(1)(2)(3),所以(1)(2)(3)中左边图形与右边图形成中心对称.共3组,故选C.【类型二】中心对称图形的识别下列标志图中,既是轴对称图形,又是中心对称图形的是()解析:根据轴对称和中心对称的概念和性质逐一进行判断,选项A是中心对称图形,不是轴对称图形;选项B既是中心对称图形,又是轴对称图形;选项C是轴对称图形,不是中心对称图形;选项D既不是中心对称图形,也不是轴对称图形.故选B.方法总结:识别中心对称图形的方法是根据概念,将这个图形绕某一点旋转180°,如果旋转后的图形能够与自身重合,那么这个图形就是中心对称图形.探究点二:中心对称和中心对称图形的性质【类型一】确定对称中心如图,已知△ABC和△A′B′C′成中心对称,画出它们的对称中心.解析:由于△ABC和△A′B′C′成中心对称,即从整体上看,此图是一幅中心对称图案,所以本题有两种解法.解法一:根据观察,B、B′及C、C′应是两组对应点,连接BB′、CC′,BB′、CC′相交于点O,则O为对称中心.如图.解法二:B、B′是一对对应点,连接BB′,找出BB′的中点O,则点O即为对称中心.如图.方法总结:利用中心对称的特征,找正确对应点.当两个图形成中心对称时,通过直接观察的方法找对应点;如果直观体现不明显,可采用测量方法找对应点.【类型二】利用中心对称图形的性质求面积如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,试求图中阴影部分的面积.解析:由于矩形是中心对称图形,所以依题意可知△BOF与△DOE关于点O成中心对称,此图中阴影部分的三个三角形可以转化到直角△ADC中,于是此面积即可求得.解:因为矩形ABCD是中心对称图形,所以△BOF与△DOE关于点O成中心对称,所以图中阴影部分的三个三角形就可以转化到直角△ADC中.又因为AB=2,BC=3,所以Rt△ADC的面积为12×3×2=3,即图中阴影部分的面积为3.方法总结:利用中心对称的性质将阴影部分转化到一个直角三角形中来解决更简单.探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.3.4简单的图案设计1.利用旋转、轴对称或平移进行简单的图案设计.2.认识和欣赏平移、旋转在现实生活中的应用,并灵活运用平移与旋转组合的方式进行一些图案设计.一、情境导入2016年里约热内卢奥运会会徽是由三人牵手相连的标志,代表巴西的著名景点“面包山”作为图形的基础,融合充满激情的卡里奥克舞,并且呼应了巴西国旗的绿黄蓝三色.标志象征着团结、转变、激情及活力.在和谐动感中共同协力,同时也体现了里约的特色和这座城市多样的文化,展示了热情友好的里约人和这座美丽的上帝之城.二、合作探究探究点一:分析图案的形成过程【类型一】分析构成图案的基本图形分析下列图形的形成过程.解析:仔细观察图案,分析构成的基本图形,再分析图形变换的过程和方式.是通过平移、轴对称、旋转中的一种变换还是其中的几种变换的组合,另外要注意图形形成不是唯一的,即基本图形也不唯一,要全面思考,认真分析.解:仔细观察会发现这四个图形分别是由以下的基本图形构成的.第一个是由基本图形旋转十次后得到的,第二个是由基本图形平移两次后得到的,第三个是由基本图形旋转五次后得到的,第四个是由基本图形旋转五次后得到的.因为图形的变换不唯一还可以有其他的变换方式,如(1)、(4)可以由图2(a)、2(b)通过轴对称变换得到.方法总结:对于这四种图形变换一般从定义区分即可.分清图形变换的几个最基本概念是解题的关键.【类型二】分析图案的形成过程分析左边的树形图案,经过怎样的图形变换就可得到右边的树形图案.解析:根据左右两图形的位置关系可知,若要由左图得到右图,可以通过以下两种途径:(1)把左图绕点A沿顺时针方向旋转一个角度,使左边的树形图案与直线垂直,然后再作轴对称变换(要注意对称轴的正确选择),即可得到右边的树形图案.(2)把左图先做轴对称变换(要注意对称轴的正确选择),使左边的树形图案与直线垂直,然后再作平移变换,即可得到右边的树形图案.方法总结:图形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案.探究点二:利用平移、旋转、轴对称等方式设计图案用四块如图①所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图②、图③、图④中各画出一种拼法(要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形).解:解法不唯一.例如:方法总结:求解时只要符合题意即可,另外,在平时的学习生活中一定要留意身边的各种形状的图案,这样才能在具体求解问题时如鱼得水,一蹴而就.三、板书设计1.分析图案的形成过程(1)分析构成图案的基本图形;(2)分析图案的形成过程.2.利用平移、旋转、轴对称等方式设计图案教学过程中,强调学生自主探索和合作交流,经历运用平移、旋转、轴对称的组合进行简单的图案设计过程,体会图案的欣赏与设计过程.。

