解析几何存在性问题(含答案)

合集下载

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.(本小题满分12分)已知椭圆:的焦点分别为、,点在椭圆上,满足,.(Ⅰ)求椭圆的方程;(Ⅱ)已知点,试探究是否存在直线与椭圆交于、两点,且使得?若存在,求出的取值范围;若不存在,请说明理由.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)本题求椭圆的方程只需确定一个未知数,建立一个方程即可,利用椭圆定义及焦点三角形,结合余弦定理可解:由,得,由余弦定理得,(Ⅱ)表明点在线段DE中垂线上,利用韦达定理列等量关系,求出与的关系,再根据判别式大于零,可解出的取值范围试题解析:(1)由,得,由余弦定理得,∴所求的方程为.(2)假设存在直线满足题设,设,将代入并整理得,由,得①又设中点为,,得②将②代入①得化简得,解得或所以存在直线,使得,此时的取值范围为.【考点】直线与椭圆位置关系2.抛物线:的准线的方程是____;以的焦点为圆心,且与直线相切的圆的方程是____.【答案】,.【解析】分析题意可知,∴准线方程为,焦点为,半径,∴所求圆方程为.【考点】1.抛物线的标准方程;2.直线与圆的位置关系.3.如图,为外一点,是切线,为切点,割线与相交于点,,且,为线段的中点,的延长线交于点,若,则__________;_________.【答案】,.【解析】由切割线定理,∴,,再由相交弦定理,∵是的中点,∴,,则.【考点】1.切割线定理;2.相交弦定理.4.椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为()A.B.C.D.【答案】D.【解析】设关于直线的对称点的坐标为,则,所以,,将其代入椭圆方程可得,化简可得,解得,故应选.【考点】1、椭圆的定义;2、椭圆的简单几何性质;5.如图所示,过⊙O外一点A作一条直线与⊙O交于C,D两点,AB切⊙O于B,弦MN过CD的中点P.已知AC=4,AB=6,则MP·NP= .【答案】【解析】由已知及圆的弦切割线定理得,,又知点P是CD的中点,所以,再由相交弦定理得;故答案为:.【考点】圆的性质.6.已知椭圆C:,为左右焦点,点在椭圆C上,△的重心为,内心为,且有(为实数),则椭圆方程为()A.B.C.D.【答案】A【解析】设点距轴的距离为,因为IG∥,则点距轴的距离为,连接,则,,所以,所以,所以椭圆方程为.【考点】椭圆的标准方程.7.已知双曲线(,)的焦距为,若、、顺次组成一个等比数列,则其离心率为.【答案】【解析】根据题意,有,即,式子两边同时除以,得,结合双曲线的离心率的取值范围,可求得.【考点】双曲线的离心率.8.设椭圆E:的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是.【答案】【解析】如图,设AC中点为M,连接OM,则OM为的中位线,于是,且,即.【考点】椭圆的离心率.9.点M(χ,)是抛物线χ2=2P(P>0)上一点,若点M到该抛物线的焦点的距离为2,则点M到坐标原点的距离为()A.B.C.D.【答案】D【解析】抛物线()的准线方程是,因为点到该抛物线的焦点的距离为,所以,解得:,所以该抛物线的方程是,因为点是抛物线上的一点,所以,所以点到坐标原点的距离是,故选D.【考点】1、抛物线的定义;2、抛物线的标准方程.10.已知抛物线的焦点为,准线为,过点的直线交抛物线于两点,过点作准线的垂线,垂足为,当点的坐标为时,为正三角形,则此时的面积为()A.B.C.D.【答案】A【解析】如图所示,过点作的垂线,垂足为,则为的中点.因为点的坐标为,所以,,所以,即,所以抛物线的方程为,此时,,所以直线的方程为,将其代入抛物线方程可得,,解得或,所以或,所以的面积为,故应选.【考点】1、抛物线的定义;2、抛物线的简单几何性质.【思路点睛】本题考查了抛物线的定义、标准方程及其简单的几何性质的应用,属中档题.其解题的一般思路为:首先过点作的垂线,垂足为,则为的中点,然后利用点的坐标为,可求出,进而得出抛物线的方程,从而得出直线的方程,最后将其与抛物线的方程联立求出点的坐标,即可求出的面积.其解题的关键是求出抛物线的方程和直线的方程.11.已知、、c为正数,(1)若直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,试求的最小值;(2)求证:.【答案】(1)25;(2)证明见解析.【解析】(1)先利用两直线垂直得到关于正数的关系,再利用基本不等式进行求解;(2)先对不等式左边的每个括号进行因式分解,再利用基本不等式进行证明.试题解析:(1)由已知,有:即:、为正数,当且仅当时取等号,此时:故当时,的最小值是25.(2)、、c为正数,【考点】基本不等式.12.如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线和在第一象限的交点,且.(1)求椭圆的标准方程;(2)设为抛物线上的两个动点,且使得线段的中点在直线上,为定点,求面积的最大值.【答案】(1)椭圆的标准方程为;(2)面积的最大值为.【解析】(1)由已知得,跟据抛物线定义,得,所以点;据椭圆定义,得.所以椭圆的标准方式是.(2)因为为线段的中点,得直线的方程为;联立,得,由弦长公式和点到直线的距离,得.再根据函数的单调性得面积的最大值为.试题解析:(1)设椭圆的方程为,半焦距为.由已知,点,则.设点,据抛物线定义,得.由已知,,则.从而,所以点.设点为椭圆的左焦点,则,.据椭圆定义,得,则.从而,所以椭圆的标准方式是.(2)设点,,,则.两式相减,得,即.因为为线段的中点,则.所以直线的斜率.从而直线的方程为,即.联立,得,则.所以.设点到直线的距离为,则.所以.由,得.令,则.设,则.由,得.从而在上是增函数,在上是减函数,所以,故面积的最大值为.【考点】1、抛物线的定义;2、椭圆的方程;3、最值问题.【方法点睛】本题考查抛物线的定义和简单几何性质、待定系数法求椭圆的标准方程、直线和椭圆相交中的有关中点弦的问题,综合性强,属于难题;对于直线和圆锥曲线相交中的中点弦问题,解决此类题目的最有效方法是点差法,两式直接相减就可以表示出斜率;而第二问中面积公式求出后,函数单调性的研究更是加深了此题的难度,运算量也比较大,不容易拿高分.13.已知抛物线()的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则点的横坐标为()A.B.C.D.【答案】B【解析】抛物线的焦点为,准线为.双曲线的右焦点为,所以,即,即,过作准线的垂线,垂足为,则,即,设,则代入,解得.故应选B.【考点】圆锥曲线的性质.【思路点睛】根据双曲线得出其右焦点坐标,可知抛物线的焦点坐标,从而得到抛物线的方程和准线方程,进而可求得的坐标,设,过点向准线作垂线,则,根据及,进而可求得点坐标.14.已知抛物线:,过焦点F的直线与抛物线交于两点(在第一象限).(1)当时,求直线的方程;(2)过点作抛物线的切线与圆交于不同的两点,设到的距离为,求的取值范围.【答案】(1);(2)【解析】(1)因为,故,设,,则可得则,由此可求直线的方程;(2)由于,因此故切线的方程为,化简得,则圆心(0,-1)到的距离为,且,故则,则点F到距离,则,然后再根据基本不等式即可求出结果.试题解析:(1)因为,故设,,则故则因此直线的方程为;(2)由于,因此故切线的方程为,化简得则圆心(0,-1)到的距离为,且,故则,则点F到距离则今则,故.【考点】1.直线与抛物线的位置关系;2.点到直线的距离公式;2.基本不等式.15.在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为.(1)求圆C的直角坐标方程;(2)设圆C与直线将于点、,若点的坐标为,求的值.【答案】(1);(2).【解析】(1)极坐标与直角坐标之间的关系是,由此可实现极坐标方程与直角坐标方程的转化;(2)由直线参数方程的标准形式(即参数的几何意义),直线过点,直线上的标准参数方程为,把它代入圆的方程,其解满足,.试题解析:(1)由得,又,则有,配方得圆的标准方程为.(2)直线的普通方程为,点在直线上的标准参数方程为,代入圆方程得:.设对应的参数分别为,则,,于是.【考点】极坐标方程与直角坐标方程的互化,直线参数方程的应用.16.如图,在平面直角坐标系中,已知椭圆:的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点.(1)求椭圆的方程;(2)已知为的中点,是否存在定点,对于任意的都有,若存在,求出点的坐标;若不存在说明理由;(3)若过点作直线的平行线交椭圆于点,求的最小值.【答案】(1);(2);(3)【解析】(1)确定椭圆标准方程,只需两个独立条件即可:一个是左顶点为,所以,另一个是,所以,(2)实质利用斜率k表示点,P ,E,假设存在定点,使得,因此,即恒成立,从而即(3)利用斜率k表示点M,因此,本题思路简单,但运算量较大.试题解析:(1)因为左顶点为,所以,又,所以又因为,所以椭圆C的标准方程为.(2)直线的方程为,由消元得,.化简得,,所以,.当时,,所以.因为点为的中点,所以的坐标为,则.直线的方程为,令,得点坐标为,假设存在定点,使得,则,即恒成立,所以恒成立,所以即因此定点的坐标为.(3)因为,所以的方程可设为,由得点的横坐标为,由,得,当且仅当即时取等号,所以当时,的最小值为.【考点】直线与椭圆位置关系17.选修4-4:坐标系与参数方程:在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为。

例析解析几何中的探索性、存在性问题

例析解析几何中的探索性、存在性问题

简 单 , 所 得 结 果 一 定 要 检 验 , 则 易 产 生 增 但 否 根 . 设 过 c 的 直 线 为 — k( 一 2 + √ 把 它 若 ) 3,
代 入 + 一 1 然 后 由 韦 达 定 理 则 又 得 另 一 ,

实上 , 过 作 图 分 析 一 昔 + 2 与 双 曲 线 通
维普资讯
’ . .
B 的 轨 迹 是 以 P、 为 焦 点 的 双 曲 线 的 Q
j倒 =
问 题中的 一种类型, 常以
左 支.
嚣 踅 ; .
篓 高
由 2 a一 2 2 一 6得 ,c
b 一 f 。一 n — 3。 1。一 8. 一
手, ar 周期丌 而t z n的 是手的4 由 想: 倍, 此猜 4 n
是 厂( 的 一 个 周 期 . z) 事 实 上 , z+ 2 ) 厂( n 一
1+

厂( ) f( 和 x~ ) 一

的一 个原 型 ; 等. 等
一■ 干 . - j 一一 -
1一 厂( z)
径 . 为抽 象 函数 的 原 型 ( 足 抽 象 函数 关 系 因 满
的 一 个 具 体 函 数 ), 往 能 使 我 们 迅 速 找 到 求 往
解 : 察 抽 象 关 系 式 , 即 联 想到 , 与 观 立 其
t (+手 一 a z ) n
的 式极 似, 此可 形 为相 因
解 抽 象 函 数 问 题 的 思 路 .常 见 的 抽 象 函 数 的 原
在 双 曲 线 中要 特 别 小 心 !
2 一 般弦 问题 .
【 3 例 】已 知 双 曲 线 cl的 方 程 是 2 x 一 。 一 2 ” O , 物 线 n(> )抛 的 的 顶 点 在 原 点 0, 点 焦 是 双 典 线 的 左 焦 点 F. 否 存 在 过 F 的 cz的 弦 是 PQ , △ POQ 的 面 积 是 9 若 存 在 , 出 使 ”? 求 PQ 所 在 的 直 线 的 方 程 ; 不 存 在 , 明 理 由 . 若 说

高一数学解析几何试题答案及解析

高一数学解析几何试题答案及解析

高一数学解析几何试题答案及解析1.原点和点(1,1)在直线的两侧,则a的取值范围是()A.B.C.D.【答案】C【解析】略2.如图,在平面直角坐标系中,点,直线。

设圆的半径为,圆心在上。

(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围。

【答案】(1)y=3或3x+4y-12=0(2)[0,]【解析】(1)求两直线的交点得到圆心坐标,得到圆的方程,求圆的切线采用待定系数法,设出切线的点斜式方程,利用圆心到直线的距离等于圆的半径得到斜率k的值,从而确定切线方程,求解时要注意考虑斜率不存在时是否满足(2)首先由利用动点轨迹方程的求解方法得到点的轨迹方程,又在圆C上,因此转化为两圆有公共点,得到圆心距与半径的不等式关系,通过解不等式得到横坐标的取值范围试题解析:(1)由题设知,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意,= 1,解得 k=0或,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为MA=2MO,所以,化简得,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意知,点M(x,y)在圆C上,所以圆C与圆D有公共点,则2-1≤CD≤2+1,即1≤≤3.由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤.所以圆心C的横坐标a的取值范围为[0,].【考点】1.直线与圆相切问题;2.动点轨迹方程;3.两圆的位置关系3.在x轴、y轴上截距相等且与圆相切的直线L共有()条A.2B.3C.4D.6【答案】B【解析】设直线为,圆心到直线的距离为1,,,直线方程为,当直线过原点时,设直线为,有两解,其中之一为,方程为,综上直线共有三条【考点】1.直线方程;2.直线与圆相切的位置关系4.若圆的圆心为,且经过原点,则圆的标准方程是A.B.C.D.【答案】B【解析】利用C,O两点间的距离公式求得半径为,由圆的标准方程得故选B.【考点】圆的标准方程5.圆关于y轴对称的圆的一般方程是.【答案】【解析】圆的圆心坐标为(-1,0),半径为1,所以圆关于y轴对称的圆得圆心坐标为(1,0),半径为1;【考点】1.圆的标准方程;2.圆关于直线对称的圆的求法;6.(本小题满分16分)在平面直角坐标系中,已知经过原点O的直线与圆交于两点.(1)若直线与圆相切,切点为B,求直线的方程;(2)若,求直线的方程;(3)若圆与轴的正半轴的交点为D,求面积的最大值.【答案】(1)(2)(3)【解析】(1)由直线与圆相切,利用圆心到直线的距离等于半径可求得值及切点B坐标,进而得到直线AB方程;(2)直线与圆相交问题,常采用弦的一半,圆心到直线的距离与圆的半径构成的直角三角形求解(3)设出AB直线,与圆联立求得弦长,利用点到直线的距离求得三角形的高,将三角形面积用直线的斜率表示出来,转化为函数求最值问题试题解析:(1)由相切得化简得:,解得,由于,故由直线与圆解得切点,得(2)取AB中点M,则,又,所以,设:,圆心到直线的距离为,由勾股定理得:,解得,设所求直线的方程为,,解得,(3)设A,B两点的纵坐标分别为,易知,,易知,设AB方程为,由消元得,=设,则,()当时取等号)面积最大值为,【考点】1.直线方程;2.直线与圆相交相切的位置关系;3.函数求最值7.已知圆的方程为,那么通过圆心的一条直线方程是().A.B.C.D.【答案】B【解析】把圆的方程标准化可得,故圆心为,所以圆心在直线上,故选B。

高考解析几何常见题型

高考解析几何常见题型

1、最值问题::设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.:已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .求四边形ABCD 的面积的最小值.:已知椭圆C :2222by a x +=1(a >b >0)的离心率为36,短轴一个端点到右焦点的距离为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值. 设F 是抛物线G :x 2=4y 的焦点.(Ⅰ)过点P (0,-4)作抛物线G 的切线,求切线方程:(Ⅱ)设A 、B 为势物线G 上异于原点的两点,且满足0·=FB FA ,延长AF 、BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.2、存在性问题:已知向量()OA = ,O 是坐标原点,动点M 满足:6OM OA OM OA ++-= ①求点M 的轨迹C 的方程②是否存在直线()P 0,2l 过点与轨迹C 交于A ,B 两点,且以AB 为直径的圆过原点?若存在,求出直线l 的方程,若不存在,请说明理由。

