数字电路逻辑基本知识
数字逻辑电路基础知识整理
数字逻辑电路基础知识整理数字逻辑电路是电子数字系统中的基础组成部分,用于处理和操作数字信号。
它由基本的逻辑门和各种组合和顺序逻辑电路组成,可以实现各种功能,例如加法、减法、乘法、除法、逻辑运算等。
下面是数字逻辑电路的一些基础知识整理:1. 逻辑门:逻辑门是数字逻辑电路的基本组成单元,它根据输入信号的逻辑值进行逻辑运算,并生成输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
2. 真值表:真值表是描述逻辑门输出信号与输入信号之间关系的表格,它列出了逻辑门的所有输入和输出可能的组合,以及对应的逻辑值。
3. 逻辑函数:逻辑函数是描述逻辑门输入和输出信号之间关系的数学表达式,可以用来表示逻辑门的操作规则。
常见的逻辑函数有与函数、或函数、非函数、异或函数等。
4. 组合逻辑电路:组合逻辑电路由多个逻辑门组合而成,其输出信号仅取决于当前的输入信号。
通过适当的连接和布线,可以实现各种逻辑操作,如加法器、多路选择器、比较器等。
5. 顺序逻辑电路:顺序逻辑电路由组合逻辑电路和触发器组成,其输出信号不仅取决于当前的输入信号,还取决于之前的输入信号和系统状态。
顺序逻辑电路可用于存储和处理信息,并实现更复杂的功能,如计数器、移位寄存器、有限状态机等。
6. 编码器和解码器:编码器将多个输入信号转换成对应的二进制编码输出信号,解码器则将二进制编码输入信号转换成对应的输出信号。
编码器和解码器可用于信号编码和解码,数据传输和控制等应用。
7. 数字信号表示:数字信号可以用二进制表示,其中0和1分别表示低电平和高电平。
数字信号可以是一个比特(bit),表示一个二进制位;也可以是一个字(word),表示多个二进制位。
8. 布尔代数:布尔代数是逻辑电路设计的数学基础,它通过符号和运算规则描述了逻辑门的操作。
布尔代数包括与、或、非、异或等基本运算,以及与运算律、或运算律、分配律等运算规则。
总的来说,数字逻辑电路是由逻辑门和各种组合和顺序逻辑电路组成的,它可以实现各种基本逻辑运算和数字信号处理。
数字逻辑电路基础知识整理(属于个人笔记)
让信念坚持下去,梦想就能实现!! Cx5692855@
1
定正飞的收藏
编/译码器主要有 2/4、3/8 和 4/16 译码器 74X139、 74X138、74X154 等。 4:计数器 计数器主要有同步计数器 74 X161 和异步计数器 74X393 等。 5:寄存器 寄存器主要有串-并移位寄存器 74X164 和并-串寄存器 74X165 等。 6:触发器 触发器主要有 J-K 触发器、带三态的 D 触发器 74X374、不带三态的 D 触发器 74X74、 施密特触发器等。 7:锁存器 锁存器主要有 D 型锁存器 74X373、寻址锁存器 74X25 9 等。 8:缓冲驱动器 缓冲驱动器主要有带反向的缓冲驱动器 74X24 0 和不带反向的缓冲驱动器 74X244 等。 9:收发器 收发器主要有寄存器收发器 74X543、通用收发器 74X245、总线收发器等。 10:总线开关 < br />总线开关主要包括总线交换和通用总线器件等。 11:背板驱动器 背板驱动器主要包括 TTL 或 LVTTL 电平与 GTL/GTL+(GTLP)或 BTL 之间的电平转换 器件。 12:包含特殊功能的逻辑器件 A.总线保持功能(Bus hold) 由内部反馈电路保持输入端最后的确定状态,防止因输入端浮空的不确定而导致器 件振荡自激损坏;输入端无需外接上拉或下拉电阻,节省 PCB 空间,降低了器件成本开销 和功耗。ABT、LVT、ALVC、ALVCH、 ALVTH、LVC、GTL 系列器件有此功能。 命名特征为 附加了“H& rdquo;如:74ABTH16244。
定正飞的收藏
高级 CMOS 逻辑器件 与 TTL 电平兼容高级 CMOS 逻辑器件 高级高速 CMOS 与 TTL 电平兼容高级高速 CMOS 高级低压 CMOS 技术 高级超低压 CMOS 逻辑器件 高级超低功耗 CMOS 逻辑 高级超低压 CMOS 逻辑器件 低压高带宽总线开关技术 低压转换器总线开关技术 Crossbar 技术 具有下冲保护的 CBT 低压 Crossbar 技术 CMOS 逻辑器件 快速 CMOS 技术 发射接收逻辑器件(GTL+) 高速 CMOS 逻辑器件 与 TTL 电平兼容高速 CMOS 逻辑器件 其电路含 AC、ACT 及 FCT 系列 低压 CMOS 技术 低压 CMOS 技术 低压 CMOS 技术 内部集成电路 内部集成电路 残余连续终结低压逻辑器件
数字逻辑电路基础知识
数字逻辑电路基础知识整理1961年美国德克萨斯仪器公司(TI)率先将数字电路的元、器件和连线制作在同一硅片上,制成了集成电路,揭开了集成电路发展的序幕。
一、TTL和CMOS逻辑器件分类逻辑器件的分类方法有很多,下面以逻辑器件的功能、工艺特点和逻辑电平等方法来进行简单描述。
1.1 TTL和CMOS器件的功能分类按功能进行划分,逻辑器件可以大概分为以下几类: 门电路和反相器、选择器、译码器、计数器、寄存器、触发器、锁存器、缓冲驱动器、收发器、总线开关、背板驱动器等。