《图形的平移》教学设计8篇

《图形的平移》教学设计8篇

《图形的平移》教学设计8篇教学目标1.学问与技能目标:(1)学生结合生活实际,初步感知平移与旋转现象;(2)使学生能在方格图上数出图形平移的格数;(3)通过教学,提高学生的观看力量和动手操作力量。

2.过程与方法目标:通过学生认真观看、动手操作让学生感知平移和旋转,合作探究图形在方格图上平移的方法。

3.情感态度价值观目标:通过说出日常生活中的平移与旋转现象,感受数学与生活的亲密联系,激发学生学习数学的兴趣。

教学重点1.学生结合生活实际,初步感知平移与旋转现象。

2.使学生能在方格纸上数出一个简洁图形沿水平方向、竖直方向平移后的格数。

教学难点使学生能在方格纸上数出一个简洁图形沿水平方向、竖直方向平移后的格数。

教学用具课件,图片。

学生用具方格纸,小房子卡片,小熊卡片,小篇子。

教学过程一、初步感知1.提醒课题。

课件演示缆车、升降电梯、风车、电扇的运动。

师:看看图上是什么?它们是怎样运动的?你能用手势表示它们的运动吗?它们运动时的样子一样吗?那你们能不能依据它们运动时的样子给它们分分类?你是怎样分的?你为什么这么分?师:你们说得真好!像缆车和升降电梯这样的运动在数学里我们叫它平移;而像电扇和风车这样的运动我们叫它旋转。

(板书课题)师:在我们日常生活中,哪些物体的运动是平移和旋转?2.联系生活实际动手操作,初步感知。

师:今日这节课来了一个新伙伴,你们欢送吗?你们想不想跟小熊一起去游乐场看看?师:你能从下面的游乐工程中找出平移运动的吗?小熊最喜爱玩旋转类的嬉戏了,你情愿帮它挑出来吗?3.动手操作,进一步感知平移与旋转。

师:你们看小熊给大家带来了什么?咱们一起跟小熊做个嬉戏情愿吗?嬉戏之前让咱们一起先来看看嬉戏建议吧!(课件演示嬉戏建议)(学生进展活动)师:在刚刚的嬉戏中,小熊做的是什么运动?4.小结:刚刚我们通过嬉戏对平移与旋转有了更进一步的熟悉,那你们想不想利用它们解决更多的数学问题呀?二、探究体验1.学生动手移一移,说一说。

图形的平移和旋转(教案和习题)

图形的平移和旋转(教案和习题)

图形的平移和旋转教学目标:1. 理解平移和旋转的概念。

2. 学会用平移和旋转的方法来变换图形。

3. 能够判断图形是否发生了平移或旋转。

教学重点:1. 平移和旋转的定义。

2. 平移和旋转的方法。

3. 平移和旋转的性质。

教学难点:1. 理解平移和旋转的本质区别。

2. 学会用平移和旋转的方法来变换复杂图形。

教学准备:1. 教学PPT。

2. 图形卡片。

3. 练习题。

教学过程:第一章:平移的概念和性质1.1 引入平移的概念教师展示一些平移的实例,如滑滑梯、电梯等,引导学生感受平移的特点。

1.2 学习平移的性质学生通过观察和操作,发现平移不改变图形的形状和大小,只改变图形的位置。

1.3 练习平移学生分组合作,用图形卡片进行平移操作,体会平移的方法。

第二章:旋转的概念和性质2.1 引入旋转的概念教师展示一些旋转的实例,如旋转门、风车等,引导学生感受旋转的特点。

2.2 学习旋转的性质学生通过观察和操作,发现旋转不改变图形的大小,只改变图形的位置和方向。

2.3 练习旋转学生分组合作,用图形卡片进行旋转操作,体会旋转的方法。

第三章:平移和旋转的判定3.1 学习平移的判定方法学生通过观察和操作,学会判断图形是否发生了平移。

3.2 学习旋转的判定方法学生通过观察和操作,学会判断图形是否发生了旋转。

3.3 练习判断学生独立完成判断题目,巩固平移和旋转的判定方法。

第四章:平移和旋转的应用4.1 学习用平移和旋转的方法来变换图形学生通过观察和操作,学会用平移和旋转的方法来变换图形。

4.2 练习变换学生独立完成变换题目,巩固平移和旋转的变换方法。

第五章:总结与拓展5.1 总结平移和旋转的概念、性质和判定方法学生通过回顾本节课的内容,总结平移和旋转的概念、性质和判定方法。

5.2 拓展平移和旋转的应用学生分组合作,用平移和旋转的方法来创作有趣的图形图案。

教学评价:1. 通过课堂观察,评价学生对平移和旋转概念的理解程度。

2. 通过练习题,评价学生对平移和旋转性质的掌握程度。

初二数学图形的平移和旋转教案

初二数学图形的平移和旋转教案

一、复习预习(1)平移的概念(2)平移的特点(3)平移的基本性质火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,那么在运动的过程中这些物体的形状、大小、位置等因素中,哪些没有发生改变? 哪些发生了变化?这种运动就叫做什么?为解决这一问题,我们讲今天的内容。

