大数据在审计工作中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据在审计工作中的应用
从大数据审计的可视分析需求、实践出发,探讨了大数据可视分析的方法、流程及信息系统的构建。大数据审计是新时期审计事业发展的战略方向,可视分析是大数据审计的重要方法。大数据可视分析方法在可视化技术的基础上,有机地融合了人类强大的感知认知能力与计算机的分析计算能力优势。面对海量的电子数据,传统的验证型审计方式在审计宽度、审计深度方面都面临较大风险,可视分析技术是实现审计工作向发掘型审计方式转变的可行途径。
传统的数据分析方法在大数据环境下亟待变革。传统的数据分析方法,一般是业务审计人员依据抽象的业务流程提出审计思路,计算机人员再根据其思路反复编写修改程序来验证审计思路可行性,这是一种“验证型审计”方式。在巨量(Volume)、多样(Variety)、高速(Velocity)、价值高密度低(Value)的大数据环境中,这种验证型审计方式某种程度上说有些“误打误撞”、“盲人摸象”,数据分析工作量大,在审计宽度、审计深度方面都面临较大风险。
可视分析是大数据审计取得突破的重要方向。大数据审计的目标是把隐没在海量的、异构的、杂乱无章的电子数据中
的信息集中、萃取和提炼出来,揭示其内在规律,为评价被审计单位经济活动和相关资料的真实性、合法性、效益性提供有力的线索或直接的证据。客观上,大数据环境要求计算机审计工作从“验证型审计”方式转变为“发掘型审计”方式。这既需要先进的人工智能,包括智能搜索、数据挖掘等,也需要人的感知能力、认知规律与分析过程的有机融合,包括人机交互、可视建模、图形展示等。可视分析是以可视化技术和自动化分析模型为核心,辅助用户对大规模复杂数据集进行分析推理的科学与技术。通过可视化的自动建模技术将大数据以直观的图形形式展示,审计人员往往能够一眼洞悉数据背后隐藏的信息,不再受制于枯燥晦涩的数据分析算法。因此,以人为中心的探索式可视分析是大数据审计不可或缺的重要手段或方法。文章节选,欲览全文请至知贝网,可文案策划、科技论文翻译、文章润色。