在平面直角坐标系中,已知A 1(−3,0)、A 2(3,0)、P (x ,y )、M (92-x ,0),若实数λ使向量P A 1、λ、P A 2满足λ2·()2=A 1·A 2(Ⅰ)求P 点的轨迹方程,并判断P 点的轨迹是怎样的曲线;(Ⅱ)当λ=33时,过点A 1且斜率为1的直线与(Ⅰ)中的曲线相交的另一点为B ,能否在直线x =−9上找一点C ,使△A 1BC 为正三角形.在平面直角坐标系xoy 中,已知圆心在第二象限、半径为的圆C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.在平面直角坐标系xOy中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q . (I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ + 与AB 共线?如果存在,求k 值;如果不存在,请说明理由3、取值范围问题:已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3((Ⅰ)求双曲线C 的方程; (Ⅱ)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.如图,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.4、定值问题:已知直线l 过椭圆E:2222x y +=的右焦点F ,且与E 相交于,P Q 两点.① 设1()2OR OP OQ =+ (O 为原点),求点R 的轨迹方程;②若直线l 的倾斜角为060,证明11||||PF QF +为定值. 已知动点M 到两个定点12(3,0),(3,0)F F -的距离之和为10,A 、B 是动点M 轨迹C 上的任意两点. (1)求动点M 的轨迹C 的方程;(2)若原点O 满足条件AO OB λ= ,点P 是C 上不与A 、B 重合的一点,如果PA 、PB 的斜率都存在,问PA PBk k ⋅是否为定值?若是,求出其值;若不是,请说明理由。

解析几何容易出错的问题

解析几何容易出错的问题

1.已知椭圆E 的离心率为e ,两焦点为F 1、F 2,抛物线C 以F 1为顶点,F 2为焦点,P 为两曲线的一个交点,若12PF e PF =,则e 的值为:A .3 B .2 C .2 D .3( ) 2.若双曲线22221x y a b-=-的离心率为54,则两条渐近线的方程为A0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y±= 答:C 易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义。

3.椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是解 答:D 易错原因:短轴长误认为是b4.设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L,则双曲线的离心率为A 2 B 2解 答:D 易错原因:忽略条件0a b >>对离心率范围的限制。

5.平面上的动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,则动点P 的轨迹方程为A y 2=2x B y 2=2x 和 ⎩⎨⎧≤=00x y C y 2=4x D y 2=4x 和 ⎩⎨⎧≤=00x y正确答案:D 错因:学生只注意了抛物线的定义而疏忽了射线。

6.设双曲线22a x -22b y =1与22by -22a x =1(a >0,b >0)的离心率分别为e 1、e 2,则当a 、b 变化时,e 21+e 22最小值是( )A 4 B 42 C 2 D 2 正确答案:A 错因:学生不能把e 21+e 22用a 、 b 的代数式表示,从而用基本不等式求最小值。

7.双曲线92x -42y =1中,被点P(2,1)平分的弦所在直线方程是( )A 8x-9y=7B 8x+9y=25C 4x-9y=16D 不存在正确答案:D 错因:学生用“点差法”求出直线方程没有用“△”验证直线的存在性。

平面解析几何经典题(含答案)

平面解析几何经典题(含答案)

平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率、直线的倾斜角与斜率(1)倾斜角a 的范围000180a £<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k Û=。

特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。

的关系为平行。

(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ^Û=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。

如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。

互相垂直。

二、直线的方程1、直线方程的几种形式名称名称方程的形式方程的形式 已知条件已知条件 局限性局限性 点斜式点斜式为直线上一定点,k 为斜率为斜率 不包括垂直于x 轴的直线轴的直线 斜截式斜截式k 为斜率,b 是直线在y 轴上的截距轴上的截距 不包括垂直于x 轴的直线轴的直线 两点式两点式是直线上两定点是直线上两定点 不包括垂直于x 轴和y 轴的直线直线截距式截距式a 是直线在x 轴上的非零截距,b 是直不包括垂直于x 轴和y 轴或线在y 轴上的非零截距轴上的非零截距过原点的直线过原点的直线 一般式一般式A ,B ,C 为系数为系数 无限制,可表示任何位置的直线直线 三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。

一道解析几何存在性问题的求解与推广

一道解析几何存在性问题的求解与推广
’ . .
・ 百 一 0 .

( + 1 )・( , 一 1 )一0, ( , 即 + 1 ( ) 一


— r 故 直 线 AB 与 圆 C。 切 , 理 可 证 , 相 同
1 )+ y 一 0.
其它三边与圆 C 外切. 。
整 理 得 z + y 一 J 故 动点 P 的 轨 迹 方 程 C : 。 , o
四边 形 ; 不 存 在 , 说 明 理 由 ; 若 请 () 定曲线 C , () 3固 。 在 2 的基 础 上 提 出 一 个 一
・ .
般 性 问题 , ( ) 为 ( ) 使 2成 3 的特 例 , 究能 得 出 相 应 探 结 论 ( 加 强 结 论 ) 满 足 的 条 件 , 说 明理 由 . 或 需 并
已知 点 A ( l O 一 ,
。 ' 一 ) c(
. )D O,
C 是 内 接 于 椭 圆 C 的. 面 证 明 平 行 四 边 形 D 下 A D与圆 C :。 BC 。 z + 。 1 切 一 外
‘ y

, )动点 P , 满 足 o. ( )
・ 一o 动点 Q 静 ,
一_ 一 l _ 一 撼 _ 一—
解 析 几 何 存 在 性 问 题
的 求 解 与推 广
一 叶显 斌
【 题 】 ( 0 7年 华 师 一 附 中 五 月 检 测 趑 ) 例 20
() 在 如 图 连 结 椭 圆 四 端 点 构 成 的 平 行 四 2存 边 形 AB D 符 合 题 意 , 显 然 , 行 四 边 形 AB C 很 平 —

T i
28

钥胂

二次函数解析几何--存在性问题

二次函数解析几何--存在性问题

二次函数解析几何专题——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

一、方法总结解存在性问题的一般步骤:(1)假设点存在;(2)将点的坐标设为参数;(3)根据已知条件建立关于参数的方程或函数。

二、常用公式(1)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB|=221221)()(y y x x -+-(2)中点坐标公式:1212,22x x y y x y ++==(3)斜率公式:①;②(为直线与x 轴正方向的夹角)2121y y k x x -=-tan k θ=θ(4)①对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2②如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.题型一 面积问题例1.如图,抛物线y =-x 2+bx +c 与x 轴交于A (1,0),B (-3,0)两点.(1)求该抛物线的解析式;(2)在(1)中的抛物线上的第二象限内是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值;若不存在,请说明理由.变式练习:1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.O B A CyxA xy BO能力提升:1.(2013菏泽)如图1,△运动到何处时,四边形PDCQ的面积最小?此时四边形2.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.3.如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.yD BMA CO xE 图1的坐标,并求出△POB的面积;若不存在,请说明理由.)中抛物线的第二象限图象上是否存在一点与△POC的坐标;若不存在,请说明理由;c的图象的顶点C的坐标为(0,-2),交m(m>1)与x轴交于D。

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。

2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。

I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。

3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。

Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。

4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。

5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。

6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。

高考数学学科二轮备考关键问题指导系列一(解析几何存在问题及应对策略)

高考数学学科二轮备考关键问题指导系列一(解析几何存在问题及应对策略)