二、知识讲解知识点1 平移、旋转和轴对称的区别和联系(1)区别。

①三者概念的区别:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移;在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;在平面内,将一个图形沿着某条直线折叠。

如果它能够与另一个图形重合,那么这两个图形成轴对称。

②三者运动方式不同:平移是将图形沿某个方向移动一定的距离。

旋转是将一个图形绕一个定点沿某个方向转动一个角度;轴对称是将图形沿着某一条直线折叠。

③对应线段、对应角之间的关系不同:平移变换前后图形的对应线段平行(或共线)且相等;对应点所连的线段平行且相等;对应角的两边分别平行且对应角的方向一致。

轴对称的对应线段或延长线相交,交点在对称轴上:对应点的连线被对称轴垂直平分。

旋转变换前后图形的任意一对对应点与旋转中心的距离相等、与旋转中心的连线所成的角是旋转角。

④三者作图所需的条件不同:平移要有平移的方向和平移的距离,旋转要有旋转中心、旋转方向和旋转角:轴对称要有对称轴。

(2)联系。

①它们都在平面内进行图形变换②它们都只改变图形的位置不改变图形的形状和大小,因此变换前后的两个图形全等。

③都要借助尺规作图及全等三角形的知识作图。

知识点2 组合图案的形成(1)确定图案中的“基本图案”。

(2)发现该图案各组成部分之间的内在联系。

(3)探索该图案的形成过程:运用平移、旋转、轴对称分析各个组成部分如何通过“基本图案”演变成“形”的。

要用运动的观点、整体的思想分析“组合图案”的形成过程。

运动的观点就是要求我们不能静止地挖掘“基本图案”与“组合图案”的内在联系,头脑中应想象、再现图案形成的过程,做到心中有数,特别是有的图案含有不同的“基本图案”其形成的方式也多种多样,可以通过平移、旋转、轴对称变换中的一种或两种变换方式来实现,也可以通过同一种变换方式的重复使用来实现。

八年级数学平移及旋转教案

八年级数学平移及旋转教案

八年级数学平移及旋转教案一、教学目标1. 知识与技能:(1)理解平移和旋转的概念,掌握它们的性质和特点。

(2)学会运用平移和旋转进行图形的变换。

2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力和动手能力。

(2)学会用坐标表示平移和旋转后的图形。

3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的创新意识。

(2)培养学生团队协作和交流分享的能力。

二、教学内容1. 平移的概念和性质(1)定义:在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,叫做平移。

