高速铁路牵引供电技术.ppt讲解
合集下载
高速铁路牵引供电自动化监控ppt课件
6
调度端——远动调度中心机房
.
7
变电所—(测量、控制屏/信号、保护屏/RTU)
(综合自动化设备)
.
8
牵引供电监控系统新功能
1)“四遥”功能,增加的新功能
例如:
1)故障区段自动定位
2)故障录波与远程传输
3)程序化控制
4)实时数据的集成与共享
5)供电拓扑的动态着色
6)图库一体化绘图
7)防误操作
。。。。。。
(Master)
(StandBy)
以太网通信设备 Ethernet Router
Ethernet Router
骨干传输网络 Backbone Transmission Network * (not part of SCADA scope of supply)
.
26
京津城际铁路自动化监控系统
2x Special-
Tool
Overview/Configuration - SCADA and SMS of Jing Jin DPL at CCR
调度Operator Terminal 1
Printer 1
工作站 Printer 2
调度 Operator
Terminal 2
信号机
供电臂主供方向
高压 开关 自动闭塞线
10kV/ 380V
信号机
10kV/ 380V
信号机
配电所B
车站
车站
车站
10kV/
10kV/
10kV/
380V
380V
380V
高压
高压
开关
开关
高压 电力贯通线 开关
.
13
铁路电力远动监控系统示意
模块1.高速铁路基础知识《高速铁路牵引供电》教学课件
4 发展高速铁路是贯彻可持续发展战略的体现 基本国情及客流特点决定了我国主要应发展大容量、低能耗、少占地、适应性强的公共 交通体系。高速铁路具有能耗低、占地少、污染轻的特点,在我国发展高速铁路同样是在交 通运输领域贯彻可持续发展战略、优化交通运输结构的重要手段。
谢谢观看!
Thanks for your watching!
1.4 中国发展高速铁路的技术条件与社会需求
1. 技术条件
1 工程建造技术达到世界先进水平 针对我国复杂多样的地质及气候条件,攻克了湿陷性黄土和软土地区沉降变形控制难题, 掌握了复杂地质条件下高速铁路地基处理和路基填筑技术等。
2 高速列车技术达到世界先进水平 系统掌握了时速200~250 km动车组核心技术,全面构建了设计制造体系。在此基础上, 攻克了制约速度提升的技术难题等。 3 列车控制技术达到世界先进水平 系统掌握了满足时速250 km的CTCS-2级列车运行控制技术,成功应用于既有线第六次 大面积提速和新建的时速250 km高速铁路等。
《高速铁路牵引供电》
第一章
高速铁路基础 知识
目录 目录
1.1 高速铁路的定义与特点 1.2 我国高速铁路的发展历程与方向 1.3 高速铁路的技术特点 1.4 中国发展高速铁路的技术条件与
社会需求
1.1 高速铁路的定义与特点
1. 高铁的定义
1 国际规定 西欧把新建时速达到250~300 km、旧线改造时速达到200 km的铁路线路称为高速铁 路。1985年联合国欧洲经济委员会在日内瓦签署的国际铁路干线协议规定:新建客运列车专 用型高速铁路时速为350 km以上,新建客货运列车混用型高速铁路时速为250 km。 2 中国规定 中国2014年1月1日起实施的《铁路安全管理条例》规定:高速铁路(高铁)是指设计开 行时速250 km以上(含预留),并且初期运营时速200 km以上的客运列车专线铁路(客运 专线)。
谢谢观看!
Thanks for your watching!
