高速铁路牵引供电系统组成

合集下载

牵引供电系统简介

牵引供电系统简介

牵引供电系统简介:将电能从电力系统传送给电力机车的电力装置的总称叫电气化铁路的供电系统,又称牵引供电系统,主要由牵引变电所和接触网两大部分组成。

牵引变电所将电力系统输电线路电压从110kV(或220kV)降到27.5kV,经馈电线将电能送至接触网;接触网沿铁路上空架设,电力机车升弓后便可从其取得电能,用以牵引列车。

牵引变电所所在地的接触网设有分相绝缘装置,两相邻牵引变电所之间设有分区亭,接触网在此也相应设有分相绝缘装置。

牵引变电所至分区亭之间的接触网(含馈电线)称供电臂。

牵引供电回路是由牵引变电所——馈电线——接触网——电力机车——钢轨——回流联接——(牵引变电所)接地网组成的闭合回路,其中流通的电流称牵引电流,闭合或断开牵引供电回路会产生强烈的电弧,处理不当会造成严重的后果。

通常将接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。

牵引供电设备的检修运行由供电段负责,牵引供电系统的运行调度则由供电调度负责。

供电调度通常设在铁路局调度所。

牵引供电系统供电示意图如下所示:二、牵引变电所、分区所、开闭所牵引变电所:牵引变电所的任务是将电力系统三相电压降低,同时以单相方式馈出。

降低电压是由牵引变压器来实现的,将三相变为单相是通过变电所的电气接线来达到的。

牵引变压器(主变)是一种特殊电压等级的电力变压器,应满足牵引负荷变化剧烈、外部短路频繁的要求,是牵引变电所的“心脏”。

我国牵引变压器采用三相、三相——二相和单相三种类型,因而牵引变电所也分为三相、三相——二相和单相三类。

随着技术水平的提高,我国干线电气化铁路已推广使用集中监视及控制的远动系统,牵引变电所将逐步实现无人值班,直接由供电调度实行遥控运行。

分区所:分区所设置在两个变电所中间,作用有三:提高供电质量、供电分段、越区供电。

•开闭所:一般设置在大型站场附近,进线由变电所或接触网引入,由开关馈出多个供电线路向多个供电设备供电。

作用是增强供电的灵活性,便于供电设备的运行及检修,便于行车组织,缩小供电事故及故障范围。

高速铁路牵引供电概述

高速铁路牵引供电概述

1.1 牵引供电方式
2.BT供电方式
BT供电方式就是在牵引供电系统中加 装吸流变压器(3~4 km安装一台)和 回流线。这种供电方式由于在接触网 同高度的外侧增设了一条回流线,回 流线上的电流与接触网上的电流方向 相反,因此大大减轻了接触网对邻近 通信线路的干扰。采用BT供电方式的 电路是由牵引变电所、接触悬挂、回 流线、轨道及吸上线等组成。牵引变 电所作为电源向接触网供电;动车组 列车运行于接触网与轨道之间;吸
正馈线与轨道之间的电压也是25 kV。自 耦变压器是并联在接触悬挂和正馈线之间 的,其中性点与钢轨(保护线)相连接。 彼此相隔一定距离(一般间距为10~16 km)的自耦变压器将整个供电区段分成 若干个小的区段,叫作AT区段,从而形 成了一个多网孔的复杂供电网络。接触悬 挂是去路,正馈线是回路。接触悬挂上的 电流与正馈线上的电流大小相等、方向相 反,因此其电磁感应影响可以互相抵消, 故对邻近的通信线有很好的防护作用。

速 铁
项目
高速铁路牵引供电概述

高速铁路牵引供电概述
高速铁路的牵引供电系统,其本身没有发电设备,而是从电力系统获取电能。 目前,牵引供电系统的供电方式有直接供电方式、BT供电方式、AT供电方式、 同轴电力电缆(coaxial cable,CC)供电方式、直供加回流线供电方式、单 边供电方式和双边供电方式等。
1.1 牵引供电方式
3.AT供电方式
随着铁路电气化技术的发展及动车组的投 入运行,传统的供电方式已不能适应铁路 发展的需要,各国开始采用AT供电方式。 AT供电方式就是在牵引供电系统中并联 自耦变压器的供电方式。实践证明,AT 供电方式是一种既能有效地减弱接触网对 邻近通信线的电磁感应影响,又能适应高

《高速铁路概论》课件——3-1高速铁路牵引供电系统概述

《高速铁路概论》课件——3-1高速铁路牵引供电系统概述

二、牵引供电系统组成
牵引供电系统的任务是保证质量良好地并不间断地向列车供电,主要 包括牵引变电所和牵引网两部分。
牵引变电所是电气化铁路供电系统的心脏,主要功能是变压和变相。
电气化铁路的电流制经历了由低压直流、三相交流、单相低 频交流到单相工频交流的演变过程。
今后的发展方向主要是采用25kV的单相工频交流制。
高速铁路牵引供电系统概述
高速铁路牵引供电系统概述
教学目标
了解电气化铁路电流制的发展 掌握高速铁路牵引供电系统的供电过程 树立遵守《铁路安全管理条例》的意识
复兴号动车组运行需要几节5号电池?
一、牵引供电过程
《铁路安全管理条例》规定,禁止在铁路电力线路导线两侧各 500米的范围内升放风筝、气球等低空飘浮物体。
高速铁路牵引供电系Байду номын сангаас概述
课堂小结
电气化铁路电流制的发展 高速铁路牵引供电系统的供电过程 遵守《铁路安全管理条例》的意识