(2)性质:平移不改变图形的形状和大小,只改变图形的位置。

2. 旋转的概念和性质(1)定义:在平面内,将一个图形绕着某一点转动一个角度,叫做旋转。

(2)性质:旋转不改变图形的形状和大小,只改变图形的位置。

三、教学重点与难点1. 教学重点:(1)理解平移和旋转的概念,掌握它们的性质。

(2)学会运用平移和旋转进行图形的变换。

2. 教学难点:(1)坐标系中如何表示平移和旋转后的图形。

(2)如何运用平移和旋转解决实际问题。

四、教学方法1. 采用问题驱动法,引导学生主动探究平移和旋转的性质。

2. 利用直观教具和多媒体辅助教学,帮助学生建立空间想象能力。

3. 创设实践操作活动,让学生动手操作,增强实践能力。

4. 采用小组合作学习,培养学生的团队协作和交流分享能力。

五、教学过程1. 导入新课:(1)复习相关概念:图形的变换、对称、轴对称。

(2)引入平移和旋转的概念,激发学生兴趣。

2. 自主学习:(1)学生自主探究平移和旋转的性质。

(2)学生用坐标表示平移和旋转后的图形。

3. 课堂讲解:(1)讲解平移的性质,举例说明。

(2)讲解旋转的性质,举例说明。

4. 实践操作:(1)学生进行平移和旋转的实践操作。

(2)学生用坐标表示平移和旋转后的图形。

5. 巩固练习:(1)学生完成课后练习题。

(2)学生互相讨论,解答疑问。

6. 课堂小结:(1)教师引导学生总结平移和旋转的性质。

平移和旋转的教学设计优秀9篇

平移和旋转的教学设计优秀9篇

平移和旋转的教学设计优秀9篇《平移和旋转》优秀教学设计篇一教学目标:1、借助实例及生活经验,感知平移和旋转现象,并能正确区分。

2、能在方格纸上数出一个简单图形沿水平或竖直方向平移的格数。

3、通过观察、操作、思考等活动,发展空间观念。

4、了解平移和旋转现象在生活中的应用,体会数学与生活的密切联系。

教学准备:课件、实物投影、卡纸、方格纸及小三角形纸片。

教学过程:一、谈话引入请同学们向左移一步,在向右移一步,然后向左转个圈,在向右转个圈。

刚才同学们在做运动,其实人的生命就在于运动。

不光人能运动,在我们生活中有许多物体都是可以运动的,但是他们的运动方式不同,即运动的样子不同,今天我们就来研究物体的两种运动方式。

二、探究新知(一)、认识平移和旋转1、观察下面我们来看几种运动的物体。

(课件)观察谁在动,拿出你的小手跟着这个动的物体一块动一动。

比划比划它是怎么运动的。

2、分类同学们说的都很好,那你能给它们分分类吗?想想刚才你用手比划的样子,两个人互相讨论,给它们分分类,并说明理由。

好,谁来给它们分分类?小结:同学们分得真不错,像推拉窗从右往左移动、升降机从上往下这样直直地运动(用手势做出平移的动作),我们给它起个名字叫平移。

板书:平移像风车摩天轮这样转着的运动(用手势做出旋转的动作),我们给它起个名字叫旋转。

板书:旋转3、进一步感知大家认识它吗,是喜羊羊啊。

喜羊羊也想跟大家一样学习新知识。

谁有办法让喜羊羊在黑板上做一个平移运动?口令:向上平移,回原位;向右平移,回原位;向左上方平移,向右下方平移。

说一说发现了什么?(发现原来在平移过程中,只是位置发生了变化,卡通人物的方向始终没有发生变化。

)喜羊羊头朝下了,想办法让它把头摆正了。

指名上台做动作,其他学生观察:他做了什么动作?他做了什么动作?(旋转)旋转的过程中喜羊羊的什么发生了变化?喜洋洋的头从朝下变成了朝上(方向发生了变化)旋转会使物体本身的方向发生变化。

4、找生活中的旋转和平移5、判断找到了那么多平移和旋转现象,下面咱们来做一个题。

平移与旋转教案 (2)

平移与旋转教案 (2)
三、例题讲解:
例1:如图,经过平移,△ABC的顶点A移到了点D
(1)指出平移的方向和平移的距离;
(2)画出平移后的三角形.
例2:(2013.湖南郴州)在下面的方格纸中.
(1)作出△ABC关于MN对称的图形△A1B1C1;
(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?
例3:如图,将四边形ABCD平移后得到四边形EFGH,已知EF=13,GF=12,GH=3,EH=4,且∠D=90 ,求四边形ABCD的周长和面积.
二、基础练习:
1.(2013.湖南湘西)在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应点A1的坐标是.
2.在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A.B两点的坐标分别为
(-2,3),(-3,1),若点A1的坐标为(3,4),则点B1的坐标为.
三、例题讲解:
2.平移的性质:平移不改变图形的和,故平移前后的两个图形是的.因此平移具有以下性质:(1)对应点所连的线段(或在同一条直线上)且.(2)对应线段(或在同一条直线上)且.(3)对应角.
二、基础练习:
1.下列现象属于平移的是_______________
A.打开抽屉;B.健身时做呼啦圈运动;C.风扇扇叶的转动;D.小球从高空竖直下落;
五、课堂小结
作业布置








单元

教学内容
3.2图形的旋转(一)
课时
1




1、学会分析生活中的图形的旋转现象,发展初步的审美能力,增强对图形的欣赏的意识。
2、通过具体事例认识旋转,理解旋转的性质。

北师大版八年级数学下册第三章图形的平移与旋转3

北师大版八年级数学下册第三章图形的平移与旋转3
2.学生在图形旋转操作中可能存在的困难,如旋转方向的判断、旋转角度的计算等,教师需适时给予指导,帮助他们克服困难。
3.学生在小组合作探究中可能出现的分歧,教师要引导学生学会倾听、尊重他人意见,培养良好的团队协作精神。
4.学生对旋转性质的理解程度,教师应通过丰富的实例和变式训练,帮助学生深化理解,提高解决问题的能力。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、动手操作等方面,给予及时反馈。
(2)终结性评价:通过课后作业、单元测试等方式,评价学生对旋转知识与技能的掌握程度。
(3)发展性评价:鼓励学生发挥个性,勇于创新,关注他们在数学学习中的情感态度和价值观。
4.教学策略:
(1)关注学生的个体差异,实施分层教学,让每个学生都能在原有基础上得到提高。
4.引导学生认识到数学在生活中的广泛应用,体会数学的价值,增强他们的社会责任感。
在教学过程中,教态度与价值观有机地结合起来,使学生在轻松愉快的氛围中学习图形的旋转及旋转的性质。同时,教师要关注学生的个体差异,因材施教,让每个学生都能在原有基础上得到提高。
(四)课堂练习
1.教学内容:
设计不同难度的练习题,包括基本概念题、实际应用题和拓展提高题。
2.教学方法:
让学生独立完成练习题,教师对学生的解答进行点评和指导。
3.目的:
巩固所学知识,提高学生的解题能力,培养学生的应用意识。
(五)总结归纳
1.教学内容:
对本节课学习的旋转定义、旋转中心、旋转角、旋转性质等进行总结。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了平面几何的基本概念、图形的性质和分类,具备了一定的几何图形识别和推理能力。在此基础上,他们对图形的旋转及旋转的性质有了初步的认识,但可能对旋转的数学表达和实际应用还较为陌生。因此,在本章节的教学中,教师应关注以下学情:

《平移和旋转》教案五篇(教案)

《平移和旋转》教案五篇(教案)
首先,加强直观演示。在讲解平移和旋转的概念时,我应更多地利用实物、教具或多媒体动画进行直观演示,让学生更直观地感受和掌握这些几何变换。通过观察和操作,他们能更好地理解平移和旋转的性质和应用。
其次,关注学生的个体差异。在课堂教学中,我发现有的学生对平移和旋转的理解较快,而有的学生则较慢。针对这种情况,我应适当调整教学节奏,给予理解较慢的学生更多的关注和指导,确保每个学生都能跟上教学进度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用纸张进行平移和旋转,这个操作将演示平移和旋转的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平移和旋转在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-突破方法:通过大量实例和练习,让学生掌握判断的技巧。
-实际问题中的应用:学生在将平移和旋转应用到解决具体问题时可能不知道如何入手。
-突破方法:通过案例分析,引导学生逐步分析问题,找到解决策略。
-创新设计:学生在利用平移和旋转进行创新设计时可能缺乏想象力。
-突破方法:鼓励学生进行头脑风暴,尝试不同的组合和变换,激发创造力。
今天的学习,我们了解了平移和旋转的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次《平移和旋转》的教学中,我发现学生们对平移和旋转的概念有了初步的理解,但真正应用到实际问题中时,还存在一些困难。我意识到,在今后的教学中,需要从以下几个方面进行改进和加强。

初中图形平移旋转 教案

初中图形平移旋转 教案

初中图形平移旋转教案教学目标:1. 理解平移和旋转的概念,能够区分它们。

2. 掌握图形平移和旋转的性质和特点。

3. 能够运用平移和旋转的性质解决实际问题。

教学重点:1. 理解平移和旋转的概念。

2. 掌握图形平移和旋转的性质和特点。

教学难点:1. 理解图形平移和旋转的性质。

教学准备:1. 教学课件或黑板。

2. 图形卡片或实物模型。

教学过程:一、导入(5分钟)1. 引入平移和旋转的概念,让学生回顾已学的相关知识。

2. 提问:你们在生活中什么时候见过平移和旋转的现象?二、新课讲解(15分钟)1. 讲解平移的概念和特点,通过示例让学生理解平移的意义。

2. 讲解旋转的概念和特点,通过示例让学生理解旋转的意义。

3. 讲解图形平移和旋转的性质,如平移不改变图形的形状和大小,旋转不改变图形的大小等。

三、课堂练习(15分钟)1. 让学生在纸上画出一个任意的图形,然后进行平移和旋转,观察图形的变化。

2. 让学生回答:平移和旋转对图形有什么影响?图形的大小和形状是否会改变?四、应用拓展(15分钟)1. 让学生思考并回答:在实际生活中,平移和旋转可以应用于哪些方面?2. 让学生进行小组讨论,探讨如何运用平移和旋转的性质解决实际问题。

五、总结(5分钟)1. 让学生回顾本节课所学的内容,总结平移和旋转的概念、性质和特点。

2. 强调平移和旋转在实际生活中的应用价值。

教学反思:本节课通过讲解、练习和应用拓展,让学生掌握了平移和旋转的概念、性质和特点。

在教学过程中,要注意引导学生从实际生活中发现平移和旋转的现象,培养学生的观察能力和实际应用能力。

同时,也要注意让学生通过练习和讨论,加深对平移和旋转的理解和掌握。

平移与旋转的教案

平移与旋转的教案

平移与旋转的教案一、教学目标本节课的教学目标主要包括:1. 让学生了解平移和旋转的基本概念;2. 培养学生观察和分析的能力,能够判断图形是否发生了平移或旋转;3. 培养学生实践操作的能力,能够在平面上进行简单的平移和旋转操作;4. 提高学生对平移和旋转在日常生活中的意识,以及在艺术和设计领域的应用。