1.4 中国发展高速铁路的技术条件与社会需求
1. 技术条件
1 工程建造技术达到世界先进水平 针对我国复杂多样的地质及气候条件,攻克了湿陷性黄土和软土地区沉降变形控制难题, 掌握了复杂地质条件下高速铁路地基处理和路基填筑技术等。
2 高速列车技术达到世界先进水平 系统掌握了时速200~250 km动车组核心技术,全面构建了设计制造体系。在此基础上, 攻克了制约速度提升的技术难题等。 3 列车控制技术达到世界先进水平 系统掌握了满足时速250 km的CTCS-2级列车运行控制技术,成功应用于既有线第六次 大面积提速和新建的时速250 km高速铁路等。
《高速铁路牵引供电》
第一章
高速铁路基础 知识
目录 目录
1.1 高速铁路的定义与特点 1.2 我国高速铁路的发展历程与方向 1.3 高速铁路的技术特点 1.4 中国发展高速铁路的技术条件与
社会需求
1.1 高速铁路的定义与特点
1. 高铁的定义
1 国际规定 西欧把新建时速达到250~300 km、旧线改造时速达到200 km的铁路线路称为高速铁 路。1985年联合国欧洲经济委员会在日内瓦签署的国际铁路干线协议规定:新建客运列车专 用型高速铁路时速为350 km以上,新建客货运列车混用型高速铁路时速为250 km。 2 中国规定 中国2014年1月1日起实施的《铁路安全管理条例》规定:高速铁路(高铁)是指设计开 行时速250 km以上(含预留),并且初期运营时速200 km以上的客运列车专线铁路(客运 专线)。
高速铁路牵引供电技术 PPT课件
j120o
,
1 I 0 I 1 1 1 3 I 2 1
1 1 I A a a2 I B I C 2 a a
1个站400kV
1个站400kV 1个站400kV
世界主要高速铁路国家电铁供电电源电压等级
西 班 牙
德国
3个站132kV, 马德里-塞维利亚 250 220 短路容量不 小于2000MVA 马德里-巴塞罗那 350 400 3个站220kV 德国高速铁路最高速度330km/h,采用由铁路自建电网 供电。供电制式为15kV、16又2/3Hz,采用独特的同相 供电方式,牵引站间隔约为普通不同相供电方式的1/3, 牵引变压器容量一般为2×15MVA。牵引站外部电源采用 110kV,系统短路容量不小于1000MVA。
高速铁路牵引供电技术
• 1、牵引供电系统对外部电源的要求
• 2、牵引网供电方式的比较
• 3、直供加回流线供电方式分析
• 4、AT供电方式分析
牵引供电系统对外部电源的要求
1)电压水平对外部电源短路容量的要求
GB 12325—90电能质量 供电电压允许偏差 交流 50Hz 电力系统供电电压偏差定义为实测电 压与额定电压之差,以额定电压的百分数表示。 供电电压允许偏差: ( 1) 35kV 及以上供电电压正、负偏差的绝对值 之和不超过额定电压的10%; ( 2) 10kV 及以下三相供电电压允许偏差为额定 电压的±7% ; ( 3) 220V 单相供电电压允许偏差为额定电压的 +7%、-10%。
(2)220kV的短路容量:1715.73 MVA-7697.7 MVA 2006年对国内华北某电网4个110kV变电站、10个
,
1 I 0 I 1 1 1 3 I 2 1
1 1 I A a a2 I B I C 2 a a
1个站400kV
1个站400kV 1个站400kV
世界主要高速铁路国家电铁供电电源电压等级
西 班 牙
德国
3个站132kV, 马德里-塞维利亚 250 220 短路容量不 小于2000MVA 马德里-巴塞罗那 350 400 3个站220kV 德国高速铁路最高速度330km/h,采用由铁路自建电网 供电。供电制式为15kV、16又2/3Hz,采用独特的同相 供电方式,牵引站间隔约为普通不同相供电方式的1/3, 牵引变压器容量一般为2×15MVA。牵引站外部电源采用 110kV,系统短路容量不小于1000MVA。
高速铁路牵引供电技术
• 1、牵引供电系统对外部电源的要求
• 2、牵引网供电方式的比较
• 3、直供加回流线供电方式分析
• 4、AT供电方式分析
牵引供电系统对外部电源的要求
1)电压水平对外部电源短路容量的要求
