2018年河南省高考数学一模试卷(理科)

合集下载

河南省平顶山市2018年高考数学一模试卷(理科)

河南省平顶山市2018年高考数学一模试卷(理科)

2018年河南省平顶山市高考数学一模试卷(理科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x ||x |<1 },B={x |≥1},则A ∪B=( ) A .(﹣1,1] B .[﹣1,1]C .(0,1)D .(﹣∞,1]2.若复数(1+2i )(1+ai )是纯虚数(i 为虚数单位),则实数a 的值是( )A .﹣2B .C .﹣D .23.某几何体的三视图如图所示,它的表面积为( )A .66πB .51πC .48πD .33π 4.下列说法正确的是( )A .“∀x ∈R ,e x >0”的否定是“∃x ∈R ,使e x >0”B .若x +y ≠3(x ,y ∈R ),则x ≠2或y ≠1C .“x 2+2x ≥ax (1≤x ≤2)恒成立”等价于“(x 2+2x )min ≥(ax )max (1≤x ≤2)”D .“若a=﹣1,则函数f (x )=ax 2+2x ﹣1只有一个零点”的逆命题为真命题5.已知向量=(1,﹣2),=(1,1),→→→-=b a m , =+λ,如果→→⊥n m ,那么实数λ=( ) A .4B .3C .2D .16.若对于任意的x >0,不等式≤a 恒成立,则实数a 的取值范围为( )A .a ≥B .a >C .a <D .a ≤7.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为()A.B.C.D.8.若执行如图所示程序框图,则输出的s值为()A.﹣2018 B.2018 C.﹣2018 D.20189.高为5,底面边长为4的正三棱柱形容器(下有底)内,可放置最大球的半径是()A.B.2 C.D.10.已知点p(x,y)满足过点p(x,y)向圆x2+y2=1做两条切线,切点分别是点A和点B,则当∠APB最大时,的值是()A.2 B.3 C.D.11.过双曲线﹣=1(a>0,b>0)的右焦点D作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.12.已知f(x)是定义在(0,+∞)的函数.对任意两个不相等的正数x1,x2,都有>0,记a=,b=,c=,则()A.a<b<c B.b<a<c C.c<a<b D.c<b<a二、填空题(共4小题,每小题5分,满分20分)13.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a﹣3),则实数a的值为.14.若的展开式中第3项的二项式系数是15,则展开式中所有项的系数之和为.15.在△ABC中,a=3,b=2,∠B=2∠A,则c=.16.已知函数f(x)=.若a>0,则函数y=f(f(x))﹣1有个零点.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知S n为数列{a n}的前n项和,且2S n=3a n﹣2(n∈N*).(Ⅰ)求a n和S n;(Ⅱ)若b n=log3(S n+1),求数列{b2n}的前n项和T n.18.(12分)某校高一共录取新生1000名,为了解学生视力情况,校医随机抽取了100名学生进行视力测试,并得到如下频率分布直方图.(Ⅰ)若视力在4.6~4.8的学生有24人,试估计高一新生视力在4.8以上的人数;(Ⅱ)校医发现学习成绩较高的学生近视率较高,又在抽取的100名学生中,对成绩在前50名的学生和其他学生分别进行统计,得到如右数据,根据这些数据,校医能否有超过95%的把握认为近视与学习成绩有关?(Ⅲ)用分层抽样的方法从(Ⅱ)中27名不近视的学生中抽出6人,再从这6人中任抽2人,其中抽到成绩在前50名的学生人数为ξ,求ξ的分布列和数学期望.=19.(12分)如图,在四棱锥P ﹣ABCD 中,CB ⊥平面PAB ,AD ∥BC ,且PA=PB=AB=BC=2AD=2.(Ⅰ)求证:平面DPC ⊥平面BPC ; (Ⅱ)求二面角C ﹣PD ﹣B 的余弦值.20.(12分)如图,点P 为圆E :(x ﹣1)2+y 2=r 2(r >1)与x 轴的左交点,过点P 作弦PQ ,使PQ 与y 轴交于PQ 的中点D .(Ⅰ)当r 在(1,+∞)内变化时,求点Q 的轨迹方程;(Ⅱ)已知点A (﹣1,1),设直线AQ ,EQ 分别与(Ⅰ)中的轨迹交于另一点Q 1,Q 2,求证:当Q 在(Ⅰ)中的轨迹上移动时,只要Q 1,Q 2都存在,且Q 1,Q 2不重合,则直线Q 1Q 2恒过定点,并求该定点坐标.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.请考生从(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.(本小题满分10分)[选修4-4:坐标系与参数方程] 22.(10分)在直角坐标系xOy中,以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ.(Ⅰ)将曲线C的极坐标方程化为参数方程:(Ⅱ)如果过曲线C上一点M且斜率为﹣的直线与直线l:y=﹣x+6交于点Q,那么当|MQ|取得最小值时,求M点的坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|+|x+1|.(Ⅰ)解不等式f(x)>5;(Ⅱ)若f(x)≥﹣对任意实数x恒成立,求a的取值范围.2018年河南省平顶山市高考数学一模试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x||x|<1 },B={x|≥1},则A∪B=()A.(﹣1,1]B.[﹣1,1]C.(0,1)D.(﹣∞,1]【考点】并集及其运算.【分析】分别求出集合A、B的范围,取并集即可.【解答】解:集合A={x||x|<1 }=(﹣1,1),B={x|≥1}=(0,1],则A∪B=(﹣1,1],故选:A.【点评】本题考查了集合的并集的运算,考查不等式问题,是一道基础题.2.若复数(1+2i)(1+ai)是纯虚数(i为虚数单位),则实数a的值是()A.﹣2 B.C.﹣D.2【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:复数(1+2i)(1+ai)=1﹣2a+(2+a)i是纯虚数,则1﹣2a=0,2+a≠0,解得a=.故选:B.【点评】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.3.某几何体的三视图如图所示,它的表面积为()A.66π B.51π C.48π D.33π【考点】由三视图求面积、体积.【分析】由几何体的三视图可知,该几何体是一组合体,上部为半球体,直径为6.下部为母线长为5的圆锥,分别求面积,再相加即可.【解答】解:由几何体的三视图可知,该几何体是一组合体,上部为半球体,直径为6.下部为母线长为5的圆锥.半球表面积为2π×32=18π圆锥的侧面积为π×3×5=15π所以所求的表面积为π+15π=33π故选D.【点评】本题考查由三视图考查由三视图还原几何体直观图,求几何体的表面积,属于基础题.4.下列说法正确的是()A.“∀x∈R,e x>0”的否定是“∃x∈R,使e x>0”B.若x+y≠3(x,y∈R),则x≠2或y≠1C.“x2+2x≥ax(1≤x≤2)恒成立”等价于“(x2+2x)min≥(ax)max(1≤x≤2)”D.“若a=﹣1,则函数f(x)=ax2+2x﹣1只有一个零点”的逆命题为真命题【考点】命题的真假判断与应用.【分析】A,“∀x∈R,e x>0”的否定是“∃x∈R,使e x≤0”;B,命题“若x+y≠3(x,y∈R),则x≠2或y≠1”的逆否命题是:“若x=2且y=1,则x+y=3“为真命题,故原命题为真命题;C,例a=2时,x2+2x≥2x在x∈[1,2]上恒成立,而(x2+2x)min=3<2x max=4;D ,a=0时,函数f (x )=ax 2+2x ﹣1只有一个零点;【解答】解:对于A ,“∀x ∈R ,e x >0”的否定是“∃x ∈R ,使e x ≤0”,故错; 对于B ,命题“若x +y ≠3(x ,y ∈R ),则x ≠2或y ≠1”的逆否命题是:“若x=2且y=1,则x +y=3“为真命题,故原命题为真命题,故正确;对于C ,例a=2时,x 2+2x ≥2x 在x ∈[1,2]上恒成立,而(x 2+2x )min =3<2x max =4,故错;对于D ,原命题的逆命题为:若函数f (x )=ax 2+2x ﹣1只有一个零点,则a=﹣1“,∵a=0时,函数f (x )=ax 2+2x ﹣1只有一个零点,故错; 故选:B【点评】本题考查了命题真假的判定,属于基础题.5.已知向量=(1,﹣2),=(1,1),→→→-=b a m , =+λ,如果→→⊥n m ,那么实数λ=( ) A .4B .3C .2D .1【考点】数量积判断两个平面向量的垂直关系.【分析】先利用平面向量坐标运算法则求出,,再由⊥,利用向量垂直的条件能求出实数λ.【解答】解:∵向量=(1,﹣2),=(1,1),→→→-=b a m , =+λ,∴→m =(0,﹣3),=(1+λ,﹣2+λ), ∵→→⊥n m ,∴=0﹣3(﹣2+λ)=0,解得λ=2. 故选:C .【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.6.若对于任意的x >0,不等式≤a 恒成立,则实数a 的取值范围为( )A .a ≥B .a >C .a <D .a ≤【考点】基本不等式.【分析】由x >0,不等式=,运用基本不等式可得最大值,由恒成立思想可得a 的范围.【解答】解:由x >0, =,令t=x +,则t ≥2=2当且仅当x=1时,t 取得最小值2.取得最大值,所以对于任意的x >0,不等式≤a 恒成立,则a ≥, 故选:A .【点评】本题考查函数的恒成立问题的解法,注意运用基本不等式求得最值,考查运算能力,属于中档题.7.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为( )A .B .C .D .【考点】古典概型及其概率计算公式.【分析】白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:.抓出白球,抓入白球,概率是,再把这2个概率相加,即得所求.【解答】解:白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:.抓出白球,抓入白球,概率是=,故所求事件的概率为=,故选C.【点评】本题考查古典概型及其概率计算公式的应用,属于基础题.8.若执行如图所示程序框图,则输出的s值为()A.﹣2018 B.2018 C.﹣2018 D.2018【考点】程序框图.【分析】由程序框图求出前几次运行结果,观察规律可知,得到的S的结果与n 的值的关系,由程序框图可得当n=2018时,退出循环,由此能求出结果.【解答】解:模拟程序的运行,可得n=1,s=0满足条件n<2018,执行循环体,s=﹣1,n=2满足条件n<2018,执行循环体,s=﹣1+3=2,n=3满足条件n<2018,执行循环体,s=﹣1+3﹣5=﹣3,n=4满足条件n<2018,执行循环体,s=﹣1+3﹣5+7=4,n=5满足条件n<2018,执行循环体,s=﹣5,n=6满足条件n<2018,执行循环体,s=6,n=7…满足条件n<2018,执行循环体,s=﹣2018,n=2018满足条件n<2018,执行循环体,s=2018,n=2018不满足条件n<2018,退出循环,输出s的值为2018.故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.9.高为5,底面边长为4的正三棱柱形容器(下有底)内,可放置最大球的半径是()A.B.2 C.D.【考点】棱柱的结构特征.【分析】由题中条件知高为5,底面边长为4的正三棱柱形容器(下有底)内,可放置最大球的半径,即为底面正三角形的内切圆的半径,然后解答即可.【解答】解:由题意知,正三棱柱形容器内有一个球,其最大半径为rr即为底面正三角形的内切圆半径,∵底面边长为4的r=2故选B.【点评】本题考查棱柱的结构特征、球的性质,考查学生空间想象能力,解答的关键是构造球的大圆沟通条件之间的联系.10.已知点p(x,y)满足过点p(x,y)向圆x2+y2=1做两条切线,切点分别是点A和点B,则当∠APB最大时,的值是()A.2 B.3 C.D.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据数形结合求确定当α最小时,P的位置,利用向量的数量积公式,求解即可.【解答】解:作出不等式组对应的平面区域如图,要使∠APB最大,则P到圆心的距离最小即可,由图象可知当OP垂直直线x+y﹣2=0时P到圆心的距离最小,此时|OP|==2,|OA|=1,设∠APB=α,则sin =, =此时cosα=, •=••=.故选:D .【点评】本题主要考查线性规划的应用,考查学生分析解决问题的能力,利用数形结合是解决本题的关键.11.过双曲线﹣=1(a >0,b >0)的右焦点D 作直线y=﹣x 的垂线,垂足为A ,交双曲线左支于B 点,若=2,则该双曲线的离心率为( )A .B .2C .D .【考点】双曲线的简单性质.【分析】根据题意直线AB 的方程为y=(x ﹣c )代入双曲线渐近线方程,求出A 的坐标,进而求得B 的表达式,代入双曲线方程整理求得a 和c 的关系式,进而求得离心率.【解答】解:设F (c ,0),则直线AB 的方程为y=(x ﹣c )代入双曲线渐近线方程y=﹣x 得A (,﹣),由=2,可得B (﹣,﹣),把B 点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.【点评】本题主要考查了双曲线的简单性质.解题的关键是通过分析题设中的信息,找到双曲线方程中a和c的关系.12.已知f(x)是定义在(0,+∞)的函数.对任意两个不相等的正数x1,x2,都有>0,记a=,b=,c=,则()A.a<b<c B.b<a<c C.c<a<b D.c<b<a【考点】函数单调性的性质.【分析】由题意可得函数是(0,+∞)上的增函数,比较大小可得0.32<30.2<log25,故可得答案.【解答】解:∵f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,都有>0,∴函数是(0,+∞)上的增函数,∵1<30.2<3,0<0.32<1,log25>2,∴0.32<30.2<log25,∴c<a<b.故选:C.【点评】本题主要考查利用函数的单调性比较大小,考查学生对指数函数、对数函数性质的运用能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a﹣3),则实数a的值为.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】直接利用正态分布的对称性,列出方程求解即可.【解答】解:由题意可知随机变量ξ~N(2,4),满足正态分布,对称轴为μ=2,P(ξ>a+2)=P(ξ<2a﹣3),则:a+2+2a﹣3=4,解得a=.故答案为.【点评】本题考查正态分布的基本性质的应用,考查计算能力.14.若的展开式中第3项的二项式系数是15,则展开式中所有项的系数之和为.【考点】二项式系数的性质.【分析】求出展开式的通项,令r=2求出展开式第3项的二项式系数,列出方程求出n;令二项式中的x=1求出展开式的所有项的系数和.【解答】解:展开式的通项为当r=2时是展开式中第3项的二项式系数为C n2=15解得n=6令二项式中的x=1得展开式中所有项的系数之和为.故答案为:.【点评】本题考查了二项式这部分的两个重要的题型:求展开式的特定项、求展开式的系数和问题.15.在△ABC中,a=3,b=2,∠B=2∠A,则c=5.【考点】余弦定理.【分析】由∠B=2∠A,得到sinB=sin2A=2sinAcosA,利用正弦定理化简将a与b的值代入求出cosA的值,利用余弦定理列出关系式,将a,b,cosA的值代入即可求出c的值.【解答】解:∵∠B=2∠A,∴sinB=sin2A=2sinAcosA,利用正弦定理化简得:b=2acosA,把a=3,b=2代入得:2=6cosA,即cosA=,由余弦定理得:a2=b2+c2﹣2bccosA,即9=24+c2﹣8c,解得:c=5或c=3,当c=3时,a=c,即∠A=∠C,∠B=2∠A=2∠C,∴∠A+∠C=∠B,即∠B=90°,而32+32≠(2)2,矛盾,舍去;则c=5.故答案为:5【点评】此题考查了正弦、余弦定理,以及二倍角的正弦函数公式,熟练掌握定理是解本题的关键.16.已知函数f(x)=.若a>0,则函数y=f(f(x))﹣1有3个零点.【考点】根的存在性及根的个数判断.【分析】函数y=f(f(x))﹣1=0,求出f(x)的值,然后利用分段函数的表达式求解x的值,推出结果.【解答】解:函数y=f(f(x))﹣1,令f(f(x))﹣1=0,当f(x)>0时,可得log2f(x)=1,解得f(x)=2,则log2x=2,解得x=4,ax+1=2,解得x=(舍去).当f(x)<0,可得af(x)+1=1,解得f(x)=0,则log2x=0,解得x=1,ax+1=0,解得x=﹣.所以函数的零点3个.故答案为:3.【点评】本题考查分段函数的应用,函数的零点个数的求法,考查转化思想以及计算能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2018•平顶山一模)已知S n为数列{a n}的前n项和,且2S n=3a n ﹣2(n∈N*).(Ⅰ)求a n和S n;(Ⅱ)若b n=log3(S n+1),求数列{b2n}的前n项和T n.【考点】数列的求和.【分析】(Ⅰ)由2S n=3a n﹣2可求得a1=2;当n≥2时,a n=3a n﹣1,从而可知数列{a n}是首项为2,公比为3的等比数列,继而可得a n和S n;(Ⅱ)由(Ⅰ)知S n=3n﹣1,从而可得b n=n,b2n=2n,利用等差数列的求和公式即可求得数列{b2n}的前n项和T n.【解答】解:(Ⅰ)∵2S n=3a n﹣2,∴n=1时,2S1=3a1﹣2,解得a1=2;当n≥2时,2S n﹣1=3a n﹣1﹣2,∴2S n﹣2S n﹣1=3a n﹣3a n﹣1,∴2a n=3a n﹣3a n﹣1,∴a n=3a n﹣1,∴数列{a n}是首项为2,公比为3的等比数列,∴a n=2•3n﹣1,S n==3n﹣1,(Ⅱ)∵a n=2•3n﹣1,S n=3n﹣1,∴b n=log3(S n+1)=log33n=n,∴b2n=2n,∴T n=2+4+6+…+2n==n2+n.【点评】本题考查数列的求和,着重考查等比数列的判定与通项公式、求和公式的应用,突出考查等差数列的求和,属于中档题.18.(12分)(2018•平顶山一模)某校高一共录取新生1000名,为了解学生视力情况,校医随机抽取了100名学生进行视力测试,并得到如下频率分布直方图.(Ⅰ)若视力在4.6~4.8的学生有24人,试估计高一新生视力在4.8以上的人数;(Ⅱ)校医发现学习成绩较高的学生近视率较高,又在抽取的100名学生中,对成绩在前50名的学生和其他学生分别进行统计,得到如右数据,根据这些数据,校医能否有超过95%的把握认为近视与学习成绩有关?(Ⅲ)用分层抽样的方法从(Ⅱ)中27名不近视的学生中抽出6人,再从这6人中任抽2人,其中抽到成绩在前50名的学生人数为ξ,求ξ的分布列和数学期望.=【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)利用频率分布表,求出前四组学生的视力在4.8以下的人数,然后求解视力在4.8以上的人数.(Ⅱ)求出k2,即可说明校医有超过95%的把握认为近视与成绩有关.(Ⅲ)依题意,6人中年级名次在1~50名和951~1000名的分别有2人和4人,所以ξ可取0,1,2.求出概率,顶点分布列,然后求解期望即可.【解答】解:(Ⅰ)由图可知,前四组学生的视力在4.8以下,第一组有0.15×0.2×100=3人,第二组有0.35×0.2×100=7人,第三组1.35×0.2×100=27人,第四组有24人.…(2分)所以视力在4.8以上的人数为人.…(Ⅱ),因此校医有超过95%的把握认为近视与成绩有关.…(8分)(Ⅲ)依题意,6人中年级名次在1~50名和951~1000名的分别有2人和4人,所以ξ可取0,1,2.,,,ξ的分布列为…(10分)ξ的数学期望.…(12分)【点评】本题考查频率分布直方图以及概率的求法,分布列以及期望的求法,考查转化思想以及计算能力.19.(12分)(2018•平顶山一模)如图,在四棱锥P﹣ABCD中,CB⊥平面PAB,AD∥BC,且PA=PB=AB=BC=2AD=2.(Ⅰ)求证:平面DPC⊥平面BPC;(Ⅱ)求二面角C﹣PD﹣B的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)分别取PC,PB的中点E,F,连结DE,EF,AF,证明AF⊥EF,AF⊥PB.推出AF⊥平面BPC,然后证明DE⊥平面BPC,即可证明平面DPC ⊥平面BPC.….(Ⅱ)解法1:连结BE,说明BE⊥CP,推出BE⊥平面DPC,过E作EM⊥PD,垂足为M,连结MB,说明∠BME为二面角C﹣PD﹣B的平面角.在△PDE中,求解即可.解法2:以A为坐标原点,建立空间直角坐标系,求出相关点的坐标,求出平面PDC和面PBC的法向量,由空间向量的数量积求解二面角C﹣PD﹣B的余弦值即可.【解答】(本小题满分12分)解:(Ⅰ)证明:如图,分别取PC,PB的中点E,F,连结DE,EF,AF,由题意知,四边形ADEF为矩形,∴AF⊥EF.…(2分)又∵△PAB为等边三角形,∴AF⊥PB.又∵EF∩PB=F,∴AF⊥平面BPC.…又DE∥AF.∴DE⊥平面BPC,又DE⊂平面DPC,∴平面DPC⊥平面BPC.…(Ⅱ)解法1:连结BE,则BE⊥CP,由(Ⅰ)知,BE⊥平面DPC,过E作EM⊥PD,垂足为M,连结MB,则∠BME为二面角C﹣PD﹣B的平面角.…(7分)由题意知,DP=DC=,PC=,∴,∴,∴在△PDE中,.…(10分)又,∴,∴.…(12分)(Ⅱ)解法2:如图,以A为坐标原点,建立空间直角坐标系,则,A(0,0,0),B(0,2,0),,C(0,2,2),D(0,0,1).,,.…(8分)设平面PDC和面PBC的法向量分别为,,由,得,令y=﹣1得;由,得,令a=1得.…(10分)∴二面角C﹣PD﹣B的余弦值为.…(12分)【点评】本题考查平面与平面垂直的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.20.(12分)(2018•平顶山一模)如图,点P为圆E:(x﹣1)2+y2=r2(r>1)与x轴的左交点,过点P作弦PQ,使PQ与y轴交于PQ的中点D.(Ⅰ)当r在(1,+∞)内变化时,求点Q的轨迹方程;(Ⅱ)已知点A(﹣1,1),设直线AQ,EQ分别与(Ⅰ)中的轨迹交于另一点Q1,Q2,求证:当Q在(Ⅰ)中的轨迹上移动时,只要Q1,Q2都存在,且Q1,Q2不重合,则直线Q1Q2恒过定点,并求该定点坐标.【考点】直线与抛物线的位置关系;抛物线的标准方程.【分析】(Ⅰ)设Q(x,y),则PQ的中点,由题意DE⊥DQ,得,代入坐标得答案;(Ⅱ)分别设出Q、Q1、Q2的坐标,结合A,Q,Q1共线,E,Q,Q2共线可把Q1、Q2的坐标用Q的坐标表示,得到线Q1Q2的方程,再由直线系方程可得直线Q1Q2恒过定点,并求该定点坐标.【解答】(Ⅰ)解:设Q(x,y),则PQ的中点,∵E(1,0),∴,.在圆E中,∵DE⊥DQ,∴,则.∴点Q的轨迹方程y2=4x(x≠0);(Ⅱ)证明:设Q(t2,2t),,,则直线Q1Q2的方程为(t1+t2)y﹣2x﹣2t1t2=0.由A,Q,Q1共线,得,从而(,否则Q1不存在),由E,Q,Q2共线,得,从而(t≠0,否则Q2不存在),∴,,∴直线Q1Q2的方程化为t2(y﹣4x)+2t(x+1)+(y+4)=0,令,得x=﹣1,y=﹣4.∴直线Q1Q2恒过定点(﹣1,﹣4).【点评】本题考查直线与抛物线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,考查计算能力,属中档题.21.(12分)(2018•新课标Ⅱ)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.请考生从(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.(本小题满分10分)[选修4-4:坐标系与参数方程] 22.(10分)(2018•平顶山一模)在直角坐标系xOy中,以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ.(Ⅰ)将曲线C的极坐标方程化为参数方程:(Ⅱ)如果过曲线C上一点M且斜率为﹣的直线与直线l:y=﹣x+6交于点Q,那么当|MQ|取得最小值时,求M点的坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2化为普通方程,再转化为参数方程即可.(Ⅱ)设斜率为的直线与l的夹角为γ(定值),M到l的距离为d,令,则,利用三角函数的有界限求解最小值即可.【解答】解:(Ⅰ)∵,∴,∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的普通方程为,∴曲线C的参数方程为(α为参数).(Ⅱ)方法一:设斜率为的直线与l的夹角为γ(定值),M到l的距离为d,则,所以d取最小值时,|MQ|最小.令,则,当时,d最小.∴点M的坐标为.(Ⅱ)方法二:设斜率为的直线与l的夹角为γ(定值),M到l的距离为d,则,∴d取最小值时,|MQ|最小.∴,M是过圆心垂直于l的直线与圆(靠近直线l端)的交点.由,得或(舍去).∴点M的坐标为.【点评】本题考查参数方程、极坐标方程、普通方程的互化,以及应用,直线参数方程的几何意义的运用.属于中档题.[选修4-5:不等式选讲]23.(2018•平顶山一模)已知函数f(x)=|x﹣2|+|x+1|.(Ⅰ)解不等式f(x)>5;(Ⅱ)若f(x)≥﹣对任意实数x恒成立,求a的取值范围.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(Ⅰ)去掉绝对值符号,然后求解不等式即可解不等式f(x)>5;(Ⅱ)利用绝对值的几何意义,求出f(x)的最小值,利用恒成立,转化不等式求解即可.【解答】(本小题满分10分)解:(Ⅰ)原不等式可化为:或或…(3分)解得:x<﹣2或x>3,所以解集为:(﹣∞,﹣2)∪(3,+∞).…(Ⅱ)因为|x﹣2|+|x+1|≥|x﹣2﹣(x+1)|=3,…(7分)所以f(x)≥3,当x≤﹣1时等号成立.所以f(x)min=3.又,故.…(10分)【点评】本题考查函数的恒成立,函数的最值的求法,绝对值不等式的几何意义的应用,考查转化思想以及计算能力.。

2018年河南省开封市高考数学一模试卷(理科) (1)

2018年河南省开封市高考数学一模试卷(理科) (1)