高铁工作原理

高铁工作原理

高铁工作原理高铁,即高速铁路,是一种采用高速电力牵引列车技术的现代化铁路交通工具。

高铁的工作原理是基于电力和磁力的相互作用,并通过先进的技术实现高速稳定的行驶。

一、电力牵引系统高铁列车采用电力牵引系统,由电网供电并将电能转化为机械能驱动列车前进。

电力牵引系统的核心组成部分包括电网、接触网、牵引变流器、电机以及线路控制系统。

1. 电网:高铁列车通过接触网吸取电能,接触网由电塔等支撑物支持,供电电压为交流电25千伏或直流电3千伏。

电网提供稳定可靠的电力,为列车的运行提供能量。

2. 接触网:接触网是高铁运行中关键的组成部分,它悬挂在高架或支架上,与列车上方装置的受电弓接触,通过传递电能给列车。

接触网采用导电材料,能承受高压电流的同时保持稳定的接触。

3. 牵引变流器:牵引变流器是将电能转化为驱动列车所需的电机能量的装置。

它能够将接触网提供的交流或直流电能转换成适合列车驱动电机的电能,实现对列车速度和力的控制。

4. 电机:高铁列车的电机采用三相异步电动机,能产生较大的驱动力矩,使列车能够在高速运行时保持平稳加速和制动。

电机通过传动装置将电能转换为机械能带动车轮转动,推动列车前进。

5. 线路控制系统:线路控制系统对电力牵引系统进行监测和控制,保证高铁列车的安全运行。

它可以实时监测电网和接触网的状态,以及控制供电系统的输出,从而确保列车在任何情况下都能够获得足够的电力支持。

二、磁悬浮技术除了电力牵引系统,高铁还采用磁悬浮技术,即磁力悬浮。

磁悬浮是通过磁力的相互作用使列车浮起并行驶的原理,它可以有效减少摩擦阻力,提高列车的运行速度和平稳性。

1. 悬浮系统:磁悬浮列车的悬浮系统由车体和导向系统组成。

车体上安装有磁力悬浮系统的磁浮组件,而轨道上则嵌有导向磁铁。

当列车运行时,磁铁产生的磁力与磁浮组件产生的磁力相互作用,使列车浮起并保持在一定的高度上。

2. 磁力控制系统:磁力控制系统通过控制磁铁的磁场大小和方向,调整列车的浮升高度和悬浮姿态,从而实现对列车的稳定悬浮和平稳运行。

高速铁路牵引供电关键技术分析

高速铁路牵引供电关键技术分析

高速铁路牵引供电关键技术分析摘要:随着铁路建设的不断推进,牵引供电技术也得以快速发展。

文章介绍了高速铁路牵引供电系统的组成,分析了高速铁路牵引供电技术的特点,并结合实际案例对高速铁路牵引供电的关键技术进行了探讨,有效保证了列车运营的稳定性和安全性。

关键词:高速铁路;牵引供电系统;接触网技术一、高速铁路牵引供电系统组成在铁路系统运行过程中,牵引供电系统为列车的正常运营提供了动力支持。

由于高速铁路列车运行密度大、车辆运行速度快、列车运行可靠性要求比较高,所以高速铁路列车设备选型和技术方案和普通铁路均有所不同。

高速铁路牵引供电系统主要可以划分为接触网和牵引变电所两个组成部分。

其中,牵引变电所主要通过牵引变压器将区域电力系统电源变压为适合电力机车运行的电压,然后利用馈线将电压引到接触网。

电力机车通过受电弓从接触网获得连续电能,为其运营提供足够的能量。

三、高速铁路牵引供电关键技术分析3.1项目背景本高速铁路工程项目为客运专线,总长度约为120km,基本是由高架线构成,最大设计速度为350km/h,最大运营速度为300km/h,沿线共设5座车站,其整个机电系统在运营速度300km/h、列车编组8辆的条件下,达到最小追踪列车间隔时间3min的综合能力目标值。

3.2牵引供电系统技术特性3.2.1可靠性牵引供电系统必须具备科学的冗余设计体系、高质量的设备与施工体系,为列车运行提供可靠的能量支持。

3.2.2可用性外界故障或内部人员疏忽引起的故障不至于导致系统的失效。

如双回路供电、接触网系统合理电分段,结构稳定、智能化继电保护控制系统。

3.2.3可维护性建立系统维修体制,牵引供电系统应保障不间断供电,采用少维护、免维修产品。

3.2.4安全性采取合适的、具有可操作性的安全管理措施避免出现安全性灾难;牵引供电系统不应产生铁路内部危害性干扰及对与其他系统的危害性相互作用的影响。

3.2.5环保和可持续性发展牵引供电系统建设应符合中国环境保护法的要求,电磁干扰、噪声指标等对人体健康及环境的影响符合相关规定,具有绿色、环保、节能的功能措施,对周边环境无污染或少污染,设备材料的使用具有可回收性和二次利用性,保证整个系统的可持续发展。