1:门电路和反相器逻辑门主要有与门74X08、与非门74X0 0、或门74X32、或非门74X02、异或门74X86、反相器74X04等。
2:选择器 选择器主要有2-1、4-1、8-1选择器74X157、74X153、74X151等。
3: 编/译码器编/译码器主要有2/4、3/8和4/16译码器74X139、 74X138、74X154等。
4:计数器计数器主要有同步计数器74 X161和异步计数器74X393等。
5:寄存器寄存器主要有串-并移位寄存器74X164和并-串寄存器74X165等。
6:触发器触发器主要有J-K触发器、带三态的D触发器74X374、不带三态的D触发器74X74、施密特触发器等。
7:锁存器锁存器主要有D型锁存器74X373、寻址锁存器74X25 9等。
8:缓冲驱动器缓冲驱动器主要有带反向的缓冲驱动器74X24 0和不带反向的缓冲驱动器74X244等。
9:收发器收发器主要有寄存器收发器74X543、通用收发器74X245、总线收发器等。
10:总线开关 < br />总线开关主要包括总线交换和通用总线器件等。
11:背板驱动器背板驱动器主要包括TTL或LVTTL电平与GTL/GTL+(GTLP)或BTL之间的电平转换器件。
12:包含特殊功能的逻辑器件A.总线保持功能(Bus hold)由内部反馈电路保持输入端最后的确定状态,防止因输入端浮空的不确定而导致器件振荡自激损坏;输入端无需外接上拉或下拉电阻,节省PCB空间,降低了器件成本开销和功耗。
数字逻辑电路基础知识整理
数字逻辑电路基础知识整理数字逻辑电路是由离散的数字信号构成的电子电路系统,主要用于处理和操作数字信息。
它是计算机和其他数字系统的基础。
以下是一些数字逻辑电路的基础知识的整理:1. 逻辑门:逻辑门是数字电路的基本构建单元。
它们根据输入信号的逻辑关系生成输出信号。
常见的逻辑门有与门、或门、非门、异或门等。
其中,与门输出仅当所有输入都为1时才为1;或门输出仅当至少一个输入为1时才为1;非门将输入信号取反;异或门输出仅当输入中的1的数量为奇数时才为1。
2. 逻辑运算:逻辑运算是对逻辑门的扩展,用于实现更复杂的逻辑功能。
常见的逻辑运算包括与运算、或运算、非运算、异或运算等。
与运算将多个输入信号进行AND操作,返回结果;或运算将多个输入信号进行OR操作,返回结果;非运算对输入信号进行取反操作;异或运算将多个输入信号进行异或操作,返回结果。
3. 编码器和解码器:编码器将多个输入信号转换为较少数量的输出信号,用于压缩信息;解码器则将较少数量的输入信号转换为较多数量的输出信号,用于还原信息。
常用的编码器有优先编码器和BCD编码器,常用的解码器有二进制-十进制解码器和译码器。
4. 多路选择器:多路选择器根据选择输入信号从多个输入信号中选择一个信号输出。
它通常有一个或多个选择输入信号和多个数据输入信号。
选择输入信号决定了从哪个数据输入信号中输出。
多路选择器可用于实现多路复用、数据选择和信号路由等功能。
5. 触发器和寄存器:触发器是存储单元,用于存储和传输信号。
常见的触发器有弗洛普触发器、D触发器、JK触发器等。
寄存器由多个触发器组成,用于存储和传输多个比特的数据。
6. 计数器和时序电路:计数器用于计数和生成递增或递减的序列。
它通过触发器和逻辑门组成。
时序电路在不同的时钟脉冲或控制信号下执行特定的操作。
常见的时序电路有时钟发生器、定时器和计数器。
7. 存储器:存储器用于存储和读取数据。
常见的存储器包括随机存取存储器(RAM)和只读存储器(ROM)。
数字电路知识点总结(精华版)
数字电路知识点总结(精华版)数字电路知识点总结(精华版)第一章数字逻辑概论一、进位计数制1.十进制与二进制数的转换2.二进制数与十进制数的转换3.二进制数与十六进制数的转换二、基本逻辑门电路第二章逻辑代数逻辑函数的表示方法有:真值表、函数表达式、卡诺图、逻辑图和波形图等。
一、逻辑代数的基本公式和常用公式1.常量与变量的关系A + 0 = A,A × 1 = AA + 1 = 1,A × 0 = 02.与普通代数相运算规律a。
交换律:A + B = B + A,A × B = B × Ab。
结合律:(A + B) + C = A + (B + C),(A × B) × C = A ×(B × C)c。
分配律:A × (B + C) = A × B + A × C,A + B × C = (A + B) × (A + C)3.逻辑函数的特殊规律a。
同一律:A + A = Ab。
摩根定律:A + B = A × B,A × B = A + Bc。
关于否定的性质:A = A'二、逻辑函数的基本规则代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量 A 的地方,都用一个函数 L 表示,则等式仍然成立,这个规则称为代入规则。
例如:A × B ⊕ C + A × B ⊕ C,可令 L = B ⊕ C,则上式变成 A × L + A × L = A ⊕ L = A ⊕ B ⊕ C。