GB 12325—90电能质量 供电电压允许偏差 交流 50Hz 电力系统供电电压偏差定义为实测电 压与额定电压之差,以额定电压的百分数表示。 供电电压允许偏差: ( 1) 35kV 及以上供电电压正、负偏差的绝对值 之和不超过额定电压的10%; ( 2) 10kV 及以下三相供电电压允许偏差为额定 电压的±7% ; ( 3) 220V 单相供电电压允许偏差为额定电压的 +7%、-10%。
(2)220kV的短路容量:1715.73 MVA-7697.7 MVA 2006年对国内华北某电网4个110kV变电站、10个
高速动车组概论4共同体 牵引供电演示课件
16/77
二、牵引变电所 1.牵引变电所的作用
我国电气化铁路采用的是工频单相 25kV交 流制,而电力系统是一个三相交流系统,需要 经过变换电压等级和由三相变换成单相才能使 用。电气化铁路产生的负序和高次谐波对电力 系统会造成多种不良影响,需要通过牵引变电 所来解决。因此,牵引变电所应具有以下两个 方面的作用 :
第四章 动车组牵引供电
第一节 动车组供电 第二节 高速接触网 第三节 高速受电弓
1/77
第一节 动车组供电
一、供电方式 二、牵引变电所
2/77
动车组牵引供电系统的组成
动车组牵引供电系统
牵引变电所
保证质量良好并不 间断地向动车组供 电
接触网
在动车组运行中通 过与受电弓良好的 摩擦接触将电能传 给动车组
17/77
( 1 )将电力系统的电能变换成适合动车组 使用的电能。
在牵引变电所内装设有牵引变压器(也称 主变压器),将电力系统的高压(一般为 110kV或220kV)降为 27.5kV 或 2×27.5kV(自 耦变压器供电方式),以单相电馈送给接触网, 供动车组使用。国外有些国家的电气化铁路采 用的是直流制式,或是低频( 16 2/3Hz )交流 制式,因此,还需要将交流电整流成直流电, 或将工频变换成 16 2/3Hz ,这些变换工作都由 牵引变电所来完成。
8/77
吸流变压器的变比为 1:1,它的一次绕组
串接在接触网( T)上,二次绕组串接在专为
牵Байду номын сангаас引 电 流 流 回 牵 引变电 所而特 设的回 流 线
( NF )上,所以也称吸流变压器-回流线供
电方式(简称吸-回方式)
9/77
3.带回流线的直接供电方式 带回流线的直接供电方式是在接触
二、牵引变电所 1.牵引变电所的作用
我国电气化铁路采用的是工频单相 25kV交 流制,而电力系统是一个三相交流系统,需要 经过变换电压等级和由三相变换成单相才能使 用。电气化铁路产生的负序和高次谐波对电力 系统会造成多种不良影响,需要通过牵引变电 所来解决。因此,牵引变电所应具有以下两个 方面的作用 :
第四章 动车组牵引供电
第一节 动车组供电 第二节 高速接触网 第三节 高速受电弓
1/77
第一节 动车组供电
一、供电方式 二、牵引变电所
2/77
动车组牵引供电系统的组成
动车组牵引供电系统
牵引变电所
保证质量良好并不 间断地向动车组供 电
接触网
在动车组运行中通 过与受电弓良好的 摩擦接触将电能传 给动车组
17/77
( 1 )将电力系统的电能变换成适合动车组 使用的电能。
在牵引变电所内装设有牵引变压器(也称 主变压器),将电力系统的高压(一般为 110kV或220kV)降为 27.5kV 或 2×27.5kV(自 耦变压器供电方式),以单相电馈送给接触网, 供动车组使用。国外有些国家的电气化铁路采 用的是直流制式,或是低频( 16 2/3Hz )交流 制式,因此,还需要将交流电整流成直流电, 或将工频变换成 16 2/3Hz ,这些变换工作都由 牵引变电所来完成。
8/77
吸流变压器的变比为 1:1,它的一次绕组
串接在接触网( T)上,二次绕组串接在专为
牵Байду номын сангаас引 电 流 流 回 牵 引变电 所而特 设的回 流 线
( NF )上,所以也称吸流变压器-回流线供
电方式(简称吸-回方式)
9/77
3.带回流线的直接供电方式 带回流线的直接供电方式是在接触
牵引供电PPT课件全
牵引供电
第1页/共58页
项目一:认知电力牵引供电系统
任务二:认知牵引供电系统
•任务描述:
通过学生绘制电气化铁道牵引供电系统示意图,列表说明 牵引变电所引入线方式、接触网供电方式、牵引供电系统供电 方式等技能训练,使学生认知牵引供电系统相关知识,能根据 实际线路设计合理的牵引供电方式。
•成果展示:
牵引电力系统原理示意图 变电所一次侧的主接线方式列表 接触网的供电方式列表 牵引供电系统供电方式列表 识别**变电所引入线方式、**线路接触网供电方式、 牵引供电系统供电方式
第21页/共58页
• 开闭所是扩充馈线用的,象编组站、机务段等; • 分区所是复线电气化铁路不同供电臂之间为提供上下行接
触网并联和越区供电功能而设置的。
第22页/共58页
3)分段绝缘器:
分段绝缘器又称分区绝缘器,是接触网电气分段的常用 设备。它安装在各车站装卸线、机车整备线、电力机车库线、 专用线等处。在正常情况下,机车受电弓带电滑行通过。
第37页/共58页
×
×
×
×
×
×
× ×
×
双 “T”方式
第38页/共58页
C
C
B
A
第39页/共58页
第40页/共58页
2)双边供电:机车由相邻的两个变电所供电,由断路器合闸实现。 要求:设置分区所来缩小故障范围,和检修的停电范围。
复线双边供电设备复杂,保护困难,目前我国只采用复线单 边供电。 三、牵引供电系统向电力机车的供电方式 ( 一)直接供电方式
受电弓-接触网系统是高速列车获得动力的唯一途径
第4页/共58页
一、牵引供电系统的组成与作用
G 电力系统(发电厂)
第1页/共58页
项目一:认知电力牵引供电系统
任务二:认知牵引供电系统
•任务描述:
通过学生绘制电气化铁道牵引供电系统示意图,列表说明 牵引变电所引入线方式、接触网供电方式、牵引供电系统供电 方式等技能训练,使学生认知牵引供电系统相关知识,能根据 实际线路设计合理的牵引供电方式。
•成果展示:
牵引电力系统原理示意图 变电所一次侧的主接线方式列表 接触网的供电方式列表 牵引供电系统供电方式列表 识别**变电所引入线方式、**线路接触网供电方式、 牵引供电系统供电方式
第21页/共58页
• 开闭所是扩充馈线用的,象编组站、机务段等; • 分区所是复线电气化铁路不同供电臂之间为提供上下行接
触网并联和越区供电功能而设置的。
第22页/共58页
3)分段绝缘器:
分段绝缘器又称分区绝缘器,是接触网电气分段的常用 设备。它安装在各车站装卸线、机车整备线、电力机车库线、 专用线等处。在正常情况下,机车受电弓带电滑行通过。
第37页/共58页
×
×
×
×
×
×
× ×
×
双 “T”方式
第38页/共58页
C
C
B
A
第39页/共58页
第40页/共58页
2)双边供电:机车由相邻的两个变电所供电,由断路器合闸实现。 要求:设置分区所来缩小故障范围,和检修的停电范围。
复线双边供电设备复杂,保护困难,目前我国只采用复线单 边供电。 三、牵引供电系统向电力机车的供电方式 ( 一)直接供电方式
受电弓-接触网系统是高速列车获得动力的唯一途径
第4页/共58页
一、牵引供电系统的组成与作用
G 电力系统(发电厂)
模块3.高速铁路电力供电系统《高速铁路牵引供电》教学课件
② 设备类型及布置。箱式变电站采用中压预装箱式变电站,SF6负荷开关,其操作电源 采用交流并配置UPS装置作为备用电源。沿线区间供电的箱式变电站采用基本统一模式。通 信、信号双电源专用箱变与通信基站、信号中继站机房相邻设置,其他箱变独立设置。箱式 变电站设高压环网开关间隔和变压器、低压开关、RTU间隔。
3.1.1 电力系统概述
1. 发电厂
发电厂就是将煤、水力、原子能等一次能源转换为电能——二次能源的工厂,分为火力 发电厂、水力发电厂、原子能发电厂等,除此之外,还有风力、地热和太阳能发电等。
2. 电力网
电力网担负着将发电厂和电能 用户连接起来组成系统的任务。右 图是电力系统组成示意图,虚线框 内是电力系统的电力网部分。
《高速铁路牵引供电》
第三章
高速铁路电力 供电系统
目录
目录
3.1 电力供电系统 3.2 高速铁路电力SCADA系统
第一节
电力供电系统
1. 电力系统概述 2. 高速铁路电力系统
3.1.1 电力系统概述
电力系统是由发电厂、变电站、输电线、配电系统和负荷组成的有机整体,是现 代社会最重要、最庞杂的系统之一。通常把包括动力、发电、变电、输电、配电及用 电的全部系统称为动力系统。将电力系统中输送、变换和分配电能的整个环节称为电 力网。它们的关系如图所示(以水力发电为例)。
3.1.2 高速铁路电力系统
1. 高速铁路电力系统构成
2)电力变(配)电所 (3)
10/0.4 kV箱式变电站