福建省2024届高中毕业班数学学科二轮备考关键问题指导系列一解析几何存在问题及应对策略(福建省高三毕业班复习教学指导组余小萍执笔整理)新高考的背景下,解析几何知识板块试题分值高,在全卷中占比高,但整体得分低,得分率最低,对全卷影响重大,新高考解析几何如何提分,值得研究.解析几何高考试题以核心素养为导向,突出了学科素养、关键能力的考查,有以下特点:1.突显解析思想,考查全面解析思想解题主要包含两个方面.其一,在坐标系下,每个几何对象均可被数(坐标、方程等)所完全表达,并通过代数(或向量)方法来解决;其二,特定的代数语言有了几何解释,从而使代数语言有了直观意义,人们能从中得到启发,进而解决问题或提出新的结论.解析几何问题考查模式可以用下图的框架体现:2.突出直观想象,强调算理解析法是通过坐标系实现“点与坐标互化”、“曲线与方程互化”、“几何关系代数化”,从而达到用代数方法解决几何问题,其思维模式可以用下图的框架体现:这是平面解析几何复习教学可以遵循的思维模式,通过它,帮助厘清知识,构建方法体系,回到基础,落实对知识与方法的深刻理解,让解析法升华为一种认识论与方法论.3.突破题型套路,鼓励创新新高考试卷持续推进题型和结构的创新,在解析几何试题的设计上,最大的变化就是突破题型套路,有多选题、多空题和条件开放或结论开放试题,在难度层次上也有所变化,从情境选择、设问方式到解题方法,鼓励创新求解的意识,培养学生探究能力.下面就具体的平面解析几何复习教学的相关问题探讨如下.一、存在的问题及原因分析(一)作图意识薄弱,以形助思待提高规范作图是认识问题、研究问题的基础,将图形特征转化、合理代数化的过程是问题条件的理解与解题思路的探究过程.【例1】过点(0,2)-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A. 1B.4C.4D. 4【解析】圆22410x y x +--=化简,得22(2)5x y -+=,故圆心(2,0)B,记(0,2)A -,设切点为M ,.N AB =BM =,故AM sinsin MAB 24BM ABα=∠==,coscos M B 2A AM ABα=∠==,sin 2sincos22ααα==B. 【评析】本题考查直线与圆的位置关系、二倍角公式,属于基础题.利用切线构造直角三角形,由三角函数定义求出sin2α,cos2α,再利用二倍角正弦公式即可求解.本题中切线的运用很多学生能想到,但学生不易想到角度关系MAB 2α=∠,究其原因在于作图意识薄弱,对题中的几何关系挖掘不够,缺乏对图形中几何特征与数量关系的细致分析,难以借助图形分析思考问题.【例2】已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12,F F ,点A 在C 上,点B 在y轴上,11F A F B ⊥,222=3F A F B -,则C 的离心率为__________.【解析】依题意222=3F A F B -,设22||2,||3(0)F A t F B t t ==>,||5.AB t ∴=由对称性知21|||| 3.F B F B t ==又11F A F B ⊥,故1||4F A t =,4cos .5A = 由双曲线的定义知,12||||2F A F A a -=,故.t a =在12F AF 中,22216444cos 2425a a c A a a +-==⋅⋅,解得:29()5c a =,故C 的离心率为5【评析】本题考查双曲线的定义及性质、余弦定理、向量共线的充要条件等,属于中档题. 根据向量的关系设参数t ,得到||AB ,2||F B ,1||F B 的关系,勾股定理得到1||4F A t =.由双曲线的定义得到t a =,在1Rt F AB △和12F AF △中通过对cos A 算两次得到a 与c 的关系.学生若作图潦草,难以发现关键的几何特征信息,导致对图中几何关系的提取错误或者不完整,思路受阻.本题中222=3F A F B -,不仅有数量特征,还具有位置关系.【建议】课堂教学中教师能使用尺规规范作图,起到示范指导,并要求学生当堂作图练习.布置不给图形的解几练习,要求学生通过审题自己作图.教师对图形中几何特征与数量关系进行细致分析,结合图形从整体角度理解题意、寻找解题思路.(二)概念思维淡漠,核心观点需增强定义是数学问题研究的起点.曲线方程的概念蕴含了丰富的内涵,对我们的问题的理解与思考有深刻的意义.【例3】已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12,过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE △的周长是__________.【解析】由椭圆离心率为12,可得2a c =,则b ==则椭圆C :2222143x y c c +=,)A ,1(,0)F c -,2(,0)F c ,易得ED l :()3y x c =+,由2211||||||2AF AF F F c ===,故过1F 且垂直于2AF 的直线DE 垂直平分2AF ,即2||||EA EF =,2||||DA DF =,又2222143)x y c c y x c =⎧+=⎪⎨+⎪⎪⎪⎩,得22138320x cx c +-=,故28133213D E D Ec x x x c x =⎧+=-⎪⎪⎨-⎪⎪⎩, 213||||6()4278D E D E D E DE x x x x x x c ∴=-=⇒+-=⇒=,所以ADE △的周长2211||||||||||||||4813DA EA DE DF EF DF EF a c ++=+++===.【评析】本题主要考查了直线与椭圆的位置关系的应用、椭圆的定义以及椭圆中的弦长问题,考查了运算求解能力,属于中档题.部分学生不能从离心率、椭圆定义角度去分析几何特征解决问题,而是先求点M 坐标,再求点D 、E 的坐标,利用两点间的距离公式,绕了一大圈才得出周长,没能活用定义轻松得到解题的突破口.究其原因在于没有养成优先站在“定义”的角度探究问题和解决问题意识,未能从圆锥曲线的定义审视几何关系,选择简便的方法实现几何条件代数化.【建议】复习教学中凡涉及圆锥曲线的最值问题,均需先回顾梳理各种方法,结合问题背景比较、优化方法;强调要在大问题(圆锥曲线的定义与几何图形中的位置关系与数量关系)下研究几何性质;加强逻辑严密的课堂推演与条理清晰试题剖析. (三)欠缺条件思辨,代数方法要选择解析几何就是用代数的方法研究几何问题.那么,对题目所给的几何条件如何代数化(坐标化)很值得研究,我们追求的是既要准确转化,又要简便、减少运算量的转化.【例4】写出与圆221x y +=和圆22(3)(4)16x y -+-=都相切的一条直线的方程__________. 【解法一】显然直线的斜率不为0,不妨设直线方程为0x by c ++=,1=化简得221c b =+①,4.=化简得,|34||4|b c c ++=,故344b c c ++=或344b c c ++=-,再结合①解得01b c =⎧⎨=⎩或247257b c ⎧=-⎪⎪⎨⎪=-⎪⎩或4353b c ⎧=⎪⎪⎨⎪=-⎪⎩,所以直线方程有三条,分别为10x +=,724250x y --=,3450.(x y +-=填一条即可) 【解法二】设圆221x y +=的圆心(0,0)O ,半径为11r =, 圆22(3)(4)16x y -+-=的圆心(3,4)C ,半径24r =, 则12||5OC r r ==+,因此两圆外切,由图像可知,共有三条直线符合条件,显然10x +=符合题意; 又由方程22(3)(4)16x y -+-=和221x y +=相减可得方程3450x y +-=,即为过两圆公共切点的切线方程;又易知两圆圆心所在直线OC 的方程为430x y -=,直线OC 与直线10x +=的交点为4(1,)3--,设过该点的直线为4(1)3y k x +=+1=,解得724k =,从而该切线的方程为724250x y --=; 所以直线方程有三条,分别为10x +=,724250x y --=,3450.(x y +-=填一条即可)【评析】本题是一道开放题,代数法设切线方程通过解方程组能解决问题,也可以利用几何特征快速写出公切线10x +=,发现题中两圆的位置关系是快速破题的关键.本题若改为写出所有公切线方程学生失分率将更高,两种方法计算量也相差无几,代数法中方程组的求解是学生的失分点,其中直线方程的设法涉及简便、减少运算量,几何法通过先求直线OC 与直线10x +=的交点,再求过该点且与圆221x y +=相切的直线即可得到公切线724250x y --=也是利用几何特征简便、减少运算量.【例5】已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴y 轴分别相交于M ,N 两点,且||||MA NB =,||MN =l 的方程为__________.【解析】取AB 的中点为E ,因为||||MA NB =,所以||||ME NE =,设11(,)A x y ,22(,)B x y 可得1212121212y y y y x x x x +-⨯=-+-,即1.2OE AB k k =-⋅ 设直线:AB y kx m =+,0k <,0m >,则(0,)M m ,(,0)mN k-, 所以(,)22m m E k -,所以212m k k m k⨯=-=--,k =又||MN =22212m m +=,故2m =,所以直线:22AB y x =-+,即0.x -= 【评析】本题考查椭圆的中点弦问题,属于偏难题.条件 ||||MA NB = 的转化应用是解本题快速与否的关键,取AB 的中点为E ,将中点E 纵横坐标比转化为中点与原点连线的斜率,利用点差法及点坐标就能快速找到一个,k m 的关系式.学生若能依题构图,结合图形联想第三定义推论,就能将条件 ||||MA NB = 转化为简洁的代数形式,从而达到解决问题的目的.【建议】复习教学中重视引导学生依题构图,结合圆锥曲线的性质从题意与图形中抽象出关键的几何特征,并以简洁的代数形式加以呈现,从而转化为待求目标关系式进行变形演算.(四)缺乏算法算理,运算求解须考究解析几何问题常常都有计算量大的特点,如何进行有效运算、简便运算,寻找化简方向是我们必须重视的环节,包括如何设元、如何设方程,回归定义,以简驭繁;设而不求,整体运算;充分运用图形几何性质,简化计算;利用根与系数关系化繁为简;选用方程适当形式,减少运算量等,这些方法一定要结合具体问题进行训练.【例6】已知O 为坐标原点,抛物线2:2(0)C y px p =>的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥.若||6FQ =,则C 的准线方程为 .【解法一】解直角三角形法:如图,依题意得,2p P p ⎛⎫ ⎪⎝⎭且OPF PQF ∠=∠,所以tan tan OPF PQF ∠=∠,所以2,6pOF PF p PF FQ p =∴=,解得3p =,所以C 的准线方程为32x =-.【解法二】射影定理应用法依题意得,2p P p ⎛⎫⎪⎝⎭,所以2,PF OF FQ =⋅262p p ∴=⨯,解得3p =或0p =(舍去),所以C 的准线方程为32x =-.【解法三】由题意,不妨设P 在第一象限,则(2p P ,)p ,所以直线OP 的斜率22OP pk p ==,因为PQ OP ⊥,所以12PQ k =-,所以PQ 的方程为1()22p y p x -=--,即524px y =-+.令0y =时,52p x =,因为||6FQ =,所以5622p p -=,解得3p =,所以C 的准线方程为32x =-. 【解法四】由题意,不妨设P 在第一象限,则(2p P ,)p ,(6,0)2pQ +,所以(6,)PQ p =-, 因为PQ OP ⊥,所以0PQ OP ⋅=,所以602pPQ p p =⨯-⨯=,所以()30p p -=,因为0p >,所以3p =,所以C 的准线方程为32x =-.【评析】破解本题的关键是对PQ OP ⊥进行转化,可以从解直角三角形的角度,也可以从斜率角度,还可以从向量的角度,甚至可以利用射影定理的角度去进行转化,显见不同的思路其解题的长度不一样.因此,需强化的解题训练形成套路化、模式化,就能根据问题特点灵活处理.【例7】在平面直角坐标系xOy中,已知点1(F,2F ,12||||2MF MF -=,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 两条直线分别交C 于A ,B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【解析】(1)因为12122MF MF F F -=<=C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥. (2)设点1,2T t ⎛⎫⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=- ⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-, 所以,()()()()22122121121122112111111222416t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+=⎪-⎝⎭, 设直线PQ 的斜率为2k ,同理可得()()2222212116tk TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=. 因此,直线AB 与直线PQ 的斜率之和为0.【评析】TA TB ⋅与TP TQ ⋅从弦长公式到韦达定理代入化简是破解本题的关键,从设直线方程到联立消元再到弦长公式的应用,有明晰的解题方向,形成套路化、模式化的解题训练有助于学生根据问题特点灵活处理.【建议】课堂教学时不能只是谈思路方法,应合理利用几何特征设参,分析算式结构,合理消参、降次,通过课堂师生共同演算的体验,增加实践经验,进行算法算理的指导.在涉及求有关过一点的两条斜率不同的直线的交点坐标或弦长问题时,往往只需计算其中的一类交点坐标或弦长,另一类只需等价代换的结果中的参数即可.(五)只求题型模仿,解析思想欠领悟高中解析几何既是一种重要的数学思想,也是一种重要的数学方法,其核心是“数形结合”的思想方法.由于解析几何内容的综合性,在解决问题的过程中,充满着探究性、创新性,对能力有较高的要求.解题中必然要用到思想方法引领,如函数与方程、特殊与一般、分类与整合的思想,以及待定系数法、换元法等等.【例8】已知点和抛物线,过的焦点且斜率为的直线与交于,点.若,则________.【解析】设弦AB 的中点为P ,综合题目的几何特征,直观猜测,PM 平行于x 轴,故由点差法可得124=2k y y =+,快速地给出答案为2. 【评析】本题是典型的直线与抛物线的位置关系问题,常规的解法是设方程、联立方程、用韦达定理求解套路,这势必费力费时且会算错.由于问题的特殊性,焦点弦张角为直角,借助数形结合,动中求不变解析思考,斜率为k 的平行弦的不变性,以及焦点弦张角的不变性,就能抓住问题的本质,既解决了问题,又提升了对抛物线的认识.【例9】已知A 、B 分别为椭圆E :2221x y a+=(a >1)左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G ,∴(),1AG a =,(),1GB a =-, ∴218AG GB a ⋅=-=,∴29a =,∴椭圆方程为:2219x y +=.()11M -,24C y x =:C k C A B 90AMB =︒∠k =的的(2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+,联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+,将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+, 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭, ∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭, 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭,故直线CD 过定点3,02⎛⎫⎪⎝⎭. 【评析】解决本题的关键是借助数形结合,由椭圆的对称性可知定点应在x 轴上,明晰计算化简的方向.【建议】教学中要让学生意识到变化是理解解析几何问题的切入点,不变是解决解析几何问题的落脚点,对于它的探究过程主要集中在数学观察、联想、类比、猜测、抽象、概括等思维过程.解决解几具体问题时常常需要用到“数形结合”的思想方法.在解决问题的过程中,针对具体问题具体分析,跳出套路,数形结合找到解题方向.二、解决问题的思考与对策(一)回归基础,揭示本质,返璞归真解析几何思想的数学结构是由核心概念、基本方法、数学原理3个层次构成.核心概念是曲线与方程,基本方法是几何问题代数化和代数问题几何化,数学原理是映射原理(或化归原则),其中几何问题代数化的途径是坐标法,是笛卡尔“方法论”的观念表现.【例10】若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______,_____.【解析】正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图直角坐标系, 设对角线OB 所在直线的倾斜角为θ,则tan 2θ=,由正方形性质可知,直线OA 的倾斜角为45θ-︒,直线OB 的倾斜角为45θ+︒,故()tan tan 45211tan 451tan tan 45123OA k θθθ-︒-=-︒===+︒+,()tan tan 4521tan 4531tan tan 4512OB k θθθ+︒+=+︒===--︒-.故答案为:13;3-.【评析】本题以简单的多空形式呈现,以正方形、直线与直线的位置关系为载体,考查坐标法的基本 应用.考点虽然稍冷,却有着浓浓的解析味.解决问题的关键在于,合理建立坐标系,恰当地表征几何对象,如倾斜角的引进,以及与斜率的互化,体现了基础性、综合性和应用性.【例11】已知曲线22:1C mx ny +=.( ) A. 若m >n >0,则C 是椭圆,其焦点在y 轴上B. 若m =n >0,则CC. 若mn <0,则C 是双曲线,其渐近线方程为y =D. 若m =0,n >0,则C 是两条直线 【解析】ACD【评析】曲线方程的特征及区别是求解的关键,是解析几何的基本工具,一定要熟知.【例12】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F .(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【解析】(1)由题意,椭圆半焦距c =3c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213xy +=;(2)由(1)得,曲线为221(0)x y x +=>, 当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=, 由直线MN 与曲线221(0)x y x +=>相切可得1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212,324x x x x +=⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx t kt =+<即0kx y t -+=, 由直线MN 与曲线221(0)x y x +=>相切可得1=,所以221t k =+,联立2213y kx t x y =+⎧⎪⎨+=⎪⎩可得()222136330k x ktx t +++-=, 所以2121222633,1313kt t x x x x k k-+=-⋅=++,所以MN ==213k=+= 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN =【评析】问题归结——利用椭圆焦距的定义和椭圆离心率的定义;策略突破——利用椭圆焦距的定义和椭圆离心率的定义,构建方程,转化为求2,2a c 的值或齐次方程,从而求椭圆的方程.【建议】教学中要回归基础,即是回到知识的联系、回到思想方法、回到定义和基本性质中去.对于圆锥曲线而言,即是回到定义、方程、性质去,也是解决问题的认知基础.归纳:1.定义是事物本质属性的概括和反映,圆锥曲线许多性质都是由定义派生出来的.对某些圆锥曲线问题,采用“回归定义”的策略,把定量的计算和定性的分析有机地结合起来,则往往能获得题目所固有的本质属性,达到准确判断、合理运算、灵活解题的目的.2.求圆锥曲线方程常用的方法有直接法、定义法、待定系数法、参数法等.用待定系数法求圆锥曲线的标准方程时,要“先定型,后计算”.所谓“定型”,是指确定类型,也就是确定椭圆、双曲线的焦点所在的坐标轴是x 轴还是y 轴,抛物线的焦点是在x 轴的正半轴、负半轴,还是y 轴的正半轴、负半轴,从而设出相应的标准方程的形式;“计算”就是指运用方程思想、利用待定系数法求出方程中的a 2、b 2、p 的值(基本量法),最后代入椭圆、双曲线、抛物线的标准方程.3.求椭圆或双曲线的离心率时,应该寻求三角形中的边角之间的关系,从而建立a 、c 的齐次方程(求值)或者齐次不等式(求范围).4.证明充要条件的问题,不要只证明充分性,或只证明必要性,需注意:既要证明其充分性,又要证明其必要性.(二)弄清几何问题,选择代数方法,合理转化解析几何就是用代数方法来研究几何问题,即:几何问题→代数问题→代数结论→几何结论.所以,它的两大任务是:(1)把几何问题转化为代数问题,(2)研究代数问题,得出代数结论.【例13】设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1) 当l 与x 轴垂直时,求直线AM 的方程; (2) 设O 为坐标原点,证明:OMA OMB ∠=∠.【解析】(1)由已知得(1,0)F ,l 的方程为1x =.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为2y x =-+2y x = (2)本题目标要研究的几何对象为角,这需要在图形中挖掘这两个角的几何特征或这个角的等价几何关系.特例情况当l 与x 轴重合时.①0OMA OMB ∠=∠=︒;②当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,将OMA OMB ∠=∠代数化,即角相等的证明可以有两个思路,即从 数量关系或几何关系来思考.为此,不妨设1221(,),(,)A y x y x B .思路1:从图形中直线的倾斜角直接切入,由位置特征,可以将问题转化为0MA MB k k +=; 思路2:从数量关系角度看,通过向量运算去获取,淡化几何特征,直接采取坐标运算,即证;思路3:从几何角度看,问题可以转化为运用角平分线定理,现坐标化,即证11AF y AM BFy BM==;思路4:从几何角度看,在坐标几何中,构造直角三角形相似来证. 思路5:从几何角度看,视为角平分线,用点到两边的距离进行代数化. 思路6:角平分线具有对称性,故可证明点A 关于x 轴的对称点在直线BM 上. 这么多的思路,如何代数化,要不要求坐标?程序化(算术化):即设直线方程,遵循不断求出的思路进行运算,求出点A ,B 坐标,后再计算; 结构化(关系化):即设直线方程,找出A ,B 坐标关系(这里的策略就是通常所说的“设而不求”, 再对要证的结构关系进行推演.事实上,程序化和结构化的代数思维没有特别的优劣,它都是代数思维的重要特征,它是一个不断螺旋上升的过程,只是大家目前都喜欢用结构化的思维,忽视程序化的思维,这是不对的,对结构化思维的形成与培养也不利.另外,即便用结构化思维进行推演,在设方程上也有此许的差别,如设l 的方程为(1)y k x =-或设x my t =+,还是有讲究的.【评析】解析法的过程,充满着概念与思辩,需要大家细细品味!绝不是机械模仿能达到的. 【建议】课堂中怎样将几何问题转化为代数问题?(1)要主动去理解几何对象的本质特征;(2)善于将几何条件、几何性质用代数的形式表达出来;(3)恰当选择代数化的形式,这点是关键:一要研究具体的几何对象具有什么样的几何特征(如果几何特征不清楚,就不可能准确将其代数化),这就要在审题上下功夫;二是选择最简洁的代数形式(方便后续的代数研究),这需要大局观;(4)注意等价转化.(三)增强几何意识,配合解析工具,巧妙转化解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,结合平面几何知识,这往往能减少计算量.数学试题中很多图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解.【例14】在平面直角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则PQ 的取值范围为.分析:问题归结——定直线上的动点与圆上一点距离问题;策略突破——首先要明确目标PQ 垂径定理,在等腰PCQ △与Rt PCB △中,PC 形,问题溯源,选定较为直观的几何变量AC ,构建PQ 式:2PQ PB PCA ==∠==围,计算求解,又3AC ≥,所以21109AC <≤,因此PQ 的取值范围为. 【建议】直线与圆的三种位置关系:相切,相交,相离.解决直线与圆的问题时,一方面,要运用解析几何的一般方法,即代数化方法,把它转化为代数问题;另一方面,由于直线与圆和平面几何联系非常紧密,因此,准确地作出图形,挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.提高学生等价转化的能力——实现复杂问题简单化,陌生问题熟悉化.例如:①没有图形,不妨画个图形,以便直观思考;②“设—列—验”是求轨迹的通法;③消元转化为一元二次函数(方程),判别式,韦达定理,中点,弦长公式等要把握好;④多感悟“设—列—解”,“设”:设什么?坐标、方程、角、斜率、截距?“列”:列的前提是找等量关系,“解”:解就是转化、化简、变形,向目标靠拢;⑤紧扣题意,联系图形,数形结合;⑥一旦与自己熟悉的问题接轨立即入位.【例15】如图所示,过点(1,0)的直线与抛物线2y x =交于A 、B 线OA 和OB 分别和圆22(2)4x y -+=交于D 、E 两点,若OABODES S λ∆∆=,则λ等于A .12B .13C .14D .15【解析】设11(,)A x y 、22(,)B x y ,由2,(1)y x y k x ⎧=⎨=-⎩得222(21)0k x k x k -++=,即121x x ⋅=.又11222,y x ⎪⎨=⎪⎩所以12120x x y y ⋅+⋅=,即OA OB ⊥.设直线OA :1y k x =,直线OB :2y k x =,则121k k ⋅=-.由21,y x y k x ⎧=⎪⎨=⎪⎩得21111(,)A k k ,同理22211(,)B k k .由221(2)4,x y y k x ⎧-+=⎪⎨=⎪⎩得1221144(,)11k D k k ++,同理2222244(,)11k E k k ++. 所以OA =OB =OD =,OE . x所以221122*********(1)(1)2(1)(1)12116161642OAB ODEk k OA OBS k k k k S OD OE ∆∆++++++====≥.【建议】1.解析几何研究的对象是几何图形,善用巧用几何图形的特征,把几何特征转化为代数表示,从而缩短思维链条,简化运算过程;2.在几何图形中,利用解三角形和三角形相似等知识,转化为边角之间的关系解决解析几何问题.其中,解三角形的画图用图,体现数形结合的思想;利用角或边的关系消角(边),体现了消元的思想;用正弦、余弦定理列方程组求三角函数值,体现了方程思想.(四)重视平面解析几何中代数方法的思维训练代数的思维特征,可以概括为程序化:即有点类似于解应用题的算术思维,遵循不断求出的计算,即便引进参数,也当成假设已知,参与运算;构造性的:即有点类似于解应用题的方程思维,注重寻找关系,“设而不求”,推演求解.复习教学中,要通过恰当的事例,训练学生的代数思维,这使得解析几何的代数方法不是一招一式的技巧,而是有着行动指南的思维模式.【例16】已知抛物线2:2(0)C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.【解析】(1)抛物线C 的焦点为0,2p F ⎛⎫⎪⎝⎭,42p FM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =. (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=.由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=. 由韦达定理可得1202x x x +=,1204x x y =,所以,AB===点P到直线AB的距离为d=,所以,()3220011422PABS AB d x y=⋅==-△,()()2222000000041441215621x y y y y y y-=-+-=---=-++,由已知可得53y-≤≤-,所以,当5y=-时,PAB△的面积取最大值321202⨯=.【评析】运算繁杂是解析几何最突出的特点.首先,解题中要指导学生克服只重视思路、轻视动手运算的缺点.运算能力差是学生普遍存在的问题,不仅在解析几何问题中要加强训练,在其它板块中也要加强训练,只有把提高学生的运算能力贯彻于教学的过程之中,才能收到较好的效果.其次,要培养学生运算的求简意识,充分发挥圆锥曲线的定义和利用平面几何知识化难为易、化繁为简的作用.【例17】过抛物线24y x=的焦点F的直线交抛物线于A、B两点,分别过A、B两点作准线的垂线,垂足分别为1A,1B两点,以线段1A1B为直径的圆C过点(2,3)-,则圆C的方程为A.22(1)(2)2x y++-=B.22(1)(1)5x y++-=C.22(1)(1)17x y+++=D.22(1)(2)26x y+++=分析一:问题归结——确定圆的方程的基本要素:过焦点的直线AB的方程及与抛物线的交点坐标()()1122,,,A x yB x y;策略突破——圆的两个关键量的代数形式:圆心和半径,确定参变量,引入关联变量——斜率的倒数t,可设直线AB:1x ty=+;;求解过程分析:联立方程组21,4,x tyy x=+⎧⎨=⎩消元得到2440y ty--=;由韦达定理得12124,4y y t y y+==-,则()1,2C t-,直径()()2221112161A B y y t=-=+;求半径()2212-3MC t=+,由22114A B MC=得方程()()()22161412-3t t+=+,则1=2t.回归圆:圆心(1,1)C-,半径的平方25MC=,答案选B.。