三、逻辑函数的化简——公式化简法公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与或表达式。
1.合并项法利用 A + A' = 1 或 A × A' = 0,将二项合并为一项,合并时可消去一个变量。
数字电路逻辑基本知识
数字逻辑
主 讲:代 媛 电 话:87092338
数字逻辑
用数字信号完成对数字量进行算术运算和逻辑运 算的电路称为数字电路,或数字系统。由于它具有逻 辑运算和逻辑处理功能,所以又称数字逻辑电路。现 代的数字电路是由半导体工艺制成的若干数字集成器 件构造而成。逻辑门是数字逻辑电路的基本单元。存 储器是用来存储二值数据的数字电路。
17
1.1 进位计数制
可见,数码处于不同的位置,代表的数值是不同的。这 里102、101、100、 10-1、10-2 称为权或位权,即十进制数中 各位的权是基数 10 的幂,各位数码的值等于该数码与权的 乘积。
因此, 435.86 4 102 4 101 5100 8 101 6 102
数字集成器件所用的材料以硅材料为主,在高速电路中 ,也使用化合物半导体材料,例如砷化镓等。
5
数字逻辑
逻辑门是数字电路中一种重要的逻辑单元电路 。 TTL逻辑门电路问世较早,其工艺经过不断改进,至今 仍为主要的基本逻辑器件之一。随着CMOS工艺的发展 ,TTL的主导地位受到了动摇,有被CMOS器件所取代的 趋势。
令小数部分 (a2 21 a3 22 am 2m1) F1
34
则上式可写成
1.2 数制转换
2( N )10 a1 F1
现代计算机通常都是标准的数字系统,数字系统 内部处理的是离散元素,并且采用称为信号的物理量 表示,一般为电压和电流,因而现实社会中的各种信 息在数字系统内部呈现出不同的形式 。
数字逻辑电路基础知识
数字逻辑电路基础知识第一章数字逻辑电路基础知识1.1 数字电路的特点1.2 数制与转换1(3 二进制代码1(4 基本逻辑运算(本章重点1. 数字电路的特点2.二进制、十进制、八进制、十六进制的表示3. 二进制、十进制、八进制、十六进制转换4.掌握BCD码编码方法5.了解ASCII码1.1 数字电路的特点1.1.1 数字电路的基本概念1. 数字量与数字信号模拟量:具有时间上连续变化、值域内任意取值的物理量。
例如温度、压力、交流电压等就是典型的模拟量。
数字量:具有时间上离散变化、值域内只能取某些特定值的物理量。
例如训练场上运动员的人数、车间仓库里元器件的个数等就是典型的数字量。
表示模拟量的电信号叫作模拟信号;表示数字量的电信号叫作数字信号。
正弦波信号、话音信号就是典型的模拟信号,矩形波、方波信号就是典型的数字信号。
数字信号通常又称为脉冲信号。
脉冲信号具有边沿陡峭、持续时间短的特点。
广义讲,凡是非正弦信号都称为脉冲信号。
数字信号有两种传输波形,一种称为电平型,另一种称为脉冲型。
0 1 0 0 1 1 0 1 0电平型信号脉冲型信号2. 数字电路及其优点模拟电路:产生、变换、传送、处理模拟信号的电路数字电路:产生、存储、变换、处理、传送数字信号的电数字电路主要具有以下优点:1) 电路结构简单,制造容易,便于集成,成本低。
2) 数字电路不仅能够完成算术运算,而且能够完成逻辑运算,因此被称为数字逻辑电路或逻辑电路。
3) 数字电路组成的数字系统,抗干扰能力强,可靠性高,稳定性好。
1.1.2 数字集成电路的发展趋势大规模、低功耗、高速度、可编程、可测试、多值化1.2 数制1.2.1 数制1.数制数制:表示数值大小的各种方法的统称。
一般都是按照进位方式计数的,称为进位计数制,简称进位制。
来实现基数:数制中允许使用的数符个数;R进制的基就等于R。
权:处于不同位置上的相同数符所代表的数值大小。
2. 数制转换任意进制数转换为十进制数:按权展开法。
第一章.数字逻辑电路基础知识
A
Z
Z=A A Z
实际中存在的逻辑关系虽然多种多样,但归结 起来,就是上述三种基本的逻辑关系,任何复杂 的逻辑关系可看成是这些基本逻辑关系的组合。
B Z
E
真值表
A 0 0 1 1 B 0 1 0 1 Z 0 1 1 1
逻辑符号 曾用符号
A B Z
逻辑表达式
Z A B
Z=A∨B 完成“或”运算功能的电路叫“或”门
3.“非”(反)逻辑-----实现 的电路叫非门(或反相器
定义:如果条件具备了,结果 便不会发生;而条件不具备时结果 一定发生。因为“非”逻辑要求对 应的逻辑函数是“非”函数,也叫 “反”函数 或“补”函数
数字集成电路发展非常迅速-----伴
随着计算机技术的发展: • 2.中规模集成电路
(MSI) 1966年出现, 在一块硅片上包含 • 1.小规模集成电 100-1000个元件或10路(SSI) 1960 100个逻辑门。如 : 集成记时器,寄存器, 年出现,在一块硅 译码器。 片上包含10-100 • TTL:Transister个元件或1-10个逻 Transister Logic 辑门。如 逻辑门 • SSI:Small Scale 和触发器。 Integration • MSI:Mdeium Scale Integration)
f(t)
t 模拟信号
f(t)
Ts 2Ts 3Ts