① 接线型式。10/0.4 kV箱式变电站10 kV侧进出线回路设高压负荷开关,环网接线,变 压器回路采用带熔断器负荷开关保护。箱式变电站内负荷开关均采用电动操作机构纳入 SCADA系统,实现自动隔离故障电力线路、故障定位、非故障段自动恢复供电等功能。区间 10 kV电力贯通线路上设置箱式电抗器,补偿贯通线路电容电流。
3.1.1 电力系统概述
1. 发电厂
发电厂就是将煤、水力、原子能等一次能源转换为电能——二次能源的工厂,分为火力 发电厂、水力发电厂、原子能发电厂等,除此之外,还有风力、地热和太阳能发电等。
2. 电力网
电力网担负着将发电厂和电能 用户连接起来组成系统的任务。右 图是电力系统组成示意图,虚线框 内是电力系统的电力网部分。
《高速铁路牵引供电》
第三章
高速铁路电力 供电系统
目录
目录
3.1 电力供电系统 3.2 高速铁路电力SCADA系统
第一节
电力供电系统
1. 电力系统概述 2. 高速铁路电力系统
3.1.1 电力系统概述
电力系统是由发电厂、变电站、输电线、配电系统和负荷组成的有机整体,是现 代社会最重要、最庞杂的系统之一。通常把包括动力、发电、变电、输电、配电及用 电的全部系统称为动力系统。将电力系统中输送、变换和分配电能的整个环节称为电 力网。它们的关系如图所示(以水力发电为例)。
3.1.2 高速铁路电力系统
1. 高速铁路电力系统构成
2)电力变(配)电所 (3)
10/0.4 kV箱式变电站
① 接线型式。10/0.4 kV箱式变电站10 kV侧进出线回路设高压负荷开关,环网接线,变 压器回路采用带熔断器负荷开关保护。箱式变电站内负荷开关均采用电动操作机构纳入 SCADA系统,实现自动隔离故障电力线路、故障定位、非故障段自动恢复供电等功能。区间 10 kV电力贯通线路上设置箱式电抗器,补偿贯通线路电容电流。
高速铁路的牵引供电系统(课堂PPT)
13
接触网悬挂形式:简单接触悬挂、弹力接触悬挂和链形 接触网悬挂。
简单接触悬挂:无连续承力索,结构简单,接触线驰度 大,支柱间距离必须小,才能保证接触网的高度。
弹力接触悬挂:将接触线通过三角形的跨接线与支持装
置相连接。
承力索
链形接触网悬挂:在接触线上方悬挂一根或两根承力索 ,承力索通过吊悬挂接触线。
19
20
受电弓
受电弓技术要求
受电弓是靠一定的抬升力让滑板与接触网接触的,列
车高速运行时受电弓的滑板就像飞机的机翼,受气流
离
的作用也会产生一定的抬升力,列车运行速度越快,
线
抬升力也就随之增加,那么接触网就会随之上下振动,
振动波也就随之往前传送,这对受电弓和接触网的良
好接触带来困难。
分析:受电弓和接触网如果速度越 接近,那么离线率就会越高。
22
◎检修 (1)接触网的检修修程
小修:维持性修理 大修:恢复性的彻底修理(周期:20-25年的)
(2)接触网的检修作业
停电作业、状态修
(3)接触网的检修计划与实施(天窗)
年度监测计划、月度维修计划
23
16
17
受电弓
18
受电弓
1.升弓:压缩空气经电空阀均匀进入传动气缸,气缸活
塞压缩气缸内的降弓弹簧,升弓弹簧使下臂杆转动,
工
抬起上框架和滑板,受电弓匀速上升,在接近接触网 时会缓慢停滞,然后再迅速接近接触网
作
原
理
1.降弓:传动缸内压缩空气经受电弓缓冲阀迅速排向大 气,在降弓弹簧的作用下,克服升弓弹簧的作用力, 使受电弓迅速下降,脱离接触网
2.分区所:在牵引 变电所中间设置处 所,常用分相绝缘 器断开,并设置开 关。 作用:1)单线牵引 网,两相邻供电臂 可单独或实现越区 供电;2)双线牵引 网,上、下行接触 网并联,提高末端 电压;3)缩小事故 范围
接触网悬挂形式:简单接触悬挂、弹力接触悬挂和链形 接触网悬挂。
简单接触悬挂:无连续承力索,结构简单,接触线驰度 大,支柱间距离必须小,才能保证接触网的高度。
弹力接触悬挂:将接触线通过三角形的跨接线与支持装
置相连接。
承力索
链形接触网悬挂:在接触线上方悬挂一根或两根承力索 ,承力索通过吊悬挂接触线。
19
20
受电弓
受电弓技术要求
受电弓是靠一定的抬升力让滑板与接触网接触的,列
车高速运行时受电弓的滑板就像飞机的机翼,受气流
离
的作用也会产生一定的抬升力,列车运行速度越快,
线
抬升力也就随之增加,那么接触网就会随之上下振动,
振动波也就随之往前传送,这对受电弓和接触网的良