2018年河南省开封市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若,则sin2α的值为()A.B.C.D.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.26.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=27.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.10.(5分)函数y=的图象大致是()A.B. C.D.11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有个.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.2018年河南省开封市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【解答】解:∵U=R,集合A={x|x≥1}=[1,+∞),B={x|x>a}=(a,+∞),∴∁U A=(﹣∞,1),又(∁U A)∪B=R,∴实数a的取值范围是(﹣∞,1).故选:A.2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z1=1﹣2i,且复数z1,z2在复平面内对应的点关于虚轴对称,∴z2=﹣1﹣2i,则=,∴复数在复平面内对应的点的坐标为(),在第四象限.故选:D.3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵=(m﹣1,1),=(m,﹣2),∴⇔m(m﹣1)﹣2=0.由m(m﹣1)﹣2=0,解得m=﹣1或m=2.∴“m=2”是“⊥”的充分不必要条件.故选:A.4.(5分)若,则sin2α的值为()A.B.C.D.【解答】解:若,即2(cos2α﹣sin2α)=cosα﹣sinα,则2(cosα+sinα)=,即cosα+sinα=,∴1+2sinαcosα=,即sin2α=2sinαcosα=﹣,故选:C.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.2【解答】解:设等比数列{a n}的公比为q≠1,∵9S3=S6,a2=1,∴=,a1q=1.则q=2,a1=.故选:A.6.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=2【解答】解:根据题意,若曲线﹣=1(a>0,b>0)为等轴双曲线,则a2=b2,c==a,即焦点的坐标为(±a,0);其渐近线方程为x±y=0,若焦点到渐近线的距离为,则有=a=,则双曲线的标准方程为﹣=1,即x2﹣y2=2;故选:D.7.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.【解答】解:由题意可得:由图可知第一次剩下,第二次剩下,…由此得出第7次剩下,可得①为i≤7?②s=③i=i+1故选:D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.【解答】解:由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,由于两球不等,所以排除A;B正确;故选B9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.【解答】解:根据题意,最近路线,那就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,一共7次,∴最近的行走路线共有:n=A=5040,∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列,接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排三个元素,也就是A53,则最近的行走路线中不连续向上攀登的共有m==1440种,∴其最近的行走路线中不连续向上攀登的概率p===.故选:C.10.(5分)函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.【解答】解:函数,令2x﹣=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,0≤x≤,当k=30时,可得x=,∴f(x)在[0,]上有30条对称轴,根据正弦函数的性质可知:函数与y=3的交点x1,x2关于对称,x2,x3关于对称,…,即x1+x2=×2,x2+x3=×2,…,x n﹣1+x n=2×()将以上各式相加得:x1+2x2+2x3+...+2x28+x29=2(++...+)=(2+5+8+ (89)×=455π则x1+2x2+2x3+…+2x n+x n=(x1+x2)+(x2+x3)+x3+…+x n﹣1+(x n﹣1+x n)=2﹣1()=455π,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为13.【解答】解:由约束条件作出可行域如图,作出直线3x+5y=0,∵x,y∈Z,∴平移直线3x+5y=0至(1,2)时,目标函数z=3x+5y的最大值为13.故答案为:13.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a 的值有4个.【解答】解:f(x)=,且f(f(a))=2∴当a<2时,f(a)=2e a﹣1,若2e a﹣1<2,则f(f(a))=﹣1=2,解得a=1﹣ln2;若2e a﹣1≥2,则f(f(a))==2,解得a=ln+1,成立;当a≥2时,f(a)=log3(a2﹣1),若log3(a2﹣1)<2,则f(f(a))=﹣1=2,解得a=2,或a=﹣2,与a≥2不符,若log3(a2﹣1)≥2,则f(f(a))=log3[(log3(a2﹣1)]=2,解得a2=310+1,∴a=或a=﹣与a≥2不符.由此得到满足条件的a的值有1﹣ln2和ln+1和2和,共4个.故答案为:4.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.【解答】解:∵在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,∴小正四面体的外接球是纸盒的内切球,设正四面体的棱长为a,则内切球的半径为a,外接球的半径是a,∴纸盒的内切球半径是=,设小正四面体的棱长是x,则=x,解得x=,∴小正四面体的棱长的最大值为,故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.则:2cosB(sinAcosC+sinCcosA)+sinB=0,整理得:2cosBsin(A+C)=﹣sinB,由于:0<B<π,则:sinB≠0,解得:,所以:B=.(Ⅱ)点D在AC边上且BD⊥AC,在直角△BCD中,若a=3,BD=,解得:,解得:,则:,,所以:cos∠ABD===,则:在Rt△ABD中,,=.故:c=5.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.【解答】(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC,而PB⊂平面PBC,∴平面PBC⊥平面PEC;(Ⅱ)解:以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),∴,,=(,,﹣).设平面PED的一个法向量为,由,令z=﹣1,则,又平面PBE的一个法向量为,则cos<>==.∴二面角B﹣PE﹣D的余弦值为.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)【解答】解:(Ⅰ)由题意可得关于商品和服务评价的2×2列联表如下:K2=≈11.111>6.635,故有99%的把握,认为商品好评与服务好评有关.(Ⅱ)(1)每次购物时,对商品和服务全为好评的概率为,且X的取值可以是0,1,2,3.其中P(X=0)=()3=,P(X=1)==,P(X=2)=,P(X=3)==,X的分布列为:(2)∵X~B(3,),∴E(X)=,D(X)=3×=.20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.【解答】解:(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e===,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l 1,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,∴•=﹣1,则l 1⊥l2.(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.【解答】解:(Ⅰ)由f(x)=(t﹣1)xe x,得f′(x)=(t﹣1)(x+1)e x,若t>1,则x<﹣1时,f′(x)<0,f(x)递减,x>﹣1时,f′(x)>0,f(x)递增,若t<1,则x<﹣1时,f′(x)>0,f(x)递增,x>﹣1时,f′(x)<0,f(x)递减,故t>1时,f(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,t<1时,f(x)在(﹣∞,﹣1)递增,在(﹣1,+∞)递减;(2)f(x)≤g(x)在[0,+∞)上恒成立,即(t﹣1)xe x﹣tx﹣1+e x≤0对∀x≥0成立,设h(x)=(t﹣1)xe x﹣tx﹣1+e x,h(0)=0,h′(x)=(t﹣1)(x+1)e x﹣t+e x,h′(0)=0,h″(x)=e x[(t﹣1)x+2t﹣1],t=1时,h″(x)=e x≥0,h′(x)在[0,+∞)递增,∴h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,显然不成立,∴t≠1,则h″(x)=e x(x+)(t﹣1),令h″(x)=0,则x=﹣,①当﹣≤0即t<或t>1时,若t≤,则h″(x)在[0,+∞)为负,h′(x)递减,故有h′(x)≤h′(0)=0,h(x)在[0,+∞)递减,∴h(x)≤h(0)=0成立,若t≥1,则h″(x)在[0,+∞)上为正,h′(x)递增,故有h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,不成立,②﹣≥0即≤t≤1时,h″(x)在[0,﹣)内有h′(x)≥h′(0)=0,h(x)递增,故h(x)在[0,﹣)内有h(x)≥h(0)=0不成立,综上,t的范围是(﹣∞,].选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.【解答】解:(Ⅰ)直线l:3x﹣y﹣6=0,转化为直角坐标方程为:(t为参数),曲线C:ρ﹣4sinθ=0.转化为直角坐标方程为:x2+y2﹣4y=0.(Ⅱ)首先把x2+y2﹣4y=0的方程转化为:x2+(y﹣2)2=4,所以经过圆心,且倾斜角为30°的直线方程为:,则:,解得:,则:=,则:|AP|的最大值为:,|AP|的最小值为:.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.【解答】解:(Ⅰ)∵|x+1|+|2x﹣1|≤3,∴或或,解得:﹣1≤x≤1,故m=﹣1,n=1;(Ⅱ)由(Ⅰ)a+b+c=2,则++=(++)(a+b+c)=[1+1+1+(+)+(+)+(+)]≥+(2+2+2)=+3=,当且仅当a=b=c=时“=”成立.。

2018年河南省高考数学一模试卷(理科)-(含解析)

2018年河南省高考数学一模试卷(理科)-(含解析)

2018年河南省高考数学一模试卷(理科)一、选择题1.已知集合,,则集合中元素的个数为A. 2B. 3C. 4D. 52.若复数i为虚数单位是纯虚数,则实数a的值为A. B. 13 C. D.3.已知,命题p:,,则A. p是假命题,¬:,B. p是假命题,¬:,C. p是真命题,¬:,D. p是真命题,¬:,4.已知程序框图如图,则输出i的值为A. 7B. 9C. 11D. 135.2018年元旦假期,高三的8名同学准备拼车去旅游,其中班、班,班、班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学乘同一辆车的4名同学不考虑位置,其中班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有A. 18种B. 24种C. 48种D. 36种6.《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为A.B.C.D.7.设不等式组表示的平面区域为D,若圆C:不经过区域D上的点,则r的取值范围为A. B.C. D.8.若等边三角形ABC的边长为3,平面内一点M满足,则的值为A. B. C. 2 D.9.关于函数,下列命题正确的是A. 由可得是的整数倍B. 的表达式可改写成C. 的图象关于点对称D. 的图象关于直线对称10.设函数,若对于,恒成立,则实数m的取值范围为A. B. C. D.11.设双曲线的方程为,若双曲线的渐近线被圆M:所截得的两条弦长之和为12,已知的顶点A,B分别为双曲线的左、右焦点,顶点P在双曲线上,则的值等于A. B. C. D.12.已知定义在R上的函数和分别满足,,,则下列不等式恒成立的是A. B.C. D.13.设,则二项式的展开式中含项的系数为______.14.若函数为奇函数,则的值为______.15.已知三棱柱的底面是正三角形,侧棱底面ABC,若有一半径为2的球与三棱柱的各条棱均相切,则的长度为______.16.如图,OA,OB为扇形湖面OAB的湖岸,现欲利用渔网和湖岸在湖中隔出两个养殖区区域I和区域Ⅱ,点C在上,,,其中,半径OC 及线段CD需要用渔网制成若,,则所需渔网的最大长度为______.三、解答题17.已知为数列的前n项和,且,,,.求数列的通项公式;若对,,求数列的前2n项的和.18.如图所示,在四棱锥中,底面ABCD为直角梯形,,,,点E为AD的中点,,平面ABCD,且求证:;线段PC上是否存在一点F,使二面角的余弦值是?若存在,请找出点F的位置;若不存在,请说明理由.19.某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出160名,其数学组成绩均为整数的频率分布直方图如图所示.估计这次考试数学成绩的平均分和众数;假设在段的学生中有3人得满分100分,有2人得99分,其余学生的数学成绩都不相同现从90分以上的学生中任取4人,不同分数的个数为,求的分布列及数学期望.20.已知椭圆:的离心率为,右焦点F是抛物线:的焦点,点在抛物线上求椭圆的方程;已知斜率为k的直线l交椭圆于A,B两点,,直线AM与BM的斜率乘积为,若在椭圆上存在点N,使,求的面积的最小值.21.已知函数,其导函数为当时,若函数在R上有且只有一个零点,求实数a的取值范围;设,点是曲线上的一个定点,是否存在实数使得成立?并证明你的结论.22.在直角坐标系xOy中,已知直线:为参数,:为参数,其中,以原点O为极点,x轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C的极坐标方程为.写出,的极坐标方程和曲线C的直角坐标方程;设,分别与曲线C交于点A,非坐标原点,求的值.23.设函数.当时,解不等式;已知的最小值为3,且,求的最小值.答案和解析【答案】1. C2. A3. C4. D5. B6. C7. A8. B9. D10. D11. C12. C13. 19214.15.16.17. 解:,.时,,化为:,,,时,,且,解得.数列是等差数列,首项为1,公差为3....数列的前2n项的和.18. 证明:,,,,E为AD的中点,,≌ ,,,,,又平面ABCD,平面ABCD,,又,且PH,平面PEC,平面PEC,又平面PEC,.解:由可知 ∽ ,由题意得,,,,,,,、EC、BD两两垂直,建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,0,,0,,4,,0,,0,,假设线段PC上存在一点F满足题意,与共线,存在唯一实数,,满足,解得,设向量y,为平面CPD的一个法向量,且,,,取,得,二面角的余弦值是,,由,解得,,,线段PC上存在一点F,当点F满足时,二面角的余弦值是.19. 解:分,众数为75分.分以上的人数为人.的可能取值为2,3,4,,,.的数学期望是.20. 解:点在抛物线上,,解得,椭圆的右焦点为,,椭圆:的离心率为,,,,椭圆的方程为,设直线l的方程为,设,,由,消y可得,,,,直线AM与BM的斜率乘积为,,解得,直线l的方程为,线段AB的中点为坐标原点,由弦长公式可得,,垂直平分线段AB,当时,设直线ON的方程为,同理可得,,当时,的面积也适合上式,令,,,则,当时,即时,的最小值为.21. 解:当时,,,,,由题意得,即,令,则,解得,当时,,单调弟增,当时,,单调递减,,当时,,当时,,由题意得当或时,在R上有且只有一个零点.由,得,假设存在,则有,即,,,即,,,令,则,两边同时除以,得,即,令,,令在上单调递增,且,对于恒成立,即对于恒成立,在上单调递增,,对于恒成立,不成立,同理,时,bngidnuu,不存在实数使得成立.22. 解:,的极坐标方程为,.曲线C的极坐标方程方程为即得,利用,得曲线C的直角坐标方程为.因为,,所以,所以的值为.23. 解:当时,,得,故,当时,,得,故,综上,不等式的解集是;的最小值是3,,故,,当且仅当即,时取“”.【解析】1. 解:,或;;1,2,.可先求出集合,或,然后进行交集、补集的运算即可.考查一元二次不等式的解法,以及描述法、列举法表示集合的概念,交集和补集的运算.2. 解:由复数是纯虚数,则,解得.故选:A.利用复数的除法运算化简为的形式,由实部等于0且虚部不等于求解a 的值.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.3. 解:,,当时,,命题p:,,是真命题,命题p:,,则¬:,.故选:C.利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果.本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.4. 解:当时,不满足退出循环的条件,故,;当时,不满足退出循环的条件,故,;当时,不满足退出循环的条件,故,;当时,不满足退出循环的条件,故,;当时,不满足退出循环的条件,故,;当时,不满足退出循环的条件,故,;当时,满足退出循环的条件,故输出的,故选:D.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5. 解:由题意,第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个为,然后分别从选择的班级中再选择一个学生为,故有种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,为,然后再从剩下的两个班级中分别选择一人为,这时共有种,根据分类计数原理得,共有种不同的乘车方式,故选:B.分类讨论,第一类,一班的2名同学在甲车上;第二类,一班的2名同学不在甲车上,再利用组合知识,问题得以解决.本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.6. 解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;正视图和侧视图是腰长为1的两个全等的等腰直角三角形,四棱锥的底面是正方形,且边长为1,其中一条侧棱底面ABCD,且侧棱,四棱锥的四个侧面都为直角三角形,且,四棱锥的表面积为.底面故选:C.由三视图知该几何体是侧棱垂直于底面的四棱锥,画出图形结合图形求出它的表面积.本题考查了利用空间几何体的三视图求几何体表面积的应用问题,是基础题.7. 解:作出不等式组表示的平面区域,得到如图的及其内部,其中,,圆C:表示以为圆心,半径为r的圆,由图可得,当半径满足或时,圆C不经过区域D上的点,,当或时,圆C不经过区域D上的点,故选:A.作出题中不等式组表示的平面区域,得到如图的及其内部,而圆C表示以为圆心且半径为r的圆观察图形,可得半径或时,圆C不经过区域D上的点,由此结合平面内两点之间的距离公式,即可得到r的取值范围.本题给出动圆不经过已知不等式组表示的平面区域,求半径r的取值范围着重考查了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面区域等知识,属于中档题.8. 解:等边三角形ABC的边长为3;;;;,;.故选:B.根据条件可先求出,而由即可得出,这样即可用分别表示出,然后进行数量积的运算即可.考查向量数量积的运算及计算公式,以及向量的数乘运算,向量加法的几何意义.9. 解:函数,周期,对于A:由,可能与关于其中一条对称轴是对称的,此时不是的整数倍;不对.对于B:由诱导公式,不对.对于C:令,可得,不对,对于D:当时,可得,的图象关于直线对称.故选:D.根据函数,结合三角函数的性质即可判断各选项.本题主要考查利用的信息特征,判断各选项的正误,属于中档题.10. 解:由题意,,可得.当时,,不等式等价于.当时,的最小值为,若要不等式恒成立,则必须,因此,实数m的取值范围为,故选:D.利用分离参数法,再求出对应函数在上的最大值,即可求m的取值范围.本题考查恒成立问题,考查分离参数法的运用,解题的关键是分离参数,正确求最值,属于中档题.11. 解:双曲线的一条渐近线方程为,双曲线的渐近线被圆M:,即所截得的两条弦长之和为12,设圆心到直线的距离为d,则,,即,即,,,由正弦定理可得,,,,,故选:C.根据垂径定理求出圆心到直线的距离为,再根据点到直线的距离公式可得,得到,即可求出,根据正弦定理可得本题考查了双曲线的简单性质以及圆的有关性质和正弦定理,属于中档题12. 解:,令,则.,令,则,解得..,.令,,,函数在R上单调递减,,,可得:..故选:C.,令,则由,令,可得进而得出,,令,及其已知,可得,利用函数在R上单调递减,即可得出.本题考查了利用导数研究函数的单调性极值与最值、构造法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.13. 解:由于,的通项公式为,令,求得,故含项的系数为.故答案为:192根据微积分基本定理首先求出a的值,然后再根据二项式的通项公式求出r的值,问题得以解决.本题主要考查定积分、二项式定理的应用,二项式展开式的通项公式,属于基础题.14. 解:函数为奇函数,故恒成立,故即,,,故答案为:.由已知中函数为奇函数,恒成立,可得a,b的值,进而可得的值.本题考查的知识点是分段函数的应用,函数的奇偶性,函数求值,难度中档.15. 解:由题意,的外接圆即为球的大圆,,设底面外接圆圆心G,即,从而正三角形ABC边长,设球心O,由题意,E、F在球面上,,F为DE中点,则,,在中,,,,,.故答案为:.由题意求出正三棱柱的高、底面边长,即可求出的长度.本题考查正三棱柱的内切球与正三棱柱的关系,通过二者的关系求出正三棱柱的体积,考查计算能力,逻辑推理能力.16. 解:由,,,得,,;在中,由正弦定理,得,,设渔网的长度为,可得,所以,因为,所以,令,得,所以,所以.所以故所需渔网长度的最大值为.确定,在中利用正弦定理求得CD的长度,根据所需渔网长度,即图中弧AC、半径OC和线段CD长度之和,确定函数的解析式,利用导数确定函数的最值,求得所需渔网长度的最大值.本题考查了正弦定理的应用问题,也考查了函数模型的构建与最值应用问题,是难题.17. ,时,,化为,由,可得,时,,且,解得利用等差数列的通项公式可得.利用分组求和即可得出.本题考查了数列递推关系、等差数列的定义通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.18. 推导出 ≌ ,,从而,由平面ABCD,得,由此能证明平面PEC,从而.推导出PH、EC、BD两两垂直,建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,利用向量法能求出线段PC上存在一点F,当点F满足时,二面角的余弦值是.本题考查线线垂直垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19. 把组中值看作各小组的平均数,根据加权平均数公式计算;根据组合数公式计算各种情况的概率,得出分布列.本题考查了频率分布直方图,离散型随机变量的分布列和数学期望,属于中档题.20. 先求出p的值,即可求出c的值,根据离心率求出a的值,即可得到椭圆方程,设直线l的方程为,设,,由,根据直线AM与BM的斜率乘积为,求出,再根据弦长公式求出和,表示出三角形的面积来,再利用二次函数的性质即可求出最小值.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查椭圆与二次函数函数的应用,考查计算能力,属于难题.21. 当时,,,,,由题意,令,则,解得,由此能求出当或时,在R上有且只有一个零点.由,得,假设存在,则,利用导数性质推导出不存在实数使得成立.本题考查利用导数研究函数的性质及实数的最值范围的求法、满足条件的实数是否存在的判断与证明,考查函数与方程思想、转化与化归思想,考查运算求解能力、推理论证能力,考查创新意识,是中档题.22. 考查直线,参数方程与极坐标方程的互化,曲线C的极坐标方程与直角坐标方程的互化重点都是消去参数t.利用,极坐标方程,结合余弦定理,计算出的长度.考查极坐标方程与参数方程,普通方程的互化记准互化公式和原则是关键,属于中档题目.23. 通过讨论x的范围,求出不等式的解集即可;根据绝对值不等式的性质求出a的值,结合基本不等式的性质求出的最小值即可.本题考查了解绝对值不等式问题,考查绝对值的性质以及基本不等式的性质,是一道中档题.。

2018年河南省洛阳市高考数学一模试卷(理科)

2018年河南省洛阳市高考数学一模试卷(理科)

2018年河南省洛阳市高考数学一模试卷(理科)一、选择题(本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|2*t V1},B={y|y=Jx+1},则A A B=()0)1) C.[0,1] D.[O,1)2.设z=1+i(i是虚数单位),则复数^+z2在复平面内对应的点位于()zA.第一象限B.第二象限C.第三象限D.第四象限3.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A3-4一5r6A,— B.— C.— D.—181818184.已知等比数列{%},a2=P。

5=土,则数列(log2a n)的前10项之和是()A.45B.-35C.55D.-555.若X>m是/一 3%+2<0的必要不充分条件,则实数m的取值范围是()A.[1,4-oo)B.(—8,2]C,(—8,1] D.[2,+8)6.阅读如图所示的程序框图,若输入a=土,则输出的k值是()C.11D.127.一个几何体的侧视图如图所示,若该几何体的体积为则它的正视图为()O8.函数y = f (%)与y = g(x)的图象如图所示,则函数y = f (%) - g(x)的图象可能是({(X — a)2 (x < 0)2]0] C.[l, 2] D.[0, 2]I - 的最小值为/(0),则实数a 的取值范围()I I CLf A U j4% — y — 10 < 010,设实数x, y 满足条件・x - 2y + 8 > 0.% > 0, y > 0,若目标函数z = ax + by(a > 0, h > 0)的最大值为12,则f +j 的最小值为()A 25A —6B iD.411.在封闭的直三棱柱ABC-A r B r C r 内有一个体积为,的球,若AB1BC, AB = 6, BC = 8, AA t = 3,贝W 的最大值是()A.4ttB,—2r 3271D.—3C.6tt2?112.若椭圆彳+彳=1的焦点在x轴上,过点(1,:)作圆x2+y2=l的切线,切点分别为4、B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是()A.^+^=l b Y+H=19445C,-+^=1D,-+^=15495二、填空题(本大题共4小题,每小题5分,共20分)已知3-《)8展开式中常数项为1120,其中实数Q是常数,则展开式中各项系数的和是.如图,已知正三棱柱4BC-&B1C1的底面边长为2cm,高为5cm,一质点自4点出发,沿着三棱柱的侧面绕行两周到达,点的最短路线的长为cm.h17i c iT^ZCR22双曲线C:M-m=l(a>0M>0)的左焦点为F,若F关于直线+y=0的对称点4是双曲线C上的点,则双曲线C的离心率为.已知函数/(%)=x-(a+l)lnx-(a e/?,且a<1),g(x)=|x2+e x-xe x,若存在%】G[e,e2],使得对任意%2G[-2,0],/'(x】)<gg)恒成立,则a的取值范围是三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或以暗算步骤△ABC中,角4,B,C的对边分别为a,b,c,且a,b,c依次成等差数列.(1)若向量m=(3,sinB)与n=(2,sinC)共线,求cosA的值;(2)若ac=8,求AABC的面积S的最大值.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成[0,10), [10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.课外体育不达标课外体育达标合计男603090女9020110合计15050200(1)请根据直方图中的数据填写下面的2X2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?(2)现按照"课外体育达标”与"课外体育不达标"进行分层抽样,抽取8人,再从这8名学生中随机抽取3人参加体育知识问卷调查,记"课外体育不达标"的人数为&求加勺分布列和数学期望.K 2 =(2) 求二面角A-PB- C 的余弦值.附参考公式与:n(ad-dc)2(a+b)(c+d)(a+c)(b+d)P(" > 00.150.050.0250.0100.0050.001*02.7023.841 5.024 6.6357.87910.8285208 o5 ?2221 1 o co o o o o (x o.o.o.o.0.0.如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,平面PAD _L 平面4BCD , BC//AD, PA 1 PD, AB 1 AD, /.PDA = 60°, E 为侧棱PD 的中点,且AB = BC = 2, AD = 4.(1) 求证:C£〃平面/MB ;设。

2018年河南省高考数学试卷(理科)(新课标ⅰ)

2018年河南省高考数学试卷(理科)(新课标ⅰ)

2018年河南省高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C 的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年河南省开封市高考数学一模试卷(理科)

2018年河南省开封市高考数学一模试卷(理科)

2018年河南省开封市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若,则sin2α的值为()A.B.C.D.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.26.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=27.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.10.(5分)函数y=的图象大致是()A.B. C.D.11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有个.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.2018年河南省开封市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【解答】解:∵U=R,集合A={x|x≥1}=[1,+∞),B={x|x>a}=(a,+∞),∴∁U A=(﹣∞,1),又(∁U A)∪B=R,∴实数a的取值范围是(﹣∞,1).故选:A.2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z1=1﹣2i,且复数z1,z2在复平面内对应的点关于虚轴对称,∴z2=﹣1﹣2i,则=,∴复数在复平面内对应的点的坐标为(),在第四象限.故选:D.3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵=(m﹣1,1),=(m,﹣2),∴⇔m(m﹣1)﹣2=0.由m(m﹣1)﹣2=0,解得m=﹣1或m=2.∴“m=2”是“⊥”的充分不必要条件.故选:A.4.(5分)若,则sin2α的值为()A.B.C.D.【解答】解:若,即2(cos2α﹣sin2α)=cosα﹣sinα,则2(cosα+sinα)=,即cosα+sinα=,∴1+2sinαcosα=,即sin2α=2sinαcosα=﹣,故选:C.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.2【解答】解:设等比数列{a n}的公比为q≠1,∵9S3=S6,a2=1,∴=,a1q=1.则q=2,a1=.故选:A.6.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=2【解答】解:根据题意,若曲线﹣=1(a>0,b>0)为等轴双曲线,则a2=b2,c==a,即焦点的坐标为(±a,0);其渐近线方程为x±y=0,若焦点到渐近线的距离为,则有=a=,则双曲线的标准方程为﹣=1,即x2﹣y2=2;故选:D.7.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.【解答】解:由题意可得:由图可知第一次剩下,第二次剩下,…由此得出第7次剩下,可得①为i≤7?②s=③i=i+1故选:D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.【解答】解:由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,由于两球不等,所以排除A;B正确;故选B9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.【解答】解:根据题意,最近路线,那就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,一共7次,∴最近的行走路线共有:n=A=5040,∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列,接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排三个元素,也就是A53,则最近的行走路线中不连续向上攀登的共有m==1440种,∴其最近的行走路线中不连续向上攀登的概率p===.故选:C.10.(5分)函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.【解答】解:函数,令2x﹣=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,0≤x≤,当k=30时,可得x=,∴f(x)在[0,]上有30条对称轴,根据正弦函数的性质可知:函数与y=3的交点x1,x2关于对称,x2,x3关于对称,…,即x1+x2=×2,x2+x3=×2,…,x n﹣1+x n=2×()将以上各式相加得:x1+2x2+2x3+...+2x28+x29=2(++...+)=(2+5+8+ (89)×=455π则x1+2x2+2x3+…+2x n+x n=(x1+x2)+(x2+x3)+x3+…+x n﹣1+(x n﹣1+x n)=2﹣1()=455π,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为13.【解答】解:由约束条件作出可行域如图,作出直线3x+5y=0,∵x,y∈Z,∴平移直线3x+5y=0至(1,2)时,目标函数z=3x+5y的最大值为13.故答案为:13.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a 的值有4个.【解答】解:f(x)=,且f(f(a))=2∴当a<2时,f(a)=2e a﹣1,若2e a﹣1<2,则f(f(a))=﹣1=2,解得a=1﹣ln2;若2e a﹣1≥2,则f(f(a))==2,解得a=ln+1,成立;当a≥2时,f(a)=log3(a2﹣1),若log3(a2﹣1)<2,则f(f(a))=﹣1=2,解得a=2,或a=﹣2,与a≥2不符,若log3(a2﹣1)≥2,则f(f(a))=log3[(log3(a2﹣1)]=2,解得a2=310+1,∴a=或a=﹣与a≥2不符.由此得到满足条件的a的值有1﹣ln2和ln+1和2和,共4个.故答案为:4.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.【解答】解:∵在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,∴小正四面体的外接球是纸盒的内切球,设正四面体的棱长为a,则内切球的半径为a,外接球的半径是a,∴纸盒的内切球半径是=,设小正四面体的棱长是x,则=x,解得x=,∴小正四面体的棱长的最大值为,故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.则:2cosB(sinAcosC+sinCcosA)+sinB=0,整理得:2cosBsin(A+C)=﹣sinB,由于:0<B<π,则:sinB≠0,解得:,所以:B=.(Ⅱ)点D在AC边上且BD⊥AC,在直角△BCD中,若a=3,BD=,解得:,解得:,则:,,所以:cos∠ABD===,则:在Rt△ABD中,,=.故:c=5.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.【解答】(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC,而PB⊂平面PBC,∴平面PBC⊥平面PEC;(Ⅱ)解:以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),∴,,=(,,﹣).设平面PED的一个法向量为,由,令z=﹣1,则,又平面PBE的一个法向量为,则cos<>==.∴二面角B﹣PE﹣D的余弦值为.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)【解答】解:(Ⅰ)由题意可得关于商品和服务评价的2×2列联表如下:K2=≈11.111>6.635,故有99%的把握,认为商品好评与服务好评有关.(Ⅱ)(1)每次购物时,对商品和服务全为好评的概率为,且X的取值可以是0,1,2,3.其中P(X=0)=()3=,P(X=1)==,P(X=2)=,P(X=3)==,X的分布列为:(2)∵X~B(3,),∴E(X)=,D(X)=3×=.20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.【解答】解:(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e===,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l 1,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,∴•=﹣1,则l 1⊥l2.(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.【解答】解:(Ⅰ)由f(x)=(t﹣1)xe x,得f′(x)=(t﹣1)(x+1)e x,若t>1,则x<﹣1时,f′(x)<0,f(x)递减,x>﹣1时,f′(x)>0,f(x)递增,若t<1,则x<﹣1时,f′(x)>0,f(x)递增,x>﹣1时,f′(x)<0,f(x)递减,故t>1时,f(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,t<1时,f(x)在(﹣∞,﹣1)递增,在(﹣1,+∞)递减;(2)f(x)≤g(x)在[0,+∞)上恒成立,即(t﹣1)xe x﹣tx﹣1+e x≤0对∀x≥0成立,设h(x)=(t﹣1)xe x﹣tx﹣1+e x,h(0)=0,h′(x)=(t﹣1)(x+1)e x﹣t+e x,h′(0)=0,h″(x)=e x[(t﹣1)x+2t﹣1],t=1时,h″(x)=e x≥0,h′(x)在[0,+∞)递增,∴h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,显然不成立,∴t≠1,则h″(x)=e x(x+)(t﹣1),令h″(x)=0,则x=﹣,①当﹣≤0即t<或t>1时,若t≤,则h″(x)在[0,+∞)为负,h′(x)递减,故有h′(x)≤h′(0)=0,h(x)在[0,+∞)递减,∴h(x)≤h(0)=0成立,若t≥1,则h″(x)在[0,+∞)上为正,h′(x)递增,故有h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,不成立,②﹣≥0即≤t≤1时,h″(x)在[0,﹣)内有h′(x)≥h′(0)=0,h(x)递增,故h(x)在[0,﹣)内有h(x)≥h(0)=0不成立,综上,t的范围是(﹣∞,].选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.【解答】解:(Ⅰ)直线l:3x﹣y﹣6=0,转化为直角坐标方程为:(t为参数),曲线C:ρ﹣4sinθ=0.转化为直角坐标方程为:x2+y2﹣4y=0.(Ⅱ)首先把x2+y2﹣4y=0的方程转化为:x2+(y﹣2)2=4,所以经过圆心,且倾斜角为30°的直线方程为:,则:,解得:,则:=,则:|AP|的最大值为:,|AP|的最小值为:.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.【解答】解:(Ⅰ)∵|x+1|+|2x﹣1|≤3,∴或或,解得:﹣1≤x≤1,故m=﹣1,n=1;(Ⅱ)由(Ⅰ)a+b+c=2,则++=(++)(a+b+c)=[1+1+1+(+)+(+)+(+)]≥+(2+2+2)=+3=,当且仅当a=b=c=时“=”成立.。