轨道交通供电系统—轨道交通SCADA系统

轨道交通供电系统—轨道交通SCADA系统
通过通信通道传送遥控、遥信、遥调和遥测信息。
城市轨道交通接触网
3.SCADA系统的优点 对供电系统的监控有以下优点:
(1)集中监控可提高系统运行的安全可靠和经济性。正常时,实现合理的系统运行方式;事故 时,可及时直接显示和记录事故发生时间和内容,有利于加快事故处理。 (2)集中控制使调度人员直接控制运行方式的改变,运行操作效率及其可靠性高,值班人员在 变电所内仅需对电气设备进行监护,劳动条件得到改善。 (3)有利于变电所实现无人值班化,可节省变电所基建和运行费用。
城市轨道交通接触网
1.电力监控系统的任务
城市轨道交通运行的管理和调度是由控制中心来实现的,其中的电力调度是供电系统运行 的管理和调度部门;而城市轨道交通供电系统的各类变电所及其他主要设备是沿线路分散 设置的。
要保证系统运行的安全、可靠及经济性,就必须由电力调度人员对系统进行集中管理和调 度,实现系统运行状态的监视和运行方式的控制。早期的集中调度是通过调度电话来实施 的,通过值班人员对系统运行方式进行监视和控制,属于一种效率低、可靠性差的间接监 控方式。
城市轨道交通接触网
(2)遥信(YX):是指将被控站设备的状态,如断路器的位置信号、报警信号等,传 输给调度端。遥信的内容包括:
①遥信对象的位置信号; ②高中压断路器、直流快速断路器的各种故障跳闸信号; ③变压器、整流器的故障信号; ④交直流电源系统故障信号; ⑤降压变电所低压进线断路器、母联断路器的故障跳闸信号; ⑥钢轨电位限制装置的动作信号; ⑦预告信号; ⑧断路器手车位置信号; ⑨无人值班变电所的大门开启信号。
1.调度端 调度端设在电力调度所内完成远动对象的监控、数据统计及管理功能等,髙速铁路中 主机均为网络化设备。
城市轨道交通接触网

高速铁路牵引供电系统精选全文完整版

高速铁路牵引供电系统精选全文完整版

可编辑修改精选全文完整版高速铁路牵引供电系统1.牵引变电所牵引变电所是电气化铁路的心脏,其作用是将110 kV(220 kV)三相交流电变换成27.5 kV(或55 kV)单相工频交流电,并供给电力牵引网和电力机车。

此外,有少数牵引变电所还需担负10 kV动力负荷。

所以,牵引变电所具有3个主要功能:接受三相电能,降压分配电能,减相以单相馈出供给牵引网。

2.分区亭在电气化铁路上,为了提高运行的可靠性,增加供电工作的灵活性,在相邻变电所供电的相邻两供电分区的分界处常用分相绝缘器断开,若在断开处设置开关设备和相应的配电装置,则组成分区亭。

在复线电气化区段,分区亭的主要功能如下:(1)使同一供电臂上的上、下行接触网并联工作或单独工作。

当并联工作时,分区亭内的断路器闭合以提高接触网的末端电压;当单独工作时,断路器打开。

(2)当同一供电臂上的上、下行接触网(并联工作)发生短路事故时,由牵引变电所相应的馈线断路器和分区亭中的断路器配合动作,切除事故区段,缩小事故范围;非事故区段仍可正常供电。

(3)当某牵引变电所全所停电时,可闭合分区亭中的越区隔离开关,由相邻牵引变电所向停电牵引变电所进行越区供电。

总之,分区亭的作用是:对单线牵引网,使两相邻供电臂单独工作或实现越区供电;对双线牵引网,使上、下行接触网并联,提高末端电压,缩小事故范围和实行必要时的越区供电。

3.开闭所当远离牵引变电所的枢纽站、电力机务段等大宗负荷需要多条馈电线向这些接触网分组供电时,一般采用建立开闭所的办法来解决。

开闭所是指不进行电压变换而用开关设备实现电路开闭的配电所。

开闭所一般有两条进线,然后多路馈出向枢纽站场接触网各分段供电,进线和出线均经过断路器,以实现接触网各分段停、供电的灵活运行,又由于断路器对接触网短路故障进行保护,从而可以缩小事故停电范围。

开闭所的作用是增加馈线数目,将主线接触网与分支接触网分开,缩小事故范围,提高供电可靠性,保证枢纽站、站场装卸作业和接触网分组检修的灵活性和安全性;降低牵引变电所的复杂程度,还可实现上、下行扭接,保证在事故情况下供电,正常情况下扭接有利于改善牵引网电压水平,降低电能损失。

如何提高我国高速铁路牵引供电系统的稳定性

如何提高我国高速铁路牵引供电系统的稳定性

如何提高我国高速铁路牵引供电系统的稳定性0 引言高速铁路牵引供电系统主要由牵引变电所、馈电线、接触网、回流线等组成,是高速铁路的重要组成部分,一旦牵引供电系统发生故障,将给高速铁路运输造成严重影响。