好接触带来困难。
分析:受电弓和接触网如果速度越 接近,那么离线率就会越高。
22
◎检修 (1)接触网的检修修程
小修:维持性修理 大修:恢复性的彻底修理(周期:20-25年的)
(2)接触网的检修作业
停电作业、状态修
(3)接触网的检修计划与实施(天窗)
年度监测计划、月度维修计划
23
16
17
受电弓
18
受电弓
1.升弓:压缩空气经电空阀均匀进入传动气缸,气缸活
塞压缩气缸内的降弓弹簧,升弓弹簧使下臂杆转动,
工
抬起上框架和滑板,受电弓匀速上升,在接近接触网 时会缓慢停滞,然后再迅速接近接触网
作
原
理
1.降弓:传动缸内压缩空气经受电弓缓冲阀迅速排向大 气,在降弓弹簧的作用下,克服升弓弹簧的作用力, 使受电弓迅速下降,脱离接触网
2.分区所:在牵引 变电所中间设置处 所,常用分相绝缘 器断开,并设置开 关。 作用:1)单线牵引 网,两相邻供电臂 可单独或实现越区 供电;2)双线牵引 网,上、下行接触 网并联,提高末端 电压;3)缩小事故 范围
电子课件高速铁路设备运用模块6高速铁路牵引供电
牵
引
变
电
所
6.1.2 牵引供电系统
17
2.分区亭
在电气化铁路上,为了提高运行的可靠性,增加供电工作的灵活性,在相邻变电所供电的相邻两 供电分区的分界处常用分相绝缘器断开,若在断开处设置开关设备和相应的配电装置,则组成分区亭。
在复线电气化区段,分区亭的主要功能如下: (1)使同一供电臂上的上、下行接触网并联工作或单独工作。当并联工作时,分区亭内的断路 器闭合以提高接触网的末端电压;当单独工作时,断路器打开。 (2)当同一供电臂上的上、下行接触网(并联工作)发生短路事故时,由牵引变电所相应的馈 线断路器和分区亭中的断路器配合动作,切除事故区段,缩小事故范围;非事故区段仍可正常供电。 (3)当某牵引变电所全所停电时,可闭合分区亭中的越区隔离开关,由相邻牵引变电所向停电 牵引变电所进行越区供电。 总之,分区亭的作用是:对单线牵引网,使两相邻供电臂单独工作或实现越区供电;对双线牵引 网,使上、下行接触网并联,提高末端电压,缩小事故范围和实行必要时的越区供电。
6.1.1 牵引供电方式
14
5.直供加回流线供电方式
直供加回流线供电方式结构比较简单。这种供电方式由于在接触网同高度的外侧增设了一条回 流线,回流线上的电流方向与接触网上的电流方向相反,大大减轻了接触网对邻近通信线路的干扰。 直供加回流线供电方式与直供方式相比,能防止对沿线通信的干扰;比BT供电方式减少了BT装置, 既减少了建设投资,又便于维修;与AT供电方式相比,减少了AT所和沿线架设的正馈线,不仅减 少了投资,还便于接触网维修。所以,自大秦线以后的电气化铁路基本都采用直供加回流线的供电 方式,京沪、沪昆等高铁线路也都采用这种供电方式。
4
目录
CATALOG
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.无功补偿及滤波装置
本线高速列车采用交-直-交动车组,其 功率因数在0.97左右,故暂不在各牵引变 电所内设置无功补偿装置。 在谐波方面,高速铁路采用交-直-交动 车组,其谐波含量(尤其是3、5和7次谐波) 比交直机车明显减少,可以大大改善谐波 电压畸变率。同时电网的不断扩大,提高 了对负序和谐波的承受能力,相应解决了 牵引供电的负序和谐波问题。
2.牵引网供电方式的比较
⑤ 牵引网系统需设正馈线,较一般直接供电方 式复杂,但在重负荷区段不必设加强导线,可 与直接供电方式相当;变电系统较直接供电方 式减少了牵引变电所的数量,但需设AT所,开 关设备需用双极; ⑥ 适用于高速和重载的重负荷铁路及运输繁忙 双线区段; ⑦ 牵引网结构复杂,导线数量多,造价高。
6.牵引供电所设计
4)牵引变电所继电保护
线路主变压器组: 1.线路主变压器组:
1)
2) 3) 4) 5)
差动保护
失压保护和过压保护 反时限过电流保护 定时限过电流保护 反时限热过负荷保护 主变压器本体保护(温 度、瓦斯等) 2) 1) 2) 3) 4) 5)
反时限过电流保护
反时限热过负荷保护 反时限过负荷保护 反时限过电流保护 定时限过电流保护 距离保护 失灵保护 2.牵引变电所馈线保护
2.牵引网供电方式的比较