t
抽样信号
f(KT)
数字信号T 2T 3T
t
二.数字电路的特点:
模拟电路的特点:主要是研究微弱信号的放 大以及各种形式信号的产生,变换和反馈等。
数字电路的特点:
1 基本工作信号是二进制的数字信号,只 有0,1两个状态,反映在电路上就是低电平 和高电平两个状态。(0,1不代表数量的大 小,只代表状态 ) 2 易实现:利用三极管的导通(饱和)和 截止两个状态。-----(展开:基本单元是 连续的,从电路结构介绍数字和模拟电路的 区别)
第一章 数字逻辑电路基础知识
(DFC.8)H =13×162+15×161+12×20+8×16-1 =(3580 .5)D
二. 二进制数←→十六进制数
因为24=16,所以四位二进制数正好能表示一位十六进制数的16个数码。反过
来一位十六进制数能表示四位二进制数。
例如:
(3AF.2)H 1111.0010=(001110101111.0010)B 2
第一章 数字逻辑电路基础知识
1.1 数字电路的特点 1.2 数制 1.3 数制之间的转换 1.4 二进制代码 1.5 基本逻辑运算
数字电路处理的信号是数字 信号,而数字信号的时间变 量是离散的,这种信号也常 称为离散时间信号。
1.1 数字电路的特点
(1)数字信号常用二进制数来表示。每位数有二个数码,即0和1。将实际中彼此 联系又相互对立的两种状态抽象出来用0和1来表示,称为逻辑0和逻辑1。而且在 电路上,可用电子器件的开关特性来实现,由此形成数字信号,所以数字电路又 可称为数字逻辑电路。
例如: (1995)D=(7CB)H =(11111001011)B
或 1995D =7CBH=11111001011B 对于十进制数可以不写下标或尾符。
1.3 不同进制数之间的转换
一.任意进制数→十进制数: 各位系数乘权值之和(展开式之值)=十进制数。 例如: (1011.1010)B=1×23+1×21+1×20+1×2-1+1×2-3
逻辑运算可以用文字描述,亦可用逻辑表达式描述,还可 以用表格(这种表格称为真值表)和图形( 卡诺图、波形 图)描述。
在逻辑代数中有三个基本逻辑运算,即与、或、非逻辑运 算。
一. 与逻辑运算
数字电路逻辑公式知识讲解
逻辑乘:
A*0=0
A*A=A
A*1=A
逻辑或:
A+0=A
A+1=1
A+A=A
逻辑非:
A*非A=0
A+非A=1
非(非A)=A
另外还有
交换律:
A*B=B*A
A+B=B+A
结合律:
(A*B)*C=A*(B*C)
(A+B)+C=A+(B+C)
分配律:
A*(B+C)=A*B=A*C
A+B*C=(A+B)*(A+C)
一、基本公式
表1.3.1中若干常用公式的证明
1.证明:
2. A+AB=A 证明:A+AB=A(1+B)=A1=A
3.
证明:
4.
证明:
推论:
二、运算规则
1.代入定理任何一个含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑函数式,则此等式依然成立,这称为代入规则。
利用代入规则,反演律能推广到n个变量,即:
2.反演定理对于任意一个逻辑函数式F,若把式中的运算符“.”换成“+”, “+” 换成“.”,常量“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,则得到的结果为。
这个规则叫反演定理运用反演定理时注意两点:① 必须保持原函数的运算次序。
② 不属于单个变量上的非号保留,而非号下面的函数式按反演规则变换。
例如:
其反函数:
3.对偶定理对于任意一个逻辑函数F,若把式中的运算符“.”换成“+”,“+”换成“.”,常量“0”换成“1”,“1”换成“0”,则得到F的对偶式F′。
例如:
其对偶式:
对偶定理:如果两个函数式相等,则它们对应的对偶式也相等。
数字电路逻辑门知识点总结
数字电路逻辑门知识点总结一、基本概念1.1 逻辑门的定义逻辑门是数字电路中的基本组成元件,它们用于执行逻辑运算。
逻辑门有不同的类型,比如AND门、OR门、NOT门等。
1.2 逻辑门的功能不同类型的逻辑门执行不同的逻辑运算。
比如,AND门执行逻辑乘法运算,OR门执行逻辑加法运算,而NOT门执行逻辑取反运算。
1.3 逻辑门的符号每种类型的逻辑门都有自己的标准符号,用于表示其在电路图中的位置和连接方式。
比如,AND门的标准符号是一个带有圆点的直线,表示其执行逻辑与运算。
1.4 逻辑门的真值表每种类型的逻辑门都有一个对应的真值表,用于描述其输入和输出之间的关系。
真值表通常包括所有可能的输入组合,以及其对应的输出。
二、基本逻辑门2.1 AND门AND门是逻辑与门的简称,它有两个输入和一个输出。
当所有输入均为高电平时,输出为高电平;否则,输出为低电平。
2.2 OR门OR门是逻辑或门的简称,它同样有两个输入和一个输出。
当任意一个输入为高电平时,输出为高电平;否则,输出为低电平。
2.3 NOT门NOT门是逻辑非门的简称,它只有一个输入和一个输出。
当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。
2.4 XOR门XOR门是独占或门的简称,它同样有两个输入和一个输出。