因此,有必要采取措施提高牵引供电系统的可靠性,确保高速铁路安全可靠运营。

1牵引供电系统主要存在的问题根据近年来已建成运营的铁路线路运行情况的调查和统计,牵引供电系统主要存在五类常见的问题:高压电缆故障、雷击故障、电气绝缘故障、新线施工遗留缺陷和接触网受异物侵害问题。

1.1高压电缆故障分析高速铁路的牵引变电所、开闭所、AT 所、分区所的27.5kV 馈出线大部分采用高压电缆架设,进出高压室开关柜的线路也大都采用高压电缆敷设。

但由于存在高压电缆材质不良,电缆敷设不规范,电缆金属护套接地方式选取不当,以及对电缆的监测和维护不到位等原因,导致高压电缆故障频繁发生,影响供电安全。

1.2雷击故障分析高速铁路正线区间部分采用桥梁架设方式,接触网通常处在距地面较高的位置,在线路经过平原或地域空旷地带,由于避雷措施设置不合理,防雷接地不良等原因,接触网极易遭受雷电侵袭,引发供电故障。

1.3电气绝缘故障分析电气化铁路牵引网结构相对复杂,导线数量较多。

日常运营管理中对绝缘部件清扫不及时,对导线附近的建筑物、树木、鸟窝、覆冰等物体防护处置不当,容易造成电气绝缘不良而引发接触网接地故障。

1.4新线施工遗留缺陷带有远动功能的隔离开关编号与调度端监视屏上显示不一致、隔离开关开合不到位,地下敷设电缆头部位有旧伤,调度端遥信、遥测不准确,误报情况时有发生,接触网设备连接不牢靠,螺母松脱,设备引线与接地体绝缘距离不足等遗留缺陷,对供电设备正常运行带来潜在的安全隐患。

1.5接触网受异物侵害问题高速铁路大都建设在野外,自然环境恶劣,尤其是夏秋季节,经常会出现大风天气造成接触网上挂异物情况,工区频繁出动上线处理,给设备管理单位带来严峻的考验。

高速铁路牵引供电系统(组成)

高速铁路牵引供电系统(组成)

高速铁路牵‎引供电系统‎电气化铁路‎的组成由于电力机‎车本身不带‎原动机,需要靠外部‎电力系统经‎过牵引供电‎装置供给其‎电能,故电气化铁‎路是由电力‎机车和牵引‎供电系统组‎成的。

牵引供电系‎统主要由牵‎引变电所和‎接触网两部‎分组成,所以人们又‎称电力机车‎、牵引变电所‎和接触网为‎电气化铁道‎的三大元件‎。

一、电力机车(一)工作原理电力机车靠‎其顶部升起‎的受电弓和‎接触网接触‎获取电能。

电力机车顶‎部都有受电‎弓,由司机控制‎其升降。

受电弓升起‎时,紧贴接触网‎线摩擦滑行‎,将电能引入‎机车,经机车主断‎路器到机车‎主变压器,主变压器降‎压后,经供电装置‎供给牵引电‎动机,牵引电动机‎通过传动机‎构使电力机‎车运行。

(二)组成部分电力机车由‎机械部分(包括车体和‎转向架)、电气部分和‎空气管路系‎统构成。

车体是电力‎机车的骨架‎,是由钢板和‎压型梁组焊‎成的复杂的‎空间结构,电力机车大‎部分机械及‎电气设备都‎安装在车体‎内,它也是机车‎乘务员的工‎作场所。

转向架是由‎牵引电机把‎电能转变成‎机械能,便电力机车‎沿轨道走行‎的机械装置‎。

它的上部支‎持着车体,它的下部轮‎对与铁路轨‎道接触。

电气部分包‎括机车主电‎路、辅助电路和‎控制电路形‎成的全部电‎气设备,在机车上占‎的比重最大‎,除安装在转‎向架中的牵‎引电机之外‎,其余均安装‎在车顶、车内、车下和司机‎室内。

空气管路系‎统主要执行‎机车空气制‎动功能,由空气压缩‎机、气阀柜、制动机和管‎路等组成(三)分类干线电力牵‎引中,按照供电电‎流制分为:直流制电力‎机车和交流‎制电力机车‎和多流制电‎力机车。

交流机车又‎分为单相低‎频电力机车‎(25Hz或‎16 2/3Hz)和单相工频‎(50Hz)电力机车。

单相工频电‎力机车,又可分为交‎--直传动电力‎机车和交—直—交传动电力‎机车。

二、牵引变电所‎牵引变电所‎的主要任务‎是将电力系‎统输送来的‎110kV‎三相交流电‎变换为27‎.5(或55)kV单相电‎,然后以单相‎供电方式经‎馈电线送至‎接触网上,电压变化由‎牵引变压器‎完成。