18第一部分 板块二 专题五 解析几何 第4讲 圆锥曲线中的定点、定值、存在性问题(大题)

18第一部分 板块二 专题五 解析几何 第4讲 圆锥曲线中的定点、定值、存在性问题(大题)

解 假设存在常数 λ 使得|AB|+|CD|=λ|AB|·|CD|成立,则 λ=|A1B|+|C1D|. 由题意知,l1,l2的斜率存在且均不为零, 设l1的方程为y=kx+1, 则由yx=2=k4xy+,1, 消去 y 得 x2-4kx-4=0. 设A(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=-4.
(2)若过F的直线交抛物线C于不同的两点A,B(均与P不重合),直线PA,PB分别 交抛物线的准线l于点M,N.试判断以MN为直径的圆是否过点F,并说明理由.
解 以MN为直径的圆一定过点F,理由如下: 设A(x1,y1),B(x2,y2), 设直线AB的方程为x=my+1(m∈R),代入抛物线C:y2=4x, 化简整理得y2-4my-4=0, 则yy11+y2=y2=-44m,,
例 1 (2019·济南模拟)已知抛物线 C1:y2=2px(p>0)与椭圆 C2:x42+y32=1 有一个相同的
焦点,过点A(2,0)且与x轴不垂直的直线l与抛物线C1交于P,Q两点,P关于x轴的对 称点为M. (1)求抛物线C1的方程;
解 由题意可知抛物线的焦点为椭圆的右焦点,坐标为(1,0), 所以p=2,所以抛物线的方程为y2=4x.
例3 (2019·济南模拟)设M是抛物线E:x2=2py(p>0)上的一点,抛物线E在点M处 的切线方程为y=x-1. (1)求E的方程;
解 方法一 由xy2==x2-py1,, 消 y 得 x2-2px+2p=0.
由题意得Δ=4p2-8p=0,
因为p>0,所以p=2.
故抛物线E:x2=4y.
方法二 设 Mx0,2xp20 ,
由(1)知P(4,4), 所以直线 PA 的方程为 y-4=xy11--44(x-4)=myy1-1-43(x-4), 令 x=-1 得 y=4mm-y15-y31+8,即 M-1,4mm-y15-y31+8,