河南省六市2018届高三第一次联考(一模)数学(理)试题含解析

河南省六市2018届高三第一次联考(一模)数学(理)试题含解析

河南省六市2018届高三第一次联考(一模)数学(理)试题含解析河南省六市2018届高三第一次联考(一模)数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,则()A. B. C. D.【答案】C【解析】,,所以,选C.2. 已知为虚数单位,若,则()A. 0B. 1C.D. 2【答案】B3. 现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为()A. B. C. D.【答案】C【解析】试题分析:将张奖票不放回地依次取出共有种不同的取法,若获恰好在第四次抽奖结束,则前三次共抽到张中奖票,第四次抽的最后一张奖票,共有种取法,所以概率为,故选C.考点:古典概型及其概率的计算.4. 汽车以作变速运动时,在第1s至2s之间的1s内经过的路程是()A. B. C. D.【答案】D【解析】,选D.5. 为考察两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A. 药物的预防效果优于药物的预防效果B. 药物的预防效果优于药物的预防效果C. 药物、对该疾病均有显著的预防效果D. 药物、对该疾病均没有预防效果【答案】B【解析】由A、B两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A的预防效果优于药物B的预防效果.故选B.6. 一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A. B. C. 2 D. 4【答案】B【解析】几何体如图,,所以最大面SAB的面积为,选B.7. 已知数列满足:,则其前100项和为()A. 250B. 200C. 150D. 100【答案】D【解析】因为 ,所以选D.8. 已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.【答案】C【解析】因为为锐角三角形,所以,选D.9. 设是数列的一个排列,观察如图所示的程序框图,则输出的的值为()A. 2015B. 2016C. 2017D. 2018【答案】D【解析】试题分析:此题的程序框图的功能就是先求这个数的最大值,然后进行计算,,因为,所以,故选D.考点:程序框图.【方法点睛】本题考查的是程序框图.对于算法与流程图的考查,一般会侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10. 在三棱锥中,,,,,,且三棱锥的体积为,则该三棱锥的外接球半径是()A. 1B. 2C. 3D. 4【答案】C【解析】取SC中点O,则OA=OB=OC=OS,即O为三棱锥的外接球球心,设半径为r,则选C.点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.11. 椭圆与函数的图象交于点,若函数的图象在处的切线过椭圆的左焦点,则椭圆的离心率是()A. B. C. D.【答案】B【解析】设因此,所以,,,选B.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12. 若关于的方程有3个不相等的实数解,且,其中,,则的值为()A. 1B.C.D.【答案】A【解析】令,则方程化为有两个不等的实根,所以,选A.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.二、填空题(每题4分,满分20分,将答案填在答题纸上)13. 已知,,则______.【答案】5【解析】14. 已知二项式的展开式的二项式系数之和为32,则展开式中含项的系数是_______(用数字作答). 【答案】10【解析】试题分析:由题意可得:,所以,令,所以展开式中含项的系数是10.考点:二项式定理.15. 已知是双曲线:右支上一点,直线是双曲线的一条渐近线,在上的射影为,是双曲线的左焦点,则的最小值是_______.【答案】【解析】16. 已知动点满足,则的最小值是_______.【答案】【解析】因此可行域为一个三角形ABC及其内部,其中,所以点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列中,,其前项的和为,且满足.(1)求证:数列是等差数列;(2)证明:当时,.【答案】(1)见解析(2)见解析【解析】试题分析:(1)根据数列的递推关系进行化简结合等差数列的定义即可证明数列是等差数列;(2)求出的通项公式,利用放缩法进行证明不等式.试题解析:(1)当时,,,从而构成以1为首项,2为公差的等差数列. -------6分(2)由(1)可知,,当时,从而.考点:1.裂项求和;2.放缩法;3.推理能力.【方法点睛】本题主要考查的是裂项求和,放缩法,等差数列的通项公式,考查了变形能力,推理能力与计算能力,属于中档题,首先根据可求出数列的通项公式,(2)问中根据(1)中条件进行裂项求和,可发现中间部分项被消掉,因此可适当利用放缩的方法对前项和进行放大或缩小,即可证明结论,因此根据数列的递推关系结合等差数列的定义是解决问题的关键.18. 我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如下图表:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)【答案】(1)3,5(2)(3)2.22【解析】试题分析:(Ⅰ)从图表中求出不能自理的80岁及以上长者占比,由此能求出抽取16人中不能自理的80岁及以上长者人数为.(Ⅱ)求出在600人中80岁及以上长者在老人中占比,用样本估计总体,能求出80岁及以上长者占户籍人口的百分比.(Ⅲ)用样本估计总体,设任一户籍老人每月享受的生活补助为X元,则Xr可能取值为0,120,200,220,300,分别求出相应的概率,由此能求出随机变量X的分布列、EX,从而能估计政府执行此计划的年度预算.试题解析:(1)数据整理如下表:从图表中知不能自理的岁及以上长者比为:故抽取人中不能自理的岁及以上长者人数为岁以下长者人数为人(2)在人中岁及以上长者在老人中占比为:用样本估计总体,岁及以上长者共有万,岁及以上长者占户籍人口的百分比为%=%,(3)用样本估计总体,设任一户籍老人每月享受的生活补助为元,则随机变量的分布列为:全市老人的总预算为元,政府执行此计划的年度预算约为亿元.求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式(常见的有古典概型公式、几何概率公式、互斥事件的概率和公式、独立事件的概率积,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布,则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.19. 如图,在四棱锥中,平面,底面是菱形,,为与的交点,为上任意一点.(1)证明:平面平面;(2)若平面,并且二面角的大小为,求的值.【答案】(1)见解析(2)【解析】试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键;(3)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:(1)因为,,又是菱形,,故平面平面平面4分(2)连结,因为平面,所以,所以平面又是的中点,故此时为的中点,以为坐标原点,射线分别为轴,轴,轴建立空间直角坐标系..6分设则,向量为平面的一个法向量.8分设平面的一个法向量,则且,即,取,则,则12分解得故14分考点:1、平面与平面垂直的判定;2、平面与平面所成角余弦值的应用.20. 已知抛物线:的焦点为,过的直线交抛物线于点,当直线的倾斜角是时,的中垂线交轴于点.(1)求的值;(2)以为直径的圆交轴于点,记劣弧的长度为,当直线绕点旋转时,求的最大值.【答案】(1)(2)【解析】试题分析:(1)设出直线的方程为,设,联立直线与抛物线方程,利用韦达定理求出中点坐标,推出中垂线方程,结合的中垂线交轴于点,求出即可;(2)设方程为,代入,求出的距离以及中点为,令,求出的表达式,推出关系式,利用到轴的距离,求出,分离常数即可求得的最大值.试题解析:(1)当的倾斜角为时,的方程为设得得中点为中垂线为代入得(2)设的方程为,代入得中点为令到轴的距离当时取最小值的最大值为故的最大值为.21. 已知函数.(1)讨论的单调性;(2)若有两个极值点,且,证明:.【答案】(1)见解析(2)见解析.....................试题解析:(1),所以(1)当时,,所以在上单调递增(2)当时,令,当即时,恒成立,即恒成立所以在上单调递增当,即时,,两根所以,,,故当时,在上单调递增当时,在和上单调递增在上单调递减.(2)由(1)知时,上单调递增,此时无极值当时,由得,设两根,则,其中在上递增,在上递减,在上递增令,所以在上单调递减,且故.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为(为参数),圆的极坐标方程为.(1)求直线的普通方程与圆的执直角坐标方程;(2)设曲线与直线交于两点,若点的直角坐标为,求的值.【答案】(1),(2)【解析】试题分析:(1)根据加减消元法将直线的参数方程化为普通方程,根据将圆的极坐标方程化为直角坐标方程,(2)先化直线参数方程标准形式,代入圆的直角坐标方程,根据参数几何意义得,再根据韦达定理求值.试题解析:解:(1)直线的普通方程为,,所以所以曲线的直角坐标方程为.(2)点在直线上,且在圆内,由已知直线的参数方程是(为参数)代入,得,设两个实根为,则,即异号所以.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.23. 选修4-5:不等式选讲已知关于的不等式有解.(1)求实数的取值范围;(2)已知,证明:.【答案】(1)(2)见解析【解析】试题分析:(Ⅰ)原问题等价于,结合绝对值三角不等式的性质可得;(Ⅱ)结合(Ⅰ)的结论可得,由柯西不等式可得,即.试题解析:(Ⅰ),故;(Ⅱ)由题知,故,.。

2018年河南省高考数学一模试卷理科含解析

2018年河南省高考数学一模试卷理科含解析

2018年河南省高考数学一模试卷(理科)一、选择题1.已知集合A={x|x2−2x−3>0},B=N,则集合(∁R A)∩B中元素的个数为()A. 2B. 3C. 4D. 52.若复数a+3i1+2i(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A. −6B. 13C. 32D. √133.已知f(x)=sinx−tanx,命题p:∃x0∈(0,π2),f(x0)<0,则()A. p是假命题,¬p:∀x∈(0,π2),f(x)≥0B. p是假命题,¬p:∃x0∈(0,π2),f(x0)≥0C. p是真命题,¬p:∀x∈(0,π2),f(x)≥0D. p是真命题,¬p:∃x0∈(0,π2),f(x0)≥04.已知程序框图如图,则输出i的值为()A. 7B. 9C. 11D. 135.2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班,(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有()A. 18种B. 24种C. 48种D. 36种1/ 166. 《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( ) A. 1+√2 B. 1+2√2 C. 2+√2 D. 2+2√27. 设不等式组{x +y ≤4y −x ≥0x −1≥0表示的平面区域为D ,若圆C :(x +1)2+y 2=r 2(r >0)不经过区域D 上的点,则r 的取值范围为( ) A. (0,√5)∪(√13,+∞) B. (√13,+∞) C. (0,√5) D. [√5,√13]8. 若等边三角形ABC 的边长为3,平面内一点M 满足6CM ⃗⃗⃗⃗⃗⃗ −3CA ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ⋅BM⃗⃗⃗⃗⃗⃗ 的值为( )A. −152B. −2C. 2D. 1529. 关于函数f(x)=3sin(2x −π3)+1(x ∈R),下列命题正确的是( )A. 由f(x 1)=f(x 2)=1可得x 1−x 2是π的整数倍B. y =f(x)的表达式可改写成f(x)=3cos(2x +π6)+1 C. y =f(x)的图象关于点(3π4,1)对称 D. y =f(x)的图象关于直线x =−π12对称10. 设函数f(x)=mx 2−mx −1,若对于x ∈[1,3],f(x)<−m +4恒成立,则实数m的取值范围为( )A. (−∞,0]B. [0,57)C. (−∞,0)∪(0,57)D. (−∞,57)11. 设双曲线的方程为x 2a2−y 2b 2=1(a >0,b >0),若双曲线的渐近线被圆M :x 2+y 2−10x =0所截得的两条弦长之和为12,已知△ABP 的顶点A ,B 分别为双曲线的左、右焦点,顶点P 在双曲线上,则|sinP||sinA−sinB|的值等于( )A. 35B. √73C. 53D. √712. 已知定义在R 上的函数f(x)和g(x)分别满足f(x)=f′(1)2,e 2x−2+x 2−2f(0)⋅x ,g′(x)+2g(x)<0,则下列不等式恒成立的是( ) A. g(2016)<f(2)⋅g(2018) B. f(2)⋅g(2016)<g(2018) C. g(2016)>f(2)⋅g(2018) D. f(2)⋅g(2016)>g(2018) 二、填空题13.设a=∫(π0cosx−sinx)dx,则二项式(a√x−√x)6的展开式中含x2项的系数为______.14.若函数f(x)={ax(x+2),x<0x(x−b),x≥0(a,b∈R)为奇函数,则f(a+b)的值为______.15.已知三棱柱ABC−A1B1C1的底面是正三角形,侧棱AA1⊥底面ABC,若有一半径为2的球与三棱柱的各条棱均相切,则AA1的长度为______.16.如图,OA,OB为扇形湖面OAB的湖岸,现欲利用渔网和湖岸在湖中隔出两个养殖区−区域I和区域Ⅱ,点C在AB⌢上,∠COA=θ,CD//OA,其中AC⌢,半径OC及线段CD需要用渔网制成.若∠AOB=π3,OA=1,则所需渔网的最大长度为______.三、解答题17.已知S n为数列{a n}的前n项和,且a1<2,a n>0,6S n=a n2+3a n+2,n∈N∗.(1)求数列{a n}的通项公式;(2)若对∀n∈N∗,b n=(−1)n a n2,求数列{b n}的前2n项的和T2n.18.如图所示,在四棱锥P−ABCD中,底面ABCD为直角梯形,AB//CD,∠BAD=90∘,DC=DA=2AB=2√5,点E为AD的中点,BD∩CE=H,PH⊥平面ABCD,且PH=4.(1)求证:PC⊥BD;(2)线段PC上是否存在一点F,使二面角B−DF−C的余弦值是√1515?若存在,请找出点F的位置;若不存在,请说明理由.3/ 1619.某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出160名,其数学组成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试数学成绩的平均分和众数;(2)假设在(90,100]段的学生中有3人得满分100分,有2人得99分,其余学生的数学成绩都不相同.现从90分以上的学生中任取4人,不同分数的个数为ξ,求ξ的分布列及数学期望E(ξ).20.已知椭圆C1:x2a2+y2b2=1(a>b>0)的离心率为√22,右焦点F是抛物线C2:y2=2px(p>0)的焦点,点(2,4)在抛物线C2上.(1)求椭圆C1的方程;(2)已知斜率为k的直线l交椭圆C1于A,B两点,M(0,2),直线AM与BM的斜率乘积为−12,若在椭圆上存在点N,使|AN|=|BN,求△ABN的面积的最小值.21.已知函数f(x)=ae x+x2−bx(a,b∈R),其导函数为y=f′(x).(1)当b=2时,若函数y=f′(x)在R上有且只有一个零点,求实数a的取值范围;(2)设a≠0,点P(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m)使得f(x0)−n=f′(x0+m2)(x0−m)成立?并证明你的结论.5 / 1622. 在直角坐标系xOy 中,已知直线l 1:{y =tsinαx=tcosα(t 为参数),l 2:{x =tcos(α+π4)y =tsin(α+π4)(t为参数),其中α∈(0,3π4),以原点O 为极点,x 轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C 的极坐标方程为ρ−4cosθ=0. (1)写出l 1,l 2的极坐标方程和曲线C 的直角坐标方程;(2)设l 1,l 2分别与曲线C 交于点A ,B(非坐标原点),求|AB|的值.23. 设函数f(x)=|x −a|(a >0).(1)当a =2时,解不等式f(x)≥1−2x ; (2)已知f(x)+|x −1的最小值为3,且m 2n =a(m >0,n >0),求m +n 的最小值.答案和解析【答案】 1. C 2. A 3. C 4. D 5. B 6. C7. A8. B 9. D 10. D 11. C 12. C13. 192 14. −1 15. 2√316. π+6+2√3617. 解:(1)6S n =a n2+3a n +2,n ∈N ∗. n ≥2时,6a n =6S n −6S n−1=a n 2+3a n +2−(a n−12+3a n−1+2),化为:(a n +a n−1)(a n −a n−1−3)=0, ∵a n >0,∴a n −a n−1=3,n =1时,6a 1=a 12+3a 1+2,且a 1<2,解得a 1=1.∴数列{a n }是等差数列,首项为1,公差为3. ∴a n =1+3(n −1)=3n −2.(2)b n =(−1)n a n 2=(−1)n (3n −2)2.∴b 2n−1+b 2n =−(6n −5)2+(6n −2)2=3(12n −7)=36n −21.∴数列{b n }的前2n 项的和T 2n =36(1+2+⋯…+n)−21n =36×n(n+1)2−21n =18n 2−3n .18. 证明:(1)∵AB//CD ,∠BAD =90∘,∴∠EDC =∠BAD =90∘,∵DC =DA =2AB ,E 为AD 的中点,∴AB =ED , ∴△BAD≌△EDC ,∴∠DBA =∠DEH ,∵∠DBA +∠ADB =90∘,∴∠DEH +∠ADB =90∘,∴BD ⊥EC ,又∵PH ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PH , 又∵PH ∩EC =H ,且PH ,EC ⊄平面PEC ,∴BD ⊥平面PEC ,又∵PC ⊂平面PEC ,∴PC ⊥BD . 解:(2)由(1)可知△DHE∽△DAB ,由题意得BD =EC =5,AB =DE =√5, ∴DH DA=EH BA=DE DB,∴EH =1,HC =4,DH =2,HB =3, ∵PH 、EC 、BD 两两垂直,建立以H 为坐标原点,HB 、HC 、HP 所在直线分别为x ,y ,z 轴的坐标系, H(0,0,0),B(3,0,0),C(0,4,0),D(−2,0,0),P(0,0,4), 假设线段PC 上存在一点F 满足题意, ∵CF ⃗⃗⃗⃗⃗ 与CP ⃗⃗⃗⃗⃗ 共线,∴存在唯一实数λ,(0≤λ≤1),满足CF ⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ , 解得F(0,4−4λ,4λ),设向量n ⃗ =(x,y ,z)为平面CPD 的一个法向量,且CP ⃗⃗⃗⃗⃗ =(0,−4,4),CD ⃗⃗⃗⃗⃗ =(−2,−4,0),∴{n ⃗ ⋅CP ⃗⃗⃗⃗⃗ =−4y +4z =0n⃗ ⋅CD ⃗⃗⃗⃗⃗ =−x −2y =0,取x =2,得n⃗ =(2,−1,−1), 同理得平面CPD 的一个法向量m⃗⃗⃗ =(0,λ,λ−1),7 / 16∵二面角B −DF −C 的余弦值是√1515,∴|cos <n ⃗ ,m ⃗⃗⃗ >|=|n ⃗⃗ ⋅m ⃗⃗⃗ ||n ⃗⃗ |⋅|m ⃗⃗⃗ |=√6⋅√2λ2−2λ+1=√1515, 由0≤λ≤1,解得λ=34, ∴CF ⃗⃗⃗⃗⃗ =34CP⃗⃗⃗⃗⃗ , ∵CP =4√2,∴线段PC 上存在一点F ,当点F 满足CF =3√2时,二面角B −DF −C 的余弦值是√1515.19. 解:(1)x =45×0.005×10+55×0.015×10+65×0.02×10+75×0.03×10+85×0.025×10+95×0.005×10=72(分), 众数为75分.(2)90分以上的人数为160×0.005×10=8人. ∴ξ的可能取值为2,3,4, P(ξ=2)=C 33⋅C 51+C 32⋅C 22C 84=435,P(ξ=3)=C 32⋅C 21⋅C 31+C 31⋅C 22⋅C 31+C 32⋅C 32+C 22⋅C 32C 84=3970,P(ξ=4)=C 32⋅C 31⋅C 21+C 33⋅C 51C 84=2370.∴ξ的数学期望是E(ξ)=2×435+3×3970+4×2370=4514.20. 解:(1)∵点(2,4)在抛物线y 2=2px 上,∴16=4p ,解得p =4,∴椭圆的右焦点为F(2,0), ∴c =2, ∵椭圆C 1:x 2a2+y 2b 2=1(a >b >0)的离心率为√22,∴ca =√22, ∴a =2√2,∴b 2=a 2−c 2=8−4=4, ∴椭圆C 1的方程为x 28+y 24=1,(2)设直线l 的方程为y =kx +m ,设A(x 1,y 1),B(x 2,y 2), 由{x 2+2y 2=8y=kx+m,消y 可得(1+2k 2)x 2+4kmx +2m 2−8=0, ∴x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−81+2k 2,∴y 1+y 2=k(x 1+x 2)+2m =2m1+2k 2,y 1y 2=k 2x 1x 2+km(x 1+x 2)+m 2=m 2−8k 21+2k 2∵M(0,2),直线AM与BM的斜率乘积为−12,∴k1⋅k2=y1−2x1⋅y2−2x2=y1y2−2(y1+y2)+4x1x2=m−22(m+2)=−12,解得m=0,∴直线l的方程为y=kx,线段AB的中点为坐标原点,由弦长公式可得|AB|=√1+k2√(x1+x2)2−4x1x2=√32(k2+1)1+2k2,∵|AN|=|BN|,∴ON垂直平分线段AB,当k≠0时,设直线ON的方程为y=−1kx,同理可得|ON|=12√32(1k2+1)2×1k2+1=12√32(k2+1)k2+2,∴S△ABN=12|ON|⋅|AB|=8√(k2+1)2(k2+2)(2k2+1),当k=0时,△ABN的面积也适合上式,令t=k2+1,t≥1,0<1t≤1,则S△ABN=8√t2(t+1)(2t−1)=8√1−1t2+1t+2=8√1−(1t−12)2+94,∴当1t =2时,即k=±1时,S△ABN的最小值为163.21. 解:(1)当b=2时,f(x)=ae x+x2−2x,(a∈R),f′(x)=ae x+2x−2,(a∈R),由题意得ae x+2x−2=0,即a=2−2xe x,令ℎ(x)=2−2xe x ,则ℎ′(x)=2x−4e x=0,解得x=2,当x<2时,ℎ′(x)<0,ℎ(x)单调弟增,当x>2时,ℎ′(x)>0,ℎ(x)单调递减,∴ℎ(x)min=ℎ(2)=−2e2,∵当x=−1时,ℎ(−1)=4e>0,当x>2时,ℎ(x)=2−2xe x<0,由题意得当a=−2e2或a∈[0,+∞)时,f′(x)在R上有且只有一个零点.(2)由f(x)=ae x+x2−bx,得f′(x)=ae x+2x−b,假设存在x0,则有f(x0)=f′(x0+m2)(x0−m)+n=f′(x0+m2)(x0−m)+f(m),即f(x0)−f(m)x0−m =f′(x0+m2),(x0≠m),∵f′(x0+m2)=ae x0+m2+2⋅x0+m2−b,f(x0)−f(m)x0−m =a(e x0−e m)+(x02−m2)−b(x0−m)x0−m=a(e x0−e m)x0−m+(x0+m)−b,∴ae x0+m2+2⋅x0+m2−b=a(e x0−e m)x0−m+(x0+m)−b,即ae x0+m2=a(e x0−e m)x0−m,∵a≠0,∴ex0+m2=e x0−e mx0−m,令t=x0−m>0,则e t2−m=e t+m−e mt,两边同时除以e m,得e t2=e t−1t,即te t2=e t−1,令g(t)=e t−te t2−1,∴g′(t)=e t−(e t2+t2e t2)=e t2(e t2−t2−1),令ℎ(t)=e t2−t2−1在(0,+∞)上单调递增,且ℎ(0)=0,∴ℎ(t)>0对于t∈(0,+∞)恒成立,即g′(t)>0对于t∈(0,+∞)恒成立,∴g(e)在(0,+∞)上单调递增,g(0)=0,∴g(t)>0对于t∈(0,+∞)恒成立,∴ae x0+m2=a(e x0−e m)x0−m不成立,同理,t=x0−m<0时,bngidnuu,∴不存在实数x0(x0≠m)使得f(x0)−n=f′(x0+m2)(x0−m)成立.22. 解:(1)l1,l2的极坐标方程为θ1=α(ρ∈R),θ2=α+π4(ρ∈R).曲线C的极坐标方程方程为ρ−4cosθ=0.即得ρ2−4ρcosθ=0,利用ρ2=x2+y2,x=ρcosθ得曲线C的直角坐标方程为(x−2)2+y2=4.(2)因为ρ1=4cosα,ρ2=4cos(α+π4),所以|AB|2=ρ12+ρ22−2ρ1.ρ2cosπ4=16[cos2α+cos2(α+π4)−√2cosαcos(α+π4)]=16[cos2α+12(cosα−sinα)2−cosα(cosα−sinα)]=8,所以|AB|的值为2√2.23. 解:(1)当x≥2时,x−2≥1−2x,得x≥1,故x≥2,当x<2时,2−x≥1−2x,得x≥−1,故−1≤x<2,综上,不等式的解集是{x|x≥−1};(2)∵f(x)+|x−1|的最小值是3,∴f(x)+|x−1|≥|x−a−(x−1)|=|a−1|=3,故a=4,∵m+n=m2+m2+n≥33m2⋅m2⋅n=3,当且仅当m2=n即m=2,n=1时取“=”.【解析】1. 解:A={x|x<−1,或x>3};∴∁R A={x|−1≤x≤3};∴(∁R A)∩B={0,1,2,3}.故选:C.9/ 16可先求出集合A ={x|x <−1,或x >3},然后进行交集、补集的运算即可. 考查一元二次不等式的解法,以及描述法、列举法表示集合的概念,交集和补集的运算.2. 解:由复数a+3i 1+2i =(a+3i)(1−2i)(1+2i)(1−2i)=(a+6)+(3−2a)i5=a+65+3−2a 5i 是纯虚数,则{a+65=03−2a5≠0,解得a =−6.故选:A .利用复数的除法运算化简为a +bi(a,b ∈R)的形式,由实部等于0且虚部不等于求解a 的值.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.3. 解:f(x)=sinx −tanx ,x ∈(0,π2),当x =π4时,∴f(x)=√22−1<0,命题p :∃x 0∈(0,π2),f(x 0)<0,是真命题,命题p :∃x 0∈(0,π2),f(x 0)<0,则¬p :∀x ∈(0,π2),f(x)≥0.故选:C .利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果.本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查. 4. 解:当S =1时,不满足退出循环的条件,故S =1,i =3; 当S =1时,不满足退出循环的条件,故S =3,i =5; 当S =3时,不满足退出循环的条件,故S =15,i =7; 当S =15时,不满足退出循环的条件,故S =105,i =9; 当S =105时,不满足退出循环的条件,故S =945,i =11; 当S =945时,不满足退出循环的条件,故S =10395,i =13; 当S =10395时,满足退出循环的条件, 故输出的i =13, 故选:D .由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5. 解:由题意,第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个为C 32=3,然后分别从选择的班级中再选择一个学生为C 21C 21=4,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,为C 31=3,然后再从剩下的两个班级中分别选择一人为C 21C 21=4,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式, 故选:B .分类讨论,第一类,一班的2名同学在甲车上;第二类,一班的2名同学不在甲车上,再利用组合知识,问题得以解决.本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.11 / 166. 解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;正视图和侧视图是腰长为1的两个全等的等腰直角三角形, ∴四棱锥的底面是正方形,且边长为1,其中一条侧棱PD ⊥底面ABCD ,且侧棱AD =1,∴四棱锥的四个侧面都为直角三角形,且PA =PC =√2, ∴四棱锥的表面积为S =S 底面ABCD +2S △SAD +2S △SAB =1+2×12×1×1+2×12×1×√2=2+√2. 故选:C .由三视图知该几何体是侧棱垂直于底面的四棱锥, 画出图形结合图形求出它的表面积.本题考查了利用空间几何体的三视图求几何体表面积的应用问题,是基础题. 7. 解:作出不等式组{x +y ≤4y −x ≥0x −1≥0表示的平面区域, 得到如图的△MNP 及其内部,其中M(1,1),N(2,2),P(1,3)∵圆C :(x +1)2+(y +1)2=r 2(r >0)表示以C(−1,−1)为圆心,半径为r 的圆,∴由图可得,当半径满足r <CM 或r >CP 时,圆C 不经过区域D 上的点,∵CM =√(1+1)2+(1+1)2=2√2,CP =√(1+1)2+(3+1)2=2√5∴当0<r <2√2或r >2√5时,圆C 不经过区域D 上的点, 故选:A .作出题中不等式组表示的平面区域,得到如图的△MNP 及其内部,而圆C 表示以(−1,−1)为圆心且半径为r 的圆.观察图形,可得半径r <CM 或r >CP 时,圆C 不经过区域D 上的点,由此结合平面内两点之间的距离公式,即可得到r 的取值范围. 本题给出动圆不经过已知不等式组表示的平面区域,求半径r 的取值范围.着重考查了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面区域等知识,属于中档题.8. 解:等边三角形ABC 的边长为3; ∴CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|CA ⃗⃗⃗⃗⃗ ||CB ⃗⃗⃗⃗⃗ |cos60∘=92; 6CM ⃗⃗⃗⃗⃗⃗ −3CA ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ; ∴CM ⃗⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗ ; ∴AM ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CM ⃗⃗⃗⃗⃗⃗ =−CA ⃗⃗⃗⃗⃗ +12CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗=−12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ ,BM ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CM ⃗⃗⃗⃗⃗⃗ =−CB ⃗⃗⃗⃗⃗ +12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ −23CB ⃗⃗⃗⃗⃗ ; ∴AM ⃗⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =(−12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ )⋅(12CA ⃗⃗⃗⃗⃗ −23CB ⃗⃗⃗⃗⃗ ) =−14CA ⃗⃗⃗⃗⃗ 2+12CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ −29CB ⃗⃗⃗⃗⃗ 2=−94+94−2=−2. 故选:B .根据条件可先求出CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =92,而由6CM ⃗⃗⃗⃗⃗⃗ −3CA ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ 即可得出CM ⃗⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ ,这样即可用CA ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ 分别表示出AM ⃗⃗⃗⃗⃗⃗ ,BM⃗⃗⃗⃗⃗⃗ ,然后进行数量积的运算即可. 考查向量数量积的运算及计算公式,以及向量的数乘运算,向量加法的几何意义.9. 解:函数f(x)=3sin(2x −π3)+1(x ∈R),周期T =2π2=π,对于A :由f(x 1)=f(x 2)=1,可能x 1与x 2关于其中一条对称轴是对称的,此时x 1−x 2不是π的整数倍;∴A 不对. 对于B :由诱导公式,3sin(2x −π3)+1=3cos[π2−(2x −π3)]+1=3cos(2x −5π6)+1.∴B 不对. 对于C :令x =3π4,可得f(3π4)=3sin(2×3π4−π3)+1=3×(−12)−1=−52,∴C 不对, 对于D :当x =−π12时,可得f(−π12)=3sin(−π6−π3)+1=−1×3+1=−2, f(x)的图象关于直线x =−π12对称. 故选:D .根据函数f(x)=3sin(2x −π3)+1(x ∈R),结合三角函数的性质即可判断各选项. 本题主要考查利用y =Asin(ωx +φ)的信息特征,判断各选项的正误,属于中档题.10. 解:由题意,f(x)<−m +4,可得m(x 2−x +1)<5. ∵当x ∈[1,3]时,x 2−x +1∈[1,7], ∴不等式f(x)<0等价于m <5x 2−x+1. ∵当x =3时,5x 2−x+1的最小值为57, ∴若要不等式m <5x 2−x+1恒成立, 则必须m <57,因此,实数m 的取值范围为(−∞,57),故选:D .利用分离参数法,再求出对应函数在x ∈[1,3]上的最大值,即可求m 的取值范围.本题考查恒成立问题,考查分离参数法的运用,解题的关键是分离参数,正确求最值,属于中档题.11. 解:双曲线的一条渐近线方程为y=bax,双曲线的渐近线被圆M:x2+y2−10x=0,即(x−5)2+y2=25所截得的两条弦长之和为12,设圆心到直线的距离为d,则d=√25−9=4,∴√a2+b2=4,即5b=4c,即b=45c∵a2=c2−b2=925c2,∴a=35c,∴|AP−BP|=2a,由正弦定理可得APsinB =PBsinA=ABsinP=2R,∴sinB=AP2R ,sinA=BP2R,sinP=2c2R,∴|sinP||sinA−sinB|=2c2R|BP2R−AP2R|=2c2a=53,故选:C.根据垂径定理求出圆心到直线的距离为d=4,再根据点到直线的距离公式可得5b√a2+b2=4,得到5b=4c,即可求出a=35c,根据正弦定理可得|sinP||sinA−sinB|=2c2R|BP2R−AP2R|=2c2a=53本题考查了双曲线的简单性质以及圆的有关性质和正弦定理,属于中档题12. 解:f(x)=f′(1)2e2x−2+x2−2f(0)⋅x,令x=0,则f(0)=f′(1)2e2.∵f′(x)=f′(1)⋅e2x−2+2x−2f(0),令x=1,则f′(1)=f′(1)+2−2f(0),解得f(0)=1.∴f′(1)=2e2.∴f(x)=e2x+x2−2x,∴f(2)=e4.令ℎ(x)=e2x g(x),∵g′(x)+2g(x)<0,∴ℎ′(x)=e2x g′(x)+2e2x g(x)=e2x[g′(x)+2g(x)]<0,∴函数ℎ(x)在R上单调递减,∴ℎ(2016)>ℎ(2018),∴e2016×2g(2016)>e2018×2g(2018),可得:g(2016)>e4g(2018).∴g(2016)>f(2)g(2018).故选:C.13/ 16f(x)=f′(1)2e 2x−2+x 2−2f(0)⋅x ,令x =0,则f(0)=f ′(1)2e 2.由f′(x)=f′(1)⋅e 2x−2+2x −2f(0),令x =1,可得f(0).进而得出f′(1),f(x),f(2).令ℎ(x)=e 2x g(x),及其已知g′(x)+2g(x)<0,可得ℎ′(x)=e 2x [g′(x)+2g(x)]<0,利用函数ℎ(x)在R 上单调递减,即可得出.本题考查了利用导数研究函数的单调性极值与最值、构造法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.13. 解:由于a =∫(π0cosx −sinx)dx =(sinx +cosx)| 0π=−1−1=−2,∴(−2√x −1√x)6=(2√x +1√x)6的通项公式为T r+1=26−r C 6r⋅x 3−r ,令3−r =2,求得r =1,故含x 2项的系数为26−1C 61=192. 故答案为:192根据微积分基本定理首先求出a 的值,然后再根据二项式的通项公式求出r 的值,问题得以解决.本题主要考查定积分、二项式定理的应用,二项式展开式的通项公式,属于基础题.14. 解:∵函数f(x)={ax(x +2),x <0x(x−b),x≥0={ax 2+2ax,x <0x 2−bx,x≥0为奇函数,故f(−x)=−f(x)恒成立, 故{−b =2a a=−1.即{b =2a=−1, ∴f(x)={−x 2−2x,x <0x 2−2x,x≥0,∴f(a +b)=f(1)=1−2=−1, 故答案为:−1.由已知中函数f(x)为奇函数,f(−x)=−f(x)恒成立,可得a ,b 的值,进而可得f(a +b)的值.本题考查的知识点是分段函数的应用,函数的奇偶性,函数求值,难度中档. 15. 解:由题意,△ABC 的外接圆即为球的大圆,r =2, 设底面△ABC 外接圆圆心G ,即GA =GB =GC =2,从而正三角形ABC 边长2√3, 设球心O ,由题意,E 、F 在球面上,OE =OD =2, F 为DE 中点,则OF ⊥DE ,OF =GD =12GC =1,在Rt △OEF 中,OE =2,OF =1,∴EF =√3, ∴DE =2√3, ∴AA 1=2√3. 故答案为:2√3.由题意求出正三棱柱的高、底面边长,即可求出AA 1的长度.本题考查正三棱柱的内切球与正三棱柱的关系,通过二者的关系求出正三棱柱的体积,考查计算能力,逻辑推理能力.16. 解:由CD//OA ,∠AOB =π3,∠AOC =θ,得∠OCD =θ,∠ODC =2π3,∠COD =π3−θ; 在△OCD 中,由正弦定理,得CD =√3sin(π3−θ),θ∈(0,π3), 设渔网的长度为f(θ),可得f(θ)=θ+1+√3sin(π3−θ),15 / 16所以f′(θ)=1−√3cos(π3−θ),因为θ∈(0,π3), 所以π3−θ∈(0,π3),令f′(θ)=0,得cos(π3−θ)=3,所以π3−θ=π6,所以θ=π6.所以f(θ)∈(2,π+6+2√36]. 故所需渔网长度的最大值为π+6+2√36. 确定∠COD ,在△OCD 中利用正弦定理求得CD 的长度,根据所需渔网长度,即图中弧AC 、半径OC 和线段CD 长度之和,确定函数的解析式,利用导数确定函数的最值,求得所需渔网长度的最大值.本题考查了正弦定理的应用问题,也考查了函数模型的构建与最值应用问题,是难题.17. (1)6S n =a n2+3a n +2,n ∈N ∗.n ≥2时,6a n =6S n −6S n−1,化为(a n +a n−1)(a n −a n−1−3)=0,由a n >0,可得a n −a n−1=3,n =1时,6a 1=a 12+3a 1+2,且a 1<2,解得a 1.利用等差数列的通项公式可得a n .(2)b n =(−1)n a n 2=(−1)n (3n −2)2.b 2n−1+b 2n =−(6n −5)2+(6n −2)2=3(12n −7)=36n −21.利用分组求和即可得出.本题考查了数列递推关系、等差数列的定义通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.18. (1)推导出△BAD≌△EDC ,∠DBA =∠DEH ,从而BD ⊥EC ,由PH ⊥平面ABCD ,得BD ⊥PH ,由此能证明BD ⊥平面PEC ,从而PC ⊥BD .(2)推导出PH 、EC 、BD 两两垂直,建立以H 为坐标原点,HB 、HC 、HP 所在直线分别为x ,y ,z 轴的坐标系,利用向量法能求出线段PC 上存在一点F ,当点F 满足CF =3√2时,二面角B −DF −C 的余弦值是√1515.本题考查线线垂直垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题. 19. (1)把组中值看作各小组的平均数,根据加权平均数公式计算; (2)根据组合数公式计算各种情况的概率,得出分布列.本题考查了频率分布直方图,离散型随机变量的分布列和数学期望,属于中档题.20. (1)先求出p 的值,即可求出c 的值,根据离心率求出a 的值,即可得到椭圆方程, (2)设直线l 的方程为y =kx +m ,设A(x 1,y 1),B(x 2,y 2),由{x 2+2y 2=8y=kx+m,根据直线AM 与BM 的斜率乘积为−12,求出m =0,再根据弦长公式求出|AB|和|ON|,表示出三角形的面积来,再利用二次函数的性质即可求出最小值.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查椭圆与二次函数函数的应用,考查计算能力,属于难题.21. (1)当b =2时,f(x)=ae x +x 2−2x ,(a ∈R),f′(x)=ae x +2x −2,(a ∈R),由题意a =2−2x e x,令ℎ(x)=2−2x e x,则ℎ′(x)=2x−4e x=0,解得x =2,由此能求出当a =−2e 2或a∈[0,+∞)时,f′(x)在R上有且只有一个零点.= (2)由f(x)=ae x+x2−bx,得f′(x)=ae x+2x−b,假设存在x0,则f(x0)−f(m)x0−m ),(x0≠m),利用导数性质推导出不存在实数x0(x0≠m)使得f(x0)−n=f′(x0+m2f′(x0+m)(x0−m)成立.2本题考查利用导数研究函数的性质及实数的最值范围的求法、满足条件的实数是否存在的判断与证明,考查函数与方程思想、转化与化归思想,考查运算求解能力、推理论证能力,考查创新意识,是中档题.22. (1)考查直线l1,l2参数方程与极坐标方程的互化,曲线C的极坐标方程与直角坐标方程的互化.重点都是消去参数t.(2)利用l1,l2极坐标方程,结合余弦定理,计算出|AB|的长度.考查极坐标方程与参数方程,普通方程的互化.记准互化公式和原则是关键,属于中档题目.23. (1)通过讨论x的范围,求出不等式的解集即可;(2)根据绝对值不等式的性质求出a的值,结合基本不等式的性质求出m+n的最小值即可.本题考查了解绝对值不等式问题,考查绝对值的性质以及基本不等式的性质,是一道中档题.。