高速铁路牵引供电系统基础知识

高速铁路牵引供电系统基础知识
高速铁路牵引供电系统基础知识
1.牵引供电系统的概念
将电能从电力系统传送给电力机车的电力装置称为牵引 供电系统。高速铁路牵引供电系统是高速铁路的重要组成部 分。为使高速铁路动车组机车能高速、稳定地行驶,需要牵 引供电系统不间断地提供质量良好且可靠的电能。
高速铁路牵引供电系统基础知识
2.高速铁路牵引供电系统的组成
高速铁路牵引供电系统基础知识
2.高速铁路牵引供电系统的组成
电力机车是通过受电弓向接触网取流的。受电弓是安装在电力机车上 的一种从一根或几根接触线上集取电流的专用设备。受电弓由弓、框架 、底架和传动系统等部分组成,受电弓的几何形状可以改变。受电弓与接 触网接触是电力机车获得电能的一种方式。每台电力机车有前、后两个受 电弓,司机控制其升起,并以一定的接触压力紧贴接触线获取电能。良好 的弓网关系是保证电力机车安全、可靠、高速运行的关键技术之一。
(1)牵引变电所。牵引变电所是牵引供电系统的核心部分。它的任务 是将电力系统的三相电压降低,并以单相方式馈出。牵引变电所一般采用 双回路电源供电,以保证供电的可靠性。其供电方式一般有五种:直接供 电方式、带吸流变压器的供电方式、带回流线的直接供电方式、自耦变压 器供电方式及同轴电力电缆供电方式。
(2)接触网。接触网是沿铁路线上空架设的向电力机车供电的输电线 路,在整个供电回路中起着十分重要的作用。接触网主要由接触悬挂、支 持装置、定位装置、支柱与基础四大部分组成。接触网分为刚性接触网和 柔性接触网。

高铁牵引供电系统基础知识

高铁牵引供电系统基础知识
具体设置如下图所示,一个供电分区里都是相同相位的电。
Hale Waihona Puke 牵引变电所的一次侧供电方式
牵引供电方式
直接供电方式。
带回流线的直接供电方式
自耦变压器供电方式
高速铁路牵引供电系统基础知识
2019 .11
火车动力牵引方式
人类获取电能的方式
高铁的电从哪儿来?
牵引供电系统的概念
• 将电能从电力系统传送给电力机车的电力 装置称为牵引供电系统。
高速铁路牵引供电系统的构成
牵引变电所
接触网
牵引变电所
• 电力牵引的专用变电所。牵引变电所把区域电力系统送来的电能,根 据电力牵引对电流和电压的不同要求,转变为适用于电力牵引的电能, 然后分别送到沿铁路线上空架设的接触网,为电力机车供电,或者送 到地下铁道等城市交通所需的供电系统,为地铁电动车辆或电车供电。
一次设备 二次设备
牵引变电所的电气接线
• 主接线
• 二次接线
牵引变电所的类型
• 单相牵引变电所 • 三相牵引牵引变电所 • 三相-二相牵引变电所
由于牵引供电系统采用单相交流电,如果全程只用一相,肯定导致不平衡。解决方 式就是通过换相实现三相平衡。也就是说一相用一段,三相循环着用。
具体的换相流程如下:在变电所中,三相交流电变为了A相、B相、C相三相电,将 其中的一相接地,另两相分别通往变电所两侧的供电臂(如图牵引变电所供电臂分 别为A相、B相,而C相接地了)。一般而言,相邻变电所的相邻供电臂的相位相同。
接触网
• 高速铁路接触网,是沿铁路线上空架设的向电力机车供电的输电线路,高铁列车运 行所仰赖的电流就是通过机车上端的接触网来输送的。接触网一旦停电,或列车电 弓与接触网接触不良,对列车的供电便产生影响。根据高速铁路接触网所在区间、 站场和大型建筑物而有所不同。支持装置包括腕臂、水平拉杆、悬式绝缘子串,棒 式绝缘子及其它建筑物的特殊支持设备。定位装置包括定位管和定位器,其功用是 固定接触线的位置,使接触线在受电弓滑板运行轨迹范围内,保证接触线与受电弓 不脱离,并将接触线的水平负荷传给支柱。支柱与基础用以承受接触悬挂、支持和 定位装置的全部负荷,并将接触悬挂固定在规定的位置和高度上。中国接触网中采 用预应力钢筋混凝土支柱和钢柱,基础是对钢支柱而言的,即钢支柱固定在下面的 钢筋混凝土制成的基础上,由基础承受支柱传给的全部负荷,并保证支柱的稳定性。 预应力钢筋混凝土支柱与基础制成一个整体,下端直接埋入地下。