第3讲 不等式的恒成立与存在性问题(解析版)-高考数学复习《导数与解析几何》必掌握问题

第3讲 不等式的恒成立与存在性问题(解析版)-高考数学复习《导数与解析几何》必掌握问题

第3讲 不等式的恒成立与存在性问题典型例题构造中间值函数证明不等式【例1】已知函数()e x f x =,求证:曲线e (0)x y x =>总在曲线2ln y x =+的上方. 【分析】要证函数()f x 的图像恒在另一个函数()g x 图像的上方,即证()()f x g x >,可用作差法,构造新函数()()()h x f x g x =-,利用导数证明()0h x >.也可以考虑中间值法,找到一个函数()x ϕ使()()()f x x g x ϕ>>. 【解析】证法一 构造中间值函数:1y x =+. 令()()e 1x F x x =-+,则()e 1x F x '=-.因为0x >,所以e 1x >,则e 10x ->,所以()0F x '>,故()F x 在()0,∞+上单调递增. 因为()00F =,所以()0F x >,即e 1x x >+. 令()()()12ln 1ln G x x x x x =+-+=--,则 ()111(0).x G x x x x'-=-=> 令()0G x '=,得1x =.当x 变化时,()(),G x G x '在()0,∞+上的变化情况见表3.1.表3.1所以当1x =时,()G x 有最小值()10G =.所以()0G x ,则12ln x x ++,即e 2ln x x >+,所以曲线e (0)x y x =>总在曲线2ln y x =+的上方.证法二 构造中间值函数:e y x =.令()e e (0)x H x x x =->,则()e e x H x '=-.令()0H x '=,得1x =. 当x 变化时,()(),H x H x '在()0,∞+上的变化情况见表3.2.表3.2所以当1x =时,()H x 有最小值()10H =.所以()0H x ,即e e x x ,当且仅当1x =时,“=”成立. 令()()e 2ln x x x ϕ=-+,则()1e 1e .x x x xϕ-=-=' 令()0x ϕ'=,得1ex =.当x 变化时,()(),x x ϕϕ'在()0,∞+上的变化情况见表3.3表3.3则当1e x =时,()x ϕ有最小值1112ln 0e e ϕ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.所以()0x ϕ,即e 2ln x x +,当且仅当1e x =时,"=”成立.所以e 2ln x x >+(=“”不能同时成立). 所以曲线e (0)x y x =>总在曲线2ln y x =+的上方. 证法三 构造差函数.设()()()2ln e ln 2(0)x g x f x x x x =-+=-->,则()1e x g x x =-'.令()1e x h x x=-,则()21e 0x h x x=+>'.所以()h x 在()0,∞+上单调递增,即()g x '在()0,∞+上单调递增. 因为()121e 20,1e 102g g ''⎛⎫=-=- ⎪⎝⎭,所以()g x '在()0,∞+上存在唯一的0x ,使得()0001e 0x g x x =-=',即001e x x =,则00ln x x =-,且0112x <<.当x 变化时,()g x '与()g x 在()0,∞+上的变化情况见表3.4表3.4则当0x x =时,()g x 取得最小值()000001e ln 22x g x x x x =--=+-. 因为01,12x ⎛⎫∈ ⎪⎝⎭,所以()0001220.g x x x =+->= 因此()0g x >,即()2ln (0)f x x x >+>,所以曲线e (0)x y x =>总在曲线2ln y x =+的上方.【点睛】因为不等式与函数关系密切,所以经常将证明不等式恒成立的问题转化为求对应函数或构造新函数问题,而研究什么函数、如何构造函数是解题的关键.本题给出了几种证明不等式的方法,前两种方法都用到中间值法,寻找某函数在某点处的切线方程,进而利用差函数判断这条切线是否位于两个函数之间.在证法一中,1y x =+是函数e x y =在()0,1处的切线方程,也恰好是函数2ln y x =+在()1,2处的切线方程;在证法二中,y ex =是函数e x y =在()1,e 处的切线方程.这两种方法只要找到不等号两边的中间值函数,往往就可以使问题变得容易处理.证法三是直接构造差函数,利用导数的性质,以及灵活运用极值点处导数为0的方程,将函数的最值转化成均值不等式求解.构造差函数是常用的方法,但是对于导函数性质的研究需要深入,并且需要综合不等式的相关知识,难度稍大些. 参变分离求参数取值范围【例2】已知函数()ln f x x x =,若对任意1x 都有()1f x ax -,求实数a 的取值范围. 【分析】对于不等式恒成立问题,可以考虑构造差函数,对参数进行分类讨论,利用导数研究差函数的取值范围;也可以考虑将参数分离出来,研究参数分离之后的新函数的图像和性质;还可以考虑将定义域内的特殊值代入不等式,首先限定参数的取值范围,再对参数进行分类讨论.【解析】解法一 直接构造差函数,分类讨论.()()()1ln 1,g x f x ax x x ax =--=-+令则()()1ln .g x f x a a x =-=-+''(1)若1a ,当1x >时,()1ln 10g x a x a '=-+>-,故()g x 在()1,∞+上为增函数. 所以当1x 时,()()110g x g a =-,即()1f x ax -.(2)若1a >,方程()0g x '=的根为10e a x -=.此时,若()01,x x ∈,则()0g x '<,故()g x 在该区间为减函数.所以当()01,x x ∈时,()()110g x g a <=-<,即()1f x ax <-,与题设()1f x ax -相矛盾.综上所述,满足条件的a 的取值范围是(],1∞-. 解法二 参变分离.依题意,得()1f x ax -在[)1,∞+上恒成立,即不等式1ln a x x+对于[)1,x ∞∈+恒成立.令()1ln g x x x=+,则 ()211111.g x x x x x '⎛⎫=-=- ⎪⎝⎭当1x >时,因为()1110g x x x '⎛⎫=-> ⎪⎝⎭,故()g x 是()1,∞+上的增函数,所以()g x 的最小值为()11g =,因此a 的取值范围是(],1∞-. 解法三 取特殊值.令()()()1ln 1g x f x ax x x ax =--=-+,由题意知对任意1x 都有()0g x ,所以()110g a =-,则1a ,因此()()1ln 0g x a x =-+',故()g x 在()1,∞+上为增函数. 所以当1x 时,()()min ()10g x g x g =,即()1f x ax -恒成立. 所以a 的取值范围是(],1∞-.【点睛】对于不等式恒成立问题,构造差函数、对参数进行分类讨论研究差函数的符号,是解决这类问题的常用方法.但是有时分类讨论过于烦琐,而参变分离构造的新函数由于脱离了参数的千扰,易于研究其图像和性质.适当使用特殊值,将参数的范围界定在更小的范围内,有时会得到意想不到的效果.构造差函数求解恒成立问题【例3】已知函数()ln f x x x =,若对于任意1,e e x ⎡⎤∈⎢⎥⎣⎦,都有()1f x ax -,求实数a 的取值范围.【分析】对于不等式恒成立问题,通常转化为函数的问题来求解,构造差函数是最常用的一种解决办法.本题可直接构造差函数()()()1h x f x ax =--,问题即可转化为()0h x 在1,e e ⎡⎤⎢⎥⎣⎦上恒成立时求a 的取值范围,可通过求()h x 的最大值来求解.【解析】解法一 参变分离构造新函数. 当1e e x 时,不等式()ln 1f x x x ax =-,等价于1ln a x x+. 令()11ln ,e e g x x x x ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭,则()221111,e .e x g x x x x x ⎛⎫-⎡⎤=-=∈' ⎪⎢⎥⎣⎦⎝⎭当1,1e x ⎡⎤∈⎢⎥⎣⎦时,()0g x '<,所以()g x 在区间1,1e ⎡⎤⎢⎥⎣⎦上单调递减;当(]1,e x ∈时,()0g x '>,所以()g x 在区间()1,e 上单调递增.因为()1111ln e e 1 1.5,e lne 1 1.5.e e e e g g ⎛⎫=+=->=+=+< ⎪⎝⎭所以()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为1e 1e g ⎛⎫=- ⎪⎝⎭.所以当e 1a -时,对于任意1,e e x ⎡⎤∈⎢⎥⎣⎦,都有()1f x ax -.所以实数a 的取值范围是e 1a -. 解法二 直接构造差函数.设()()()1ln 1h x f x ax x x ax =--=-+,则()0h x 对任意1,e e x ⎡⎤∈⎢⎥⎣⎦恒成立.对()h x 求导,得()1ln .h x x a =+-'令()0h x '=,得ln 1x a =-,所以1e a x -=.当x 变化时,()(),h x h x '在()0,∞+上的变化情况见表3.5. 表3.5当11e e a -,即0a 时,()h x 在1,e e ⎡⎤⎢⎥⎣⎦上单调递增,所以()max ()e e e 10h x h a ==-+,则11ea +,不满足0a ,舍去.当11e e e a -<<,即02a <<时,()h x 在11,e e a -⎡⎤⎢⎥⎣⎦上单调递减,在(1e ,e a -⎤⎦上单调递增, 于是(e)0,10,e h h ⎧⎪⎨⎛⎫ ⎪⎪⎝⎭⎩所以11,e e 1.a a ⎧+⎪⎨⎪-⎩又因为02a <<,所以e 12a -<.当1e e a -,即2a 时,()h x 在1,e e ⎡⎤⎢⎥⎣⎦上单调递减,所以max 1()0e h x h ⎛⎫= ⎪⎝⎭,则e 1a -,满足2a .综上所述,实数a 的取值范围是e 1a -. 解法三 先等价变形,再构造差函数.因为0x >,所以不等式()ln 1f x x x ax =-等价于1ln x a x-.设()11ln ln x x a x a x x ϕ⎛⎫=--=+- ⎪⎝⎭,即()0x ϕ对任意1,e ex ⎡⎤∈⎢⎥⎣⎦恒成立.对()x ϕ求导,得()22111.x x x x xϕ-=-='由解法一知,()x ϕ在区间1,1e ⎡⎤⎢⎥⎣⎦上单调递减,在区间()1,e 上单调递增.所以()10,e e 0,ϕϕ⎧⎛⎫⎪ ⎪⎝⎭⎨⎪⎩即e 1,11,e a a -⎧⎪⎨+⎪⎩故e 1a -. 【点睛】对于含有参数的不等式恒成立问题,构造差函数后,分析导数的符号情况时,通常要对参数进行分类讨论.有时,对不等式进行等价变形后再构造差函数,会使问题更加容易解决利用二次函数性质判断参数取值范围【例4】已知函数()()321232af x x x x a =-+-∈R .若对于任意()1,x ∞∈+都有()2f x a '<-成立,求实数a 的取值范围.【分析】若原函数是三次函数,则其导数为二次函数.有关导数的不等式恒成立问题可以由二次函数的图像和性质直接求解,也可以利用参变分离结合构造的新函数的图像和性质求解.【解析】解法一 参变分离构造新函数. 对函数()f x 求导,得()2 2.f x x ax '=-+-因为对于任意()1,x ∞∈+都有()2f x a '<-成立,即222x ax a -+-<-成立.因为10x ->,所以对于任意()1,x ∞∈+都有21x a x <-成立.令()()()21,1x g x x x ∞=∈+-,则 ()()()222222122.(1)(1)(1)x x x x x x x g x x x x ----===---' 令()0g x '=,得2x =.当x 变化时,()(),g x g x '在()1,∞+上的变化情况见表3.6.表3.6所以()min ()24g x g ==,故实数a 的取值范围是4a <. 解法二 直接研究二次函数.对函数()f x 求导,得 ()2 2.f x x ax '=-+-若对任意()1,x ∞∈+都有()2f x a '<-成立,即222x ax a -+-<-成立,亦即20x ax a -+>成立.设()2h x x ax a =-+,则二次函数()h x 的图像是开口向上的抛物线,对称轴为2a x =.由题意,对于任意()1,x ∞∈+都有()0h x >,则()1,1,2210Δ0,a a h ⎧⎧>⎪⎪⎨⎨⎪⎪><⎩⎩或即2,2,04,a a a a ⎧>⎧⎨⎨∈<<⎩⎩R 或 所以2a 或24a <<.所以实数a 的取值范围是4a <.解法三 参变分离结合均值不等式.由解法一知,对于任意()1,x ∞∈+都有21x a x <-成立,则()()22(1)21111 2.111x x x x x x x -+-+==-++--- 因为10x ->,所以()()1122124,1x x x -++-=- 当且仅当11,11,x x x ⎧-=⎪-⎨⎪>⎩即2x =时,“=”成立.所以实数a 的取值范围是4a <.【点睛】二次函数是基本初等函数之一,在研究函数的导数符号时会经常遇到.二次函数与二次方程、二次不等式在有关函数问题的求解中起到重要作用,对二次函数的图像和性质要予以足够的重视. 等价转化求解恒成立或存在性问题【例5】已知函数()e x f x x =-,当[]0,2x ∈时,不等式()f x ax >恒成立,求实数a 的取值范围.【分析】我们在解决不等式恒成立问题时,可以将不等式等价变形,通过移项、去分母或者乘以(除以)某一正项,再分离参数、构造新函数,将不等式问题等价转化为函数问题,就可以利用导数来研究函数的图像和性质了. 【解析】解法一 参变分离构造新函数. 由()f x ax >,得()1e x a x +<.当0x =时,上述不等式显然成立,则a ∈R .当02x <时,将()1e xa x +<等价变形得e 1x a x <-,令()e 1xg x x=-,则()()21e x x g x x-='. 令()0g x '>,解得1x >;令()0g x '<,解得1x <.所以()g x 在()0,1上单调递减,在()1,2上单调递增.所以当1x =时,()g x 取得最小值e 1-,因此所求实数a 的取值范围是(),1e ∞--.解法二 等价变形后构造新函数.由题意,不等式()e x f x x ax =->,当0x =时,()010f =>恒成立,a ∈R .当02x <时,将()1e xa x +<等价变形得e 10xa x-->.设()e 1(02)xh x a x x=--<,则()()21e xx h x x -=',由解法一知,()min ()1e 10h x h a ==-->,所以e 1a <-,故所求实数a 的取值范围是(),e 1∞--.解法三 直接构造差函数,分类讨论.设()()e x x f x ax x ax ϕ=-=--,则()e 1x x a ϕ=--'.由题意知,对于任意[]()0,2,0x x ϕ∈>恒成立,等价于min?()0x ϕ>.①当1a -时,10a --,因为e 0x >,所以()0x ϕ'>,则()x ϕ在[]0,2上单调递增,所以()min ()010x ϕϕ==>,故1a -满足题意.(2)当1a >-时,则()e 10x x a ϕ=--=',得e 1x a =+,所以()ln 1x a =+. 当x 变化时,()(),x x ϕϕ'在(),∞∞-+上的变化情况见表3.7.表3.7当()ln 10a +,即011,10a a <+-<时,()x ϕ在[]0,2上单调递增,则()min?()010x ϕϕ==>,所以10a -<,满足题意.当()0ln 12a <+<,即2211e ,0e 1a a <+<<<-时,()x ϕ在()()0,ln 1a +上单调递减,在()()ln 1,2a +上单调递增,则()()()()min ()ln 11ln 1ln 1x a a a a a ϕϕ=+=+-+-+()()11ln 10,a a ⎡⎤=+-+>⎣⎦ 因为()10,1ln 10a a +>-+>,所以01e a <+<,因此0e 1a <<-. 当()ln 12a +,即221e ,e 1a a +-时,()x ϕ在[]0,2上单调递减,则()min()2e 220x a ϕϕ==-->,所以2e 12a <-,不满足2e 1a -.综上所述,实数a 的取值范围是(),e 1∞--.【点睛】不等式恒成立或存在性问题常常转化为对应函数的最值问题,可以通过不等式的等价变形,找到易于研究的函数求解. 分类讨论研究函数的图像和性质【例6】设函数()e 1(0)x f x ax a =-+>,当1x <时,函数()f x 的图像恒在x 轴上方,求a 的最大值.【分析】函数()f x 的图像恒在x 轴上方(或下方)之类的问题,转化为代数语言即()0f x >(或()0)f x <恒成立的问题,本质上还是不等式问题.此时,求解参数的取值范围,一种思路是通过研究导数的零点而研究原函数的图像和性质,找到()f x 的最小值或取值范围,即可找到参数的取值范围;另一种思路是将参数直接分离出来,研究分离后的新函数的图像和性质.这两种思路通常都需要用到分类讨论的思想方法.【解析】解法一 因导数零点的不确定性而分类讨论.对()f x 求导,得()e x f x a '=-.令()0f x '=,即e x a =,则ln x a =.①当ln 1a <,即0e a <<时,对于任意(),ln x a ∞∈-,有()0f x '<,故()f x 在(),ln a ∞-上单调递减;对于任意()ln ,1x a ∈,有()0f x '>,故()f x 在()ln ,1a 上单调递增.因此当ln x a =时,()f x 有最小值()()ln ln 11ln 10.f a a a a a a =-+=-+> 故0e a <<成立.②当ln 1a ,即e a 时,对于任意(),1x ∞∈-,有()0f x '<,故()f x 在(),1∞-上单调递减.因为()0f x >恒成立,所以()10f ,即e 10a -+,所以e 1a +,则e e 1a +. 综上所述,a 的最大值为e 1+. 解法二 因分离参数而分类讨论.由题设知,当1x <时,()e 10x f x ax =-+>.① 当01x <<时,e 1x a x +<.设()e 1x g x x+=,则()()221e 1e e 10.xx x x x g x x x '----==<故()g x 在()0,1上单调递减,因此,()()1e 1g x g >=+,所以e 1a +. ② 当0x =时,()20f x =>成立.③ 当0x <时,e 1x a x +>,因为e 10x x +<,所以当e 1a =+时,e 1x a x +>成立. 综上所述,a 的最大值为e 1+.【点睛】何时需要分类讨论?是不是有参数就一定要分类讨论?其实,这是没有一定之规的,关键是按照研究的需要而定.本题的两种解法提供了两种分类讨论的角度,解法一讨论的是参数,解法二讨论的是自变量.因为解法一中导数的零点ln x a =含参数,所以无法确定其与定义域()(),1x ∞∈-的关系,于是就要按照ln a 与1的大小关系来分类讨论;而解法二是为了分离参数,由()0f x >得e 1x ax +,不等式两边同时除以x ,因确知x 的符号而进行分类讨论.解题时不要墨守成规,要根据实际情况灵活选用恰当的方法.关注特殊值,优化分类讨论【例7】已知函数()e ax f x x =-,当1a ≠时,求证:存在实数0x 使()01f x <. 【分析】为证明“存在实数0x 使()01f x <”,只需找到一个满足条件的实数0x 即可.因函数()f x 中含有参数a ,故考虑对参数a 进行分类讨论.当实数0x 容易寻找时,可直接得出结论;当实数0x 不能直接发现时,可以将不等式()01f x <等价转化为函数()f x 的最小值小于1.【解析】证法一 当0a 时,显然有()1e 101a f =-<,即存在实数0x 使()01f x <. 当0,1a a >≠时,对函数()f x 求导,得()e 1.ax f x a =-' 由()0f x '=可得11ln x a a =.所以当11,ln x a a ∞⎛⎫∈- ⎪⎝⎭时,()0f x '<,则函数()f x 在11,ln a a ∞⎛⎫- ⎪⎝⎭上单调递减;当11ln ,x a a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,则函数()f x 在11ln ,a a ∞⎛⎫+ ⎪⎝⎭上单调递增,所以()111ln 1ln f a a a a⎛⎫=+ ⎪⎝⎭是()f x 的最小值.由函数()e ax f x x =-可得()01f =,由1a ≠可得11ln 0a a ≠,所以()11ln 01f f a a ⎛⎫<= ⎪⎝⎭. 综上所述,当1a ≠时,存在实数0x 使()01f x <.证法二 当0a 时,显然有()1e 101a f <-<,即存在实数0x 使()01f x <. 当0,1a a >≠时,由()0f x '=可得11ln x a a =.所以当11,ln x a a ∞⎛⎫∈- ⎪⎝⎭时,()0f x '<,则函数()f x 在11,ln a a ∞⎛⎫- ⎪⎝⎭上单调递减;当11ln ,x a a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,则函数()f x 在11ln ,a a ∞⎛⎫+ ⎪⎝⎭上单调递增.所以111ln ln af a a a +⎛⎫= ⎪⎝⎭是()f x 的极小值.设()1ln x g x x +=,则()2ln (0)xg x x x-=>'.令()0g x '=,得1x =. 当x 变化时,()(),g x g x '在()0,∞+上的变化情况见表3.8.表3.8所以当1x ≠时,()()11g x g <=,所以11ln 1f a a ⎛⎫< ⎪⎝⎭.综上所述,当1a ≠时,存在实数0x 使()01f x <.【点睛】证明存在性(或不存在性)问题,只需找到满足条件的变量即可,这时要注意观察函数结构,可以结合不等式性质、定义域等寻找特殊值.常取的自变量的值一般首先考虑0,1,1-,112,e,,2e,等等,还要注意端点的函数值以及极值、最值等,具体要根据实际情况而定.有时特殊值选取恰当,可以起到事半功倍的效果.另外,还要注意等价转化的恰当使用,如转化为求函数的最值问题等,可以使目标更加明确. 先找必要条件再证充分性【例8】 设函数()2ln f x ax a x =--,其中a ∈R .确定a 的所有可能取值,使得()11e xf x x->-在区间()1,∞+内恒成立. 【分析】当()1,x ∞∈+时,211ln e xax a x x--->-恒成立,求参数a 的取值范围.常规的解法有两种.第一种:将所有项移到左边构造函数,令()211ln e x g x ax a x x -=---+,对该函数求导,求出在()1,∞+内的最小值(含参数a ),再令最小值大于0,求得a 的取值范围.第二种:分离参数得121ln e 1x x x a x -+->-,右边不含参数,利用导数求其最大值,则可得a 的取值范围.这两种方法容易想到,但操作过程异常复杂,利用高中知识很难解决,所以可以尝试变形改变结构,将该不等式的结构变为易于处理的形式,把对数、指数都移到一边:()212111ln e 1ln e .x x ax a x a x x x x---->-⇔->+- 这样至少左边的函数是我们比较熟悉的.猜想存在一个函数()h x 满足()()2111ln e x a x h x x x -->>+-,我们的想法是先证明()11ln e x h x x x->+-,然后再由()()21a x h x ->求得a 的取值范围.这种方法的本质是利用不等式的传递性,用切线作中间量,此外还有如下思路:设命题()211:ln e 0x p g x ax a x x -=---+>在区间()1,∞+内恒成立,易见()10g =,于是根据导数的定义,有()()()()1111lim lim 11x x g x g g x g x x ++→→'-==--(符号1x +→表示从1的右侧趋近于1),可知若命题p 成立,则有命题():10q g '成立.即命题q 是命题p 的必要条件,于是命题p 对应的范围是命题q 所对应的范围的子集.利用此方法我们可以得到一个大致的范围.【解析】解法一 利用不等式的传递性,用切线作中间量. 由题意,有()212111ln e 1ln e .x x ax a x a x x x x---->-⇔->+- 设()11ln e x G x x x -=+-,则()1211e 0(1),x G x x x x-'=-+>> 所以函数()G x 在()1,∞+上单调递增.以点()1,0A 为切点,对应的切线为:1G l y x =-. 下面证明()G x 的图像位于直线G l 的下方,即11ln e 1xx x x-+-<-. ()()1111ln e 1ln e 1,x x H x x x x x x x --=+---=+--+则()1211e 1.x H x x x-'=-+- 因为ln 1x x <-, 则1111ln.x x e x x--<⇔< 所以()2122211111(1)e 110.xx H x x x x x x x --=-+-<'-+-=-<因此()H x 在()1,∞+上单调递减.因为()10H =,所以()0H x <,即结论成立. 于是()21111ln e xa x x x x-->->+-,则问题转化为()211(1)a x x x ->->,求参数a 的范围.化简上式可得()11a x +>,易得12a ,所以1,2a ∞⎡⎫∈+⎪⎢⎣⎭. 解法二 必要性先行.设()211ln e x g x ax a x x -=---+,则()10g =,对()g x 求导,得()12112e x g x ax x x -=-+-'由()10g ',得()1210g a =-',即12a. 下面再证明充分性,即当1,2a ∞⎡⎫∈+⎪⎢⎣⎭时,()211ln e 0x g x ax a x x -=---+>.因为12a,所以()()221112a x x --在()1,∞+上恒成立.于是不等式转化为()()21111ln e 2x g x x x x ----+,则只需证明()21111ln e 02x x x x----+>即可. 有以下两种证法: 证法一 令()()21111ln e ,2x H x x x x -⎛⎫=--+- ⎪⎝⎭对()H x 求导,得()()()212221111111e 0,xx x x H x x x x x x x x x --+-=-+->-+-=>'其中指数函数的放缩技巧参考解法一.所以()H x 在()1,∞+上单调递增,故()()10H x H >=,即()21111ln e 2x x x x-->+- 证法二令()()21111ln e 2x H x x x x -⎛⎫=--+- ⎪⎝⎭,则()1211e ,x H x x x x -=-'+- ()3112331221e e .xx x x H x x x x--'+-=+-+='+ 因为()1,x ∞∈+,所以320x x +->,则()0H x ''>,所以()H x '在()1,∞+上单调递增,而()10H '=,于是()0H x '>,则()H x 在()1,∞+上单调递增,所以()()10H x H >=.综上可知,a 的取值范围为1,2a ∞⎡⎫∈+⎪⎢⎣⎭.【点睛】解法一的核心思路是利用不等式的传递性,把切线作为中间量,既转化了问题,又降低了难度.也就是,先证明()11ln e x h x x x->+-,然后再由()()21a x h x ->求得a 的取值范围.最简单的函数就是一次函数了,这样我们就自然想到了切线,设()11ln e x G x x x-=+-,设想存在一条()G x 的切线y kx b =+满足()kx b G x +>,这样的话说明切线应该位千函数()G x 的图像上方,那究竟是不是这样呢? 我们先利用导数来判断()G x 的单调性,()1211e 0(1)x G x x x x-'=-+>>,说明该函数在()1,∞+上单调递增,那么它的形态到底是图3.1还是图3.2呢?图3.1图3.2事实上这里就涉及函数的“凹凸性”问题,但鉴于高中阶段的教学内容中没有“凹凸性”的定义,所以我们只能用代数方式来证明()G x 的图像是图3.2的形式,也就是说,()G x 图像上任意一点处的切线都在()G x 图像的“上方”,那么在这个问题里,我们选哪个点为切点呢?因为现在给定的区间是()1,∞+,所以我们选择了端点. 我们的目标是要证明()0H x '<,因为()10H '=,并且()1211e 1x H x x x-=-+-'中前面两个函数都是分式函数,于是考虑将指数1e x -放缩为分式函数.该解法最难的部分是“凹凸性”的代数证明,函数()G x 的“凹凸性”确保了该解法的正确性.如果函数()G x 是“向下凸”也即图3.1,则“切线法”就失效了,因此“切线法”有其局限性.解法二的精髄在于,先求得一个大致的范围,即寻找一个必要条件,再结合题千信息证明其充分性.对于比较难的题目,我们可通过弱化题目要求,先解决问题的一部分,自行降低难度,先获得一些简单的结论,再将其扩充至一般情形,这是一种“以退为进”的策略.。