牵引网供电方式有: 1)直接供电方式(含带回流线、加强线) 2)BT供电方式 3)AT供电方式 4)CC(同轴电力电缆)供电方式 对于高速电气化工程,BT和CC供电方式 均存在致命的弱点,是不能予以考虑的 供电方式。
2.牵引网供电方式的比较
1)AT供电方式特点
①在 2×25kV 系统中,供电电压比直供方式高一 倍,而牵引网单位阻抗仅为直接供电方式的57 %左右,电能损失小,显示了良好的供电特性; ②牵引变电所的间距大,易选址,减少了外部电 源的工程数量和投资; ③牵引网回路是平衡回路,屏蔽系数为直接供电 方式的1/20左右,防干扰效果好,可改善电磁 环境,并减少防干扰费用; ④减少了电分相数量,有利于列车的高速运行;
高速铁路牵引供电技术
1.高速铁路的特点 2.牵引网供电方式的比较 3.外部电源对供电方式的影响 4.牵引变压器选型及容量 5.无功补偿及滤波装置 6.牵引供电所设计 7.设备选型原则 8.综合调度系统
1.高速铁路的特点
1)线路特点
正线数目:双线全封闭客运专线; 最大坡度:12‰; 到发线有效长度:650m; 最小曲线半径:一般7000m,困难5500m; 线间距:5.0m; 设计速度:列车运行速度在200~350km/h之间, 线路平纵断面和基础设施满足350km/h的条件; 牵引种类:电力; 列车类型:大功率流线型交--直--交动车组;
2.牵引网供电方式的比较
2)直接供电方式
①在 1×25kV 系统中,变电设施较为简单,接触 网在一般情况下(重负荷除外)也比较简单, 但在接触网使用加强导线的情况下,牵引网结 构已与AT供电方式相当; ②牵引变电所的间距较小,这大大增加了电分相 数量,不利于列车的高速运行,外部电源的工 程数量和投资较大; ③在牵引网的电压损失和电能损失方面较AT供电 方式为大;
3.供电方式对外部电源的要求
2)采用单相牵引变压器对外部电源的要求 采用单相牵引变压器的负序功率等于牵引负荷功率。 电力系统公共连接点处的电压不平衡度应满足国家标准 (GB/T 15543-95)的要求,电压不平衡度εU的最大限值 是连接点处三相短路容量的4%。 牵引变电所的最大单相功率一般不超过120MVA,因此 电力系统在正常的最小运行方式下,公共连接点处的三 相短路容量应大于3000MVA,220kV电网的三相短路容量 通常在3000MVA以上时,在公共连接点处引起的电压不平 衡度和谐波电压畸变率可以满足国家标准要求。
6.牵引供电所设计
1)设计原则 ①主接线型式的选择和确定应满足高速铁路供 电系统安全、可靠、灵活的要求; ②两回220kV单相电源,互为热备用,两台单 相牵引变压器,100%固定备用方式; ③馈线采用上、下行分别供电,力求可靠、灵 活、简单、节能; ④尽可能地减少各所的占地面积,并应与选址 条件相适应; ⑤牵引变电所按无人值班、有人值守设计,分 区所、AT所和开闭所按无人值班、无人值守设计;
8.综合调度系统
方案二:以综合调度中心电力调度为核心调度
层,综合维修调度作为维修调度管理层。 特点:以综合调度中心电调为核心,综合维 修调度负责对管辖范围内的供电设备状态及参 数的监测及管理,制定维修策略,对维修调度 计划管理。两层调度职责明确,业务均衡,综 合调度系统内的协调配合简单,并且可实现调 度配合的自动化,提高效率,高速铁路集中调 度管理的模式。
8.综合调度系统
1)综合调度系统组成
行车计划编制
行车调度 动车组调度 电力调度 客运调度及旅客服务 综合维修调度 安全监控
8、综合调度系统
1)综合调度系统组成ቤተ መጻሕፍቲ ባይዱ
综合调度中心
Database
备用综合调度中心
Database
IP 承载网
车站 /工区
综合维修段
动车段
大型养路 机械段
8.综合调度系统
2)电力调度子系统功能●
(维修调度系统主要功能■):
● ● ● ● ● ● ● ● ● ■ 单独控制功能 自动顺序控制功能 自识别判断处理及自动工况重构功能 遥信监视功能■ 遥测监视功能■ 综合数据报表管理功能■ 故障点参数计算功能 维修计划管理功能■ 与其它系统接口交换信息的功能■ 设备状态监测功能
6.牵引供电所设计
2)主接线方案 进线采用不带跨条的接线(即线路变压器组接 线)型式;馈线侧采用AT所和分区所上下行并联 的接线方式,AT实现100%备用,同时并联接线通 过倒闸作业,可实现上下行分开供电。
全并联供电方式