当任一输入为高电平,另一个输入为低电平时,输出为高电平;否则,输出为低电平。
2.5 NAND门NAND门是与非门的简称,它同样有两个输入和一个输出。
当所有输入均为高电平时,输出为低电平;否则,输出为高电平。
2.6 NOR门NOR门是或非门的简称,它同样有两个输入和一个输出。
当任意一个输入为高电平时,输出为低电平;否则,输出为高电平。
2.7 XNOR门XNOR门是独占或非门的简称,它同样有两个输入和一个输出。
当两个输入相等时,输出为高电平;否则,输出为低电平。
三、逻辑门的组合3.1 逻辑门的串联多个逻辑门可以串联在一起,形成更复杂的逻辑功能。
数字逻辑知识点总结公式
数字逻辑知识点总结公式1. 基本逻辑门在数字逻辑电路中,最基本的逻辑门有与门、或门和非门。
它们是数字逻辑电路的基本构建单元,由它们可以组合成各种逻辑功能。
逻辑门的公式如下:- 与门:当且仅当所有输入端都为高电平时,输出端才为高电平。
公式表示为Y = A * B,其中*代表逻辑与运算。
- 或门:当任意一个输入端为高电平时,输出端就为高电平。
公式表示为Y = A + B,其中+代表逻辑或运算。
- 非门:输出端与输入端相反,即当输入端为高电平时,输出端为低电平;当输入端为低电平时,输出端为高电平。
公式表示为Y = !A,其中!代表逻辑非运算。
这些逻辑门可以通过晶体管、集成电路等实现,是数字逻辑电路的基础。
2. 布尔代数布尔代数是一种数学系统,它定义了逻辑运算的代数规则。
在布尔代数中,逻辑变量只有两个取值:0和1。
布尔代数的基本运算包括逻辑与、逻辑或、逻辑非等,并且满足交换律、结合律、分配律等规则。
布尔代数的公式如下:- 逻辑与:A * B- 逻辑或:A + B- 逻辑非:!A布尔代数的运算规则能够帮助我们简化逻辑表达式,设计更简洁高效的逻辑电路。
3. 编码器和译码器编码器和译码器是数字逻辑电路中常用的功能模块,它们用来将输入信号转换为特定的编码形式,或将编码信号转换为原始信号。
编码器的公式如下:- n到m线编码器:将n个输入线转换为m位二进制编码。
输出端有2^m个不同状态。
公式表示为Y = f(A0, A1, ..., An),其中Y为输出,A0~An为输入。
编码方式有优先编码、格雷码等。
- m到n线译码器:将m位二进制编码转换为n个输出线的信号。
公式表示为Y0 = f0(A0, A1,..., Am-1),Y1 = f1(A0, A1,..., Am-1),...,其中Y0~Yn为输出,A0~Am-1为输入。
编码器和译码器广泛应用于数字信号的处理和通信系统中。
4. 多路选择器和解码器多路选择器和解码器是数字逻辑电路中的另外两种常用功能模块。
数字逻辑知识点总结大全
数字逻辑知识点总结大全数字逻辑是一门研究数字电路的科学,是计算机工程和电子工程的基础。
数字逻辑通过对数字信号的处理和处理,来实现各种功能。
数字逻辑的知识点包括布尔代数,逻辑门,编码器,译码器,寄存器,计数器等等。
本文将对数字逻辑的知识点进行系统总结,以便读者更好地理解和掌握数字逻辑的知识。
1. 布尔代数布尔代数是数字逻辑的基础,它用于描述逻辑信号的运算和表示。
布尔代数包括与运算、或运算、非运算、异或运算等逻辑运算规则。
布尔代数中的符号有"∧"、"∨"、"¬"、"⊕"表示与、或、非、异或运算。
布尔代数可以用于构建逻辑方程、化简逻辑表达式、设计逻辑电路等。
2. 逻辑门逻辑门是数字电路的基本组成单元,实现了布尔代数的逻辑运算。
常见的逻辑门包括与门、或门、非门、异或门等,它们分别实现了逻辑与、逻辑或、逻辑非、逻辑异或运算。
逻辑门通过组合和连接可以实现各种复杂的逻辑功能,是数字逻辑电路的基础。
3. 编码器和译码器编码器和译码器是数字逻辑中的重要元件,用于实现数据的编码和解码。
编码器将多个输入信号编码成少量的输出信号,译码器则反之。
常见的编码器包括二进制编码器、BCD编码器等,常见的译码器包括二进制译码器、BCD译码器等。
4. 寄存器寄存器是数字逻辑中的重要存储单元,用于存储二进制数据。
寄存器可以实现数据的暂存、延时、并行传输等功能。
常见的寄存器包括移位寄存器、并行寄存器、串行寄存器等,它们按照不同的存储方式和结构实现了不同的功能。
5. 计数器计数器是数字逻辑中的重要计数单元,用于实现计数功能。
计数器可以按照不同的计数方式实现不同的计数功能,常见的计数器包括二进制计数器、BCD计数器、模数计数器等。
6. 时序逻辑时序逻辑是数字逻辑中的重要内容,它描述数字电路在不同时间点的状态和行为。
时序逻辑包括触发器、时钟信号、同步电路、异步电路等,它们用于描述数字电路的时序关系并实现相关功能。
数字电路基础知识
1 . 1 = 1数字电路基础知识1 、逻辑门电路 (何为门)2 、真值表3 、 卡诺图4 、3 线-8 线译码器的应用5 、555 集成芯片的应用一 . 逻辑门电路 (何为门)在逻辑代数中, 最基本的逻辑运算有与、或、非三种。
每种逻辑运算代表一种函数关系 这种函数关系可用逻辑符号写成逻辑表达式来描述, 也可用,文字来描述,还可用表格或图形 的方式来描述。
最基本的逻辑关系有三种: 与逻辑关系 、或逻辑关系 、非逻辑关系。