牵引供电系统

牵引供电系统

牵引供电系统牵引供电系统是指为电气牵引车辆在运行过程中提供电力的系统。

牵引供电系统的设计和运行是交通运输的重要组成部分,特别是电气化铁路、电气胶轮车和电气地铁等交通工具的运营。

本文将讨论牵引供电系统的基本结构、工作原理和常见故障及解决方案。

基本结构牵引供电系统的基本结构包括两部分:接触网和接触网配电系统。

接触网是通过架空线路将电力输送到电气牵引车辆的触点上,而配电系统则负责将电能分配到接触网上的各个部分。

接触网通常由钢制上行线及钢制下行线组成,在两条线路之间悬挂的弹性线圈保持钢制上行线的张力,同时具有压在下行线上的力。

接触网配电系统由变电站、分段开关、隔离开关、牵引变压器和组合开关等组成。

变电站是牵引供电系统的核心设备,它将输送电压由高压变成适合电气牵引车辆的低电压。

分段开关用于分段,以便进行检修和维护工作。

隔离开关用于断开接触网和电气牵引车辆之间的电气连接。

牵引变压器是通过变压器将高压电能逐步变成电气牵引车辆所需的低电压。

组合开关用于控制配电系统的操作。

工作原理接触网通过上行线将高压电力输送到牵引变压器,在牵引变压器中将高压电能变成低电压电能,然后牵引变压器通过下行线将低电压电能输送到电气牵引车辆的触点上。

电气牵引车辆的牵引系统和辅助供电系统通过触点连接到接触网上,从而获取所需的电力。

在牵引供电系统的工作过程中,接触网将高压交流电输送到牵引变压器,通过牵引变压器将高压转换为低电压,供电给电气牵引车辆。

通过运用继电保护及其他电气保护设备,来保证接触网和牵引车辆之间的安全和稳定的电气连接。

常见故障及解决方案牵引供电系统因为工作原理的复杂性,有时候会出现不同的故障。

以下是常见的故障及解决方案:接触网脱落接触网脱落通常经常发生在高速运行中。

接触网脱落会导致接触网配电系统的保护装置动作,并给地面人员造成威胁。

对于接触网脱落的处理,一般有两种解决方案:第一种是通过调整钢制上行线张力来修复接触网的位置,第二种是通过使用特殊挂钩来吊起接触网,从而重新修复接触网的位置。

高速铁路牵引供电系统概论

高速铁路牵引供电系统概论

* b(z) * I e
U
3
2
Δ
Icz 4
Iax ·
U
c(x)
c

U
+
I
b
A
IA
Δ
B
C
IB
IC
O
*
1
g
I Δ
U
d
·
a(y)
*
Iby
2
Δ
* b(z)
Icz
Iax ·
c(x)
f I

e
U
星形-延边平衡变压器
星形-曲折延边平衡变压器
A
C
I
+
多路馈线,用以实现对站场各股道群的分别供电控制。 (1)进线和馈线都经过断路器,可灵活地对各分区 接触网停、供电 (2)在断路器上可实现短路故障保护,从而缩小事故 停电范围 (3)对AT牵引网,往往同ATP合建,增强对供电臂供电
的灵活性
自耦变压器(AT)所(AT Post, ATP) AT供电系统,除变电所、分区所和开闭所外,
复链形悬挂
特点: 在结构上,承力索和接触导线之间加了一根辅助承力索。 接触网的张力大,弹性均匀,安装调整复杂,抗风能力强
2.3 高速接触网的主要结构参数
导线高度 :指接触导线距钢轨面的高度。一般地,高速铁路 接触导线的高度比常规电气化铁路的接触导线低。原因: ①高速铁路一般无超级超限列车通过,车辆限界为4 800 mm; ②为了减少列车空气阻力及空气动态力对受电弓的影响, 受电弓的底座沉于机车车顶顶面,受电弓的工作高度较小。 所以,高速铁路接触导线的高度一般在5 300 m左右。
X2
a1
x1 a2

模块2.牵引供电系统《高速铁路牵引供电》教学课件

模块2.牵引供电系统《高速铁路牵引供电》教学课件

2.1.4 高速铁路牵引供电系统
3. 高速铁路变电所、分区所主接线及接触网标称电压
1 牵引变电所电源侧主接线 电源侧主接线应结合外部电源条件确定,两路电压均可靠时,采用线路变压器组接线。 采用分支接线,在两回线间设置由隔离开关分段的跨条,实现电源进线与变压器交叉供电。 2 牵引变电所馈线侧接线 采用户外单体布置时,实现上、下行断路器互为备用的联络开关设置在所内线路侧;采 用GIS柜布置时,联络开关设置在所外上网开关的线路侧。
额定电压(kV) 输送功率(MV·A ) 输送距离(km)
110
10~50
50~150
220
100~150
100~300ຫໍສະໝຸດ 5001 000~1 500
150~850
世界各国采用工频、单相、交流接触网额定电压为25 kV的高速电气化铁路,毫无例外地 均采用高压供电。
日本山阳等新干线,牵引变电所的进线电压采用27.5 kV。电源的变动和不平衡承受能力 都有所提高,更能保证机车稳定、高速运行,也更加经济。法国大部分牵引变电所的进线电 压为225 kV,只有一个变电所为63 kV。德国牵引网电压采用15 kV,牵引变电所进线电压采 用110 kV。另外,它使用 Hz频率给铁路专门供电,有其特殊性。
带回流线的直接供电方式,机车部分电流通过钢轨和大地流回牵引变电所(约70%), 其余通过回流线流回牵引变电所(约30%)。
2.2.3 BT供电方式
BT(Booster Transformer)供电方式又称吸流变压器供电方式,其主要目的是提高牵引 网防干扰能力,目前已经基本不采用,如图所示。
BT供电方式存在着一种现象:当机车处在BT间隔内时会失去吸流防护效果。同等条件下, BT供电方式变电所的间距要小很多,且每隔3~4 km在接触网内存在断口,机车通过断口时 可能会产生电火花,缩短接触网的使用寿命。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速铁路牵引供电系统组成SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第一节高速铁路牵引供电系统电气化铁路的组成由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。

牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。

一、电力机车(一)工作原理电力机车靠其顶部升起的受电弓和接触网接触获取电能。

电力机车顶部都有受电弓,由司机控制其升降。

受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。

(二)组成部分电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。

车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。

转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。

它的上部支持着车体,它的下部轮对与铁路轨道接触。

电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。

空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成(三)分类干线电力牵引中,按照供电电流制分为:直流制电力机车和交流制电力机车和多流制电力机车。

交流机车又分为单相低频电力机车(25Hz或162/3Hz)和单相工频(50Hz)电力机车。

单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力机车。

二、牵引变电所牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为27.5(或55)KV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完成。

电力系统的三相交流电改变为单相,是通过牵引变压器的电气接线来实现的。

牵引变电所通常设置两台变压器,采用双电源供电。

以提高供电的可靠性。

变压器的接线方式目前采用的有三相Yd11接线,单相V/V 接线,单相接线以及三相-两相斯科特变压器。

牵引变电所还设置有串联和并联的电容补偿装置,用以改善供电系统的电能质量,减少牵引负荷对电力系统和通信线路的影响。

三、牵引供电回路电力牵引供变电系统是指从电力系统接受电能,通过变压,变相后,向电力机车供电的系统。

牵引供电回路是由牵引变电所、馈电线、接触网、电力机车、钢轨、地或回流线构成。

另外还有分区亭、开闭所、自耦变压器站等。

(一)开闭所(SSP)电力牵引系统中的开闭所,实际上是起配电作用的开关站开闭所就是高压开关站,实际上从严格意义上讲是“高压配电”站,仅仅起配电作用,实现环网供电、双路互投等功能。

当枢纽地区的供电,分为“由里向外供”和“由外向里供”两种方式,前者在枢纽内设置牵引变电所。

后者在枢纽内不设牵引变电所,为了增加枢纽地区供电的可靠性和缩小事故的影响范围,一般设开闭所。

AT供电方式时,供电臂较长,在供电臂中部也设开闭所。

开闭所应有来自不同牵引变电所的(单线区段)或同一牵引变电所的不同馈线段(复线区段)的两回进线。

开闭所应尽量设置在枢纽地区的负荷中心处,以减少馈线的长度和馈线与接触网的交叉干扰。

(二)分区亭(SP)为了增加供电的灵活性,提高运行的可靠性,在两个牵引变电所的供电区间常加设分区亭。

分区亭常用于牵引网为双边供电,或复线区段牵引网为单边供电,但上下行接触网在末端并联时。

这时,分区亭起到平时将两个供电臂或上下行接触网联络起来的作用,这样,当事故发生时,可缩小停电范围和实现越区供电。

(三)自耦变压器站电力牵引供电系统如采用自耦变压器供电方式时,在沿线每隔10-15公里设置一台自耦变压器。

设置时尽量将自耦变压器设于沿铁路的各站场上。

同时,尽量与分区亭、开闭所合并,以便于运行管理。

(四)牵引网牵引网是由馈线、钢轨回流线、接触网组成的双导线供电系统,完成对电力机车的送电任务。

BT供电方式时,还要有回流线。

AT供电供电方式时,还有正馈线和保护线。

馈线:接在牵引变电所牵引母线和接触网之间的导线,即将电能由牵引变电所引向电气化铁路。

接触网:一种特殊的输电线,架设在铁路上方,机车受电弓与其磨擦受电。

回流线:牵引变电所处的横向回流线,它将轨或与轨平行的其它导线与牵引变压器指定端子相联。

分相绝缘器(电分相):串在接触网上,目的是把两相不同的供电区分开,并使机车光滑过渡,主要用在牵引变电所出口处和分区处。

分段绝缘器(电分段):分为纵向电分段和横向电分段,前者用线路接触网上,后者用于站场各条接触网之间。

通过其上的隔离开关将有关接触网进行电气连通或断开,以保证供电的可靠性、灵活性和缩小停电范围等。

供电分区:正常供电时,由牵引变电所馈线到接触网末端的一段供电线路,也称为供电区。

电气化铁路的供电方式一、电力系统对牵引变电所的供电方式电力系统向牵引变电所供电的方式可分为单电源供电,双电源供电和混合供电。

当同一电气化区段有不同那个的电力系统功能供电时,在牵引网的分界处,应设置分相电分段而不应并联。

牵引变电所设置两台变压器,它要求双电源供电。

1.牵引变电所一、牵引变电所高压进线的主接线方案(一)牵引变电所主接线的要求1、牵引变压器的接线方式不同,对主接线的影响较大。

2、在满足可靠性的情况下,应尽量采用简单的接线形式,一般一双T接线为主。

3、双T接线虽然要求双回路进线,但可根据电气化铁路的重要程度和运量大小而采用手动投入或自动投入备用回路。

当变电所的双回路进线中,主回路发生故障时,备用回路应投入。

当采用手动投入时,将有一段停电时间(几数分钟到几十分钟),但可使主接线简化,考虑到110kV线路故障率较低,而且220kV及更高系统逐步形成之情况下,这种接线方式得到了普遍应用。