2018年河南省开封市高考数学一模试卷(理科) (1)

2018年河南省开封市高考数学一模试卷(理科) (1)

2018年河南省开封市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若,则sin2α的值为()A.B.C.D.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.26.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=27.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.10.(5分)函数y=的图象大致是()A.B. C.D.11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M上一点P满()足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)A.B.C.D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有+x n=()零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1A.B.445πC.455πD.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有个.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A 到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.2018年河南省开封市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【解答】解:∵U=R,集合A={x|x≥1}=[1,+∞),B={x|x>a}=(a,+∞),∴∁U A=(﹣∞,1),又(∁U A)∪B=R,∴实数a的取值范围是(﹣∞,1).故选:A.2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z1=1﹣2i,且复数z1,z2在复平面内对应的点关于虚轴对称,∴z2=﹣1﹣2i,则=,∴复数在复平面内对应的点的坐标为(),在第四象限.故选:D.3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵=(m﹣1,1),=(m,﹣2),∴⇔m(m﹣1)﹣2=0.由m(m﹣1)﹣2=0,解得m=﹣1或m=2.∴“m=2”是“⊥”的充分不必要条件.故选:A.4.(5分)若,则sin2α的值为()A.B.C.D.【解答】解:若,即2(cos2α﹣sin2α)=cosα﹣sinα,则2(cosα+sinα)=,即cosα+sinα=,∴1+2sinαcosα=,即sin2α=2sinαcosα=﹣,故选:C.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.2【解答】解:设等比数列{a n}的公比为q≠1,∵9S3=S6,a2=1,∴=,a1q=1.则q=2,a1=.故选:A.6.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=2【解答】解:根据题意,若曲线﹣=1(a>0,b>0)为等轴双曲线,则a2=b2,c==a,即焦点的坐标为(±a,0);其渐近线方程为x±y=0,若焦点到渐近线的距离为,则有=a=,则双曲线的标准方程为﹣=1,即x2﹣y2=2;故选:D.7.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.【解答】解:由题意可得:由图可知第一次剩下,第二次剩下,…由此得出第7次剩下,可得①为i≤7?②s=③i=i+1故选:D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.【解答】解:由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,由于两球不等,所以排除A;B正确;故选B9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.【解答】解:根据题意,最近路线,那就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,一共7次,∴最近的行走路线共有:n=A=5040,∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列,接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排三个元素,也就是A53,则最近的行走路线中不连续向上攀登的共有m==1440种,∴其最近的行走路线中不连续向上攀登的概率p===.故选:C.10.(5分)函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M上一点P满()足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有+x n=()零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1A.B.445πC.455πD.【解答】解:函数,令2x﹣=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,0≤x≤,当k=30时,可得x=,∴f(x)在[0,]上有30条对称轴,根据正弦函数的性质可知:函数与y=3的交点x1,x2关于对称,x2,x3关于对称,…,即x1+x2=×2,x2+x3=×2,…,x n﹣1+x n=2×()将以上各式相加得:x1+2x2+2x3+…+2x28+x29=2(++…+)=(2+5+8+…+89)×=455π+x n=(x1+x2)+(x2+x3)+x3+…+x n﹣1+(x n﹣1+x n)=2()则x1+2x2+2x3+…+2x n﹣1=455π,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为13.【解答】解:由约束条件作出可行域如图,作出直线3x+5y=0,∵x,y∈Z,∴平移直线3x+5y=0至(1,2)时,目标函数z=3x+5y的最大值为13.故答案为:13.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有4个.【解答】解:f(x)=,且f(f(a))=2∴当a<2时,f(a)=2e a﹣1,若2e a﹣1<2,则f(f(a))=﹣1=2,解得a=1﹣ln2;若2e a﹣1≥2,则f(f(a))==2,解得a=ln+1,成立;当a≥2时,f(a)=log3(a2﹣1),若log3(a2﹣1)<2,则f(f(a))=﹣1=2,解得a=2,或a=﹣2,与a≥2不符,若log3(a2﹣1)≥2,则f(f(a))=log3[(log3(a2﹣1)]=2,解得a2=310+1,∴a=或a=﹣与a≥2不符.由此得到满足条件的a的值有1﹣ln2和ln+1和2和,共4个.故答案为:4.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.【解答】解:∵在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,∴小正四面体的外接球是纸盒的内切球,设正四面体的棱长为a,则内切球的半径为a,外接球的半径是a,∴纸盒的内切球半径是=,设小正四面体的棱长是x,则=x,解得x=,∴小正四面体的棱长的最大值为,故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.则:2cosB(sinAcosC+sinCcosA)+sinB=0,整理得:2cosBsin(A+C)=﹣sinB,由于:0<B<π,则:sinB≠0,解得:,所以:B=.(Ⅱ)点D在AC边上且BD⊥AC,在直角△BCD中,若a=3,BD=,解得:,解得:,则:,,所以:cos∠ABD===,则:在Rt△ABD中,,=.故:c=5.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A 到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.【解答】(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC,而PB⊂平面PBC,∴平面PBC⊥平面PEC;(Ⅱ)解:以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),∴,,=(,,﹣).设平面PED的一个法向量为,由,令z=﹣1,则,又平面PBE的一个法向量为,则cos<>==.∴二面角B﹣PE﹣D的余弦值为.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)【解答】解:(Ⅰ)由题意可得关于商品和服务评价的2×2列联表如下:K2=≈11.111>6.635,故有99%的把握,认为商品好评与服务好评有关.(Ⅱ)(1)每次购物时,对商品和服务全为好评的概率为,且X的取值可以是0,1,2,3.其中P(X=0)=()3=,P(X=1)==,P(X=2)=,P(X=3)==,X的分布列为:(2)∵X~B(3,),∴E(X)=,D(X)=3×=.20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.【解答】解:(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e===,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l 1,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,⊥l2.∴•=﹣1,则l(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.【解答】解:(Ⅰ)由f(x)=(t﹣1)xe x,得f′(x)=(t﹣1)(x+1)e x,若t>1,则x<﹣1时,f′(x)<0,f(x)递减,x>﹣1时,f′(x)>0,f(x)递增,若t<1,则x<﹣1时,f′(x)>0,f(x)递增,x>﹣1时,f′(x)<0,f(x)递减,故t>1时,f(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,t<1时,f(x)在(﹣∞,﹣1)递增,在(﹣1,+∞)递减;(2)f(x)≤g(x)在[0,+∞)上恒成立,即(t﹣1)xe x﹣tx﹣1+e x≤0对∀x≥0成立,设h(x)=(t﹣1)xe x﹣tx﹣1+e x,h(0)=0,h′(x)=(t﹣1)(x+1)e x﹣t+e x,h′(0)=0,h″(x)=e x[(t﹣1)x+2t﹣1],t=1时,h″(x)=e x≥0,h′(x)在[0,+∞)递增,∴h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,显然不成立,∴t≠1,则h″(x)=e x(x+)(t﹣1),令h″(x)=0,则x=﹣,①当﹣≤0即t<或t>1时,若t≤,则h″(x)在[0,+∞)为负,h′(x)递减,故有h′(x)≤h′(0)=0,h(x)在[0,+∞)递减,∴h(x)≤h(0)=0成立,若t≥1,则h″(x)在[0,+∞)上为正,h′(x)递增,故有h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,不成立,②﹣≥0即≤t≤1时,h″(x)在[0,﹣)内有h′(x)≥h′(0)=0,h(x)递增,故h(x)在[0,﹣)内有h(x)≥h(0)=0不成立,综上,t的范围是(﹣∞,].选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.【解答】解:(Ⅰ)直线l:3x﹣y﹣6=0,转化为直角坐标方程为:(t为参数),曲线C:ρ﹣4sinθ=0.转化为直角坐标方程为:x2+y2﹣4y=0.(Ⅱ)首先把x2+y2﹣4y=0的方程转化为:x2+(y﹣2)2=4,所以经过圆心,且倾斜角为30°的直线方程为:,则:,解得:,则:=,则:|AP|的最大值为:,|AP|的最小值为:.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.【解答】解:(Ⅰ)∵|x+1|+|2x﹣1|≤3,∴或或,解得:﹣1≤x≤1,故m=﹣1,n=1;(Ⅱ)由(Ⅰ)a+b+c=2,则++=(++)(a+b+c)=[1+1+1+(+)+(+)+(+)]≥+(2+2+2)水秀中华 水秀中华 21=+3=,当且仅当a=b=c=时“=”成立.。

2018年河南省开封市高考数学一模试卷(理科) (1)

2018年河南省开封市高考数学一模试卷(理科) (1)

2018年河南省开封市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若,则sin2α的值为()A.B.C.D.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.26.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=27.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.10.(5分)函数y=的图象大致是()A.B. C.D.11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有个.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.2018年河南省开封市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【解答】解:∵U=R,集合A={x|x≥1}=[1,+∞),B={x|x>a}=(a,+∞),∴∁U A=(﹣∞,1),又(∁U A)∪B=R,∴实数a的取值范围是(﹣∞,1).故选:A.2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z1=1﹣2i,且复数z1,z2在复平面内对应的点关于虚轴对称,∴z2=﹣1﹣2i,则=,∴复数在复平面内对应的点的坐标为(),在第四象限.故选:D.3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵=(m﹣1,1),=(m,﹣2),∴⇔m(m﹣1)﹣2=0.由m(m﹣1)﹣2=0,解得m=﹣1或m=2.∴“m=2”是“⊥”的充分不必要条件.故选:A.4.(5分)若,则sin2α的值为()A.B.C.D.【解答】解:若,即2(cos2α﹣sin2α)=cosα﹣sinα,则2(cosα+sinα)=,即cosα+sinα=,∴1+2sinαcosα=,即sin2α=2sinαcosα=﹣,故选:C.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.2【解答】解:设等比数列{a n}的公比为q≠1,∵9S3=S6,a2=1,∴=,a1q=1.则q=2,a1=.故选:A.6.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=2【解答】解:根据题意,若曲线﹣=1(a>0,b>0)为等轴双曲线,则a2=b2,c==a,即焦点的坐标为(±a,0);其渐近线方程为x±y=0,若焦点到渐近线的距离为,则有=a=,则双曲线的标准方程为﹣=1,即x2﹣y2=2;故选:D.7.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.【解答】解:由题意可得:由图可知第一次剩下,第二次剩下,…由此得出第7次剩下,可得①为i≤7?②s=③i=i+1故选:D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.【解答】解:由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,由于两球不等,所以排除A;B正确;故选B9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.【解答】解:根据题意,最近路线,那就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,一共7次,∴最近的行走路线共有:n=A=5040,∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列,接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排三个元素,也就是A53,则最近的行走路线中不连续向上攀登的共有m==1440种,∴其最近的行走路线中不连续向上攀登的概率p===.故选:C.10.(5分)函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.【解答】解:函数,令2x﹣=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,0≤x≤,当k=30时,可得x=,∴f(x)在[0,]上有30条对称轴,根据正弦函数的性质可知:函数与y=3的交点x1,x2关于对称,x2,x3关于对称,…,即x1+x2=×2,x2+x3=×2,…,x n﹣1+x n=2×()将以上各式相加得:x1+2x2+2x3+...+2x28+x29=2(++...+)=(2+5+8+ (89)×=455π则x1+2x2+2x3+…+2x n+x n=(x1+x2)+(x2+x3)+x3+…+x n﹣1+(x n﹣1+x n)=2﹣1()=455π,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为13.【解答】解:由约束条件作出可行域如图,作出直线3x+5y=0,∵x,y∈Z,∴平移直线3x+5y=0至(1,2)时,目标函数z=3x+5y的最大值为13.故答案为:13.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a 的值有4个.【解答】解:f(x)=,且f(f(a))=2∴当a<2时,f(a)=2e a﹣1,若2e a﹣1<2,则f(f(a))=﹣1=2,解得a=1﹣ln2;若2e a﹣1≥2,则f(f(a))==2,解得a=ln+1,成立;当a≥2时,f(a)=log3(a2﹣1),若log3(a2﹣1)<2,则f(f(a))=﹣1=2,解得a=2,或a=﹣2,与a≥2不符,若log3(a2﹣1)≥2,则f(f(a))=log3[(log3(a2﹣1)]=2,解得a2=310+1,∴a=或a=﹣与a≥2不符.由此得到满足条件的a的值有1﹣ln2和ln+1和2和,共4个.故答案为:4.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.【解答】解:∵在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,∴小正四面体的外接球是纸盒的内切球,设正四面体的棱长为a,则内切球的半径为a,外接球的半径是a,∴纸盒的内切球半径是=,设小正四面体的棱长是x,则=x,解得x=,∴小正四面体的棱长的最大值为,故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.则:2cosB(sinAcosC+sinCcosA)+sinB=0,整理得:2cosBsin(A+C)=﹣sinB,由于:0<B<π,则:sinB≠0,解得:,所以:B=.(Ⅱ)点D在AC边上且BD⊥AC,在直角△BCD中,若a=3,BD=,解得:,解得:,则:,,所以:cos∠ABD===,则:在Rt△ABD中,,=.故:c=5.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.【解答】(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC,而PB⊂平面PBC,∴平面PBC⊥平面PEC;(Ⅱ)解:以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),∴,,=(,,﹣).设平面PED的一个法向量为,由,令z=﹣1,则,又平面PBE的一个法向量为,则cos<>==.∴二面角B﹣PE﹣D的余弦值为.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)【解答】解:(Ⅰ)由题意可得关于商品和服务评价的2×2列联表如下:K2=≈11.111>6.635,故有99%的把握,认为商品好评与服务好评有关.(Ⅱ)(1)每次购物时,对商品和服务全为好评的概率为,且X的取值可以是0,1,2,3.其中P(X=0)=()3=,P(X=1)==,P(X=2)=,P(X=3)==,X的分布列为:(2)∵X~B(3,),∴E(X)=,D(X)=3×=.20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.【解答】解:(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e===,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l 1,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,∴•=﹣1,则l 1⊥l2.(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.【解答】解:(Ⅰ)由f(x)=(t﹣1)xe x,得f′(x)=(t﹣1)(x+1)e x,若t>1,则x<﹣1时,f′(x)<0,f(x)递减,x>﹣1时,f′(x)>0,f(x)递增,若t<1,则x<﹣1时,f′(x)>0,f(x)递增,x>﹣1时,f′(x)<0,f(x)递减,故t>1时,f(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,t<1时,f(x)在(﹣∞,﹣1)递增,在(﹣1,+∞)递减;(2)f(x)≤g(x)在[0,+∞)上恒成立,即(t﹣1)xe x﹣tx﹣1+e x≤0对∀x≥0成立,设h(x)=(t﹣1)xe x﹣tx﹣1+e x,h(0)=0,h′(x)=(t﹣1)(x+1)e x﹣t+e x,h′(0)=0,h″(x)=e x[(t﹣1)x+2t﹣1],t=1时,h″(x)=e x≥0,h′(x)在[0,+∞)递增,∴h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,显然不成立,∴t≠1,则h″(x)=e x(x+)(t﹣1),令h″(x)=0,则x=﹣,①当﹣≤0即t<或t>1时,若t≤,则h″(x)在[0,+∞)为负,h′(x)递减,故有h′(x)≤h′(0)=0,h(x)在[0,+∞)递减,∴h(x)≤h(0)=0成立,若t≥1,则h″(x)在[0,+∞)上为正,h′(x)递增,故有h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,不成立,②﹣≥0即≤t≤1时,h″(x)在[0,﹣)内有h′(x)≥h′(0)=0,h(x)递增,故h(x)在[0,﹣)内有h(x)≥h(0)=0不成立,综上,t的范围是(﹣∞,].选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.【解答】解:(Ⅰ)直线l:3x﹣y﹣6=0,转化为直角坐标方程为:(t为参数),曲线C:ρ﹣4sinθ=0.转化为直角坐标方程为:x2+y2﹣4y=0.(Ⅱ)首先把x2+y2﹣4y=0的方程转化为:x2+(y﹣2)2=4,所以经过圆心,且倾斜角为30°的直线方程为:,则:,解得:,则:=,则:|AP|的最大值为:,|AP|的最小值为:.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.【解答】解:(Ⅰ)∵|x+1|+|2x﹣1|≤3,∴或或,解得:﹣1≤x≤1,故m=﹣1,n=1;(Ⅱ)由(Ⅰ)a+b+c=2,则++=(++)(a+b+c)=[1+1+1+(+)+(+)+(+)]≥+(2+2+2)=+3=,当且仅当a=b=c=时“=”成立.7、我们各种习气中再没有一种象克服骄傲那麽难的了。