实现基本逻辑运算和常用复合逻辑运算的单元电路称为 逻辑门电路 。
例如: 实现“与” 运算的电路称为与逻辑门, 简称与门; 实现 非”运算的电路称为 与非门 。
逻辑门电路是设计数字系统的最小单元。
1.1.1 与门“与”运算是一种二元运算, 它定义了两个变量 A 和 B 的一种函数关系 。
用语句来描 述它, 这就是: 当且仅当变量 A 和 B 都为 1 时, 函数 F 为 1; 或者可用另一种方式来描述 它, 这就是: 只要变量 A 或 B 中有一个为 0, 则函数 F 为 0。
“与”运算又称为 逻辑乘运算 也叫逻辑积运算。
,“与”运算的逻辑表达式为:F = A . B式中, 乘号“. ”表示与运算,在不至于引起混淆的前提下,乘号“. ”经常被省略 。
该式可 读作: F 等于 A 乘 B , 也可读作: F 等于 A 与 B 。
表 2-1b “与”运算真值表由“与”运算关系的真值表可知“与”逻辑的运算规律为:0 . 0 = 00 . 1 = 1. 0 = 0 F = A . B0 0 0 1A 0 0 1 1B 0 1 0 1简单地记为:有 0 出 0,全 1 出 1。
由此可推出其一般形式为:A⋅0=0A⋅1=AA⋅A=A实现”逻辑运算功能的的电路称为“ 与门”。
每个与门有两个或两个以上的输入端和一个输出端,图 2-2 是两输入端与门的逻辑符号。
在实际应用中,制造工艺限制了与门电路的输入变量数目,所以实际与门电路的输入个数是有限的。
数字逻辑电路基础
5421 码
0000 0001 0010 0011 0100 1000 1001 1010 1011 1100 5421
1.3 基本逻辑运算
一、基本逻辑运算
1.与运算
设:开关闭合=“1” 开关不闭合=“0”V 灯亮,L=1 灯不亮,L=0
与逻辑表达式:
L A B
A
B
A
B
灯L
不闭合 不闭合 不亮
用四位自然二进制码中的前十个码字来表示十进制数 码,因各位的权值依次为8、4、2、1,故称8421 BCD码。
常用 BCD 码
十进制数 8421 码 余 3 码 格雷码 2421 码
0
0000 0011 0000 0000
1
0001 0100 0001 0001
2
0010 0101 0011 0010
八进制数
0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
十六进制数
0 1 2 3 4 5 6 7 8 9 A B C D E F
二进制数的波形表示:
二、数制转换
1、N进制数转换为10进制数
将N进制数按权展开,即可以转换为十进制数。 2、二进制数与八进制数的相互转换
(1)二进制数转换为八进制数: 将二进制数由小数点开始, 整数部分向左,小数部分向右,每3位分成一组,不够3位补 零,则每组二进制数便是一位八进制数。
Vm——信号幅度。 T——信号的重复周期。
tW——脉冲宽度。 q——占空比。其定义为:
q(%) tW
100%
T
实际的矩形脉冲
上升时间
tr
0.9Um
0.5Um
0.1Um
tw
数字电路的基本知识3
或运算 A 0 A A 1 1 A A 1 A A A
非运算 A A
(2) 逻辑代数的基本定律 交换律:A B B A A• B B• A 结合律:(A B) C A (B C) ( AB)C A(BC) 分配律: A(B C) AB AC A BC (A B)(A C) 反演律: A B A • B AB A B
提取公因子A
ABC A(B C ) 利用反演律
ABC ABC A(BC BC)
消去互为 反变量的因子
A
2) 吸收法 利用公式 A AB A 将多余项AB吸收掉 化简逻辑函数 F AB AC ABC
F AB AC ABC …提取公因子AC
AB AC(1 B) …应用或运算规律,括号内为1
最简与或式的一般标准是:表达式中的与项最少,每个与 项中的变量个数最少。代数化简法最常用的方法有: 1) 并项法
利用公式 AB AB A 提取两项公因子后,互非变量消去。 化简逻辑函数 F AB AC ABC
F AB AC ABC
A(B C BC) …提取公因子A
A(B C B C) …应用反演律将非与变换为或非 A …消去互非变量后,保留公因子A,实现并项。
AB AC 3) 消去法
利用公式 A AB A B 消去与项AB中的多余因子A 化简逻辑函数 F AB AC BC F AB AC BC …提取公因子C
AB C(A B)
AB C AB …应用反演律将非或变换为与非
AB C …消去多余因子AB,实现化简。
4) 配项法 利用公式A=A(B+B),为某一项配上所缺变量。
(3) 逻辑代数的常用公式 吸收律:A AB A A(A B) A A (AB) A B
大一数字逻辑电路知识点
大一数字逻辑电路知识点数字逻辑电路是电子工程中的重要基础知识之一。
它涉及电子元件和逻辑门的组合与运算,是计算机科学和电子工程学习的基石。
在大一学习数字逻辑电路时,我们需要掌握一些基本的知识点,包括布尔代数、逻辑运算、逻辑门和多路选择器等。
下面将逐一介绍这些知识点的基本内容。