6.牵引供电所设计
3)综合自动化系统 综合自动化系统是将独立保护、测控单元
设备,通过通信网络构成系统,实现对牵 引供电设施的保护、当地监控及远程数据 传输。 综合自动化系统既要考虑重要保护的独 立性,又要建立经济灵活的网络形式,以 实现资源共享,最大限度地利用系统资源, 通过网络实现辅助保护功能及自动控制功 能,完善保护配置,提高系统的故障处理 速度和运行的可靠性。
3.供电方式对外部电源的要求
1)外部电源电压应为220kV 京沪高速铁路是繁忙干线和重负荷线路,从 高速电铁牵引负荷的需用功率与电力系统相应电 压等级所适应的输送功率应相匹配的角度来看, 牵引变电所的外部电源电压等级应是220kV。
牵引变电所的外部电源是线路的基础设施之 一,只有采用220kV电源电压供电才能满足最高 时速为350km/h的高速列车稳定正常运行的需要。
4.牵引变压器选型及容量
1)牵引变压器接线种类 牵引变压器接线型式有单相牵引变压器、V/V接 线牵引变压器、平衡型牵引变压器和三相Y/牵 引变压器 2)牵引变压器接线特点 单相牵引变压器:容量利用率高,牵引变压器 的安装容量小,负荷平稳,电能损耗小,运营费 用低,结构简单,可靠性高,设备数量少,运营 维护方便和工程投资低,减少接触网电分相数量 和有利于电力机车再生能量的利用等优点,但对 电力系统的负序影响大。
4.牵引变压器选型及容量
3)牵引变压器容量 ①计算条件 高速列车4min追踪间隔模拟仿真、变压器过载能 力为过载75%情况下满足负荷需求运行1小时、采用 单相变压器;参照500系高速动车组的参数,进行 牵引计算;选取一段完整供电臂的线路条件,配以 机车特性进行模拟。 ②瞬间最大负荷185MVA,小时负荷111MVA。 ③计算容量47.7MVA,校核容量53.6MVA,安装容 量2×63MVA。
动车运用 维修所
综合 检测中心 维修所
8.综合调度系统
2)电力调度管理方案 方案一:综合调度中心电力调度为宏观调 度管理层,供电段调度做为核心调度层。 特点:符合牵引供电(及电力供电)以 维修调度作业为主的特点,便于供电系统 维修的调度管理。适用于基层段为单位的 独立运行管理模式。 不符合高速铁路综合调度系统集中化管 理的要求,同时人员及设备的综合利用率 不高。
3)供电方式选择
在AT和直接两种供电方式中,高速铁路供电 系统电源取自公共电网的国家,牵引网均采用AT 供电方式,电压较直供方式提高一倍,供电臂长 度增加一倍,同时满足大功率负荷的需求。牵引 网采用直接供电方式只有德国采用,因为德国采 用独立自用电源系统,全线接触网可实现纵向并 联方式运行,没有电分相,不存在通过电分相对 列车速度的影响问题。 根据我国国情,应首先选用AT供电方式。
1.高速铁路的特点
列车运行控制方式:自动控制; 行车指挥方式:综合调度集中; 运输组织模式:不同速度等级的高速列车共线运 行 闭塞方式:车载信号ATC自动闭塞; 列车追踪间隔时分: 高速列车:3min设计,近期4min使用, 设备综合维修天窗:6h。
1.高速铁路的特点
2)牵引负荷特点 列车运行最高速度(km/h):350km/h 列车传动方式:大功率交-直-交动车组 列车功率:≥16MW;可以近似为1MW/节 负荷电流(A):单车平均电流为770A左右 列车平均带电概率:96% 列车单位能耗(kWh/104tkm): 列车平均单位能耗为711左右 电制动方式:再生制动 功率因数:0.97 谐波含量:单次谐波含量低,但频谱较宽 追踪运行间隔(min):3min设计,近期4min
4.牵引变压器选型及容量
平衡型牵引变压器:两臂牵引负荷相等 的前提下,平衡型牵引变压器的原边三相 是对称的,它的过载能力强,容量利用率 较高。可改善牵引变电所发生三相不平衡 的概率和减少对电力系统的负序影响,但 是其结构复杂,特别是高速列车采用再生 制动方式,可能造成牵引变压器的平衡效 果的严重恶化。
4.牵引变压器选型及容量
V接线牵引变压器 :两臂牵引负荷相等的前提 下,V接线牵引变压器的负序功率等于牵引负荷 功率的50%,对电力系统的负序影响较小。结构 较简单,但供电范围小,实际安装容量比单相牵 引变压器要大。 Y/牵引变压器 :制造和运行经验较成熟,对 电力系统的负序影响介于单相牵引变压器和平衡 型牵引变压器之间,但是其容量利用率较低。