二、教学内容1. 平移的概念和基本特征:平移是指在平面上将图形按照指定的方向和距离进行移动,移动后的图形与原图形形状相同,但位置发生了改变。

2. 旋转的概念和基本特征:旋转是指将图形绕着一个点旋转一定角度,旋转后的图形与原图形形状相同,但朝向发生了改变。

3. 判断图形是否发生了平移或旋转的方法:通过观察和分析图形的位置和形状变化,判断是否发生了平移或旋转。

可以通过对比图形的对称轴、对应关系等来进行判断。

4. 平移和旋转的实践操作:学生通过实践操作,使用直尺和图钉等工具,在纸上进行平移和旋转操作,加深理解和掌握平移和旋转的基本方法和技巧。

三、教学过程1. 导入(5分钟):通过展示一些日常生活中的平移和旋转图像,引发学生对平移和旋转的认识和兴趣。

2. 知识讲解(10分钟):介绍平移和旋转的基本概念和特征,以及判断图形是否发生了平移或旋转的方法。

3. 示范演示(15分钟):老师以简单的图形为例,进行平移和旋转的示范演示,并解释每一步的操作过程。

4. 学生练习(20分钟):让学生利用提供的纸和直尺、图钉等工具,自行选择图形进行平移和旋转的操作练习,并相互交流和讨论。

5. 总结归纳(5分钟):学生对刚刚的练习进行总结归纳,整理平移和旋转的基本规律和要点。

6. 拓展应用(15分钟):引导学生思考平移和旋转在日常生活和艺术设计中的应用,例如街道布局、建筑设计、艺术创作等方面,激发学生的创造力和想象力。

7. 练习与评价(10分钟):布置相应的练习题,让学生进行巩固练习,并进行个体评价和小组评价。

四、教学资源1. 平移和旋转的示例图像;2. 纸张、直尺、图钉等练习工具;3. 平移和旋转的练习题。

北师大版八年级下册第三章教案

北师大版八年级下册第三章教案

北师大版八年级下册《第三章图形的平移与旋转》3.1 图形的平移(第一课时)一.教学目标1、知识与技能目标:认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

2、过程与方法目标:①通过探究式的学习,培养学生的归纳总结与猜想的数学能力,培养学生的逆向思维能力。

通过知识的拓展,培养学生的分析问题与解决问题的能力。

②让学生经历观察、分析、操作、欣赏以与抽象概括等过程;经历探索图形平移性质的过程,以与与他人合作交流的过程,进一步发展空间观念,增强审美意识。

3、情感与价值观目标:①在探究式的教学活动中,培养学生主动探索,勇于发现的科学精神;通过多种途径,培养学生细致、严谨、求实的学习习惯;渗透由特殊到一般,化未知为已知的辩证唯物主义思想。

②引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验。

有意识的培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力与审美意识的发展。

③通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值。

通过同学间的合作交流,培养学生的协作能力与学习的自主性。

二.教学重点平移的基本性质三.教学难点平移的基本内涵的理解.四.教学过程一.情景问题,引入课题情境问题引入同学们,还记得游乐园内的一些项目吗?如:旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?(也走了200米.)其实,数学就在我们身边,它有很多规律等待我们去探索,去发现!无论是年代久远的老牛上的辘轳;还是刚刚耸立起的高楼大厦里的电梯,无论是微观世界里的粒子运动,还是浩翰宇宙中的行星运转.其中最简捷的运动变化形式主要是平移和旋转,让我们走进图形变换的天地,继续探索图形变换的奥秘吧!从今天开始,我们就来探索第三章:图形的平移和旋转.二. 探究——经历新知形成过程,体验探究方法探究问题过程(一)自主学习:的图3—1,然后回答书下面我们来看第一节:图形的平移(同学们仔细观擦:P58上提出的问题)(1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?传送带上的电视机的形状、大小在运动前后没有发生改变.手扶电梯上的人也没有变化.(2)在传送带上,如果电视机的某一按键向前移动了80 cm,那么电视机的其他部位向什么方向移动?移动了多少距离?(电视机的其他部位也向前移动,也移动了80 cm).(3)如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?(四边形ABCD与四边形EFGH的形状、大小相同)(二)展示交流:1、传送带运送电视机的过程中,电视机的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?手扶电梯上的人呢?(学生讨论、发现、归纳结论)(在传送电视机的过程中,电视机的形状、大小没有变化,它的位置发生了变化.手扶电梯上的人也是位置发生了变化,人没有变化.)在电视机生产车间传输带运送电视机的过程中,对同一台电视机而言,不同时间的位置之间是相互平移的关系;人在电梯上两个不同时刻之间的位置关系也是平移那么,什么是平移呢?在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移(translation).注意:“将一个图形沿某个方向移动一定的距离”,意味着“图形上的每个点都沿.....同一个方向移动了相同的距离.............”.那大家想一想:平移有什么特征呢?(1.平移不改变图形的形状和大小............2平移改变图形的位置).2、想一想,议一议: (1)在下图中,线段AE、BF、CG、DH有怎样的位置关系? (2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)、(2)两个问题,你能归纳出什么结论?(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.∠ABC=∠EFG、∠BCD=∠FGH∠BAD=∠FEH、∠ADC=∠EHG∠ABC=∠ADC、∠BAD=∠BCD、∠HEF=HGF、∠EFG=∠EHG(3)图形经过平移后,只是位置发生变化,即图形上的每个点都沿同一个方向移动了相同的距离,而线段的长短、角的大小没有发生变化.;经过平移,对应线段,对应角分别相等,对应点的连线是平行的,并且相等.平移的基本性质:1.经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.注意:平移三要素:几何图形——运动方向——运动距离三、应用——经历应用领悟构想,学会思考方法搭建问题交流平台 (突破难点,最具开放性,一题多解的问题)搭建问题交流平台 (突破难点,最具开放性,一题多解的问题)①出示问题[例1](课本59页例1)如图所示,△ABE沿射线XY的方向平移一定距离后成为△CDF。