1. 布尔代数布尔代数是一种数学工具,用于描述逻辑关系。
它包括逻辑运算符(与、或、非)和逻辑常数(真、假),通过这些运算符和常数可以构建逻辑表达式。
在数字逻辑电路中,布尔代数可以用于描述逻辑门的功能和操作。
2. 逻辑运算逻辑运算是布尔代数的基础,常见的逻辑运算有与(AND)、或(OR)、非(NOT)等。
其中,与运算是指同时满足多个条件时结果为真,或运算是指满足任意一个条件时结果为真,非运算是指将输入的逻辑值反转。
3. 逻辑门逻辑门是数字逻辑电路的基本组成单元,它可以实现特定的布尔逻辑功能。
常见的逻辑门有与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
通过将逻辑门进行组合和连接,可以构建出更复杂的数字逻辑电路。
4. 多路选择器多路选择器是一种能根据控制信号选取输入端数据的电路。
它有多个输入通道和一个输出通道,通过控制信号的不同选择,可以将任意输入通道的数据输出。
多路选择器在数字逻辑电路中常用于构建多路复用器、解码器等电路。
5. 数制转换在数字逻辑电路中,我们常常需要进行不同进制之间的转换,包括二进制、十进制、八进制和十六进制。
了解不同数制之间的转换方法可以帮助我们更好地理解和分析数字逻辑电路。
6. 真值表真值表是用于描述布尔函数的一种表格形式。
通过真值表,我们可以清楚地了解输入和输出之间的逻辑关系,并判断逻辑电路的正确性和功能。
在学习数字逻辑电路时,掌握真值表的编写和分析方法是非常重要的。
7. 逻辑代数运算逻辑代数运算是指在布尔代数中对逻辑表达式进行化简和变换的方法。
通过使用逻辑代数运算,我们可以简化复杂的逻辑表达式,减少逻辑门的数量和电路的复杂性,提高电路的性能和可靠性。
数字电路与逻辑设计基础知识要点
数字电路与逻辑设计基础知识要点数字电路是电子技术中重要的基础知识之一,广泛应用于计算机、通信和控制系统等领域。
本文将介绍数字电路与逻辑设计的基础知识要点,包括数字信号、布尔代数、逻辑门电路和组合逻辑电路等内容。
希望通过本文的介绍,读者能够对数字电路与逻辑设计有一个初步的了解。
一、数字信号数字信号是电子设备中常见的一种信号类型,它只能取离散的数值,通常用0和1表示。
数字信号与模拟信号相对,模拟信号可以连续变化。
数字信号可以通过数字电路进行处理和传输,具有较高的抗干扰能力和稳定性。
二、布尔代数布尔代数是一种数学工具,用于描述和分析逻辑关系。
它是以英国数学家布尔命名的,用来处理逻辑问题。
布尔代数运算包括与、或、非等基本运算,通过这些运算可以建立逻辑关系的数学模型。
三、逻辑门电路逻辑门电路是数字电路中最基本的构建单元,它通过逻辑运算实现特定的逻辑功能。
常见的逻辑门包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
逻辑门电路可以根据输入信号的不同进行相应的逻辑运算,并得出输出结果。
四、组合逻辑电路组合逻辑电路是由多个逻辑门组合而成的电路,它根据输入信号进行逻辑运算,得出输出信号。
组合逻辑电路的输出只与当前的输入有关,与之前的输入无关。
常见的组合逻辑电路包括译码器、编码器、多路选择器等。
五、时序逻辑电路时序逻辑电路是在组合逻辑电路的基础上引入了时钟信号的电路。
时序逻辑电路的输出不仅和当前的输入有关,还与之前的输入和时钟信号有关。
时序逻辑电路常用于计算机中的存储器和控制电路等。
六、存储器存储器是计算机系统中的重要组件,用于存储和读取数据。
常见的存储器包括随机存取存储器(RAM)和只读存储器(ROM)。
随机存取存储器用于暂时存储数据,而只读存储器用于存储程序和数据的固定信息。
七、数字信号处理数字信号处理是数字电路应用领域中的一种技术,用于对数字信号进行处理和分析。
常见的数字信号处理技术包括滤波、编码、解码、调制、解调等。
数电 第1章 数字逻辑电路基础
关系。
A
或逻辑真值表
AB
F=A+ B
E
B
F
或逻辑电路
00
0
01
1
10
1
11
1
A
≥1
B
或门逻辑符号
F=A+B
或门的逻辑功能概括为: 1) 有“1”出“1”; 2) 全“0” 出“0”.
3. 非逻辑运算 定义:假定事件F成立与否同条件A的具备与否有关,
若A具备,则F不成立;若A不具备,则F成立.F和A之间的这 种因果关系称为“非”逻辑关系.
才成立;如果有一个或一个以上条件不具备,则这件事就 不成立。这样的因果关系称为“与”逻辑关系。
AB
E
F
与逻辑电路
与逻辑电路状态表
开关A状态 开关 B状态 灯F状态
断
断
灭
断
合
灭
合
断
灭
合
合
亮
若将开关断开和灯的熄灭状态用逻辑量“0”表示;将开关 合上和灯亮的状态用逻辑量“1”表示,则上述状态表可表 示为:
73.5
0111 0011 . 0101
故 (73.5)10 =(01110011.0101)8421BCD码
2. 格雷码(Gray码)
格雷码为无权码,特点为:相邻两个代码之间仅有一位 不同,其余各位均相同.
格雷码和四位二进制码之间的关系:
设四位二进制码为B3B2B1B0,格雷码为R3R2R1R0,
George Boole在1847年提出的,逻辑代数也称布尔代数.