期末复习解析几何——存在性问题

期末复习解析几何——存在性问题

期末复习解析几何——存在性问题1.已知点F 是抛物线x y 42=的焦点,N M 、是该抛物线上两点,||||6MF NF +=,则MN 中点的横坐标为()A .2C .3 2.若θ是任意实数,则方程224cos()14x y πθ++=所表示的曲线一定不是( )A .圆B .双曲线C .直线D .抛物线3.若圆锥曲线C 是椭圆或双曲线,若其中心为坐标原点,对称轴为坐标轴,且过A .曲线C 可为椭圆,也可为双曲线B .曲线C 一定是双曲线C .曲线C 一定是椭圆D .这样曲线C 不存在4.(理)若椭圆122=+ny mx 与直线01=-+y x 交于B A ,两点,过原点与线段AB 的A 5.已知P 是抛物线24y x =上的一个动点,则点P 到直线1:34120l x y -+=和2:20l x +=的距离之和的最小值是()A. 1B. 2C. 3D. 46.若(,0)F c 为椭圆C C 于A,B 两点,线段AB 的中点在直线x c =上,则椭圆的离心率为()A 7.设圆锥曲线Γ的两个焦点分别为F 1,F 2.若曲线Γ上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于__________.8.已知两个点(5,0)(5,0)M N -和,若直线上存在点P ,使|PM|-|PN|=6,则称该直线为“B 型直线”,给出下列直线:①y =x +1; y=2;④y=2x+1.其中为“B 型直线”的是.(填上所有正确结论的序号)9.在△ABC中,已知A −2,0,B(2,0),动点C使得△ABC的周长为10,则动点C 的轨迹为.10.在直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆x 22+y2=1有两个不同的交点P、Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴,y轴正半轴的交点分别为A、B,是否存在常数k,使得向量OP+OQ与AB共线?若存在,求k的值;若不存在,请说明理由.11.我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.如图,“盾圆C ”是由椭圆与抛物线24y x =中两段曲线合成,12,F F 为椭圆左、右焦点,2(1,0)F ,A 为椭圆与抛物线的一个公共点,(Ⅰ)求椭圆的方程; (Ⅱ)是否存在过2F 的一条直线l ,与“盾圆C ”依次交于,,,M N G H 四点,使得1F MH ∆与1F NG ∆的面积之比为6:5,若存在,求出直线l 的方程;若不存在,说明理由.12.已知向量)1,0(),0,2(===AB OC OA ,动点M 到定直线1=y 的距离等于d ,并且满足)(2d BM CM k AM OM -⋅=⋅,其中O 为坐标原点,k 为非负实数.(1)求动点M 的轨迹方程1C ;(2)若将曲线1C 向左平移一个单位,得曲线2C ,试判断曲线2C 为何种类型;(3)若(2)中曲线2C 为圆锥曲线,其离心率满足10<<e ,当21,F F 是曲线2C 的两个焦点时,则圆锥曲线上恒存在点P ,使得021=⋅PF PF 成立,求实数k 的取值范围.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

圆锥曲线综合问题—5. 存在性问题

圆锥曲线综合问题—5. 存在性问题

圆锥曲线综合问题—5. 存在性问题(一)存在性问题是近几年高考试题对解析几何考查的一种热点题型,以判断满足条件的点、直线、参数是否存在,证明直线与圆锥曲线的位置关系,数量关系(等量或不等量)为主要呈现方式,多以解答题的形式考查;对这类问题,若存在,需要找出来,若不存在,需说明理由,其解法有:一、假设法 假设法的一般解法是,先假定存在,然后根据已知条件或其他定理、公理、法则等推导下去,如与已知定理、公理、法则等不发生矛盾,即推出的结果合理,并经验证成立,那么结论成立,若发生矛盾,则结论不成立。

1.(2015届湖南省浏阳一中、攸县一中、醴陵一中三校高三联考)已知椭圆:C 22221(0)x y a b a b +=>>的焦距为, 且过点31(,)22A .(1)求椭圆的方程;(2)已知:1l y kx =-,是否存在k 使得点A 关于l 的对称点B (不同于点A )在椭圆C 上?若存在求出此时直线l 的方程,若不存在说明理由.【答案】(1)2213x y +=;(2)不存在k 满足条件2. 【2015届吉林省实验中学高三上学期第四次模拟考试数学(理)】已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1;(Ⅰ)求椭圆C 的标准方程; (Ⅱ)是否存在与椭圆C 交于,A B 两点的直线l :()y kx m k =+∈R ,使得22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.【答案】(1)22143x y +=(2)(-∞,-7]∪[7,+∞)3. (河北省容城中学2014届高三上学期第一次月考数学(理)试题)已知点A (-2,0),B (2,0),直线P A 与直线PB 的斜率之积为34-,记点P 的轨迹为曲线C .(1)求曲线C 的方程.(2)设M ,N 是曲线C 上任意两点,且OM ON OM ON -=+,问是否存在以原点为圆心且与MN 总相切的圆?若存在,求出该圆的方程;若不存在,请说明理由.【答案】(1)221(0)43x y y +=≠(2) 存在以原点为圆心且与MN 总相切的圆,其方程为22127x y +=4. 【浙江省温州八校2014届高三10月期初联考数学(理)】如图,椭圆2222+=1(>>0)x y C a b a b :经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(Ⅰ)求椭圆C 的方程;(Ⅱ)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=.k k k λ若存在求λ的值;若不存在,说明理由.【答案】(1)22143x y +=(2)2λ=5. 【中原名校联盟2013-2014学年高三上期第一次摸底考试理】(本小题满分12分) 已知椭圆长轴的左右端点分别为A ,B ,短轴的上端点为M ,O 为椭圆的中心,F 为椭圆的右焦点,且AF u u u r ·FB uur =1,|OF uu u r|=1.(Ⅰ)求椭圆的标准方程;(2)若直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)2212x y +=(2)存在,方程为43y x =-6. 【河北省邯郸市2014届高三9月摸底考试数学理科】(本题满分12分)已知定点(3,0)G -,S 是圆22:(3)72C x y -+=(C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E .设点E 的轨迹为M . (1),求M 的方程; (2)是否存在斜率为1的直线l ,使得直线l 与曲线M 相交于A ,B 两点,且以AB 为直径的圆恰好经过原点?若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)221189x y +=(2)y x y x =+=-7. 直线1ax y -= 与曲线2221x y -=相交于P 、Q 两点。

解析几何基础100题

解析几何基础100题

解析几何基础100题一、选择题:1. 若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为A0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y±= 解 答:C易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义.2. 椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是解 答:D易错原因:短轴长误认为是b3.过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A k>2B —3〈k<2C k<—3或k>2D 以上皆不对 解 答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑2240D E F +->4.设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L 的距离为4,则双曲线的离心率为A 2B 2或233C 2D 233解 答:D易错原因:忽略条件0a b >>对离心率范围的限制.5.已知二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的距离为别为y x ,,当θ变化时,点),(y x 的轨迹是下列图形中的A B C D 解 答: D易错原因:只注意寻找,x y 的关系式,而未考虑实际问题中,x y 的范围。

6.若曲线24y x =-(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是A 01k ≤≤B 304k ≤≤ C 314k -<≤ D 10k -<≤ 解 答:C易错原因:将曲线24y x =-转化为224x y -=时不考虑纵坐标的范围;另外没有看清过点(2,—3)且与渐近线y x =平行的直线与双曲线的位置关系。