2018年河南省高考数学一诊试卷(理科)

2018年河南省高考数学一诊试卷(理科)

2018年河南省高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知a ∈R ,复数z =(a−i)(1+i)i,若z =z ,则a =( )A.1B.−1C.2D.−22. 已知集合M ={x|x−3x−1≤0},N ={x|y =log 3(−6x 2+11x −4)},则M ∩N =( ) A.[1, 43]B.(12, 3]C.(1, 43)D.(43, 2)3. 某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:∘C )的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是( )A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0∘C 的月份有4个4. 在等比数列{a n }中,若a 2=√22,a 3=√43,则a 1+a 15a 7+a 21=( )A.23B.12C.32D.25. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,袤七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为( ) A.128π平方尺 B.138π平方尺 C.140π平方尺 D.142π平方尺6. 定义[x]表示不超过x 的最大整数,(x)=x −[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x =5.8,则输出的z =( )A.−1.4B.−2.6C.−4.6D.−2.87. 若对于任意x ∈R 都有f(x)+2f(−x)=3cosx −sinx ,则函数f(2x)图象的对称中心为( )A.(kπ−π4,0)(k ∈Z) B.(kπ−π8,0)(k ∈Z) C.(kπ2−π4,0)(k ∈Z)D.(kπ2−π8,0)(k ∈Z)8. 设x ,y 满足约束条件{2x −y ≥0x +13y ≤1y ≥0,若z =−ax +y 取得最大值的最优解不唯一,则实数a 的值为( )A.2或−3B.3或−2C.−13或12D.−13或29. 函数f(x)=x(e −x −e x )4x 2−1的部分图像大致是( )A.B.C.D.10. 已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12√2+2√14B.20+6√2+2√14C.20+6√2+2√34D.20+12√2+2√3411. 设椭圆E:x2a2+y2b2=1(a>b>0)的一个焦点为F(1, 0),点A(−1, 1)为椭圆E内一点,若椭圆E上存在一点P,使得|PA|+|PF|=9,则椭圆E的离心率的取值范围是()A.[12,1) B.[13,12] C.[15,14] D.[12,23]12. 已知函数f(x)=lnx+(2e2−a)x−b2,其中e是自然对数的底数,若不等式f(x)≤0恒成立,则ba的最小值为()A.−1e2B.−2e2C.−1eD.−2e二、填空题(每题5分,满分20分,将答案填在答题纸上)在△ABC中,|AB→+AC→|=|AB→−AC→|,|AB→|=2,则AB→⋅BC→=________已知(1+x)(a−x)6=a0+a1x+a2x2+...+a7x7,a∈R,若a0+a1+a2+...+a6+ a7=0,则a3=________.已知S n为数列{a n}的前n项和,a1=1,当n≥2时,恒有ka n=a n S n−S n2成立,若设F1,F2分别是双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m, 18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为________.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2ccosC=b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.某班为了活跃元旦气氛,主持人请12位同学做一个游戏,第一轮游戏中,主持人将标有数字1到12的十二张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取得标有数字7到12的卡片的同学留下,其余的淘汰;第二轮将标有数字1到6的六张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字4到6的卡片的同学留下,其余的淘汰;第三轮将标有数字1,2,3的三张相同的卡片放入一个不透明的盒子中,每人依次从中取得一张卡片,取到标有数字2,3的卡片的同学留下,其余的淘汰;第四轮用同样的办法淘汰一位同学,最后留下的这位同学获得一个奖品.已知同学甲参加了该游戏.(1)求甲获得奖品的概率;(2)设X为甲参加游戏的轮数,求X的分布列和数学期望.如图,在三棱台ABC−A1B1C1中,D,E分别是AB,AC的中点,B1E⊥平面ABC,△AB1C是等边三角形,AB=2A1B1,AC=2BC,∠ACB=90∘.(1)证明:B1C // 平面A1DE;(2)求二面角A−BB1−C的正弦值.已知抛物线E:y2=2px(p>0),斜率为k且过点M(3, 0)的直线l与E交于A,B两点,(1)求抛物线E 的方程;(2)设点N(−3, 0),记直线AN ,BN 的斜率分别为k 1,k 2,证明:1k 12+1k 22−2k 2为定值.已知函数f(x)=(x +1)e ax (a ≠0),且x =2a 是它的极值点.(1)求a 的值;(2)求f(x)在[t −1, t +1]上的最大值;(3)设g(x)=f(x)+2x +3xlnx ,证明:对任意x 1,x 2∈(0, 1),都有|g(x 1)−g(x 2)|<2e 3+3e +1.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 1的参数方程为{x =t −√3y =kt (t 为参数),直线l 2的参数方程为{x =√3−my =m 3k (m 为参数),设直线l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C 1.(1)求出曲线C 1的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin(θ+π4)=4√2,点Q 为曲线C 1的动点,求点Q 到直线C 2的距离的最小值.[选修4-5:不等式选讲]已知f(x)=|x +a|(a ∈R).(1)若f(x)≥|2x +3|的解集为[−3, −1],求a 的值;(2)若∀x ∈R ,不等式f(x)+|x −a|≥a 2−2a 恒成立,求实数a 的取值范围.参考答案与试题解析2018年河南省高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【考点】复数的运算【解析】根据复数的基本运算进行化简,结合z=z,进行求解即可.【解答】解:z=(a−i)(1+i)i =a+1+(a−1)ii=a+1i+a−1=(a−1)−(a+1)i,则z=(a−1)+(a+1)i,∵z=z,∴a+1=0,得a=−1,故选B.2.【答案】C【考点】交集及其运算【解析】求解分式不等式化简集合M,求解一元二次不等式化简集合N,再由交集运算性质得答案.【解答】∵集合M={x|x−3x−1≤0}={x|1<x≤3},N={x|y=log3(−6x2+11x−4)}={x|−6x2+11x−4>0}={x|12<x<43},∴M∩N={x|1<x≤3}∩{x|12<x<43}=(1, 43).3.【答案】D【考点】频率分布折线图、密度曲线由该市2017年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据的折线图,得最低气温低于0∘C的月份有3个.【解答】由该市2017年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0∘C的月份有3个,故D错误.4.【答案】B【考点】等比数列的通项公式【解析】利用等比数列通项公式先求出公比q=a3a2=√43√2=216,再由a1+a15a7+a21=a1+a15q6(a1+a15)=1q6,能求出结果.【解答】∵在等比数列{a n}中,若a2=√2,a3=√43,∴公比q=a3a2=√43√2=216,∴a1=a2q =√2216=213,∴a1+a15a7+a21=a1+a15q6(a1+a15)=1q6=12.5.【答案】B【考点】球内接多面体球的体积和表面积【解析】构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个这个四棱锥的外接球就是这个长方体的外接球,由此能求出这个四棱锥的外接球的表面积.【解答】解:∵今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,∴构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个四棱锥的外接球就是这个长方体的外接球,∴这个四棱锥的外接球的半径R=√72+52+822=√1382(尺),∴这个四棱锥的外接球的表面积S=4π×R2=4π×1384=138π(平方尺).6.【答案】C【考点】程序框图【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量z的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】模拟程序的运行,可得x=5.8y=5−1.6=3.4x=5−1=4满足条件x≥0,执行循环体,x=1.7,y=1−1.4=−0.4,x=1−1=0满足条件x≥0,执行循环体,x=−0.2,y=−1−1.6=−2.6,x=−1−1=−2不满足条件x≥0,退出循环,z=−2+(−2.6)=−4.6.输出z的值为−4.6.7.【答案】D【考点】正弦函数的图象【解析】根据题意求出函数f(x)的解析式,再化f(x)为正弦型函数,可得函数f(2x)的解析式,根据正弦函数的对称性,求出f(2x)图象的对称中心.【解答】∵对任意x∈R,都有f(x)+2f(−x)=3cosx−sinx①,用−x代替x,得f(−x)+2f(x)=3cos(−x)−sin(−x)②,即f(−x)+2f(−x)=3cosx+sinx②;由①②组成方程组,解得f(x)=sinx+cosx,∴f(x)=√2sin(x+π4),∴f(2x)=√2sin(2x+π4).令2x+π4=kπ,k∈Z,求得x=kπ2−π8,故函数f(2x)图象的对称中心为(kπ2−π8, 0),k∈Z,8.【答案】A【考点】含参线性规划问题简单线性规划【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.解:作出不等式组对应的平面区域如图:(阴影部分OAB),由z=y−ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y−ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x−y=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y−ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+13y=1平行,此时a=−3,综上a=−3或a=2.故选A.9.【答案】B【考点】函数的图象变化【解析】此题暂无解析【解答】解:∵函数f(x)的定义域为{x|x≠±12},关于原点对称,f(−x)=−x(e x−e−x) 4x2−1=x(e−x−e x)4x2−1=f(x),∴f(x)为偶函数,其图像关于y轴对称,故排除选项A.令f(x)=0,即x(e −x−e x)4x2−1=0,解得x=0,∴函数f(x)只有一个零点,故排除选项D.当x=1时,f(1)=1e−e3<0,故排除选项C.故选B.10.【答案】D【考点】由三视图求体积【解析】【解答】由三视图可知该几何体为侧放的四棱柱,棱锥的底面为矩形ABCD,底面与一个侧面PBC垂直,PB=PC=4,AB=3.S ABCD=3×4√2=12√2,S△PBC=12×4×4=8,S△PCD=S△PBA=12×3×4=6,△PAD中AP=PD=5,AD=4√2,∴AD边上的高为√25−8=√17,∴S△PAD=12×4√2×√17=2√34,则该几何体的表面积为12√2+8+6+6+2√34=12√2+20+2√34,11.【答案】C【考点】椭圆的离心率【解析】通过记椭圆的左焦点为F1(−1, 0),则|AF1|=1,利用|PF1|≤|PA|+|AF1|可知a≤5;利用|PF1|≥|PA|−|AF1|可知a≥4,进而可得结论4≤a≤5.【解答】记椭圆的左焦点为F1(−1, 0),则|AF1|=1,∵|PF1|≤|PA|+|AF1|,∴2a=|PF1|+|PF|≤|PA|+|AF1|+|PF|≤1+9=10,即a≤5;∵|PF1|≥|PA|−|AF1|,∴2a=|PF1|+|PF|≥|PA|−|AF1|+|PF|≥9−1=8,即a≥4,∴4≤a≤5,∴ca ∈[15,14]12.【答案】B【考点】利用导数研究函数的单调性导数求函数的最值【解析】求得f(x)的导数,讨论a≤2e2时,不恒成立;a>2e2时,求得f(x)的最大值,12b≥−1−ln(a−2e2),可得12⋅ba≥−1−ln(a−2e2)a(a>2e2),令F(x)=−1−ln(x−2e2)x,x>2e2,求得导数和单调区间,可得F(x)的最小值,即可得到所求最小值.【解答】∵函数f(x)=lnx+(2e2−a)x−b2,其中e为自然对数的底数,∴f′(x)=1x+(2e2−a),x>0,当a≤2e2时,f′(x)>0,∴ f(x)≤0不可能恒成立, 当a >2e 2时,由f′(x)=0,得x =1a−2e 2,∵ 不等式f(x)≤0恒成立,∴ f(x)的最大值为0, 当x ∈(0, 1a−2e 2)时,f′(x)>0,f(x)单调递增, 当x ∈(1a−2e 2, +∞)时,f′(x)<0,f(x)单调递减, ∴ 当x =1a−2e 2时,f(x)取最大值, f(1a−2e 2)=−ln(a −2e 2)−12b −1≤0,∴ ln(a −2e 2)+12b +1≥0, ∴ 12b ≥−1−ln(a −2e 2), ∴ 12⋅ba ≥−1−ln(a−2e 2)a(a >2e 2),令F(x)=−1−ln(x−2e 2)x,x >2e 2,F′(x)=−xx−2e 2+1+ln(x−2e 2)x 2=(x−2e 2)ln(x−2e 2)−2e 2(x−2e 2)x 2,令H(x)=(x −2e 2)ln(x −2e 2)−2e 2, H′(x)=ln(x −2e 2)+1, 由H′(x)=0,得x =2e 2+1e ,当x ∈(2e 2+1e , +∞)时,H′(x)>0,H(x)是增函数, x ∈(2e 2, 2e 2+1e )时,H′(x)<0,H(x)是减函数,∴ 当x =2e 2+1e 时,H(x)取最小值H(2e 2+1e )=−2e 2−1e , ∵ x →2e 2时,H(x)→0,x >3e 2时,H(x)>0,H(3e 2)=0, ∴ 当x ∈(2e 2, 3e 2)时,F′(x)<0,F(x)是减函数, 当x ∈(3e 2, +∞)时,F′(x)>0,F(x)是增函数, ∴ x =3e 2时,F(x)取最小值,F(3e 2)=−1−23e 2=−1e2,∴ 12⋅ba 的最小值为−1e 2,即有ba 的最小值为−2e 2.二、填空题(每题5分,满分20分,将答案填在答题纸上) 【答案】 −4【考点】【解析】运用向量的平方即为模的平方,对等式两边平方,可得A 为直角,再由向量数量积的定义和解直角三角形,即可得到所求值. 【解答】在△ABC 中,|AB →+AC →|=|AB →−AC →|, 可得|AB →+AC →|2=|AB →−AC →|2,即有AB →2+AC →2+2AB →⋅AC →=AB →2+AC →2−2AB →⋅AC →, 即为AB →⋅AC →=0,则△ABC 为直角三角形,A 为直角, 则AB →⋅BC →=−BA →⋅BC →=−|BA →|⋅|BC →|⋅cosB =−|BA →|2=−4.【答案】 −5【考点】二项式定理的应用 【解析】在二项式展开式中,令x =1得a 0+a 1+...+a 7的值,从而求得a 的值,再由a 3表示x 3的系数求得a 3的值. 【解答】(1+x)(a −x)6=a 0+a 1x +a 2x 2+...+a 7x 7中, 令x =1得,a 0+a 1+...+a 7=2⋅(a −1)6=0, 解得a =1,而a 3表示x 3的系数,所以a 3=C 63⋅(−1)3+C 62⋅(−1)2=−5. 【答案】 2【考点】 数列的求和 【解析】由题意可得(k −S n )(S n −S n−1)=−Sn 2,化为1S n−1Sn−1=1k ,再利用等差数列的通项公式即可得出k 的值. 【解答】当n ≥2时,恒有ka n =a n S n −S n 2成立, 即为(k −S n )(S n −S n−1)=−S n 2, 化为1S n−1Sn−1=1k ,可得1S n=1+n−1k,由S99=150,可得150=kk+98,解得k=2.【答案】2√21【考点】双曲线的离心率【解析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120∘,利用余弦定理算出c2=7a2,b2=6a2,结合双曲线的第二定义,可得m,A在双曲线上,代入双曲线的方程,即可得出a,即有实轴长.【解答】根据双曲线的定义,可得|AF1|−|AF2|=2a,∵△ABF2是等边三角形,即|AF2|=|AB|,∴|BF1|=2a,又∵|BF2|−|BF1|=2a,∴|BF2|=|BF1|+2a=4a,∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120∘,∴|F1F2|2=|BF1|2+|BF2|2−2|BF1|⋅|BF2|cos120∘,即4c2=4a2+16a2−2×2a×4a×(−12)=28a2,解得c2=7a2,b2=6a2,由双曲线的第二定义可得ca =|AF2|m−a2c=4am−a√7=√7,则m=√7,由A在双曲线上,可得257−1826a2=1,解得a=√21,则2a=2√21.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)【答案】根据题意,b=2,c=4,2ccosC=b,则cosC=b2c =14;又由cosC=a2+b2−c22ab =4+a2−162×2×a=14,解可得a=4,即BC=4,则CD=2,在△ACD中,由余弦定理得:AD2=AC2+CD2−2AC⋅CDcosC=6,则AD=√6;根据题意,AE平分∠BAC,则CEBE =ACAB=12,cosC =14,则sinC =√1−(14)2=√154,S △ADE =S △ACD −S △ACE =12×2×2×√154−12×2×43×√154=√156. 【考点】 余弦定理 【解析】(1)在△ABC 中,利用余弦定理计算BC ,再在△ACD 中利用余弦定理计算AD ; (2)根据角平分线的性质得出CE ,于是S △ADE =S △ACD −S △ACE . 【解答】根据题意,b =2,c =4,2ccosC =b ,则cosC =b2c =14; 又由cosC =a 2+b 2−c 22ab=4+a 2−162×2×a=14,解可得a =4,即BC =4,则CD =2, 在△ACD 中,由余弦定理得:AD 2=AC 2+CD 2−2AC ⋅CDcosC =6, 则AD =√6;根据题意,AE 平分∠BAC , 则CEBE =ACAB =12,变形可得:CE =13BC =43,cosC =14,则sinC =√1−(14)2=√154,S △ADE =S △ACD −S △ACE =12×2×2×√154−12×2×43×√154=√156. 【答案】解:(1)设甲获得奖品为事件A ,在每轮游戏中, 甲留下的概率与他摸卡片的顺序无关, 则P(A)=612×36×23×12=112.(2)随机变量X 的取值可以为1,2,3,4. P(X =1)=612=12, P(X =2)=612×36=14, P(X =3)=612×36×13=112, P(X =4)=612×36×23=16. 随机变量X 的概率分布列为:所以数学期望E(X)=1×12+2×14+3×112+4×16=2312.【考点】离散型随机变量的期望与方差离散型随机变量及其分布列古典概型及其概率计算公式【解析】(1)甲获得奖品的事件为A,在每一轮游戏中,甲留下的概率和他摸卡片的顺序无关,由此利用相互独立事件概率乘法公式能求出甲拿到礼物的概率.(2)随机变量X的所有可能取值是1,2,3,4,分别求出相应的概率,由此能求出随机变量X的概率分布列及数学期望.【解答】解:(1)设甲获得奖品为事件A,在每轮游戏中,甲留下的概率与他摸卡片的顺序无关,则P(A)=612×36×23×12=112.(2)随机变量X的取值可以为1,2,3,4.P(X=1)=612=12,P(X=2)=612×36=14,P(X=3)=612×36×13=112,P(X=4)=612×36×23=16.随机变量X的概率分布列为:所以数学期望E(X)=1×12+2×14+3×112+4×16=2312.【答案】因为A1B1 // AB,AB=2A1B1,D为棱AB的中点,所以A1B1 // BD,A1B1=BD,所以四边形A1B1BD为平行四边形,从而BB1 // A1D.又BB1平面A1DE,A1D⊂平面A1DE,所以B1B // 平面A1DE,因为DE是△ABC的中位线,所以DE // BC,同理可证,BC // 平面A1DE.因为BB1∩BC=B,所以平面B1BC // 平面A1DE,又B1C⊂平面B1BC,所以B1C // 平面A1DE.以ED,EC,EB1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系E−设平面ABB 1的一个法向量m =(x 1,y 1,z 1), 则{m →⋅AB 1→=0m →⋅AB →=0 ,即{ay 1+√3az 1=0ax 1+2ay 1=0, 取z 1=1,得m →=(2√3,−√3,1).同理,设平面BB 1C 的一个法向量n →=(x,y,z), 又CB 1→=(0,−a,√3a),BC →=(−a,0,0), 由{n →⋅BC →=0n →⋅CB 1→=0 ,得{−ax =0−ay +√3az =0 , 取z =−1,得n →=(0,−√3,−1), 所以cos <m →,n →>=m →⋅n→|m →|⋅|n →|=14,故二面角A −BB 1−C 的正弦值为:√1−(14)2=√154.【考点】直线与平面平行二面角的平面角及求法 【解析】(1)推导出四边形A 1B 1BD 为平行四边形,从而BB 1 // A 1D ,进而B 1B // 平面A 1DE ,由DE 是△ABC 的中位线,得DE // BC ,从而BC // 平面A 1DE .进而平面B 1BC // 平面A 1DE ,由此能证明B 1C // 平面A 1DE .(2)以ED ,EC ,EB 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系E −xyz ,利用向量法能求出二面角A −BB 1−C 的正弦值. 【解答】因为A 1B 1 // AB ,AB =2A 1B 1,D 为棱AB 的中点, 所以A 1B 1 // BD ,A 1B 1=BD ,所以四边形A 1B 1BD 为平行四边形,从而BB 1 // A 1D . 又BB 1平面A 1DE ,A 1D ⊂平面A 1DE , 所以B 1B // 平面A 1DE ,因为DE 是△ABC 的中位线,所以DE // BC , 同理可证,BC // 平面A 1DE .因为BB 1∩BC =B ,所以平面B 1BC // 平面A 1DE , 又B 1C ⊂平面B 1BC ,所以B 1C // 平面A 1DE .以ED ,EC ,EB 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系E −xyz ,设平面ABB 1的一个法向量m =(x 1,y 1,z 1), 则{m →⋅AB 1→=0m →⋅AB →=0 ,即{ay 1+√3az 1=0ax 1+2ay 1=0, 取z 1=1,得m →=(2√3,−√3,1).同理,设平面BB 1C 的一个法向量n →=(x,y,z), 又CB 1→=(0,−a,√3a),BC →=(−a,0,0), 由{n →⋅BC →=0n →⋅CB 1→=0 ,得{−ax =0−ay +√3az =0 , 取z =−1,得n →=(0,−√3,−1), 所以cos <m →,n →>=m →⋅n→|m →|⋅|n →|=14,故二面角A −BB 1−C 的正弦值为:√1−(14)2=√154.【答案】根据题意,设直线l 的方程为y =k(x −3),联立方程组{y 2=2pxy =k(x −3)得y 2−2p k y −6p =0, 设A(x 1, y 1),B(x 2, y 2), 所以y 1+y 2=2p k,y 1y 2=−6p ,又OA →∗OB →=x 1x 2+y 1y 2=(y 1y 2)24p 2+y 1y 2=9−6p =−3,所以p =2,从而抛物线E 的方程为y 2=4x .证明:因为k 1=y1x 1+3=y1y 1k+6,k 2=y2x 2+3=y2y 2k+6,所以1k 1=1k +6y 1,1k 2=1k +6y 2,因此1k 12+1k 22−2k 2=(1k +6y 1)2+(1k +6y 2)2−2k 2=2k 2+12k∗(1y 1+1y 2)+36(1y 12+1y 22)−2k 2=12k∗y 1+y 2y 1y 2+36×(y 1+y 2)2−2y 1y 2y 12y 22,又y 1+y 2=2p k=4k ,y 1y 2=−6p =−12,16即1k 12+1k 22−2k 为定值.【考点】直线与抛物线的位置关系 【解析】(1)根据题意,设直线l 的方程为y =k(x −3),联立直线与抛物线的方程,得y 2−2p ky −6p =0,设A(x 1, y 1),B(x 2, y 2),利用根与系数的关系分析用p 表示OA →∗OB →+3=0,解可得p 的值,即可得抛物线的标准方程;(2)根据题意,由两点间连线的斜率公式可得k 1、k 2的值,将其值代入1k 12+1k 22−2k 2中,结合抛物线的焦点弦公式分析可得结论. 【解答】根据题意,设直线l 的方程为y =k(x −3),联立方程组{y 2=2pxy =k(x −3)得y 2−2p k y −6p =0, 设A(x 1, y 1),B(x 2, y 2), 所以y 1+y 2=2p k,y 1y 2=−6p ,又OA →∗OB →=x 1x 2+y 1y 2=(y 1y 2)24p 2+y 1y 2=9−6p =−3,所以p =2,从而抛物线E 的方程为y 2=4x .证明:因为k 1=y 1x 1+3=y 1y 1k+6,k 2=y 2x 2+3=y2y 2k+6,所以1k 1=1k +6y 1,1k 2=1k +6y 2,因此1k 12+1k 22−2k 2=(1k +6y 1)2+(1k +6y 2)2−2k 2=2k 2+12k∗(1y 1+1y 2)+36(1y 12+1y 22)−2k 2=12k∗y 1+y 2y 1y 2+36×(y 1+y 2)2−2y 1y 2y 12y 22,又y 1+y 2=2p k=4k ,y 1y 2=−6p =−12,所以1k 12+1k 22−2k 2=12k×(−1)3k+36×16k 2+24144=6,即1k 12+1k 22−2k 2为定值.【答案】f(x)=(x +1)e ax (a ≠0)的导数f′(x)=e ax +a(x +1)e ax =(ax +a +1)e ax , 因为x =2a 是f(x)的一个极值点, 所以f ′(2a )=(a +3)e 2=0,所以a =−3.由(1)知f(x)=(x +1)e −3x ,f′(x)=(−3x −2)e −3x ,当t −1≥−23,即t ≥13时,f(x)在[t −1, t +1]上递减,f(x)max =f(t −1)=te −3(t−1);当t −1<−23<t +1,即−53<t <13时,f(x)max =f(−23)=e 23.证明:g(x)=(x +1)e −3x +2x +3xlnx , 设g(x)=m 1(x)+m 2(x),x ∈(0, 1),其中m 1(x)=(x +1)e −3x +2x ,m 2(x)=3xlnx ,则m 1′(x)=(−3x −2)e −3x +2,设ℎ(x)=(−3x −2)e −3x +2,则ℎ′(x)=(9x +3)e −3x >0,可知m 1′(x)在(0, 1)上是增函数, 所以m 1′(x)>m 1′(0)=0,即m 1(x)在(0, 1)上是增函数, 所以1<m 1(x)<2+2e 3.又m 2′(x)=3(1+lnx),由m 2′(x)>0,得x >1e ;由m 2′(x)<0,得0<x <1e , 所以m 2(x)在(0,1e )上递减,在(1e ,1)上递增,所以−3e ≤m 2(x)<0,从而1−3e <m 1(x)+m 2(x)<2+2e 3.所以,对任意x 1,x 2∈(0, 1),|g(x 1)−g(x 2)|<(2+2e 3)−(1−3e )=2e 3+3e +1. 【考点】利用导数研究函数的极值 利用导数研究函数的最值 【解析】(1)求得f(x)的导数,可得f′(2a )=0,解方程可得a 的值;(2)由(1)可得极值点,讨论区间与极值点的关系,结合单调性,即可得到所求最大值;(3)g(x)=(x +1)e −3x +2x +3xlnx ,设g(x)=m 1(x)+m 2(x),x ∈(0, 1),其中m 1(x)=(x +1)e −3x +2x ,m 2(x)=3xlnx ,分别求得导数和单调性,可得它们的取值范围, 即可得证. 【解答】f(x)=(x +1)e ax (a ≠0)的导数f′(x)=e ax +a(x +1)e ax =(ax +a +1)e ax , 因为x =2a 是f(x)的一个极值点, 所以f ′(2a )=(a +3)e 2=0,所以a =−3.由(1)知f(x)=(x +1)e −3x ,f′(x)=(−3x −2)e −3x ,当t −1≥−23,即t ≥13时,f(x)在[t −1, t +1]上递减,f(x)max =f(t −1)=te −3(t−1);当t −1<−23<t +1,即−53<t <13时,f(x)max =f(−23)=e 23.证明:g(x)=(x +1)e −3x +2x +3xlnx , 设g(x)=m 1(x)+m 2(x),x ∈(0, 1),其中m 1(x)=(x +1)e −3x +2x ,m 2(x)=3xlnx ,则m 1′(x)=(−3x −2)e −3x +2,设ℎ(x)=(−3x −2)e −3x +2,则ℎ′(x)=(9x +3)e −3x >0,可知m 1′(x)在(0, 1)上是增函数, 所以m 1′(x)>m 1′(0)=0,即m 1(x)在(0, 1)上是增函数, 所以1<m 1(x)<2+2e 3.又m 2′(x)=3(1+lnx),由m 2′(x)>0,得x >1e ;由m 2′(x)<0,得0<x <1e , 所以m 2(x)在(0,1e )上递减,在(1e ,1)上递增,所以−3e ≤m 2(x)<0,从而1−3e <m 1(x)+m 2(x)<2+2e 3.所以,对任意x 1,x 2∈(0, 1),|g(x 1)−g(x 2)|<(2+2e 3)−(1−3e )=2e 3+3e +1. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程] 【答案】∵ 直线l 1的参数方程为{x =t −√3y =kt (t 为参数),∴ 直线l 1的普通方程为y =k(x +√3),①∵ 直线l 2的参数方程为{x =√3−my =m 3k (m 为参数),∴ 直线l 2的普通方程为y =13k (√3−x),② ①×②,消k ,得:x 23+y 2=1.∵ k ≠0,∴ y ≠0,∴ 曲线C 1的普通方程为x 23+y 2=1(y ≠0).∵ 直线C 2的极坐标方程为ρsin(θ+π4)=4√2, ∴ 直线C 2的直角坐标方程为x +y −8=0, 由(1)知曲线C 1与直线C 2无公共点,∵ 曲线C 1的参数方程为{x =√3cosαy =sinα ,(α为参数,α≠kπ,k ∈Z),∴ 曲线C 1上的点Q(√3cosα, sinα)到直线的距离为: π∴ 当sin(α+π3)=1时,d 取最小值3√2.【考点】参数方程与普通方程的互化【解析】(1)求出直线l 1的普通方程为y =k(x +√3),①,直线l 2的普通方程为y =13k (√3−x),②,①×②,消k ,能求出曲线C 1的普通方程. (2)直线C 2的直角坐标方程为x +y −8=0,曲线C 1上的点Q(√3cosα, sinα)到直线的距离为:d =√3cosα+sinα−8|√2=|2sin(α+π3)−8|√2,当sin(α+π3)=1时,d 取最小值3√2. 【解答】∵ 直线l 1的参数方程为{x =t −√3y =kt(t 为参数), ∴ 直线l 1的普通方程为y =k(x +√3),①∵ 直线l 2的参数方程为{x =√3−m y =m 3k(m 为参数), ∴ 直线l 2的普通方程为y =13k (√3−x),②①×②,消k ,得:x 23+y 2=1.∵ k ≠0,∴ y ≠0,∴ 曲线C 1的普通方程为x 23+y 2=1(y ≠0). ∵ 直线C 2的极坐标方程为ρsin(θ+π4)=4√2,∴ 直线C 2的直角坐标方程为x +y −8=0,由(1)知曲线C 1与直线C 2无公共点,∵ 曲线C 1的参数方程为{x =√3cosαy =sinα,(α为参数,α≠kπ,k ∈Z), ∴ 曲线C 1上的点Q(√3cosα, sinα)到直线的距离为: d =√3cosα+sinα−8|√2=|2sin(α+π3)−8|√2, ∴ 当sin(α+π3)=1时,d 取最小值3√2.[选修4-5:不等式选讲]【答案】f(x)≥|2x +3|即|x +a|≥|2x +3|,平方整理得:3x 2+(12−2a)x +9−a 2≤0,所以−3,−1是方程 3x 2+(12−2a)x +9−a 2=0的两根,…2分由根与系数的关系得到{12−2a −3=−49−a 23=3 ...4分解得a =0...5分因为f(x)+|x −a|≥|(x +a)−(x −a)|=2|a|...7分 所以要不等式f(x)+|x −a|≥a 2−2a 恒成立只需2|a|≥a 2−2a...8分 当a ≥0时,2a ≥a 2−2a 解得0≤a ≤4,当a <0时,−2a ≥a 2−2a 此时满足条件的a 不存在,综上可得实数a 的范围是0≤a ≤4...10分【考点】绝对值三角不等式【解析】(1)根据二次函数的性质得到关于a 的方程组,解出即可; (2)问题转化为2|a|≥a 2−2a ,通过讨论a 的范围,得到关于a 的不等式,解出即可.【解答】f(x)≥|2x +3|即|x +a|≥|2x +3|,平方整理得:3x 2+(12−2a)x +9−a 2≤0,所以−3,−1是方程 3x 2+(12−2a)x +9−a 2=0的两根,…2分由根与系数的关系得到{12−2a −3=−49−a 23=3 ...4分解得a =0...5分因为f(x)+|x −a|≥|(x +a)−(x −a)|=2|a|...7分 所以要不等式f(x)+|x −a|≥a 2−2a 恒成立只需2|a|≥a 2−2a...8分 当a ≥0时,2a ≥a 2−2a 解得0≤a ≤4,当a <0时,−2a ≥a 2−2a 此时满足条件的a 不存在, 综上可得实数a 的范围是0≤a ≤4...10分。