平移和旋转完整版教案

平移和旋转完整版教案
游乐园里各种游乐项目的运动变化相同吗
你能根据他们不同的运动变化分分类吗


生活中有哪些现象是平移或旋转
自讲
自评
1、平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
2、在生活中你见过哪些平移现象先说给你同组的小朋友听听!再请学生回答。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
请同学们在座位上亲自做一做平移的动作和旋转的动作,以体会这两个动作的不同。
总结两种现象的特点:
平移:物体沿着一条直线做直线运动就是平移。
旋转:物体沿一点或轴做半弧或圆周运动就是旋转。
你们想亲身体验一下平移吗
3、全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗
如果要把平移的现象表现在纸上,我们又该怎么做呢
德育渗透点:感受在社会中有很多平移和旋转的运动现象,并且利用平移和旋转的现象又制作出很多漂亮的图案。
自Hale Waihona Puke 测用眼卫生:(学生齐说)
写字做到三个一:
1、眼离书本一尺远。2、手离笔尖一寸远。3、胸离桌子一拳远。
移一移。第20页“试一试”第1题。(1)图上有一所小房子,现在我们要把它向上平移5格,你知道该怎么移吗好,让我们一起来移移看!(课件中小房子整体移动。)再问,小房子是向哪个方向移动的移动了多远向上平移5格。
重难点
能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
易混点
区别平移与旋转的关系
易错点
能直观的区分平移与旋转现象
拓展点
能在纸上画出平移后的图形
教学
用具

数学教案:图形的平移与旋转实践探究

数学教案:图形的平移与旋转实践探究

数学教案:图形的平移与旋转实践探究一、教学目标:1.学生能够了解平移和旋转的概念,并能正确运用平移和旋转的知识来进行实践探究;2.学生能够掌握平移和旋转的基本原理和方法,理解平移和旋转的几何意义;3.学生能够培养自主思考和创新能力,能够灵活运用平移和旋转的知识解决实际问题。

二、教学内容:1.平移的概念和平移向量的表示方法;2.旋转的概念和旋转矩阵的表示方法;3.图形的平移和旋转实践探究。

三、教学重点:1.平移和旋转的概念和方法的理解和掌握;2.平移和旋转的几何意义的理解;3.图形的平移和旋转实践探究的能力培养。

四、教学方法:1.讲解法:通过讲解平移和旋转的基本概念和方法,使学生初步了解平移和旋转的几何意义和操作过程;2.实践探究法:通过图形的平移和旋转实践探究,使学生理解平移和旋转的深层次意义,进一步提高学生的数学思维和创新能力。

五、教学步骤:1.引入本课内容是图形的平移和旋转实践探究。

我们生活中不仅到处都有图形,而且图形的位移和变形也是相当普遍的。

通过学习平移和旋转的知识,我们可以更好地理解图形的变化,掌握变换的方法,为以后的学习打下基础。

2.讲解平移和旋转是数学中比较常见的变换方式,我们先简单介绍一下它们的概念和表示方法:(1)平移平移是图形在平面内不改变形状和大小的前提下,沿着平行于某条向量的方向移动的变换。

向量是一个有方向的量,用它可以表示平移的方向和距离。

如图所示,OA和OB为两个向量,若把向量OA平移至向量OB,则必须平移向量OA的终点A,在平移过程中,只改变向量OA的终点A,而它的初点O不动。

因此,平移就是把一个点沿一个向量的方向移动到一个新点的过程。

(2)旋转旋转是图形在平面内绕某一点旋转一定角度的变换。

通过矩阵的方式来表示旋转操作,如图所示,点A(x,y)绕原点旋转角度θ后的坐标为A’(x’,y’),根据旋转定义,有以下公式:x’=x cosθ-y sinθ,y’=x sinθ+y cosθ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个性化教学辅导教案
学科:数学任课教师:黄老师授课时间:2014 年04 月13 日(星期日)
姓名梁治安年级八年级性别男总课时____第___课
教学
目标
知识点:平移的概念、性质、平移作图;旋转的概念、性质,简单的旋转作图。