高二数学解析几何试题答案及解析

高二数学解析几何试题答案及解析

高二数学解析几何试题答案及解析1.双曲线的虚轴长等于( )A.B.C.D.4【答案】C【解析】双曲线方程化为因为是双曲线方程,所以则标准方程为所以虚轴长故选C2.若直线的参数方程为,则直线的斜率为().A.B.C.D.【答案】D.【解析】消去参数,得直线的普通方程为,则直线的斜率为.【考点】直线的参数方程;2.直线的斜率.3.圆与的圆心距与曲线的长度的大小关系是().A.B.C.D.无法比较【答案】A.【解析】两圆的圆心分别为,则圆心距,曲线表示半径为2的圆心角为的圆弧,弧长为.;则【考点】圆的参数方程;2.弧长公式.4.已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.(Ⅰ)求椭圆的标准方程;(Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)此问是待定系数法求椭圆的标准方程第一步先设椭圆的标准方程是,根据已知条件列3个关于的方程,求解;(Ⅱ)此题考查直线与椭圆相交的综合问题,总体思路是第一步,先将直线与椭圆联立,利用韦达定理得到和,,第二步,利用,表示点的坐标,第三步,将点的坐标代入椭圆方程,得到,第四步,根据直线与圆相切,得到与的关系,消参后求的范围.试题解析:解:(Ⅰ)设椭圆的标准方程为由已知得:解得所以椭圆的标准方程为:(Ⅱ)因为直线:与圆相切所以,把代入并整理得:设,则有因为,,所以,又因为点在椭圆上,所以,因为,所以所以,所以的取值范围为【考点】1.椭圆的标准方程;2.直线与椭圆相交的综合问题.5.如图,是圆的切线,切点为交圆于两点,,则()A.B.C.D.【答案】B【解析】连接,∵是圆的切线,切点为交圆于两点,,∴,∴,解得,∴,∴,故选B.【考点】1.与圆有关的比例线段的应用;2.计算.6.(本小题满分12分)已知椭圆经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.【答案】(1)(2)【解析】(1)待定系数法求椭圆方程;(20先求出直线方程代入椭圆方程,然后由韦达定理求出两根之和,再求出中点横坐标,最后代入直线方程求出中点纵坐标即得结果.试题解析:(1)因为椭圆经过点A,所以b=4.又因离心率为,所以所以椭圆方程为:依题意可得,直线方程为,并将其代入椭圆方程,得.(2)设直线与椭圆的两个交点坐标为,则由韦达定理得,,所以中点横坐标为,并将其代入直线方程得,故所求中点坐标为.【考点】求椭圆方程、直线与椭圆相交求弦的中点坐标.7.(本小题满分12分)已知一条光线从点射出,经过轴反射后,反射光线与圆相切,求反射光线所在直线的方程.【答案】或【解析】根据对称性先求出点A关于x轴的对称点,然后设出反射光线所在的直线方程,利用直线与圆相切求出反射光线所在的直线的斜率,从而求出反射光线所在的直线方程.试题解析:A关于x轴的对称点.反射光线相当于是从点射出的光线.因为反射光线的斜率存在,所以反射光线所在的直线可设为即因为该直线与圆相切,所以…10分所以反射光线所在直线方程为或.【考点】求直线方程.8.已知是椭圆的左右焦点,P是椭圆上任意一点,过作的外角平分线的垂线,垂足为Q,则点Q的轨迹为()A.直线B.圆C.椭圆D.四条线段【答案】B【解析】连接并延长交于M点,是外角的角平分线,所以是等腰三角形,所以,Q为中点,连接OQ,则OQ===,所以M表示以O为圆心为半径的圆,故选B【考点】椭圆定义及动点轨迹方程【方法点睛】求动点的轨迹方程的一般步骤:建立合适的坐标系,设出所求点及相关点坐标,代入动点满足的关系式并将其坐标化,整理化简并检验是否有不满足要求的点;本题中要充分结合等腰三角形的性质及椭圆定义得到动点到定点的距离为定值,结合三角形中位线的性质得到点到原点的距离为定值,因此得到其轨迹为圆9.(本题满分10分)已知椭圆,经过点,且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆方程;(2)过椭圆右顶点的两条斜率乘积为的直线分别交椭圆于,两点,试问:直线是否过定点?若过定点,请求出此定点,若不过,请说明理由.【答案】(1);(2)详见解析.【解析】(1)根据椭圆经过点以及两焦点与短轴的一个端点构成等腰直角三角形可列得方程组,从而求解;(2)若直线斜率存在时,可设,再利用韦达定理以及条件斜率乘积为,可得到,满足的关系式,即可得证,再验证当斜率不存在也符合即可.试题解析:(1)根据题意;(2)当的斜率存在时,设,,∴,∴或(舍)∴过定点,当斜率不存在时也符合,即直线恒过定点.【考点】1.椭圆的标准方程;2.椭圆中定点问题.【思路点睛】定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;(2)从特殊位置入手,找出定点,再证明该点适合题意.10.已知直线与直线平行,则的值是()A.B.C.-D.或0【答案】A【解析】由题意,解得,经检验时,两直线重合,时,两直线平行,故选A.【考点】11.过点的椭圆()的离心率为,椭圆与轴交于两点、,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点.(1)当直线过椭圆右焦点时,求线段的长;(2)当点异于点时,求证:为定值.【答案】(1);(2)见解析.【解析】(1)将点代入椭圆方程可求得,再由离心率求得,从而得到椭圆的方程,再将直线的方程供稿椭圆,求得交点坐标即可求得线段的长;(2)设直线的方程为(且),代入椭圆方程,求得点坐标,再联立直线的方程求得点坐标,然后结合点坐标,利用向量的数量积公式即可得出结论.试题解析:(1)由已知得,,解得,所以椭圆方程为.椭圆的右焦点为,此时直线的方程为,代入椭圆方程得,解得,,代入直线的方程得,,所以,故.(2)当直线与轴垂直时与题意不符.设直线的方程为(且).代入椭圆方程得.解得,,代入直线的方程得,,所以点的坐标为.又直线的方程为,又直线的方程为,联立得.因此,又.所以.故为定值.【考点】1、椭圆的几何性质;2、直线与椭圆的位置关系;3、平面向量的数量积.12.以椭圆的焦点为顶点、顶点为焦点的的双曲线方程是()A.B.C.D.【答案】C【解析】椭圆的焦点为、双曲线顶点为,因此双曲线焦点为,双曲线方程是,选C.【考点】椭圆与双曲线方程【名师】用待定系数法求双曲线标准方程的四个步骤(1)作判断:根据条件判断双曲线的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能.(2)设方程:根据上述判断设出方程.(3)找关系:根据已知条件,建立关于a,b,c的方程组.(4)得方程:解方程组,将解代入所设方程,即为所求.13.如图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降2米后,水面宽________米.【答案】.【解析】如下图所示,建立直角坐标系,设抛物线的方程为,将代入可得,,所以抛物线的方程为,于是将可得,,所以水面宽为,故应填.【考点】1、抛物线的实际应用.【思路点睛】本题主要考查了抛物线的应用,考查了学生利用抛物线的解决实际问题的能力,属中档题.其解题的一般思路为:首先根据已知条件建立适当的直角坐标系,并写出点的坐标,然后设出所求的抛物线的方程,将点的坐标代入抛物线的方程可求得,得到抛物线的方程,最后把代入抛物线的方程即可得出点的坐标,进而得出所求的答案.14.已知命题:点不在圆的内部,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”.(1)若“且”是真命题,求的取值范围;(2)若是的必要不充分条件,求的取值范围.【答案】(1)或;(2)或.【解析】(1)“且”是真命题,所以,得不等式组;(2)是的必要不充分条件得:或,从而求解.试题解析:(1)若为真:,解得或若为真:则,解得或,若“且”是真命题,则,解得或(2)若为真,则,即,由是的必要不充分条件,则可得或即或,解得或.【考点】1、复合命题的真假;2、充分条件、必要条件;3、不等式组.15.设是椭圆的左右焦点,为直线上一点,是底角为的等腰三角形,则椭圆的离心率为()A.B.C.D.【答案】C【解析】因为是底角为的等腰三角形,所以,因为P在直线上一点,所以,所以椭圆的离心率为,故选C.【考点】椭圆简单的几何性质.16.直线的倾斜角为( )A.B.C.D.【答案】D【解析】设直线的倾斜角为,由直线方程可知直线的斜率,即,,.故D正确.【考点】直线的斜率,倾斜角.17.如图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米.【答案】【解析】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式,其中a可通过代入A点坐标(-2,0),到抛物线解析式得出:a=-0.5,所以抛物线解析式为,当水面下降1米,通过抛物线在图上的观察可转化为:当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1代入抛物线解析式得出:,解得:,所以水面宽度增加到米,【考点】二次函数的应用18.已知椭圆:的右焦点,过的直线交椭圆于两点,且是线段的中点.(1)求椭圆的离心率;(2)已知是椭圆的左焦点,求的面积.【答案】(1);(2).【解析】(1)设,,代入椭圆方程并作差,由中点坐标公式与直线的斜率得到的关系,从而求得椭圆的离心率;(2)联立直线与椭圆的方程,消去,利用韦达定理求得,从而求得求的面积.试题解析:(1)设,,则,,两式相减,得.∵线段的中点坐标为,∴.∵直线的斜率为,∴.∴,∴.(2)由(1)可知直线:,由,得,.又,所以.【考点】1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.19.抛物线的准线方程为()A.B.C.D.【答案】B【解析】把抛物线转化为标准式方程为所以抛物线焦点在轴上,且即其准线方程为故选B.【考点】1、抛物线的简单性质;2、抛物线的标准式方程.20.已知抛物线上的任意一点P,记点P到轴的距离为,对于给定点,则的最小值为.【答案】【解析】过P作PB垂直于直线x=-1,垂足为B∵抛物线方程为y2=4x,∴2p=4,得可得焦点F(1,0),且直线x=-1是抛物线的准线,因此,|PA|+d+1=|PA|+|PB|=|PA|+|PF|,∵|PA|+|PF|≥|AF|∴当且仅当P、A、F三点共线时,|PA|+|PF|达到最小值,因此,|PA|+d+1的最小值为|AF|=,所以|PA|+d的最小值为.故答案为:.【考点】抛物线的几何性质和两点之间的距离公式等知识.【易错点睛】过P作PB垂直于直线x=-1,垂足为B,根据抛物线的定义得:|PA|+d+1=|PA|+|PB|=|PA|+|PF|.利用三角形两边之和大于第三边,可得当且仅当P、A、F三点共线时,|PA|+d+1达到最小值,因此可用两点的距离公式求出|PA|+d+1的最小值.本题给出定点A和抛物线上动点P,求P到A点与P到抛物线准线距离之和的最小值,学生易在P到轴的距离为,当成P到准线的距离为,忘记减1,造成失误.21.如图,直线与抛物线交于A、B两点,线段AB的垂直平分线与直线交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B)的动点时,求面积的最大值.【答案】(1);(2).【解析】(1)把直线方程抛物线方程联立求得焦点的坐标,则中点的坐标可得,利用的斜率推断出垂直平分线的斜率,进而求得垂直平分线的方程,把代入求得的坐标.(2)设出的坐标,利用到直线的距离求得三角形的高,利用两点间的距离公式求得的长,最后利用三角形面积公式表示出三角形,利用的范围和二次函数的单调性求得三角形面积的最大值.试题解析:(1)解方程组得或即,从而AB的中点为.由,直线AB的垂直平分线方程令,得(2)直线OQ的方程为,设.∵点P到直线OQ的距离=,,∴==∵P为抛物线上位于线段AB下方的点,且P不在直线OQ上,∴或.∵函数在区间上单调递增,∴当时,的面积取到最大值.【考点】抛物线的应用;直线与圆锥曲线的综合问题.【方法点晴】本题主要考查了抛物线的标准方程及其应用及直线与圆锥曲线的综合应用和点直线的距离公式,着重考查了解析几何基础知识的灵活运用.本题解答中,设出的坐标,利用到直线的距离求得三角形的高,利用两点间的距离公式求得的长,最后利用三角形面积公式表示出三角形,利用的范围和二次函数的单调性求得三角形面积的最大值.22.已知圆经过椭圆的一个顶点和一个焦点,则此椭圆的离心率.【答案】【解析】由可知过点【考点】圆与椭圆的方程及性质23.已知:,不等式恒成立,:椭圆的焦点在轴上.若命题p∧q为真命题,求实数m的取值范围.【答案】【解析】首先由不等式恒成立和椭圆性质分别得到两命题中m的取值范围,由复合命题p∧q为真命题可知两命题都是真命题,由此求交集可得到m的取值范围试题解析:∵p:∀x∈R,不等式恒成立,即解得:;-q:椭圆的焦点在x轴上,∴m﹣1>3﹣m>0,解得:2<m<3,由p∧q为真可知,p,q都为真,解得.【考点】1.不等式,椭圆的性质;2.复合命题24.如图,抛物线和圆,其中,直线经过的焦点,依次交于四点,则的值为()A.B.C.D.【答案】B【解析】设,由题意知抛物线的焦点,则设直线的方程为:,联立,消去,得:,根据抛物线的定义,得:,故选B.【考点】圆与圆锥曲线的综合.25.已知焦点在x轴上的椭圆过点A(﹣3,0),且离心率e=,则椭圆的标准方程是()A.=1B.=1C.=1D.=1【答案】D【解析】设椭圆的方程为+=1(a>b>0),由题意可得a=3,由离心率公式和a,b,c的关系,可得b,进而得到椭圆方程.解:设椭圆的方程为+=1(a>b>0),由题意可得a=3,e==,可得c=,b===2,则椭圆方程为+=1.故选:D.【考点】椭圆的简单性质.26.(2012•赤坎区校级模拟)抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x﹣y+2=0上,则此抛物线方程为.【答案】y2=﹣8x或x2=8y【解析】求出已知直线与坐标轴的交点A和B,在焦点分别为A和B的情况下设出抛物线标准方程,对照抛物线焦点坐标的公式求待定系数,即可得到相应抛物线的方程.解:直线x﹣y+2=0交x轴于点A(﹣2,0),与y轴交于点B(2,0)①当抛物线的焦点在A点时,设方程为y2=﹣2px,(p>0),可得=2,所以2p=8,∴抛物线方程为y2=﹣8x②当抛物线的焦点在B点时,设方程为x2=2p'y,(p'>0),可得=2,所以2p'=8,∴抛物线方程为x2=8y综上所述,得此抛物线方程为y2=﹣8x或x2=8y故答案为:y2=﹣8x或x2=8y【考点】抛物线的简单性质;抛物线的标准方程.27.设A(x1,y1).B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线.(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;(2)当直线l的斜率为2时,求l在y轴上截距的取值范围.【答案】(1)见解析;(2)(,+∞).【解析】(1)先把抛物线方程整理成标准方程,进而求得抛物线的焦点坐标.先看直线l的斜率不存在时,显然x1+x2=0;看直线斜率存在时设斜率为k,截距为b,进而用A,B的坐标表示出线段AB的中点代入设的直线方程,及用A,B的坐标表示出直线的斜率,联立方程可分别求得x 1+x2和x21+x22的表达式进而求得b的范围,判断即l的斜率存在时,不可能经过焦点F.最后综合可得结论.(2)设直线l的方程为:y=2x+b,进而可得过直线AB的方程,代入抛物线方程,根据判别式大于0求得m的范围,进而根据AB的中点的坐标及b和m的关系求得b的范围.解:(1)∵抛物线y=2x2,即x2=,∴p=,∴焦点为F(0,)①直线l的斜率不存在时,显然有x1+x2=0②直线l的斜率存在时,设为k,截距为b 即直线l:y=kx+b由已知得:⇒⇒⇒x12+x22=﹣+b≥0⇒b≥.即l的斜率存在时,不可能经过焦点F(0,)所以当且仅当x1+x2=0时,直线l经过抛物线的焦点F(2)解:设直线l的方程为:y=2x+b′,故有过AB的直线的方程为y=﹣x+m,代入抛物线方程有2x2+x﹣m=0,得x1+x2=﹣.由A、B是抛物线上不同的两点,于是上述方程的判别式△=+8m>0,也就是:m>﹣.由直线AB的中点为(,)=(﹣,+m),则+m=﹣+b′,于是:b′=+m>﹣=.即得l在y轴上的截距的取值范围是(,+∞).【考点】抛物线的应用;直线的斜率;恒过定点的直线.28.已知双曲线的左、右焦点分别为,过的直线与双曲线的右支相交于两点,若,且,则双曲线的离心率()A.B.C.D.【答案】D【解析】设,则,因此,从而选D.【考点】双曲线定义,双曲线离心率29.已知双曲线的左、右焦点分别为,,过的直线与双曲线的右支相交于两点,若,且,则双曲线的离心率()A.B.C.D.【答案】A【解析】由题意,由余弦定理,可得【考点】双曲线方程及性质30.焦点在y轴的椭圆x2+ky2=1的长轴长是短轴长的2倍,那么k等于()A.-4B.C.4D.【答案】D【解析】椭圆方程变形为【考点】椭圆方程及性质31.若直线被圆所截的的弦长为,则实数的值()A.-2或6B.0或4C.-1 或D.-1或3【答案】D【解析】由圆的方程可知圆心为,半径为2.圆心到直线的距离.由题意可得,解得或.故D正确.【考点】圆的弦长问题.32.已知双曲线C1:(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2的顶点在原点,它的准线过双曲线C1的焦点,若双曲线C1与抛物线C2的交点P满足PF2⊥F1F2,则双曲线C1的离心率为.【答案】+1【解析】先设出抛物线方程,进而根据题意可得p与a和c的关系,把抛物线方程与双曲线方程联立,把x=c,y2=4cx,代入整理可得答案.解:设抛物线方程为y2=2px,依题意可知=c,∴p=2c,抛物线方程与双曲线方程联立得﹣=1,把x=c,代入整理得e4﹣6e2+1=0解得e=+1,故答案为:+1.【考点】双曲线的简单性质.33.如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是椭圆,那么这个椭圆的离心率是()A.B.C.D.【答案】D【解析】利用已知条件求出椭圆的方程,然后利用椭圆的离心率即可.解:设M(x,y),则P(x,2y),代入圆的方程并化简得:,解得a=2,b=1,c=.椭圆的离心率为:.故选:D.【考点】椭圆的简单性质;轨迹方程.34.椭圆上一点P到它的一个焦点的距离等于3,那么点P到另一个焦点的距离等于 .【答案】5【解析】由椭圆的方程可知,.由椭圆的定义可得点到另一个焦点的距离等于.【考点】椭圆的定义.35.若直线与直线平行,则的值为A.B.C.D.【答案】C【解析】由两直线平行可知系数满足【考点】两直线平行的判定36.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线的焦点距离为3,则()A.B.C.3D. 4【答案】C【解析】根据题意,可设抛物线的标准方程为,由于点到该抛物线的焦点距离为3,故,解得,抛物线标准方程为,将点代入抛物线方程可得,因此;【考点】抛物线的焦半径;37.已知抛物线与直线相交于两点.(1)求证:;(2)当的面积等于时,求的值.【答案】(1)证明见解析;(2);【解析】(1)要证,即证,联立直线与抛物线方程消去,得ky2+y-k=0,利用韦达定理可以证得;(2)设直线l与x轴的交点为N,求出点N的坐标为(-1,0),则,把(1)中的韦达定理代入可得的值;试题解析:(1)证明:联立,消去,得ky2+y-k=0.设A(x1,y1),B(x2,y2),则,,.因为,所以,所以,所以,即,所以.(2)设直线l与x轴的交点为N,则N的坐标为(-1,0),所以,解得,所以【考点】直线与抛物线位置关系;38.直线与抛物线交于A、B两点,过A、B两点向抛物线的准线作垂线,垂足分别为P、Q,则梯形APQB的面积为()A. B. C. D.【答案】A【解析】由题如图所示:,代入得:,解得:。

解析几何中的探究型存在性问题

解析几何中的探究型存在性问题

PA (x1 2, y1), PB (x2 2, y2) ,
总结:求解探究型存在性问题的方法主要有以下两种: 1.先猜后证法. 2.假设验证法.
第二问只能用“先假设再证明”
先假设再验证
(ky1 1)(ky2 1) y1 y2
(k 2 1) y1 y2 k ( y1 y2 ) 1
3(k 2 1) k2 3
2k 2 k2 3
1
0.
因此,存在符合条件的点 M,其坐标为 M(1,0).
典型例题
例 x 轴上是否存在异于点 P(2,0)定点 M,使得以 椭圆 E:x2+3y2=4 的任意一条过点 M 的弦 AB 为直径 的圆都过点 P?若存在,求出点 M 的坐标; 若不存在,请说明理由.
设 A(x1,y1),B(x2,y2),直线 AB 的方程为 x=ky+1.与椭圆方程联立,消 去 x,整理得(k2+3)y2+2ky-3=0.根据韦达定理,有 y1+y2=-k22+k 3,y1y2=- k2+3 3.因为
所以
PA (x1 2, y1) , PB (x2 2, y2) ,
PA PB (x1 2)(x2 2) y1 y2
解析几何中的探究型存在性问题
合肥一六八中学 谈世勇
典型例题
例 x 轴上是否存在异于点 P(2,0)定点 M,使得以 椭圆 E:x2+3y2=4 的任意一条过点 M 的弦 AB 为直径 的圆都过点 P?若存在,求出点 M 的坐标; 若不存在,请说明理由.
解法一(先猜后证法) 当且仅当 PA⊥PB 时,AB 为直径的圆点 P.当弦 AB 垂 直于 x 轴时,由椭圆的对称性可知 kPA=1,直线 PA 的方程为 y=x-2.与椭圆方 程联立,消去 y,解得 x=1.以下只需要验证 M(1这样的点 M.设 M(m,0)(m≠2),A(x1,y1),B(x2, y2),直线 AB 的方程为 x=ky+m.与椭圆方程联立,消去 x,整理得(k2+3)y2+2kmy +m2-4=0.根据韦达定理,有 y1+y2=-k22+km3,y1y2=mk22+-34.因为

存在性问题

存在性问题

存在性问题是否存在这样的直线例4.在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图)例5. 如图,椭圆2222:1x y C a b+=的顶点为1212,,,A A B B ,焦点为12,,F F 11||A B =112211222A B A B B F B F S S=(Ⅰ)求椭圆C 的方程;(Ⅱ)设n 是过原点的直线,l 是与n 垂直相交于F 点、与椭圆相交于A,B 亮点的直线,|OP|=1,是否存在上述直线l 使1AP PB =成立?若存在,求出直线l 的方程;若不存在,请说明理由。