2018年河南省高考数学一模试卷(理科)

2018年河南省高考数学一模试卷(理科)

2018 年河南省高考数学一模试卷(理科)一、选择题(此题共12 小题,每题 5 分,共 60 分)1.(5 分)已知会合 A={ x| x2﹣ 2x﹣3>0} ,B=N,则会合( ?R A)∩ B 中元素的个数为()A.2B.3C.4D.52.( 5 分)若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.﹣ 6B.13C.D.3.( 5 分)已知 f(x)=sinx﹣tanx,命题 p:? x0∈( 0,),f (x0)<0,则()A.p 是假命题,¬ p:? x∈( 0,),f(x)≥ 0B.p 是假命题,¬ p:? x0∈( 0,),f(x0)≥ 0C.p 是真命题,¬ p:? x∈( 0,),f(x)≥ 0D.p 是真命题,¬ p:? x0∈( 0,),f(x0)≥ 04.(5 分)已知程序框图如图,则输出i 的值为()A.7B.9C.11D.135.(5 分) 2018 年元旦假期,高三的8 名同学准备拼车去旅行,此中(1)班、(2)班,(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4 名同学(乘同一辆车的4 名同学不考虑地点),此中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的 4 名同学中恰有 2 名同学是来自同一个班的乘坐方式共有()A.18 种B.24 种C.48 种D.36 种6.(5 分)《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如下图,此中正视图和侧视图是腰长为 1 的两个全等的等腰直角三角形,则该“阳马”的表面积为()A.1+B.1+2C.2+D.2+27.(5 分)设不等式组表示的平面地区为D,若圆 C:(x+1)2+y2=r2(r >0)不经过地区 D 上的点,则 r 的取值范围为()A.(0,)∪(,+∞)B.(,+∞)C.(0,)D.[,]8.(5 分)若等边三角形ABC的边长为 3,平面内一点 M 知足 6﹣3=2,则?的值为()A.﹣B.﹣ 2C.2D.9.( 5 分)对于函数 f(x)=3sin( 2x﹣)+1(x∈R),以下命题正确的选项是()A.由 f( x1)=f( x2) =1 可得 x1﹣ x2是π的整数倍B.y=f(x)的表达式可改写成f( x) =3cos(2x+)+1C.y=f(x)的图象对于点(,1)对称D.y=f(x)的图象对于直线x=﹣对称10.( 5 分)设函数 f(x)=mx2﹣mx﹣1,若对于 x∈[ 1, 3] ,f (x)<﹣ m+4 恒成立,则实数 m 的取值范围为()A.(﹣∞, 0]B.C.D.11.( 5 分)设双曲线的方程为﹣=1(a>0,b>0),若双曲线的渐近线被圆 M :x2+y2﹣10x=0 所截得的两条弦长之和为12,已知△ ABP的极点 A,B 分别为双曲线的左、右焦点,极点 P 在双曲线上,则的值等于()A.B.C.D.12.( 5 分)已知定义在R 上的函数 f( x)和 g(x)分别知足 f(x)=,e2x﹣2+x2﹣ 2f(0)?x,g′(x)+2g( x)< 0,则以下不等式恒成立的是()A.g(2016)< f(2)?g( 2018)B.f (2)?g( 2016)< g( 2018)C.g(2016)> f (2)?g( 2018)D.f(2)?g( 2016)> g(2018)二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.( 5 分)设 a=(cosx﹣sinx)dx,则二项式(a﹣)6的睁开式中含x2项的系数为.14.( 5 分)若函数 f (x)=(a,b∈R)为奇函数,则f(a+b)的值为.15.( 5 分)已知三棱柱 ABC﹣ A1B1C1的底面是正三角形,侧棱AA1⊥底面 ABC,如有一半径为 2 的球与三棱柱的各条棱均相切,则AA1的长度为.16.( 5 分)如图, OA,OB 为扇形湖面 OAB 的湖岸,现欲利用渔网和湖岸在湖中隔出两个养殖区﹣地区I 和地区Ⅱ,点 C 在上,∠ COA=θ,CD∥OA,其中,半径 OC及线段 CD 需要用渔网制成.若∠ AOB=,OA=1,则所需渔网的最大长度为.三、解答题(共70 分)17.( 12 分)已知 S n为数列 { a n} 的前 n 项和,且 a1<2,a n>0, 6S n=+3a n+2,n∈N* .( 1)求数列 { a n} 的通项公式;( 2)若对 ? n∈ N* ,b n(﹣)n ,求数列 { b n 的前2n 项的和2n .=1 } T18.(12 分)如下图,在四棱锥 P﹣ABCD中,底面 ABCD为直角梯形, AB∥CD,∠BAD=90°,DC=DA=2AB=2 ,点 E 为 AD 的中点,BD∩ CE=H,PH⊥平面 ABCD,且 PH=4.(1)求证: PC⊥BD;( 2)线段 PC上能否存在一点 F,使二面角 B﹣DF﹣ C 的余弦值是?若存在,请找出点 F 的地点;若不存在,请说明原因.19.( 12 分)某地域为认识学生学业水平考试的状况,从参加学业水平考试的学生中抽出 160 名,其数学构成绩(均为整数)的频次散布直方图如下图.( 1)预计此次考试数学成绩的均匀分和众数;( 2)假定在( 90,100] 段的学生中有 3 人得满分 100 分,有 2 人得 99 分,其他学生的数学成绩都不同样.现从 90 分以上的学生中任取 4 人,不一样分数的个数为 ξ,求 ξ的散布列及数学希望 E (ξ).20.(12 分)已知椭圆 C 1: +=1(a >b >0)的离心率为 ,右焦点 F 是抛物线 C 2:y 2=2px (p >0)的焦点,点( 2,4)在抛物线 C 2 上.( 1)求椭圆 C 1 的方程;( 2)已知斜率为 k 的直线 l 交椭圆 C 1 于 A ,B 两点, M ( 0,2),直线 AM 与 BM的斜率乘积为﹣ ,若在椭圆上存在点 N ,使| AN| =| BN| ,求△ ABN 的面积的最小值.21.( 12 分)已知函数 f (x )=ae x +x 2﹣bx (a ,b ∈ R ),其导函数为 y=f ′( x ).( 1)当 b=2 时,若函数 y=f ′( x )在 R 上有且只有一个零点,务实数 a 的取值范围;( 2)设 a ≠0,点 P (m , n )(m , n ∈ R )是曲线 y=f (x )上的一个定点,能否存在实数 x 0( 0≠ m )使得 f ( 0)﹣ n=f (′)( 0﹣ m )成立?并证明你x xx的结论.[ 选修 4-4:坐标系与参数方程选讲 ]22.( 10 分)在直角坐标系 xOy 中,已知直线 l 1:( t 为参数), l 2:(t 为参数),此中 α∈( 0,),以原点 O 为极点, x 轴第 5页(共 25页)非负半轴为极轴,取同样长度单位成立极坐标系,曲线 C 的极坐标方程为ρ﹣4cosθ=0.(1)写出 l1, l2的极坐标方程和曲线 C 的直角坐标方程;(2)设 l1,l 2分别与曲线 C 交于点 A,B(非坐标原点),求 | AB| 的值.[ 选修 4-5:不等式选讲 ]23.设函数 f (x)=| x﹣a| ( a> 0).(1)当 a=2 时,解不等式 f(x)≥ 1﹣ 2x;(2)已知 f(x)+| x﹣1| 的最小值为 3,且 m2n=a( m>0,n>0),求 m+n 的最小值.2018 年河南省高考数学一模试卷(理科)参照答案与试题分析一、选择题(此题共12 小题,每题 5 分,共 60 分)1.【剖析】可先求出会合A={ x| x<﹣ 1,或 x>3} ,而后进行交集、补集的运算即可.【解答】解: A={ x| x<﹣ 1,或 x>3} ;∴?R A={ x| ﹣1≤x≤3} ;∴( ?R A)∩ B={ 0,1,2,3} .应选: C.【评论】考察一元二次不等式的解法,以及描绘法、列举法表示会合的观点,交集和补集的运算.2.【剖析】利用复数的除法运算化简为a+bi(a,b∈R)的形式,由实部等于0 且虚部不等于求解 a 的值.【解答】解:由复数==是纯虚数,则,解得 a=﹣6.应选: A.【评论】此题考察了复数代数形式的乘除运算,考察了复数的基本观点,是基础的计算题.3.第 7页(共 25页)否认是全称命题写出结果.【解答】解:f( x)=sinx﹣tanx,x∈( 0,),当x=时,∴ f(x)=,命题 p:? x0∈( 0,),f(x0)<0,是真命题,命题 p:? x0∈( 0,),f(x0)<0,则¬p:? x∈(0,),f(x)≥ 0.应选: C.【评论】此题考察命题的否认,特称命题与全称命题的否认关系,基本知识的考察.4.【剖析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量 i 的值,模拟程序的运转过程,可得答案.【解答】解:当 S=1时,不知足退出循环的条件,故S=1,i=3;当 S=1时,不知足退出循环的条件,故 S=3,i=5;当S=3时,不知足退出循环的条件,故 S=15, i=7;当S=15时,不知足退出循环的条件,故 S=105,i=9;当 S=105时,不知足退出循环的条件,故 S=945, i=11;当S=945时,不知足退出循环的条件,故 S=10395,i=13;当S=10395时,知足退出循环的条件,故输出的 i=13,应选: D.【评论】此题考察的知识点是程序框图,当循环的次数不多,或有规律时,常采纳模拟循环的方法解答.5.【剖析】分类议论,第一类,一班的 2 名同学在甲车上;第二类,一班的2 名同学不在甲车上,再利用组合知识,问题得以解决.【解答】解:由题意,第一类,一班的 2 名同学在甲车上,甲车上剩下两个要来自不一样的班级,从三个班级中选两个为C2=3,而后分别从选择的班级中再选第 8页(共 25页)择一个学生为 C21C21=4,故有 3×4=12 种.第二类,一班的 2 名同学不在甲车上,则从剩下的 3 个班级中选择一个班级的两名同学在甲车上,为 C31=3,而后再从剩下的两个班级中分别选择一人为C21C21=4,这时共有 3×4=12 种,依据分类计数原理得,共有 12+12=24 种不一样的搭车方式,应选: B.【评论】此题考察计数原理的应用,考察组合知识,考察学生的计算能力,属于中档题.6.【剖析】由三视图知该几何体是侧棱垂直于底面的四棱锥,画出图形联合图形求出它的表面积.【解答】解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如下图;正视图和侧视图是腰长为 1 的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,此中一条侧棱 PD⊥底面 ABCD,且侧棱 AD=1,∴四棱锥的四个侧面都为直角三角形,且 PA=PC= ,∴四棱锥的表面积为S=S底面ABCD+2S△SAD+2S△SAB=1+2××1×1+2××1×=2+.应选: C.【评论】此题考察了利用空间几何体的三视图求几何体表面积的应用问题,是基础题.7.【剖析】作出题中不等式组表示的平面地区,获得如图的△MNP 及其内部,而圆 C 表示以(﹣ 1,﹣1)为圆心且半径为 r 的圆.察看图形,可得半径r <CM或 r>CP 时,圆 C 不经过地区 D 上的点,由此联合平面内两点之间的距离公式,即可获得 r 的取值范围.【解答】解:作出不等式组表示的平面地区,获得如图的△ MNP 及其内部,此中M(1,1), N(2,2),P(1,3)∵圆 C:(x+1)2 +y2=r2(r >0)表示以 C(﹣ 1,0)为圆心,半径为r的圆,∴由图可得,当半径知足r< CM 或 r>CP时,圆 C 不经过地区 D 上的点,∵CM==,CP==.∴当 0<r <或r>时,圆C不经过地区D上的点,应选: A.【评论】此题给出动圆不经过已知不等式组表示的平面地区,求半径r的取值范围.侧重考察了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面地区等知识,属于中档题.8.【剖析】依据条件可先求出,而由即可得出,这样即可用分别表示出,而后进行数目积的运算即可.【解答】 解:等边三角形 ABC 的边长为 3;∴;;∴;∴==,=;∴= ==﹣2.应选: B .【评论】考察向量数目积的运算及计算公式, 以及向量的数乘运算, 向量加法的几何意义.9.【剖析】依据函数 f ( x )=3sin ( 2x ﹣ )+1( x ∈ R ),联合三角函数的性质即可 判断各选项.【解答】 解:函数 f (x ) =3sin (2x ﹣ )+1(x ∈R ),周期 T=,对于 A :由 f ( x 1) =f ( 2) ,x =1可能 x 1 与 x 2 对于此中一条对称轴是对称的,此时 x 1﹣x 2 不是 π的整数倍;∴ A不对.对于 B :由引诱公式, 3sin (2x ﹣ ) +1=3cos[ ﹣( 2x ﹣ ) ]+ 1=3cos ( 2x﹣)+1.∴ B 不对.第11页(共 25页)∴C不对,对于 D:当 x=﹣时,可得f()=3sin(﹣﹣)+1=﹣1×3+1=﹣2,f(x)的图象对于直线x=﹣对称.应选: D.【评论】此题主要考察利用y=Asin(ωx+φ)的信息特点,判断各选项的正误,属于中档题.10.【剖析】利用分别参数法,再求出对应函数在x∈ [ 1,3] 上的最大值,即可求m 的取值范围.【解答】解:由题意, f(x)<﹣ m+4,可得 m( x2﹣x+1)< 5.∵当 x∈[ 1, 3] 时, x2﹣x+1∈[ 1,7] ,∴不等式 f( x)< 0 等价于 m<.∵当 x=3 时,的最小值为,∴若要不等式 m<恒成立,则一定 m<,所以,实数 m 的取值范围为(﹣∞,),应选: D.【评论】此题考察恒成立问题,考察分别参数法的运用,解题的要点是分别参数,正确求最值,属于中档题.11.【剖析】依据垂径定理求出圆心到直线的距离为d=4,再依据点到直线的距离公式可得=4,获得5b=4c,即可求出a= c ,依据正弦定理可得第12页(共 25页)== =【解答】解:双曲线的一条渐近线方程为y=x,双曲线的渐近线被圆M :x2+y2﹣ 10x=0,即(x﹣ 5)2+y2=25 所截得的两条弦长之和为 12,设圆心到直线的距离为d,则 d==4,∴=4,即 5b=4c,即 b= c∵ a2=c2﹣ b2=c2,∴a= c,∴| AP﹣BP| =2a,由正弦定理可得∴sinB= , sinA====2R,,sinP=,∴== =,应选: C.【评论】此题考察了双曲线的简单性质以及圆的相关性质和正弦定理,属于中档题12.【剖析】 f(x)=2x﹣2 2﹣ 2f(0)?x,令 x=0,则 f (0)= .由 f ′e +x(x)=f (′1)?e2x﹣2+2x﹣2f(0),令 x=1,可得 f(0).从而得出 f (′1),f( x),().令()2x (),及其已知2x[ g′f 2h x =e g x g′(x)+2g(x)<0,可得 h′(x)=e (x)+2g(x)] <0,利用函数 h( x)在 R 上单一递减,即可得出.【解答】解: f(x) =2x﹣ 2 2e +x ﹣2f( 0) ?x,令 x=0,则 f(0)=.∵f (′ x)=f ′(1)?e2x﹣2+2x﹣ 2f(0),令 x=1,则 f ′( 1) =f ′(1)+2﹣2f(0),解得 f( 0) =1.∴ f (′ 1) =2e2.∴ f(x)=e2x+x2﹣2x,∴f(2)=e4.令 h(x) =e2x g(x),∵ g′(x) +2g(x)< 0,∴h′(x) =e2x g′(x)+2e2x g( x) =e2x[ g′( x)+2g( x) ] < 0,∴函数 h( x)在 R 上单一递减,∴ h(2016)> h( 2018),∴e2016×2g(2016)> e2018×2g( 2018),可得: g(2016)> e4g(2018).∴g( 2016)> f( 2)g(2018).应选: C.【评论】此题考察了利用导数研究函数的单一性极值与最值、结构法、方程与不等式的解法,考察了推理能力与计算能力,属于难题.二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.第14页(共 25页)出 r 的值,问题得以解决.【解答】解:因为 a= (cosx﹣sinx)dx=( sinx+cosx)| =﹣ 1﹣ 1=﹣2,∴(﹣2 ﹣)6+ )6的通项公式为r+1 6﹣r 6r 3﹣r ,=(2 T =2 C ?x令 3﹣r=2,求得 r=1,故含 x2项的系数为 26﹣1C61=192.故答案为: 192【评论】此题主要考察定积分、二项式定理的应用,二项式睁开式的通项公式,属于基础题.14.【剖析】由已知中函数f( x)为奇函数, f(﹣ x)=﹣f( x)恒成立,可得 a,b 的值,从而可得 f (a+b)的值.【解答】解:∵函数 f (x)==为奇函数,故 f(﹣ x) =﹣ f( x)恒成立,故.即,∴ f(x)=,∴f(a+b) =f(1)=1﹣ 2=﹣1,故答案为:﹣ 1.【评论】此题考察的知识点是分段函数的应用,函数的奇偶性,函数求值,难度中档.15.【剖析】由题意求出正三棱柱的高、底面边长,即可求出AA1的长度.【解答】解:由题意,△ ABC的外接圆即为球的大圆,r=2,设底面△ ABC外接圆圆心 G,即 GA=GB=GC=2,从而正三角形 ABC边长 2 ,设球心 O,由题意, E、D 在球面上, OE=OD=2,F 为 DE中点,则 OF⊥DE, OF=GD= GC=1,在 Rt△OEF中, OE=2, OF=1,∴EF= ,∴ DE=2 ,∴AA1=2 .故答案为: 2 .【评论】此题考察正三棱柱的内切球与正三棱柱的关系,经过两者的关系求出正三棱柱的体积,考察计算能力,逻辑推理能力.16.【剖析】确立∠ COD,在△ OCD中利用正弦定理求得CD 的长度,依据所需渔网长度,即图中弧 AC、半径 OC和线段 CD长度之和,确立函数的分析式,利用导数确立函数的最值,求得所需渔网长度的最大值.【解答】解:由 CD∥OA,∠ AOB=,∠ AOC=θ,得∠ OCD=θ,∠ ODC=,∠COD=﹣θ;在△ OCD中,由正弦定理,得CD= sin(﹣θ),θ∈(0,),设渔网的长度为f(θ),可得 f (θ)=θ+1+ sin(﹣θ),所以 f ′(θ)=1﹣cos(﹣θ),因为θ∈(0,),所以﹣θ∈( 0,),第16页(共 25页)令 f ′(θ)=0,得 cos(﹣θ)=,所以﹣θ= ,所以θ= .θ(0,)(,)f (′θ)+0﹣f(θ)极大值所以 f (θ)∈( 2,] .故所需渔网长度的最大值为.【评论】此题考察了正弦定理的应用问题,也考察了函数模型的建立与最值应用问题,是难题.三、解答题(共70 分)17.【剖析】(1)6S n=+3a n+2,n∈N* .n≥2 时, 6a n=6S n﹣6S n﹣1,化为( a n+a n﹣1)(a n﹣ a n﹣1﹣3)=0,由 a n>0,可得 a n﹣a n﹣1=3,n=1 时,6a1=+3a1+2,且a1<2,解得 a1.利用等差数列的通项公式可得a n.(2) b n=(﹣ 1)n =(﹣ 1)n(3n﹣2)2. b2n﹣1+b2n=﹣( 6n﹣ 5)2+(6n﹣ 2)2=3(12n﹣7)=36n﹣21.利用分组乞降即可得出.【解答】解:(1)6S n =+3a n+2, n∈N* .n≥2 时, 6a n=6S n﹣6S n﹣1= +3a n +2﹣(+2),化为:(a n+a n﹣1)(a n﹣a n﹣1﹣3)=0,∵a n>0,∴ a n﹣ a n﹣1=3,n=1 时, 6a1= +3a1+2,且 a1<2,解得 a1=1.∴数列 { a n} 是等差数列,首项为1,公差为 3.∴a n=1+3( n﹣ 1)=3n﹣2.=(﹣ 1)n(3n﹣ 2)2.( 2) b n =(﹣ 1)n∴b+b=﹣( 6n﹣5)2+(6n﹣ 2)2=3( 12n﹣7)=36n﹣21.第17页(共 25页)∴数列 { b n 的前2n 项的和 2n ()﹣21n=﹣ 2} T =36 1+2+ +n 21n=18n ﹣3n.【评论】此题考察了数列递推关系、等差数列的定义通项公式与乞降公式、分组乞降方法,考察了推理能力与计算能力,属于中档题.18.【剖析】(1)推导出△ BAD≌△ EDC,∠ DBA=∠DEH,从而 BD⊥EC,由 PH⊥平面 ABCD,得 BD⊥PH,由此能证明 BD⊥平面 PEC,从而 PC⊥ BD.(2)推导出 PH、 EC、BD 两两垂直,成立以 H 为坐标原点, HB、HC、HP 所在直线分别为 x,y, z 轴的坐标系,利用向量法能求出线段PC 上存在一点 F,当点 F 知足 CF=3时,二面角B﹣DF﹣C的余弦值是.【解答】证明:(1)∵ AB∥CD,∠ BAD=90°,∴∠ EDC=∠BAD=90°,∵DC=DA=2AB,E 为 AD 的中点,∴ AB=ED,∴△ BAD≌△ EDC,∴∠ DBA=∠DEH,∵∠ DBA+∠ADB=90°,∴∠ DEH+∠ADB=90°,∴ BD⊥EC,又∵ PH⊥平面 ABCD,BD? 平面 ABCD,∴ BD⊥PH,又∵ PH∩ EC=H,且 PH,EC? 平面 PEC,∴ BD⊥平面PEC,又∵ PC? 平面 PEC,∴ PC⊥BD.解:( 2)由( 1)可知△ DHE∽△ DAB,由题意得 BD=EC=5,AB=DE= ,∴,∴EH=1, HC=4,DH=2,HB=3,∵ PH、EC、BD 两两垂直,成立以 H 为坐标原点, HB、HC、HP 所在直线分别为x,y,z 轴的坐标系,H(0,0,0),B(3,0,0),C(0,4,0),D(﹣ 2,0,0),P(0,0,4),假定线段 PC上存在一点 F 知足题意,∵与共线,∴存在独一实数λ,(0≤λ≤ 1),知足 =λ,解得F(0,4﹣4λ, 4λ),设向量=(x,y, z)为平面 CPD的一个法向量,且=(0,﹣ 4,4),=(﹣2,﹣4,0),∴,取 x=2,得=(2,﹣ 1,﹣ 1),同理得平面 CPD的一个法向量=(0,λ,λ﹣1),∵二面角 B﹣DF﹣ C 的余弦值是,∴ | cos<>| ===,由 0≤λ≤ 1,解得λ=,∴=,∵CP=4 ,∴线段 PC上存在一点 F,当点 F 知足 CF=3时,二面角B﹣DF﹣C的余弦值是.【评论】此题考察线线垂直垂直的证明,考察二面角的余弦值的求法,考察空间中线线、线面、面面间的地点关系等基础知识,考察运算求解能力,考察函数与方程思想,是中档题.19.【剖析】(1)把组中值看作各小组的均匀数,依据加权均匀数公式计算;( 2)依据组合数公式计算各样状况的概率,得出散布列.【解答】解:(1) =45×0.005×10+55×0.015×10+65× 0.02×10+75× 0.03×10+85×0.025×10+95× 0.005×10=72(分),众数为 75 分.(2) 90 分以上的人数为 160×0.005×10=8人.∴ξ的可能取值为 2, 3, 4,P(ξ =2)==,P(ξ =3)==,P(ξ =4)==.∴ξ的散布列为:ξ 2 3 4P∴ξ的数学希望是 E(ξ)=2× +3×+4×=.【评论】此题考察了频次散布直方图,失散型随机变量的散布列和数学希望,属于中档题.20.【剖析】(1)先求出 p 的值,即可求出 c 的值,依据离心率求出 a 的值,即可得到椭圆方程,( 2)设直线 l 的方程为 y=kx+m,设 A( x1,1),(2,2),由,yB x y依据直线 AM 与 BM 的斜率乘积为﹣,求出m=0,再依据弦长公式求出| AB|和| ON| ,表示出三角形的面积来,再利用二次函数的性质即可求出最小值.【解答】解:(1)∵点( 2, 4)在抛物线 y2=2px 上,∴16=4p,第20页(共 25页)∴椭圆的右焦点为F(2,0),∴c=2,∵椭圆 C1:+ =1(a>b>0)的离心率为,∴= ,∴a=2 ,∴b2=a2﹣ c2=8﹣4=4,∴椭圆 C1的方程为+,=1( 2)设直线 l 的方程为 y=kx+m,设 A(x1,1 ),( 2 , 2 ),y B x y 由,消 y 可得( 1+2k2) x2 +4kmx+2m2﹣8=0,∴ x1 2 , 1 2 ,+x = x x =∴ y1 2 ( 1 2 )+2m= ,12 212 ( 1 2) 2=+y =k x +x y y =k x x +km x +x +m∵ M(0,2),直线 AM 与 BM 的斜率乘积为﹣,∴ k1?k2=?===﹣,解得 m=0,∴直线 l 的方程为 y=kx,线段 AB 的中点为坐标原点,由弦长公式可得 | AB| ==,∵| AN| =| BN| ,∴ ON 垂直均分线段 AB,当 k≠0 时,设直线 ON 的方程为 y=﹣x,同理可得|ON|== ,∴ S △ ABN = | ON| ?| AB| =8,当 k=0 时,△ ABN 的面积也合适上式,令 t=k 2+1, t ≥1,0< ≤ 1,则S =8=8=8,△ABN∴当 = 时,即 k=±1 时, S △ABN 的最小值为 .【评论】此题考察椭圆的标准方程, 直线与椭圆的地点关系, 考察椭圆与二次函数函数的应用,考察计算能力,属于难题.21.【剖析】(1)当 b=2 时,f ( x )=ae x +x 2﹣ 2x ,( a ∈ R ),f (′x )=ae x +2x ﹣2,( a ∈ R ),由题意 a=,令 h ( x )= ,则 =0,解得 x=2,由此能求出当 a=﹣或 a ∈[ 0, +∞)时, f ′(x )在 R 上有且只有一个零点.( 2 )由f ( x ) =ae x +x 2 ﹣ bx , 得 f ′( x ) =ae x +2x ﹣ b , 假定 存在 x 0 ,则,利用导数性质推导出不存在实数x (0 x 0≠m )使得 f (x 0)﹣ n=f (′)( 0﹣ m )成立.x【解答】 解:(1)当 b=2 时, f (x )=ae x +x 2﹣2x ,(a ∈R ),f (′x )=ae x +2x ﹣ 2,(a ∈R ), 由题意得 ae x +2x ﹣ 2=0,即 a= ,令 h (x ) =,则=0,解得 x=2,当 x <2 时, h ′( x )< 0,h (x )单一递减,当 x >2 时, h ′( x )> 0,h (x )单一递加, ∴ h ( x )min =h ( 2)=﹣ ,∵当 x=﹣ 1 时, h (﹣ 1) =4e >0,当 x >2 时, h (x )=<0,由题意适当 a=﹣或 a ∈[ 0, +∞)时, f ′( x )在 R 上有且只有一个零点.( 2)由 f (x )=ae x +x 2﹣bx ,得 f ′(x )=ae x +2x ﹣ b ,假定存在 x 0,则有 f (x 0)==,即,∵ f (′)= +2 ﹣b ,==+(x 0+m )﹣ b ,∴+2?﹣ b=+(x 0 +m )﹣ ,b即 = ,∵ a ≠0,∴,令 t=x 0﹣ m > ,则,两边同时除以 e m ,得,即 ,令 g (t ) =,∴ ,令 h (t ) =﹣ ﹣1 在( 0,+∞)上单一递加,且 h (0)=0,∴ h ( t )> 0 对于 t ∈( 0, +∞)恒成立,即 g ′(t )> 0 对于 t ∈( 0, +∞)恒成立,∴ g ( e )在( 0,+∞)上单一递加, g (0)=0,∴ g ( t )> 0 对于 t ∈( 0, +∞)恒成立,∴= 不可立,同理, t=x 0﹣ m <0 时,∴不存在实数 x 0( 0≠ m )使得 f ( 0)﹣ n=f ′()(0﹣ m )成立. x xx【评论】此题考察利用导数研究函数的性质及实数的最值范围的求法、 知足条件的实数能否存在的判断与证明,考察函数与方程思想、转变与化归思想,考察运算求解能力、推理论证能力,考察创新意识,是中档题.[ 选修 4-4:坐标系与参数方程选讲 ]22.【剖析】(1)考察直线 l 1,l 2 参数方程与极坐标方程的互化,曲线 C 的极坐标方程与直角坐标方程的互化.要点都是消去参数t .( 2)利用 l 1, l 2 极坐标方程,联合余弦定理,计算出 | AB| 的长度.【解答】 解:(1)l 1,l 2 的极坐标方程为 θ1=α(ρ∈R ), θ2=α+ (ρ∈R ).曲线 C 的极坐标方程方程为 ρ﹣4cos θ=0.即得 ρ2﹣4ρcos θ=0,222利用 ρ x +y ,x=ρcos θ得曲线 C 的直角坐标方程为( x ﹣2)2+y 2=4. ( 2)因为 ρ1=4cos α, ρ2=4cos (α+ ),所以|AB|2﹣ ρ1. ρ222( )﹣ cos αcos=+2 cos=16[ cos α+cos()]=16[ cos 2α+ (cos α﹣ sin α)2﹣cos α( cos α﹣ sin α)] =8,所以| AB| 的值为 2 .【评论】考察极坐标方程与参数方程, 一般方程的互化. 记准互化公式和原则是要点,属于中档题目.[ 选修 4-5:不等式选讲 ]第24页(共 25页)23.【剖析】(1)经过议论 x 的范围,求出不等式的解集即可;(2)依据绝对值不等式的性质求出 a 的值,联合基本不等式的性质求出 m+n 的最小值即可.【解答】解:(1)当 x≥2 时, x﹣ 2≥ 1﹣ 2x,得 x≥1,故 x≥2,当 x<2 时, 2﹣x≥1﹣2x,得 x≥﹣ 1,故﹣ 1≤x<2,综上,不等式的解集是 { x| x≥﹣ 1} ;( 2)∵ f( x)+| x﹣ 1| 的最小值是 3,∴ f(x)+| x﹣1| ≥| x﹣ a﹣( x﹣ 1) | =| a﹣ 1|=3,故 a=4,∵ m+n= + +n≥3 =3,当且仅当=n 即 m=2, n=1 时取“=.”【评论】此题考察认识绝对值不等式问题,考察绝对值的性质以及基本不等式的性质,是一道中档题.第25页(共 25页)。