难点重点重点:1、平移的概念、性质、平移作图;旋转的概念、性质,简单的旋转作图2、简单的图案设计。

难点:图案设计的方法;轴对称、平移、旋转三种变换的组合。

课堂教学过程课前
检查作业完成情况:优□良□中□差□建议__________________________________________


平移的概念和性质
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形的形状和大小。

一个图形和它经过的平移所得到的图形中,对应点所连的线段平行,且相等,对应线段平行且相等,对应角相等。

旋转的概念和性质:
在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

旋转不改变形状和大小。

一个图形和它经过旋转得到的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等。

知识点一、平移的概念:
1.在平面内将一个图形沿______移动一定的距离,这样的图形运动称为平移,平移不改变图形的_______和__________.
知识点二、平移的性质
2、经过平移,_________,__________分别相等,
对应点所连的线段_____________.
【基础训练】
A ′ 1.以下现象:①电梯的升降运动;②飞机在地面沿直线滑行; ③风车的转动,④汽车轮胎的转动.其中属于平移的是( ) A .②③
B 、②④
C .①②
D .①④
2、如下左图,△ABC 经过平移到△DEF 的位置,则下列说法: ①AB ∥DE ,AD=CF=BE ; ②∠ACB=∠DEF ; ③平移的方向是点C 到点E 的方向; ④平移距离为线段BE 的长. 其中说法正确的有( ) A.个 B.2个 C.3个 D.4个
3、如下右图,在等边△ABC 中,D 、E 、F 分别是边BC 、AC 、AB 的中点,则△AFE 经过平移可以得到( )
A.△DEF
B.△FBD
C.△EDC
D. △FBD 和△EDC 4.下列图形属于平移位置变换的是( ) .
5.下列图形中,是由(1)仅通过平移得到的是( )
6.如图,△ABC 平移后得到△A ′B ′C ′,线段AB 与线段A ′B ′的位置关系是 . 7.在1题中,与线段AA ′平行且相等的线段有 .
A .
B .
C .
D .
′’
C′
A
8、将长度为5cm 的线段向上平移10cm所得线段长度是()
A、10cm
B、5cm
C、0cm
D、无法确定
9.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是(• )A.△COD B.△OAB C.△OAF D.△OEF
10.将面积为12cm2的等腰直角△ABC向右上方平移20cm,得到△MNP,则△MNP是三角形,它的面积是cm2.
11.如图7,四边形EF GH是由四边形ABCD平移得到的,
已知AD=5,∠B=70°,则()
A.FG=5,∠G=70°B.EH=5,∠F=70°
C.EF=5,∠F=70°D.EF=5,∠E=70°
12.(2013广东广州)在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()
13、(2013湖南郴州)在图示的方格纸中
(1)作出△ABC关于MN对称的图形△A1B1C1;
(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?
14、如图,△ABC上的点A平移到点A1,请画出平移后的图形△A1B1C1.
二、图形的旋转:
知识点一、旋转的定义.
在平面内将一个图形__________________________________,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角,旋转不改变图形的_______和__________.知识点二、旋转的性质
1、经过旋转后的图形与原图形的对应线段______,对应角_______
2、对应点到旋转中心的距离______
3、__________________________________________都是旋转角.
4、经过旋转,图形上每一点都绕旋转中心沿相同方向转动了相同角度
理解旋转这一概念应注意以下两点:
(1)旋转和平移一样是图形的一种基本变换
(2)图形旋转的决定因素是旋转中心和旋转的角度及旋转的方向
【基础训练】
1、下列运动是属于旋转的是( )
A、滾动过程中篮球的滚动
B、钟表的钟摆的摆动
C、气球升空的运动
D、一个图形沿某直线对折过程
2、将图形按顺时针方向旋转900后的图形是( )
A B C D
3.(2012广东汕头4分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是【】
A.110° B.80° C.40° D.30°
4.(2013•莆田)如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()
5.(2012•广州)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD 绕点A旋转后得到△ACE,则CE的长度为2.
6、如图所示,△ABC是等腰直角三角形,BC是斜边,将△ABC绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′的长等于
的长等于
A. B. C. D.
7.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△
ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为a (0°<a <180°),则∠a=______.
8、钟表上的分针和时针 经过20分钟,钟表的时针和分针旋转的角度分别为()度
A10和20 B120和20 C 120和10 D 20和10 9、
10.(2013广西钦州)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A
的坐标为(2,4),请解答下列问题: (1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标. (2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标.
A
B
C
D
F E
11.(8分)(2013•淮安)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.
(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;
(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.
课堂检测听课及知识掌握情况反馈_________________________________________________________。

测试题(累计不超过20分钟)_______道;成绩_______;教学需:加快□;保持□;放慢□;增加内容□
课后
巩固
作业_____题; 巩固复习____________________ ; 预习布置_____________________签字教学组长签字:学习管理师:
老师课后赏识评价老师最欣赏的地方:老师想知道的事情:老师的建议:。

相关文档
最新文档