练1:已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由。

练2:已知双曲线方程为2212yx-=,问:是否存在过点M(1,1)的直线l,使得直线与双曲线交于P、Q两点,且M是线段PQ的中点?如果存在,求出直线的方程,如果不存在,请说明理由答案:例4、解析:本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x p y =联立得22x p y y k x p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-. 于是12122ABN BCN ACN S S S p x x =+=-△△△·.12p x x =-=2p ==,∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵ 111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴2221111()(2)44y p a y p =+--- 1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2pa =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2p y =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2=又由点到直线的距离公式得d =.从而112222ABN S d AB p ===△···∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.例5(Ⅰ)由11||A B =227a b +=, ①由112211222A B A B B F B F SS=知a=2c , ②又 222b ac =-, ③由①②③解得224,3a b ==,故椭圆C 的方程为22143x y += (Ⅱ)设A ,B 两点的坐标分别为1122(,),(,)x y x y , 假设使1AP PB =成立的直线l 存在,(ⅰ)当l 不垂直于x 轴时,设l 的方程为y kx m =+,由l 与n 垂直相交于P 点且|OP |=1得1=,即221m k =+∵1AP PB =,|OP |=1, ∴()()OA OB OP PA OP PB =++= 2OP OP PB PA OP PA PB +++ = 1+0+0-1=0, 即12120x x y y +=将y kx m =+代入椭圆方程,得222(34)8(412)0k x kmx m +++-=由求根公式可得122834kmx x k-+=+, ④ 212241234m x x k-=+ ⑤ 121212120()()x x y y x x kx m kx m =+=+++= 22121212()x x k x x km x x m ++++ = 221212(1)()k x x km x x m ++++ 将④,⑤代入上式并化简得222222(1)(412)8(34)0k m k m m k +--++= ⑥将221m k =+代入⑥并化简得25(1)0k -+=,矛盾 即此时直线l 不存在(ⅱ)当l 垂直于x 轴时,满足||1OP =的直线l 的方程为x=1或x=-1,当X=1时,A,B,P 的坐标分别为33(1,),(1,),(1,0)22-,∴33(0,),(0,)22AP PB =-=-,∴914AP PB =≠当x=-1时,同理可得1AP PB ≠,矛盾 即此时直线l 也不存在综上可知,使1AP PB =成立的直线l 不存在练1【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何——存在性问题1、已知椭圆1:C 22221(0)x y a b a b +=>>的离心率为e =,过1C 的左焦点1F 的直线:20l x y -+=被圆2222:(3)(3)(0)C x y r r -+-=>截得的弦长为.(Ⅰ)求椭圆1C 的方程;(Ⅱ)设1C 的右焦点为2F ,在圆2C 上是否存在点P ,满足2122a PF PF b=,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.[解]:(1)因为直线l 的方程为:20l x y -+=,令0y =,得2x =-,即1(2,0)F -…1分 ∴2c =,又∵c e a =26a = , 2222b a c =-=∴ 椭圆1C 的方程为221:162x y C +=.…4分 (2)存在点P ,满足2122a PF PF b=∵ 圆心2(3,3)C 到直线:20l x y -+=的距离为d ==,又直线:20l x y -+=被圆222:66310C x y x y m +--++=截得的弦长为∴由垂径定理得2r ===,故圆2C 的方程为222:(3)(3)4C x y -+-=.…………8分设圆2C 上存在点(,)P x y ,满足2122a PF PF b=即123PF PF =,且12,F F 的坐标为12(2,0),(2,0)F F -,= 整理得2259()24x y -+=,它表示圆心在5(,0)2C ,半径是32的圆。

∴2CC ==………………12分 故有2332222CC -<<+,即圆C 与圆2C 相交,有两个公共点。

∴圆2C 上存在两个不同点P ,满足2122a PF PF b =.………14分2、平面直角坐标系xOy 中,椭圆∑:12222=+by a x (0>>b a )的离心率为36,焦点为1F 、2F ,直线l :02=-+y x 经过焦点2F ,并与∑相交于A 、B 两点.⑴求∑的方程;⑵在∑上是否存在C 、D 两点,满足AB CD //,D F C F 11=若存在,求直线CD 的方程;若不存在,说明理由.[解]:依题意)0 , 2(2F ,2=c ……2分,由36==a c e 得6=a ……3分 222=-=c a b ,椭圆∑的方程为12622=+y x ……4分 ⑵(方法一)若存在满足条件的直线CD ,∵AB CD //,∴1-==AB CD k k ,设直线CD 的方程为m x y +-=……5分由⎪⎩⎪⎨⎧+-==+m x y y x 12622……6分,得06)(322=-+-+m x x ……7分 0)63(6422=-+-m mx x ,01296)63(44)6(222>-=-⨯⨯--=∆m m m (*)设) , (11y x C ,) , (22y x D ,则2321mx x =+,463221-=m x x ……9分由已知D F C F 11=,若线段CD 的中点为E ,则CD E F ⊥1,111=-=CDE F k k ………10分 )0 , 2(1-F ,)2, 2(2121y y x x E ++即)4 , 43(mm E ,由124341=+=m mk E F ,解得4-=m ……13分4-=m 时,09612962<-=-m ,与(*)矛盾,∴不存在满足条件的直线CD ……14分 (方法二)假设存在) , (11y x C , ) , (22y x D ,线段CD 的中点为) , (00y x E ,则2y y ,2210210y x x x +=+=,12121-=--x x y y ……5分 由⎪⎪⎩⎪⎪⎨⎧=+=+12612622222121y x y x 两式相减得:0))((21))((6121212121=+-++-y y y y x x x x ……7分, 代入、化简得:03100=-y x 由已知D F C F 11=,则CD E F ⊥1,111=-=CD E F k k ……9分 由12001=+=x y k E F 得,200+=x y , 由①②解得1,300-=-=y x ,即)1,3(--E ……11分 直线CD 的方程为:)4(+-=x y , 联立⎪⎩⎪⎨⎧--==+412622x y y x 得 0422442=++x x ……13分 ∵0964244242<-=⨯⨯-=∆,方程(组)无解,∴不存在满足条件的直线CD ……14分3、在平面直角坐标系中,O 为坐标原点,已知两点),1,5()3,1(N M 、- 若点C 满足),()1(R t ON t OM t OC ∈-+= 点C 的轨迹与抛物线:x y 42=交于A 、B 两点.(1)求证:⊥;(2)在x 轴上是否存在一点),0,(m P 使得过点P 直线交抛物线于D 、E 两点,并以该弦DE 为直径的圆都过原点, 若存在,请求出m 的值及圆心的轨迹方程;若不存在,请说明理由. 解:(1)由)()1(R t t t ∈-+=知点C 的轨迹是M 、N 两点所在的直线,故点C 的轨迹方程是)1(4)3(13-⋅--=+x y , 即4-=x y 由⎩⎨⎧=-=xy x y 442016124)4(22=+-⇒=-⇒x x x x 1621=∴x x , 1221=+x x 1616)(4)4)(4(212121-=++-=--=∴x x x x x x yy 02121=+∴y y x x , 故.⊥………..6分(2)法一:存在点),0,4(P 满足条件。

证明如下:由题意知:弦所在的直线的斜率不为零,设弦所在的直线方程为:4+=ky x 代入x y =2得01642=--ky yk y y 421=+∴,1621-=y y , =⋅OB OA k k 116161644212222112211-=-==⋅=⋅y y y y y y x y x y OB OA ⊥∴, 故以AB 为直径的圆都过原点 ............10分法二:若存在这样的点P 满足条件,设),(),,(2211y x E y x D .则有02121=+y y x x 得,1621-=y y 又),,(11y m x PD -= ),,(22y m x PE -= 由D 、P 、E 三点共线可得0))(4(),(),(21122211=--⇒⋅-=⋅-y y m y y m x y y m x 当21y y =/时,,4=m 此时),0,4(P 可验证当)0,4(P 且21y y =时也符合条件, 所以存在点)0,4(P 满足条件. 设弦AB 的中点为),(y x M 则)(2121x x x +=,)(2121y y y += 848)4(8)(442212121+=+⋅=++=+++=+k k k y y k ky ky x x∴弦AB 的中点M 的轨迹方程为:⎩⎨⎧=+=ky k x 2422,消去k 得.822-=x y4、如图(6),设点)0,(1c F -、)0,(2c F 分别是椭圆)1(1:222>=+a y ax C的左、右焦点,P 为椭圆C 上任意一点,且12PF PF ⋅uuu r uuu r最小值为0. (1)求椭圆C 的方程;(2)若动直线12,l l 均与椭圆C 相切,且12//l l ,试探究在x 轴上是否存在定点B ,点B 到12,l l 的距离之积恒为1若存在,请求出点B 坐标; 若不存在,请说明理由.解:(1)设),(y x P ,则有),(1y c x F +=,),(2y c x F -=-------------1分[]a a x c x aa c y x PF PF ,,11222222221-∈-+-=-+=⋅ -----------------2分 由12PF PF ⋅uuu r uuu r 最小值为0得210122=⇒=⇒=-a c c ,-------------------3分∴椭圆C 的方程为1222=+y x .---------------------------------------------4分 (2)①当直线12,l l 斜率存在时,设其方程为,y kx m y kx n =+=+--------------------5分 把1l 的方程代入椭圆方程得222(12)4220k x mkx m +++-=∵直线1l 与椭圆C 相切,∴2222164(12)(22)0k m k m ∆=-+-=,化简得2212m k =+ 同理,2212n k =+------------------------------------8分∴22m n =,若m n =,则12,l l 重合,不合题意,∴m n =------------------------9分 设在x 轴上存在点(,0)B t ,点B 到直线12,l l 的距离之积为1,则1=,即2222||1k t m k -=+,--------------------------------------10分 把2212k m +=代入并去绝对值整理,22(3)2k t -=或者22(1)0k t -=前式显然不恒成立;而要使得后式对任意的k R ∈恒成立则210t -=,解得1t =±;----------------------------------------------------------------------12分②当直线12,l l 斜率不存在时,其方程为x =x =---------------------------13分定点(1,0)-到直线12,l l 的距离之积为1)1=;定点(1,0)到直线12,l l 的距离之积为1)1=;综上所述,满足题意的定点B 为(1,0)-或(1,0) --------------------------------------------14分5、已知椭圆C:22221x y a b +=(0a b >>)的左、右焦点分别为()1F 1,0-、()2F 1,0,且经过定点31,2⎛⎫P ⎪⎝⎭,()00,x y M 为椭圆C 上的动点,以点M 为圆心,2F M 为半径作圆M .()1求椭圆C 的方程;()2若圆M 与y 轴有两个不同交点,求点M 横坐标0x 的取值范围;()3是否存在定圆N ,使得圆N 与圆M 恒相切若存在,求出定圆N 的方程;若不存在,请说明理由.解:()1由椭圆定义得122+=PF PF a ,……………………………………… 1分即532422a ==+=, ……………………… 2分 ∴2a =,又1=c , ∴2223b a c =-=.……………………………………… 3分故椭圆C 的方程为22143+=x y …………………………………………………4分()2圆心00(,)M x y 到y 轴距离0=d x ,圆M 的半径=r若圆M 与y 轴有两个不同交点,则有>r d 0>x ,化简得200210-+>y x .…………………… …………………………… 6分Q 点M 在椭圆C 上,∴2200334y x =-,代入以上不等式得: 20038160+-<x x ,解得:0443-<<x . ……………………………………… 8分又022-≤≤Q x ,∴ 0423x -≤<,即点M 横坐标的取值范围是4[2,)3-. ……9分()3存在定圆()22:116++=N x y 与圆M 恒相切,其中定圆N 的圆心为椭圆的左焦点1F ,半径为椭圆C 的长轴长4. ……………………12分∵由椭圆定义知,1224+==MF MF a ,即124MF MF =-, ∴圆N 与圆M 恒内切. …………………………………………………………… 14分6、已知椭圆1C 的中心在坐标原点,两个焦点分别为1(2,0)F -,2F ()20,,点(2,3)A 在椭圆1C 上,过点A 的直线L 与抛物线22:4C x y =交于B C ,两点,抛物线2C 在点B C ,处的切线分别为12l l ,,且1l 与2l 交于点P .(1) 求椭圆1C 的方程;(2) 是否存在满足1212PF PF AF AF +=+的点P 若存在,指出这样的点P 有几个(不必求出点P 的坐标); 若不存在,说明理由.(1)椭圆1C 的方程为2211612x y +=. ………3分 (2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x BC --=, )413,2(211x x BA --=, ∵C B A ,,三点共线, (∴BC BA //u u u r u u u r. ……4分∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭, 化简得:1212212xx x x ()+-=. ①……5分由24xy =,即214y x ,=得y '=12x . ……6分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ ……………8分 设点),(y x P ,由②③得:=-211412x x x 222412x x x -,而21x x ≠,则 )(2121x x x +=. ………9分 代入②得 2141x x y =,则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y . ………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上,………12分∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ………13分 ∴满足条件1212PF PF AF AF +=+ 的点P 有两个. …………14分解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24x y =,即214y x ,=得y '=12x . ……4分∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=. ……5分 ∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ①…6分同理, 20202y x x y -=. ② 综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x x y -=002.∵经过),(),,(2211y x C y x B 的直线是唯一的,∴直线L 的方程为y x xy -=002, ………9分 ∵点)3,2(A 在直线L 上, ∴300-=x y .∴点P 的轨迹方程为3-=x y . ……11分 若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上,12分 ∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……13分 ∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……14分 解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=. ……4分设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==-. ………5分 由24xy =,即214y x ,=得y '=12x . ………6分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.…7分 ∵21141x y =, ∴211124x y x x =-. 同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-. 由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩∴()223P k k ,-. ……10分 ∵1212PF PF AF AF +=+, ∴点P 在椭圆22111612x y C :+=上. ……11分 ∴()()2222311612k k -+=化简得271230k k --=.(*) 由()2124732280Δ=-⨯⨯-=>,可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个. ………14分7、已知双曲线C的焦点分别为12(F F -,且双曲线C经过点P . (1)求双曲线C 的方程;(2)设O 为坐标原点,若点A 在双曲线C 上,点B在直线x =上,且0⋅=u u u r u u u rOA OB ,是否存在以点O 为圆心的定圆恒与直线AB 相切若存在,求出该圆的方程,若不存在,请说明理由.[解]:(1)解法一:依题意知双曲线C 的焦点在x 轴,设其方程为2222 1.(0,0)x y a b a b-=>>∵点P 在双曲线C 上,∴122||||a PF PF =-4==∴ 2a = ---3分又c =∴2224b c a =-=,∴所求双曲线C 的方程为221.44x y -=---------------4分 解法二:依题意知双曲线C 的焦点在x 轴,设其方程为2222 1.(0,0)x y a b a b-=>>-------1分∵点P 在双曲线C 上, ∴2232281a b-=, -----------------------① 又228b a =-,----------------② ②代入①去分母整理得:42683280a a -+⨯=,又a c <,解得24,a =24b =-------3分 ∴所求双曲线C 的方程为221.44x y -= ----------------------4分 (2) 设点A ,B 的坐标分别为00(,)x y,)t ,其中02x >或02x <-.-----------------5分当0y t ≠时,直线AB的方程为y t x -=,即0000()(0y t x x y tx --+=-------------------------------------------6分 若存在以点O 为圆心的定圆与AB 相切,则点O 到直线AB 的距离必为定值, 设圆心O 到直线AB 的距离为d,则d =.----------------------7分∵0OA OB ⋅=u u u r u u u r,∴000ty +=,∵00y ≠∴0t y =-,-----------8分 又22004x y -=,故200||d -=202|y +=2200020022||22|y y y y y ++==+--------11分 此时直线AB 与圆224x y +=相切,-----------------------------------------------12分当0y t =时,20x =C 的方程并整理得42280t t --=,即22(4)(2)0t t -+=,解得2t =±,此时直线AB :2y =±.也与圆224x y +=也相切.----------------------------------13分综上得存在定圆224x y +=与直线AB 相切.--------------------------------------14分8、椭圆22221(0)x y a b a b+=>>过点2(1,)2,12,F F 分别为椭圆的左右焦点,且12||2F F =。

相关文档
最新文档