2018年河南省开封市高考数学一模试卷(理科) (1)

2018年河南省开封市高考数学一模试卷(理科) (1)

2018年河南省开封市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若,则sin2α的值为()A.B.C.D.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.26.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=27.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.10.(5分)函数y=的图象大致是()A.B. C.D.11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有个.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.2018年河南省开封市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【解答】解:∵U=R,集合A={x|x≥1}=[1,+∞),B={x|x>a}=(a,+∞),∴∁U A=(﹣∞,1),又(∁U A)∪B=R,∴实数a的取值范围是(﹣∞,1).故选:A.2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z1=1﹣2i,且复数z1,z2在复平面内对应的点关于虚轴对称,∴z2=﹣1﹣2i,则=,∴复数在复平面内对应的点的坐标为(),在第四象限.故选:D.3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵=(m﹣1,1),=(m,﹣2),∴⇔m(m﹣1)﹣2=0.由m(m﹣1)﹣2=0,解得m=﹣1或m=2.∴“m=2”是“⊥”的充分不必要条件.故选:A.4.(5分)若,则sin2α的值为()A.B.C.D.【解答】解:若,即2(cos2α﹣sin2α)=cosα﹣sinα,则2(cosα+sinα)=,即cosα+sinα=,∴1+2sinαcosα=,即sin2α=2sinαcosα=﹣,故选:C.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.2【解答】解:设等比数列{a n}的公比为q≠1,∵9S3=S6,a2=1,∴=,a1q=1.则q=2,a1=.故选:A.6.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=2【解答】解:根据题意,若曲线﹣=1(a>0,b>0)为等轴双曲线,则a2=b2,c==a,即焦点的坐标为(±a,0);其渐近线方程为x±y=0,若焦点到渐近线的距离为,则有=a=,则双曲线的标准方程为﹣=1,即x2﹣y2=2;故选:D.7.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.【解答】解:由题意可得:由图可知第一次剩下,第二次剩下,…由此得出第7次剩下,可得①为i≤7?②s=③i=i+1故选:D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.【解答】解:由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,由于两球不等,所以排除A;B正确;故选B9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.【解答】解:根据题意,最近路线,那就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,一共7次,∴最近的行走路线共有:n=A=5040,∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列,接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排三个元素,也就是A53,则最近的行走路线中不连续向上攀登的共有m==1440种,∴其最近的行走路线中不连续向上攀登的概率p===.故选:C.10.(5分)函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.【解答】解:函数,令2x﹣=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,0≤x≤,当k=30时,可得x=,∴f(x)在[0,]上有30条对称轴,根据正弦函数的性质可知:函数与y=3的交点x1,x2关于对称,x2,x3关于对称,…,即x1+x2=×2,x2+x3=×2,…,x n﹣1+x n=2×()将以上各式相加得:x1+2x2+2x3+...+2x28+x29=2(++...+)=(2+5+8+ (89)×=455π则x1+2x2+2x3+…+2x n+x n=(x1+x2)+(x2+x3)+x3+…+x n﹣1+(x n﹣1+x n)=2﹣1()=455π,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为13.【解答】解:由约束条件作出可行域如图,作出直线3x+5y=0,∵x,y∈Z,∴平移直线3x+5y=0至(1,2)时,目标函数z=3x+5y的最大值为13.故答案为:13.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a 的值有4个.【解答】解:f(x)=,且f(f(a))=2∴当a<2时,f(a)=2e a﹣1,若2e a﹣1<2,则f(f(a))=﹣1=2,解得a=1﹣ln2;若2e a﹣1≥2,则f(f(a))==2,解得a=ln+1,成立;当a≥2时,f(a)=log3(a2﹣1),若log3(a2﹣1)<2,则f(f(a))=﹣1=2,解得a=2,或a=﹣2,与a≥2不符,若log3(a2﹣1)≥2,则f(f(a))=log3[(log3(a2﹣1)]=2,解得a2=310+1,∴a=或a=﹣与a≥2不符.由此得到满足条件的a的值有1﹣ln2和ln+1和2和,共4个.故答案为:4.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.【解答】解:∵在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,∴小正四面体的外接球是纸盒的内切球,设正四面体的棱长为a,则内切球的半径为a,外接球的半径是a,∴纸盒的内切球半径是=,设小正四面体的棱长是x,则=x,解得x=,∴小正四面体的棱长的最大值为,故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.则:2cosB(sinAcosC+sinCcosA)+sinB=0,整理得:2cosBsin(A+C)=﹣sinB,由于:0<B<π,则:sinB≠0,解得:,所以:B=.(Ⅱ)点D在AC边上且BD⊥AC,在直角△BCD中,若a=3,BD=,解得:,解得:,则:,,所以:cos∠ABD===,则:在Rt△ABD中,,=.故:c=5.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.【解答】(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC,而PB⊂平面PBC,∴平面PBC⊥平面PEC;(Ⅱ)解:以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),∴,,=(,,﹣).设平面PED的一个法向量为,由,令z=﹣1,则,又平面PBE的一个法向量为,则cos<>==.∴二面角B﹣PE﹣D的余弦值为.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)【解答】解:(Ⅰ)由题意可得关于商品和服务评价的2×2列联表如下:K2=≈11.111>6.635,故有99%的把握,认为商品好评与服务好评有关.(Ⅱ)(1)每次购物时,对商品和服务全为好评的概率为,且X的取值可以是0,1,2,3.其中P(X=0)=()3=,P(X=1)==,P(X=2)=,P(X=3)==,X的分布列为:(2)∵X~B(3,),∴E(X)=,D(X)=3×=.20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.【解答】解:(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e===,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l 1,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,∴•=﹣1,则l 1⊥l2.(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.【解答】解:(Ⅰ)由f(x)=(t﹣1)xe x,得f′(x)=(t﹣1)(x+1)e x,若t>1,则x<﹣1时,f′(x)<0,f(x)递减,x>﹣1时,f′(x)>0,f(x)递增,若t<1,则x<﹣1时,f′(x)>0,f(x)递增,x>﹣1时,f′(x)<0,f(x)递减,故t>1时,f(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,t<1时,f(x)在(﹣∞,﹣1)递增,在(﹣1,+∞)递减;(2)f(x)≤g(x)在[0,+∞)上恒成立,即(t﹣1)xe x﹣tx﹣1+e x≤0对∀x≥0成立,设h(x)=(t﹣1)xe x﹣tx﹣1+e x,h(0)=0,h′(x)=(t﹣1)(x+1)e x﹣t+e x,h′(0)=0,h″(x)=e x[(t﹣1)x+2t﹣1],t=1时,h″(x)=e x≥0,h′(x)在[0,+∞)递增,∴h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,显然不成立,∴t≠1,则h″(x)=e x(x+)(t﹣1),令h″(x)=0,则x=﹣,①当﹣≤0即t<或t>1时,若t≤,则h″(x)在[0,+∞)为负,h′(x)递减,故有h′(x)≤h′(0)=0,h(x)在[0,+∞)递减,∴h(x)≤h(0)=0成立,若t≥1,则h″(x)在[0,+∞)上为正,h′(x)递增,故有h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,不成立,②﹣≥0即≤t≤1时,h″(x)在[0,﹣)内有h′(x)≥h′(0)=0,h(x)递增,故h(x)在[0,﹣)内有h(x)≥h(0)=0不成立,综上,t的范围是(﹣∞,].选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.【解答】解:(Ⅰ)直线l:3x﹣y﹣6=0,转化为直角坐标方程为:(t为参数),曲线C:ρ﹣4sinθ=0.转化为直角坐标方程为:x2+y2﹣4y=0.(Ⅱ)首先把x2+y2﹣4y=0的方程转化为:x2+(y﹣2)2=4,所以经过圆心,且倾斜角为30°的直线方程为:,则:,解得:,则:=,则:|AP|的最大值为:,|AP|的最小值为:.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.【解答】解:(Ⅰ)∵|x+1|+|2x﹣1|≤3,∴或或,解得:﹣1≤x≤1,故m=﹣1,n=1;(Ⅱ)由(Ⅰ)a+b+c=2,则++=(++)(a+b+c)=[1+1+1+(+)+(+)+(+)]≥+(2+2+2)=+3=,当且仅当a=b=c=时“=”成立.。

2018年河南省开封市高考数学一模试卷(理科) (1)

2018年河南省开封市高考数学一模试卷(理科) (1)

2018年河南省开封市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若,则sin2α的值为()A.B.C.D.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.26.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=27.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.10.(5分)函数y=的图象大致是()A.B. C.D.11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次+x n=()记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1A.B.445πC.455πD.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有个.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.2018年河南省开封市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【解答】解:∵U=R,集合A={x|x≥1}=[1,+∞),B={x|x>a}=(a,+∞),∴∁U A=(﹣∞,1),又(∁U A)∪B=R,∴实数a的取值范围是(﹣∞,1).故选:A.2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z1=1﹣2i,且复数z1,z2在复平面内对应的点关于虚轴对称,∴z2=﹣1﹣2i,则=,∴复数在复平面内对应的点的坐标为(),在第四象限.故选:D.3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵=(m﹣1,1),=(m,﹣2),∴⇔m(m﹣1)﹣2=0.由m(m﹣1)﹣2=0,解得m=﹣1或m=2.∴“m=2”是“⊥”的充分不必要条件.故选:A.4.(5分)若,则sin2α的值为()A.B.C.D.【解答】解:若,即2(cos2α﹣sin2α)=cosα﹣sinα,则2(cosα+sinα)=,即cosα+sinα=,∴1+2sinαcosα=,即sin2α=2sinαcosα=﹣,故选:C.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.2【解答】解:设等比数列{a n}的公比为q≠1,∵9S3=S6,a2=1,∴=,a1q=1.则q=2,a1=.故选:A.6.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=2【解答】解:根据题意,若曲线﹣=1(a>0,b>0)为等轴双曲线,则a2=b2,c==a,即焦点的坐标为(±a,0);其渐近线方程为x±y=0,若焦点到渐近线的距离为,则有=a=,则双曲线的标准方程为﹣=1,即x2﹣y2=2;故选:D.7.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.【解答】解:由题意可得:由图可知第一次剩下,第二次剩下,…由此得出第7次剩下,可得①为i≤7?②s=③i=i+1故选:D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.【解答】解:由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,由于两球不等,所以排除A;B正确;故选B9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.【解答】解:根据题意,最近路线,那就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,一共7次,∴最近的行走路线共有:n=A=5040,∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列,接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排三个元素,也就是A53,则最近的行走路线中不连续向上攀登的共有m==1440种,∴其最近的行走路线中不连续向上攀登的概率p===.故选:C.10.(5分)函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次+x n=()记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1A.B.445πC.455πD.【解答】解:函数,令2x﹣=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,0≤x≤,当k=30时,可得x=,∴f(x)在[0,]上有30条对称轴,根据正弦函数的性质可知:函数与y=3的交点x1,x2关于对称,x2,x3关于对称,…,即x1+x2=×2,x2+x3=×2,…,x n﹣1+x n=2×()将以上各式相加得:x1+2x2+2x3+…+2x28+x29=2(++…+)=(2+5+8+…+89)×=455π+x n=(x1+x2)+(x2+x3)+x3+…+x n﹣1+(x n﹣1+x n)=2()=455π,则x1+2x2+2x3+…+2x n﹣1故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为13.【解答】解:由约束条件作出可行域如图,作出直线3x+5y=0,∵x,y∈Z,∴平移直线3x+5y=0至(1,2)时,目标函数z=3x+5y的最大值为13.故答案为:13.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有4个.【解答】解:f(x)=,且f(f(a))=2∴当a<2时,f(a)=2e a﹣1,若2e a﹣1<2,则f(f(a))=﹣1=2,解得a=1﹣ln2;若2e a﹣1≥2,则f(f(a))==2,解得a=ln+1,成立;当a≥2时,f(a)=log3(a2﹣1),若log3(a2﹣1)<2,则f(f(a))=﹣1=2,解得a=2,或a=﹣2,与a≥2不符,若log3(a2﹣1)≥2,则f(f(a))=log3[(log3(a2﹣1)]=2,解得a2=310+1,∴a=或a=﹣与a≥2不符.由此得到满足条件的a的值有1﹣ln2和ln+1和2和,共4个.故答案为:4.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.【解答】解:∵在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,∴小正四面体的外接球是纸盒的内切球,设正四面体的棱长为a,则内切球的半径为a,外接球的半径是a,∴纸盒的内切球半径是=,设小正四面体的棱长是x,则=x,解得x=,∴小正四面体的棱长的最大值为,故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.则:2cosB(sinAcosC+sinCcosA)+sinB=0,整理得:2cosBsin(A+C)=﹣sinB,由于:0<B<π,则:sinB≠0,解得:,所以:B=.(Ⅱ)点D在AC边上且BD⊥AC,在直角△BCD中,若a=3,BD=,解得:,解得:,则:,,所以:cos∠ABD===,则:在Rt△ABD中,,=.故:c=5.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.【解答】(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC,而PB⊂平面PBC,∴平面PBC⊥平面PEC;(Ⅱ)解:以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),∴,,=(,,﹣).设平面PED的一个法向量为,由,令z=﹣1,则,又平面PBE的一个法向量为,则cos<>==.∴二面角B﹣PE﹣D的余弦值为.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)【解答】解:(Ⅰ)由题意可得关于商品和服务评价的2×2列联表如下:K2=≈11.111>6.635,故有99%的把握,认为商品好评与服务好评有关.(Ⅱ)(1)每次购物时,对商品和服务全为好评的概率为,且X的取值可以是0,1,2,3.其中P(X=0)=()3=,P(X=1)==,P(X=2)=,P(X=3)==,X的分布列为:(2)∵X~B(3,),∴E(X)=,D(X)=3×=.20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.【解答】解:(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e===,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l 1,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,⊥l2.∴•=﹣1,则l(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,水秀中华∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.【解答】解:(Ⅰ)由f(x)=(t﹣1)xe x,得f′(x)=(t﹣1)(x+1)e x,若t>1,则x<﹣1时,f′(x)<0,f(x)递减,x>﹣1时,f′(x)>0,f(x)递增,若t<1,则x<﹣1时,f′(x)>0,f(x)递增,x>﹣1时,f′(x)<0,f(x)递减,故t>1时,f(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,t<1时,f(x)在(﹣∞,﹣1)递增,在(﹣1,+∞)递减;(2)f(x)≤g(x)在[0,+∞)上恒成立,即(t﹣1)xe x﹣tx﹣1+e x≤0对∀x≥0成立,设h(x)=(t﹣1)xe x﹣tx﹣1+e x,水秀中华h(0)=0,h′(x)=(t﹣1)(x+1)e x﹣t+e x,h′(0)=0,h″(x)=e x[(t﹣1)x+2t﹣1],t=1时,h″(x)=e x≥0,h′(x)在[0,+∞)递增,∴h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,显然不成立,∴t≠1,则h″(x)=e x(x+)(t﹣1),令h″(x)=0,则x=﹣,①当﹣≤0即t<或t>1时,若t≤,则h″(x)在[0,+∞)为负,h′(x)递减,故有h′(x)≤h′(0)=0,h(x)在[0,+∞)递减,∴h(x)≤h(0)=0成立,若t≥1,则h″(x)在[0,+∞)上为正,h′(x)递增,故有h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,不成立,②﹣≥0即≤t≤1时,h″(x)在[0,﹣)内有h′(x)≥h′(0)=0,h(x)递增,故h(x)在[0,﹣)内有h(x)≥h(0)=0不成立,综上,t的范围是(﹣∞,].选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.【解答】解:(Ⅰ)直线l:3x﹣y﹣6=0,转化为直角坐标方程为:(t为参数),水秀中华曲线C:ρ﹣4sinθ=0.转化为直角坐标方程为:x2+y2﹣4y=0.(Ⅱ)首先把x2+y2﹣4y=0的方程转化为:x2+(y﹣2)2=4,所以经过圆心,且倾斜角为30°的直线方程为:,则:,解得:,则:=,则:|AP|的最大值为:,|AP|的最小值为:.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.【解答】解:(Ⅰ)∵|x+1|+|2x﹣1|≤3,∴或或,解得:﹣1≤x≤1,故m=﹣1,n=1;(Ⅱ)由(Ⅰ)a+b+c=2,则++=(++)(a+b+c)=[1+1+1+(+)+(+)+(+)]≥+(2+2+2)=+3=,当且仅当a=b=c=时“=”成立.。

2018年河南省开封市高考数学一模试卷(理科)

2018年河南省开封市高考数学一模试卷(理科)