4、对于重要电气化区段,可采用自动投入或双回路主供。

5、接触网的故障率较高,要求27.5kv侧馈线断路器能承受较高的跳闸次数或有足够的备用。

(二)单母线分段接线1、单母线分段接线当牵引变电所除了110kV两回电源引入线外,还有别的引出线的时候,通常采用此种方式。

正常运行时,分段断路器闭合,两母线并列运行,电源回路和同一负荷的馈线应交错连接在不同的分段母线上,分段断路器既能通过穿越功率,又可在必要的时候将母线分成两段,这样,当母线检修时,停电范围可缩小一半;母线故障时,分段断路器自动跳闸,将故障段母线断开,非故障段母线及其线路仍照常工作,仅使故障段母线连接的线路停电。

单母线分段的接线,广泛用于城市电牵引变电所和110Kv电源进线回路较少的电牵引供电系统。

2、单母线带旁路母线接线单母线分段的接线虽然有上述优点,但是,还是存在断路器检修或故障时将使有关回路停电的缺陷,为此,增设一组旁路母线,组成带旁路母线的单母线接线即可解决这一矛盾。

(三)桥型接线当110Kv侧有两回进线且需要穿越功率时,采用桥型接线。

1、内桥接线内桥接线中带有隔离开关构成的外跨条,作为检修桥断路器时旁路用。

该接线的特点是线路中有一回故障,不影响供电。

但变压器故障时,造成线路中断。

考虑到变压器故障率比进线故障少,因此这种接线可加强牵引负荷供电的可靠性而对电力系统不会带来多大影响,目前采用较多。

由于解裂变压器也会造成线路中断,所以如需经常操作主变压器的场合,不宜采用内桥接线。

2、外桥接线该接线的特点是变压器故障不影响线路,变压器的投入和切除方便,线路穿越功率只经过桥断路器,但线路故障时影响一台变压器的供电,这种接线往往用于电力系统中比较重要的系统联络线上。

(四)双T接线双T接线是目前采用比较普遍的一种接线方式,它在变电所要求两回进线时采用。

一般情况下,其中一回引自电源点的专用间隔,另一回进线可从电力系统的各供电线路上连接。

双T接线比上述两种接线形式都简单,双回进线都在供电要求不高的场合,采用一回助攻,另一回备用。

若两回进线都能作主供回路,并能作为互为备用,则可消去外跨条,使接线更为简单。

在供电要求高的场合,应优先采用两回进线都能作为主供的方案。

二、第五节高速铁路牵引供电系统介绍由于电力机车功率大,拉的多,跑的快,世界各国的高速铁路几乎都采用电力机车牵引。

电力机车与蒸汽机车和内燃机车不同,它本身不带能源,必须由外部供应电能。

为了给电力机车供应电能,需要在铁路沿线架设一套牵引供电系统。

高速铁路的牵引供电系统,与常速铁路的牵引供电系统不同,它的供电能力和供电可靠性必须满足高速列车运行的要求。

自1964年10月1日,日本建成世界上第一条高速铁路以来,经过几十年的实践和发展,各国高速铁路的牵引供电系统都有了很大的改进,达到了很高的水平,而且都各具特色。

最具有代表性的是日本、法国和德国高速铁路的牵引供电系统。

高速铁路的牵引供电系统主要包括牵引供电和接触网两大部分。

下面就其采用的主要技术标准做一简单的介绍。

1.牵引供电部分(1)牵引供电方式:高速铁路要求接触网受流质过高,分段和分相点数量少。

目前各国大多采用自耦变压器(AT)供电方式和带回线的直接(RT)供电方式。

自耦变压器(AT)供电方式是每隔10km左右在接触网与正馈线之间并联接入一台自耦变压器,其中性点与钢轨相连。

自耦变压器将牵引网的供电电压提高一倍,而供给电力机车的电压仍为25kV,如图所示。

带回线的直接(RT)供电方式是在接触网支柱上架设一条与钢轨并联的回流线,如图所示,利用接触网与回流线之间的互感作用,使钢轨中的电流尽可能地由回流线流回牵引变电所,因而能部分抵消接触网对邻近通信线路的干扰。

自耦变压器(AT)供电方式带回线的直接(RT)供电方式日本、法国采用AT供电方式;德国、意大利和西班牙采用RT供电方式。

AT供电方式的优点是:供电质量高,变电所数量少,便于牵引变电所选址和电力部门的配合,牵引变电所间距大、分相点少。

因此,便于高速列车运行,防干扰效果也好。

我国京沪高速铁路牵引供电优先采用2×25kV(AT)供电方式。

(2)电源电压等级:高速铁路负荷电流大,对电力系统的不平衡影响也大。

为了减少对电力系统的影响,高速铁路一般都采用较高的电源电压。

日本采用154kV、220kV和275kV三种电压等级,法国采用225kV电压等级,德国采用110kV电压等级,意大利采用130kV电压等级,西班牙采用132kV和220kV 两种电压等级。

(3)接触网电压:接触网的电压对电力机车功率发挥及机车运行速度有很大影响,而且直接关系到牵引供电设备技术参数的选定和供电系统的工程投资,各国都非常重视这一技术标准。

日本接触网的标准电压为25kV,最高电压为30kV,最低电压为22.5kV。

相关文档
最新文档