1.3.1 基本逻辑运算
在逻辑代数中,变量常用字母A,B,C,……Y,Z, a,b, c,……x.y.z等表示,变量的取值只能是“0”或“1”.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
1.1 进位计数制
一般,对于任何一个十进制数N, 都可以用位置 记数法和多项式表示法写为
( N )10 an1an2 a1a0 a1a2 am an1 10n1 an2 10n2 a1 101 a0 100 a1 101 a2 102 am 10m
数字集成器件所用的材料以硅材料为主,在高速电路中 ,也使用化合物半导体材料,例如砷化镓等。
5
数字逻辑
逻辑门是数字电路中一种重要的逻辑单元电路 。 TTL逻辑门电路问世较早,其工艺经过不断改进,至今 仍为主要的基本逻辑器件之一。随着CMOS工艺的发展 ,TTL的主导地位受到了动摇,有被CMOS器件所取代的 趋势。
本章主要讨论数字计数制 2、数制转换 ※ 3、带符号数的代码表示 4、几种常用的编码
15
1.1 进位计数制
1.1 进位计数制 按进位的原则进行计数,称为进位计数制。每一
种进位计数制都有一组特定的数码,例如十进制数有 10 个数码, 二进制数只有两个数码,而十六进制数 有 16 个数码。 每种进位计数制中允许使用的数码总 数称为基数或底数。
2
数字逻辑
电子电路中的信号可以分为两类:一类是模拟信 号,指在时间上和数值上都是连续变化的信号,如音 频电压信号。另一类是数字信号,指时间上和数值上 都是离散的信号,例如各种脉冲信号。工作在模拟信 号下的电子电路称为模拟电路。工作在数字信号下的 电子电路称为数字电路。
3
数字逻辑
数字信号是非连续变化的,通常只有两种状态,例 如电位的高与低,我们用“0”和“1”来表示这两种状态 。数字电路的基本单元比较简单,对原件的精度要求不 高,只要能区分0和1两种状态即可,所以容易集成化。
因为数字电路主要是研究电路的输入和输出之间的 逻辑关系,所以,数字电路也称逻辑电路,分析方法采 用逻辑代数、真值表、卡诺图、特性方程、状态转换图 、时序波形图等。
4
数字逻辑
数字电路的发展与模拟电路一样经历了由电子管、半 导体分立器件到集成电路等几个时代。但其发展比模拟电 路发展的更快。从60年代开始,数字集成器件以双极型工 艺制成了小规模逻辑器件。随后发展到中规模逻辑器件; 70年代末,微处理器的出现,使数字集成电路的性能产生 质的飞跃。
在任何一种进位计数制中,任何一个数都由整数 和小数两部分组成, 并且具有两种书写形式:位置 记数法和多项式表示法。
16
1.1 进位计数制 1.1.1 十进制数(Decimal)
(1) 采用 10 个不同的数码0、 1、 2、 …、 9和一个小 数点(.)。
(2)进位规则是“逢十进一”。
若干个数码并列在一起可以表示一个十进制数。例如在435.86这个 数中,小数点左边第一位的5代表个位,它的数值为5; 小数点左边第 二位的 3 代表十位,它的数值为3×101;左边第三位的 4 代表百位,它 的数值为4×102 ;小数点右边第一位的值为8×10-1;小数点右边第二 位的值为6×10-2。
2、 实现简单,系统可靠 以二进制作为基础的数字逻辑电路,可靠性较强。电
源电压的小波动对其没有影响,温度和工艺偏差对其工作 的可靠性影响也比模拟电路小得多。
7
数字逻辑
3、 集成度高,功能实现容易 集成度高,体积小,功耗低是数字电路突出的优点之
一。电路的设计、维修、维护灵活方便,随着集成电路技 术的高速发展,数字逻辑电路的集成度越来越高,集成电 路块的功能随着小规模集成电路(SSI)、中规模集成电路 (MSI)、大规模集成电路(LSI)、超大规模集成电路( VLSI)的发展也从元件级、器件级、部件级、板卡级上升 到系统级。电路的设计组成只需采用一些标准的集成电路 块单元连接而成。对于非标准的特殊电路还可以使用可编 程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能 。8
17
1.1 进位计数制
可见,数码处于不同的位置,代表的数值是不同的。这 里102、101、100、 10-1、10-2 称为权或位权,即十进制数中 各位的权是基数 10 的幂,各位数码的值等于该数码与权的 乘积。
因此, 435.86 4 102 4 101 5100 8 101 6 102
现代计算机通常都是标准的数字系统,数字系统 内部处理的是离散元素,并且采用称为信号的物理量 表示,一般为电压和电流,因而现实社会中的各种信 息在数字系统内部呈现出不同的形式 。
13
第一章 数制与编码
数字系统处理的是离散元素,而这些离散元素通常以 二进制形式出现,人们熟悉的十进制数不能被机器直接接 收。因此,当人机通信时,需将十进制数转换成二进制数 ,以便机器接收。机器运算结束时,再将二进制数转换成 十进制数。
数字逻辑
数字电路的应用: 数字电路与数字电子技术广泛的应用于家用电器、雷达
、通信、电子计算机、自动控制、航天等科学技术领域。
9
数字电路的应用
数字逻辑
10
数字电路的应用
数字逻辑
11
数字电路的应用
数字逻辑
12
第一章 基本知识—数制与编码
计算机已广泛应用于科学与工程计算、数据和信 息处理、计算机辅助设计及人工智能等领域,计算机 是数字系统中最常见、最有代表性的一种设备。
近年来,可编程逻辑器件PLD特别是现场可编程门 阵列FPGA的飞速进步,使数字电子技术开创了新局面 ,不仅规模大,而且将硬件与软件相结合,使器件的功 能更加完善,使用更灵活。
6
数字逻辑
数字电路的特点: 1、 同时具有算术运算和逻辑运算功能 数字电路是以二进制逻辑代数为数学基础,使用二进
制数字信号,既能进行算术运算又能方便地进行逻辑运算 (与、或、非、判断、比较、处理等),因此极其适合于 运算、比较、存储、传输、控制、决策等应用。
数字逻辑
主 讲:代 媛 电 话:87092338
数字逻辑
用数字信号完成对数字量进行算术运算和逻辑运 算的电路称为数字电路,或数字系统。由于它具有逻 辑运算和逻辑处理功能,所以又称数字逻辑电路。现 代的数字电路是由半导体工艺制成的若干数字集成器 件构造而成。逻辑门是数字逻辑电路的基本单元。存 储器是用来存储二值数据的数字电路。