2018年河南省开封市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若,则sin2α的值为()A.B.C.D.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.26.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=27.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.10.(5分)函数y=的图象大致是()A.B. C.D.11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a的值有个.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.2018年河南省开封市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【解答】解:∵U=R,集合A={x|x≥1}=[1,+∞),B={x|x>a}=(a,+∞),∴∁U A=(﹣∞,1),又(∁U A)∪B=R,∴实数a的取值范围是(﹣∞,1).故选:A.2.(5分)若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z1=1﹣2i,且复数z1,z2在复平面内对应的点关于虚轴对称,∴z2=﹣1﹣2i,则=,∴复数在复平面内对应的点的坐标为(),在第四象限.故选:D.3.(5分)已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵=(m﹣1,1),=(m,﹣2),∴⇔m(m﹣1)﹣2=0.由m(m﹣1)﹣2=0,解得m=﹣1或m=2.∴“m=2”是“⊥”的充分不必要条件.故选:A.4.(5分)若,则sin2α的值为()A.B.C.D.【解答】解:若,即2(cos2α﹣sin2α)=cosα﹣sinα,则2(cosα+sinα)=,即cosα+sinα=,∴1+2sinαcosα=,即sin2α=2sinαcosα=﹣,故选:C.5.(5分)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A.B.C.D.2【解答】解:设等比数列{a n}的公比为q≠1,∵9S3=S6,a2=1,∴=,a1q=1.则q=2,a1=.故选:A.6.(5分)已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为()A.B.x2﹣y2=1 C.D.x2﹣y2=2【解答】解:根据题意,若曲线﹣=1(a>0,b>0)为等轴双曲线,则a2=b2,c==a,即焦点的坐标为(±a,0);其渐近线方程为x±y=0,若焦点到渐近线的距离为,则有=a=,则双曲线的标准方程为﹣=1,即x2﹣y2=2;故选:D.7.(5分)我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.B.C.D.【解答】解:由题意可得:由图可知第一次剩下,第二次剩下,…由此得出第7次剩下,可得①为i≤7?②s=③i=i+1故选:D.8.(5分)如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()A.B.C.D.【解答】解:由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C、D,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,由于两球不等,所以排除A;B正确;故选B9.(5分)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为()A.B.C.D.【解答】解:根据题意,最近路线,那就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,一共7次,∴最近的行走路线共有:n=A=5040,∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列,接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排三个元素,也就是A53,则最近的行走路线中不连续向上攀登的共有m==1440种,∴其最近的行走路线中不连续向上攀登的概率p===.故选:C.10.(5分)函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D11.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.12.(5分)已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=()A.B.445πC.455πD.【解答】解:函数,令2x﹣=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,0≤x≤,当k=30时,可得x=,∴f(x)在[0,]上有30条对称轴,根据正弦函数的性质可知:函数与y=3的交点x1,x2关于对称,x2,x3关于对称,…,即x1+x2=×2,x2+x3=×2,…,x n﹣1+x n=2×()将以上各式相加得:x1+2x2+2x3+...+2x28+x29=2(++...+)=(2+5+8+ (89)×=455π则x1+2x2+2x3+…+2x n+x n=(x1+x2)+(x2+x3)+x3+…+x n﹣1+(x n﹣1+x n)=2﹣1()=455π,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为13.【解答】解:由约束条件作出可行域如图,作出直线3x+5y=0,∵x,y∈Z,∴平移直线3x+5y=0至(1,2)时,目标函数z=3x+5y的最大值为13.故答案为:13.15.(5分)设f(x)=,且f(f(a))=2,则满足条件的a 的值有4个.【解答】解:f(x)=,且f(f(a))=2∴当a<2时,f(a)=2e a﹣1,若2e a﹣1<2,则f(f(a))=﹣1=2,解得a=1﹣ln2;若2e a﹣1≥2,则f(f(a))==2,解得a=ln+1,成立;当a≥2时,f(a)=log3(a2﹣1),若log3(a2﹣1)<2,则f(f(a))=﹣1=2,解得a=2,或a=﹣2,与a≥2不符,若log3(a2﹣1)≥2,则f(f(a))=log3[(log3(a2﹣1)]=2,解得a2=310+1,∴a=或a=﹣与a≥2不符.由此得到满足条件的a的值有1﹣ln2和ln+1和2和,共4个.故答案为:4.16.(5分)一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为.【解答】解:∵在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,∴小正四面体的外接球是纸盒的内切球,设正四面体的棱长为a,则内切球的半径为a,外接球的半径是a,∴纸盒的内切球半径是=,设小正四面体的棱长是x,则=x,解得x=,∴小正四面体的棱长的最大值为,故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.(Ⅰ)求角B的大小;(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.【解答】解:(Ⅰ)在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.则:2cosB(sinAcosC+sinCcosA)+sinB=0,整理得:2cosBsin(A+C)=﹣sinB,由于:0<B<π,则:sinB≠0,解得:,所以:B=.(Ⅱ)点D在AC边上且BD⊥AC,在直角△BCD中,若a=3,BD=,解得:,解得:,则:,,所以:cos∠ABD===,则:在Rt△ABD中,,=.故:c=5.18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:平面PBC⊥平面PEC;(Ⅱ)求二面角B﹣PE﹣D的余弦值.【解答】(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC,而PB⊂平面PBC,∴平面PBC⊥平面PEC;(Ⅱ)解:以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),∴,,=(,,﹣).设平面PED的一个法向量为,由,令z=﹣1,则,又平面PBE的一个法向量为,则cos<>==.∴二面角B﹣PE﹣D的余弦值为.19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)完成下面的2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:(1)求对商品和服务全好评的次数X的分布列;(2)求X的数学期望和方差.附:(,其中n=a+b+c+d)【解答】解:(Ⅰ)由题意可得关于商品和服务评价的2×2列联表如下:K2=≈11.111>6.635,故有99%的把握,认为商品好评与服务好评有关.(Ⅱ)(1)每次购物时,对商品和服务全为好评的概率为,且X的取值可以是0,1,2,3.其中P(X=0)=()3=,P(X=1)==,P(X=2)=,P(X=3)==,X的分布列为:(2)∵X~B(3,),∴E(X)=,D(X)=3×=.20.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.【解答】解:(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e===,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l 1,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,∴•=﹣1,则l⊥l2.(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.21.(12分)已知函数f(x)=(t﹣1)xe x,g(x)=tx+1﹣e x.(Ⅰ)当t≠1时,讨论f(x)的单调性;(Ⅱ)f(x)≤g(x)在[0,+∞)上恒成立,求t的取值范围.【解答】解:(Ⅰ)由f(x)=(t﹣1)xe x,得f′(x)=(t﹣1)(x+1)e x,若t>1,则x<﹣1时,f′(x)<0,f(x)递减,x>﹣1时,f′(x)>0,f(x)递增,若t<1,则x<﹣1时,f′(x)>0,f(x)递增,x>﹣1时,f′(x)<0,f(x)递减,故t>1时,f(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,t<1时,f(x)在(﹣∞,﹣1)递增,在(﹣1,+∞)递减;(2)f(x)≤g(x)在[0,+∞)上恒成立,即(t﹣1)xe x﹣tx﹣1+e x≤0对∀x≥0成立,设h(x)=(t﹣1)xe x﹣tx﹣1+e x,h(0)=0,h′(x)=(t﹣1)(x+1)e x﹣t+e x,h′(0)=0,h″(x)=e x[(t﹣1)x+2t﹣1],t=1时,h″(x)=e x≥0,h′(x)在[0,+∞)递增,∴h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,显然不成立,∴t≠1,则h″(x)=e x(x+)(t﹣1),令h″(x)=0,则x=﹣,①当﹣≤0即t<或t>1时,若t≤,则h″(x)在[0,+∞)为负,h′(x)递减,故有h′(x)≤h′(0)=0,h(x)在[0,+∞)递减,∴h(x)≤h(0)=0成立,若t≥1,则h″(x)在[0,+∞)上为正,h′(x)递增,故有h′(x)≥h′(0)=0,故h(x)在[0,+∞)递增,故h(x)≥h(0)=0,不成立,②﹣≥0即≤t≤1时,h″(x)在[0,﹣)内有h′(x)≥h′(0)=0,h(x)递增,故h(x)在[0,﹣)内有h(x)≥h(0)=0不成立,综上,t的范围是(﹣∞,].选修4-4:极坐标与参数方程22.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.【解答】解:(Ⅰ)直线l:3x﹣y﹣6=0,转化为直角坐标方程为:(t为参数),曲线C:ρ﹣4sinθ=0.转化为直角坐标方程为:x2+y2﹣4y=0.(Ⅱ)首先把x2+y2﹣4y=0的方程转化为:x2+(y﹣2)2=4,所以经过圆心,且倾斜角为30°的直线方程为:,则:,解得:,则:=,则:|AP|的最大值为:,|AP|的最小值为:.选修4-5:不等式选讲23.已知关于x的不等式|x+1|+|2x﹣1|≤3的解集为{x|m≤x≤n}.(I)求实数m、n的值;(II)设a、b、c均为正数,且a+b+c=n﹣m,求++的最小值.【解答】解:(Ⅰ)∵|x+1|+|2x﹣1|≤3,∴或或,解得:﹣1≤x≤1,故m=﹣1,n=1;(Ⅱ)由(Ⅰ)a+b+c=2,则++=(++)(a+b+c)=[1+1+1+(+)+(+)+(+)]≥+(2+2+2)=+3=,当且仅当a=b=c=时“=”成立.。

2018年河南省六市高考一模数学试卷(理科)【解析版】

2018年河南省六市高考一模数学试卷(理科)【解析版】

2018年河南省六市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|lg(x﹣2)<1},集合B={x|x2﹣2x﹣3<0},则A∪B 等于()A.(2,12)B.(﹣1,3)C.(﹣1,12)D.(2,3)2.(5分)已知i为虚数单位,若复数=a+bi(a,b∈R),则a+b=()A.﹣i B.i C.﹣1D.13.(5分)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.4.(5分)汽车以v=(3t+2)m/s作变速运动时,在第1s至2s之间的1s内经过的路程是()A.5m B.C.6m D.5.(5分)为考察A、B两种药物预防某疾病的效果,进行动物试验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A.药物B的预防效果优于药物A的预防效果B.药物A的预防效果优于药物B的预防效果C.药物A、B对该疾病均有显著的预防效果D.药物A、B对该疾病均没有预防效果6.(5分)一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A.B.C.2D.47.(5分)已知数列{a n}满足=2,则其前100项和为()A.250B.200C.150D.1008.(5分)已知锐角三角形ABC,角A、B、C的对边分别为a、b、c,若b2=a(a+c),则的取值范围是()A.(0,1)B.C.D.9.(5分)设a1,a2,…,a2017是数列1,2,…,2017的一个排列,观察如图所示的程序框图,则输出的F的值为()A.2015B.2016C.2017D.201810.(5分)在三棱锥S﹣ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,AB =SC,且三棱锥S﹣ABC的体积为,则该三棱锥的外接球的半径为()A.1B.2C.3D.411.(5分)椭圆+=1(a>b>0)与函数y=的图象交于点P,若函数y=的图象在P处的切线过椭圆的左焦点F(﹣1,0),则椭圆的离心率是()A.B.C.D.12.(5分)若关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.71828……,则的值为()A.1B.1﹣m C.1+m D.e二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知,,则=.14.(5分)已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是15.(5分)已知P是双曲线C:右支上一点,直线l是双曲线的一条渐近线,P在l上的射影为Q,F1是双曲线的左焦点,则|PF1|+|PQ|的最小值是.16.(5分)已知动点P(x,y)满足,则x2+y2﹣6x的最小值是.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}中,a1=1,其前n项的和为S n,且满足.(1)求证:数列是等差数列;(2)证明:当n≥2时,.18.(10分)我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如图:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)19.(10分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(I)证明:平面EAC⊥平面PBD;(II)若PD∥平面EAC,并且二面角B﹣AE﹣C的大小为45°,求PD:AD的值.20.(10分)已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交抛物线C于点A,B,当直线l的倾斜角是45°时,AB的中垂线交y轴于点Q(0,5).(1)求p的值;(2)以AB为直径的圆交x轴于点M,N,记劣弧的长度为S,当直线l绕F旋转时,求的最大值.21.(10分)已知函数.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,且x1<x2,证明:.[选修4-4:坐标系与参数方程]22.(10分)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为(t 为参数),圆C的极坐标方程为.(1)求直线l的普通方程与圆C的执直角坐标方程;(2)设曲线C与直线L交于A,B两点,若P点的直角坐标为(2,1),求||P A|﹣|PB||的值.[选修4-5:不等式选讲]23.(10分)已知关于x的不等式|2x|+|2x﹣1|≤m有解.(I)求实数m的取值范围;(II)已知a>0,b>0,a+b=m,证明:.2018年河南省六市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|lg(x﹣2)<1},集合B={x|x2﹣2x﹣3<0},则A∪B 等于()A.(2,12)B.(﹣1,3)C.(﹣1,12)D.(2,3)【解答】解:集合A={x|lg(x﹣2)<1}={x|0<x﹣2<10}={x|2<x<12},集合B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},则A∪B={x|﹣1<x<12}=(﹣1,12).故选:C.2.(5分)已知i为虚数单位,若复数=a+bi(a,b∈R),则a+b=()A.﹣i B.i C.﹣1D.1【解答】解:∵a+bi====i,∴a=0,b=1.∴a+b=1.故选:D.3.(5分)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.【解答】解:将5张奖票不放回地依次取出共有A=120种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有3A A=36种取法,∴P==.故选:C.4.(5分)汽车以v=(3t+2)m/s作变速运动时,在第1s至2s之间的1s内经过的路程是()A.5m B.C.6m D.【解答】解:根据题意,汽车以v=(3t+2)m/s作变速运动时,则汽车在第1s至2s之间的1s内经过的路程S=(3t+2)dt=(+2t)=;故选:D.5.(5分)为考察A、B两种药物预防某疾病的效果,进行动物试验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A.药物B的预防效果优于药物A的预防效果B.药物A的预防效果优于药物B的预防效果C.药物A、B对该疾病均有显著的预防效果D.药物A、B对该疾病均没有预防效果【解答】解:由A、B两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A的预防效果优于药物B的预防效果.故选:B.6.(5分)一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A.B.C.2D.4【解答】解:由已知中的三视图可得:该几何体是一个三棱锥:AD=DC=BD =2,∠ADC=120°,BD⊥平面ADC,其直观图如图所示:AB=BC=2,AC=2,底面△BCD的面积为:×2×2=2,侧面△ABD的面积为:×2×2=2,侧面△ADC的面积为:×2×2×=,侧面△ACB是腰长为2,底长2的等腰三角形,故底边上的高为=,其面积为:×2 ×=,综上可知,最大的面的面积为,故选:B.7.(5分)已知数列{a n}满足=2,则其前100项和为()A.250B.200C.150D.100【解答】解;n=2k﹣1(k∈N*)时,a2k+a2k﹣1=2.∴其前100项和=(a1+a2)+(a3+a4)+…+(a99+a100)=2×50=100.故选:D.8.(5分)已知锐角三角形ABC,角A、B、C的对边分别为a、b、c,若b2=a(a+c),则的取值范围是()A.(0,1)B.C.D.【解答】解:由b2=a(a+c),利用余弦定理,可得:c﹣a=2a cos B,利用正弦定理边化角,得:sin C﹣sin A=2sin A cos B,∵A+B+C=π,∴sin(B+A)﹣sin A=2sin A cos B,∴sin(B﹣A)=sin A,∵ABC是锐角三角形,∴B﹣A=A,即B=2A.∵0<B<,<A+B<π,那么:<A<,则=sin A∈(,).故选:B.9.(5分)设a1,a2,…,a2017是数列1,2,…,2017的一个排列,观察如图所示的程序框图,则输出的F的值为()A.2015B.2016C.2017D.2018【解答】解:分析题中程序框图的功能是先求这2 017个数的最大值,然后进行计算F=b+sin;因为b=max{1,2,…,2 017}=2 017,所以F=2 017+sin=2 018.故选:D.10.(5分)在三棱锥S﹣ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,AB =SC,且三棱锥S﹣ABC的体积为,则该三棱锥的外接球的半径为()A.1B.2C.3D.4【解答】解:如图,取SC的中点O,连接OB,OA,∵SB⊥BC,SA⊥AC,SB=BC,SA=AC,∴OB⊥SC,OA⊥SC,OB=SC,OA=SC,∴SC⊥平面OAB,O为三棱锥的外接球的球心,SC为球O的直径,设球O得半径为R,则AB=SC=R,∴△AOB为正三角形,则∠BOA=60°,∴V S﹣ABC =V S﹣OAB+V C﹣OAB=,解得R=3.故选:C.11.(5分)椭圆+=1(a>b>0)与函数y=的图象交于点P,若函数y=的图象在P处的切线过椭圆的左焦点F(﹣1,0),则椭圆的离心率是()A.B.C.D.【解答】解:由题意,左焦点F为(﹣1,0),设P(t,),k PF=,由y=,求导y′=,则k PF=,即=,解得t=1,即P(1,1),设椭圆M的右焦点为F2(1,0),则2a=|PF1|+|PF2|=1+,∴椭圆M的离心率为e===,故选:B.12.(5分)若关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.71828……,则的值为()A.1B.1﹣m C.1+m D.e【解答】解:由方程⇒,令,则有t++m=0.⇒t2+(m﹣1)t+1′﹣m=0,令函数g(x)=,,∴g(x)在(﹣∞,1)递增,在(1,+∞)递减,其图象如下,要使关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3结合图象可得关于t的方程t2+(m﹣1)t+1′﹣m=0一定有两个实根t1,t2,(t1<0<t2)且,∴=[(t1﹣1)(t2﹣1)]2.(t1﹣1)(t2﹣1)=t1t2﹣(t1+t2)+1=(1﹣m)﹣(1﹣m)+1=1.∴=[(t1﹣1)(t2﹣1)]2=1.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知,,则=5.【解答】解:∵,,∴==(﹣3,4),∴.故答案为:5.14.(5分)已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是10【解答】解:由题意可得2n=32,n=5,展开式的通项公式为T r+1=•x10﹣2r•x ﹣r=•x10﹣3r.令10﹣3r=1,r=3,故展开式中含x项的系数是=10,故答案为10.15.(5分)已知P是双曲线C:右支上一点,直线l是双曲线的一条渐近线,P在l上的射影为Q,F1是双曲线的左焦点,则|PF1|+|PQ|的最小值是.【解答】解:设右焦点分别为F2,∵∴|PF1|﹣|PF2|=2,∴|PF1|=|PF2|+2,∴|PF1|+|PQ|=|PF2|+2+|PQ|,当且仅当Q、P、F2三点共线,且P在F2,Q之间时,|PF2|+|PQ|最小,且最小值为F2到l的距离,可得l的方程为y=±x,F2(,0),F2到l的距离d=1∴|PQ|+|PF1|的最小值为2+1.故答案为:1+2.16.(5分)已知动点P(x,y)满足,则x2+y2﹣6x的最小值是﹣.【解答】解:动点P(x,y)满足,x≥1时,x+≥1+;∴要使(x+)(﹣y)≤1,只要﹣y≤,﹣y≤﹣x(*),设f(x)=﹣x,x∈R,则f(x)是单调减函数,(*)可化为y≥x;∴动点P满足,该不等式组表示的平面区域如图所示:又x2+y2﹣6x=(x﹣3)2+y2﹣9,由两点间的距离公式可得,M(3,0)到区域中A的距离最小,由,解得A(,);∴x2+y2﹣6x=(x﹣3)2+y2﹣9≥|AM|2﹣9=+﹣9=﹣.故答案为:﹣.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}中,a1=1,其前n项的和为S n,且满足.(1)求证:数列是等差数列;(2)证明:当n≥2时,.【解答】证明:(1)当n≥2时,,S n﹣1﹣S n=2S n S n﹣1,从而构成以1为首项,2为公差的等差数列.(2)由(1)可知,,∴,∴当n≥2时,,从而.18.(10分)我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如图:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老:人每月发放生活补贴,标准如下①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)【解答】解:(1)数据整理如下表:从图表中知采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,80岁及以上应抽取:人,80岁以下应抽取:人(2)在600人中80岁及以上长者在老人中占比为:用样本估计总体,80岁及以上长者为:万,80岁及以上长者占户籍人口的百分比为.(3)用样本估计总体,设任一户籍老人每月享受的生活补助为X元,X的可能取值为0,120,200,220,300,,,,,,则随机变量X的分布列为:,全市老人的总预算为28×12×66×104=2.2176×108元政府执行此计划的年度预算约为2.22亿元.19.(10分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(I)证明:平面EAC⊥平面PBD;(II)若PD∥平面EAC,并且二面角B﹣AE﹣C的大小为45°,求PD:AD的值.【解答】解:(I)∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD∵菱形ABCD中,AC⊥BD,PD∩BD=D∴AC⊥平面PBD又∵AC⊂平面EAC,平面EAC⊥平面PBD;(II)连接OE,∵PD∥平面EAC,平面EAC∩平面PBD=OE,PD⊂平面PBD∴PD∥OE,结合O为BD的中点,可得E为PB的中点∵PD⊥平面ABCD,∴OE⊥平面ABCD,又∵OE⊂平面EAC,∴平面EAC⊥平面ABCD,∵平面EAC∩平面ABCD=AC,BO⊂平面ABCD,BO⊥AC∴BO⊥平面EAC,可得BO⊥AE过点O作OF⊥AE于点F,连接OF,则∵AE⊥BO,BO、OF是平面BOF内的相交直线,∴AE⊥平面BOF,可得AE⊥BF因此,∠BFO为二面角B﹣AE﹣C的平面角,即∠BFO=45°设AD=BD=a,则OB=a,OA=a,在Rt△BOF中,tan∠BFO=,可得OF=Rt△AOE中利用等积关系,可得OA•OE=OF•AE即a•OE=a•,解之得OE=∴PD=2OE=,可得PD:AD=:2即PD:AD的值为.20.(10分)已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交抛物线C于点A,B,当直线l的倾斜角是45°时,AB的中垂线交y轴于点Q(0,5).(1)求p的值;(2)以AB为直径的圆交x轴于点M,N,记劣弧的长度为S,当直线l绕F旋转时,求的最大值.【解答】解:(1)抛物线C:x2=2py(p>0)的焦点为F,,当l的倾斜角为45°时,l的方程为设A(x1,y1),B(x2,y2),由,得x2﹣2px﹣p2=0,x1+x2=2p,y1+y2=x1+x2+p=3p,得AB中点为…(3分)AB中垂线为,x=0代入得.∴p=2…(6分)(2)设l的方程为y=kx+1,代入x2=4y得x2﹣4kx﹣4=0,,AB中点为D(2k,2k2+1)令∠MDN=2α,,∴…(8分)D到x轴的距离|DE|=2k2+1,…(10分)当k2=0时cosα取最小值,α的最大值为.故的最大值为.…(12分)21.(10分)已知函数.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,且x1<x2,证明:.【解答】解:(1),x∈(0,+∞)所以①当k≤0时,f'(x)>0,所以f(x)在(0,+∞)上单调递增②当k>0时,令t(x)=x2﹣2kx+1,当△=4k2﹣4≤0即0<k≤1时,t(x)≥0恒成立,即f'(x)≥0恒成立所以f(x)在(0,+∞)上单调递增当△=4k2﹣4>0,即k>1时,x2﹣2kx+1=0,两根所以,f'(x)>0,f'(x)<0,f'(x)>0故当k∈(﹣∞,1)时,f(x)在(0,+∞)上单调递增当k∈(1,+∞)时,f(x)在和上单调递增f (x)在上单调递减.(2)证明:,,由(1)知k≤1时,f(x)(0,+∞)上单调递增,此时f(x)无极值当k>1时,由f'(x)=0得x2﹣2kx+1=0,△=4k2﹣4>0,设两根x1,x2,则x1+x2=2k,x1•x2=1其中f(x)在(0,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,==.令,所以t(x)在(1,+∞)上单调递减,且故.[选修4-4:坐标系与参数方程]22.(10分)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为(t 为参数),圆C的极坐标方程为.(1)求直线l的普通方程与圆C的执直角坐标方程;(2)设曲线C与直线L交于A,B两点,若P点的直角坐标为(2,1),求||P A|﹣|PB||的值.【解答】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为y=x﹣1,∵圆C的极坐标方程为:,∴ρ2=4ρsinθ+4ρcosθ∴圆C的直角坐标方程为x2+y2﹣4x﹣4y=0.(2)点P(2,1)在直线l上,且在圆C内,由已知直线l的参数方程是(t为参数)代入x2+y2﹣4x﹣4y=0,得,设两个实根为t1,t2,则,即t 1,t2异号所以.[选修4-5:不等式选讲]23.(10分)已知关于x的不等式|2x|+|2x﹣1|≤m有解.(I)求实数m的取值范围;(II)已知a>0,b>0,a+b=m,证明:.【解答】(本小题满分10分)解:(Ⅰ)|2x|+|2x﹣1|≥|2x﹣(2x﹣1)|=1,故m≥1;…(5分)(Ⅱ)∵a>0,b>0,∴a+2b>0,2a+b>0故==a2+b2+2ab=(a+b)2,即由(Ⅰ)知a+b=m≥1,∴.…(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年河南省高考数学一模试卷(理科)一、选择题(本题共12小题,每小题5分,共60分)1.(5分)已知集合A={x|x2﹣2x﹣3>0},B=N,则集合(∁R A)∩B中元素的个数为()A.2B.3C.4D.52.(5分)若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.﹣6B.13C.D.3.(5分)已知f(x)=sinx﹣tanx,命题p:∃x0∈(0,),f(x0)<0,则()A.p是假命题,¬p:∀x∈(0,),f(x)≥0B.p是假命题,¬p:∃x0∈(0,),f(x0)≥0C.p是真命题,¬p:∀x∈(0,),f(x)≥0D.p是真命题,¬p:∃x0∈(0,),f(x0)≥04.(5分)已知程序框图如图,则输出i的值为()A.7B.9C.11D.135.(5分)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班,(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有()A.18种B.24种C.48种D.36种6.(5分)《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为()A.1+B.1+2C.2+D.2+27.(5分)设不等式组表示的平面区域为D,若圆C:(x+1)2+y2=r2(r >0)不经过区域D上的点,则r的取值范围为()A.(0,)∪(,+∞)B.(,+∞)C.(0,)D.[,]8.(5分)若等边三角形ABC的边长为3,平面内一点M满足6﹣3=2,则•的值为()A.﹣B.﹣2C.2D.9.(5分)关于函数f(x)=3sin(2x﹣)+1(x∈R),下列命题正确的是()A.由f(x1)=f(x2)=1可得x1﹣x2是π的整数倍B.y=f(x)的表达式可改写成f(x)=3cos(2x+)+1C.y=f(x)的图象关于点(,1)对称D.y=f(x)的图象关于直线x=﹣对称10.(5分)设函数f(x)=mx2﹣mx﹣1,若对于x∈[1,3],f(x)<﹣m+4恒成立,则实数m的取值范围为()A.(﹣∞,0]B.C.D.11.(5分)设双曲线的方程为﹣=1(a>0,b>0),若双曲线的渐近线被圆M:x2+y2﹣10x=0所截得的两条弦长之和为12,已知△ABP的顶点A,B分别为双曲线的左、右焦点,顶点P在双曲线上,则的值等于()A.B.C.D.12.(5分)已知定义在R上的函数f(x)和g(x)分别满足f(x)=,e2x﹣2+x2﹣2f(0)•x,g′(x)+2g(x)<0,则下列不等式恒成立的是()A.g(2016)<f(2)•g(2018)B.f(2)•g(2016)<g(2018)C.g(2016)>f(2)•g(2018)D.f(2)•g(2016)>g(2018)二、填空题(本题共4小题,每小题5分,共20分)13.(5分)设a=(cosx﹣sinx)dx,则二项式(a﹣)6的展开式中含x2项的系数为.14.(5分)若函数f(x)=(a,b∈R)为奇函数,则f(a+b)的值为.15.(5分)已知三棱柱ABC﹣A1B1C1的底面是正三角形,侧棱AA1⊥底面ABC,若有一半径为2的球与三棱柱的各条棱均相切,则AA1的长度为.16.(5分)如图,OA,OB为扇形湖面OAB的湖岸,现欲利用渔网和湖岸在湖中隔出两个养殖区﹣区域I和区域Ⅱ,点C在上,∠COA=θ,CD∥OA,其中,半径OC及线段CD需要用渔网制成.若∠AOB=,OA=1,则所需渔网的最大长度为.三、解答题(共70分)17.(12分)已知S n为数列{a n}的前n项和,且a1<2,a n>0,6S n=+3a n+2,n∈N*.(1)求数列{a n}的通项公式;(2)若对∀n∈N*,b n=(﹣1)n,求数列{b n}的前2n项的和T2n.18.(12分)如图所示,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AB∥CD,∠BAD=90°,DC=DA=2AB=2,点E为AD的中点,BD∩CE=H,PH⊥平面ABCD,且PH=4.(1)求证:PC⊥BD;(2)线段PC上是否存在一点F,使二面角B﹣DF﹣C的余弦值是?若存在,请找出点F的位置;若不存在,请说明理由.19.(12分)某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出160名,其数学组成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试数学成绩的平均分和众数;(2)假设在(90,100]段的学生中有3人得满分100分,有2人得99分,其余学生的数学成绩都不相同.现从90分以上的学生中任取4人,不同分数的个数为ξ,求ξ的分布列及数学期望E(ξ).20.(12分)已知椭圆C1:+=1(a>b>0)的离心率为,右焦点F是抛物线C2:y2=2px(p>0)的焦点,点(2,4)在抛物线C2上.(1)求椭圆C1的方程;(2)已知斜率为k的直线l交椭圆C1于A,B两点,M(0,2),直线AM与BM 的斜率乘积为﹣,若在椭圆上存在点N,使|AN|=|BN|,求△ABN的面积的最小值.21.(12分)已知函数f(x)=ae x+x2﹣bx(a,b∈R),其导函数为y=f′(x).(1)当b=2时,若函数y=f′(x)在R上有且只有一个零点,求实数a的取值范围;(2)设a≠0,点P(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m)使得f(x0)﹣n=f′()(x0﹣m)成立?并证明你的结论.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,已知直线l1:(t为参数),l2:(t为参数),其中α∈(0,),以原点O为极点,x轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C的极坐标方程为ρ﹣4cosθ=0.(1)写出l1,l2的极坐标方程和曲线C的直角坐标方程;(2)设l1,l2分别与曲线C交于点A,B(非坐标原点),求|AB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|(a>0).(1)当a=2时,解不等式f(x)≥1﹣2x;(2)已知f(x)+|x﹣1|的最小值为3,且m2n=a(m>0,n>0),求m+n的最小值.2018年河南省高考数学一模试卷(理科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分)1.【分析】可先求出集合A={x|x<﹣1,或x>3},然后进行交集、补集的运算即可.【解答】解:A={x|x<﹣1,或x>3};∴∁R A={x|﹣1≤x≤3};∴(∁R A)∩B={0,1,2,3}.故选:C.【点评】考查一元二次不等式的解法,以及描述法、列举法表示集合的概念,交集和补集的运算.2.【分析】利用复数的除法运算化简为a+bi(a,b∈R)的形式,由实部等于0且虚部不等于求解a的值.【解答】解:由复数==是纯虚数,则,解得a=﹣6.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.3.【分析】利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果.【解答】解:f(x)=sinx﹣tanx,x∈(0,),当x=时,∴f(x)=,命题p:∃x0∈(0,),f(x0)<0,是真命题,命题p:∃x0∈(0,),f(x0)<0,则¬p:∀x∈(0,),f(x)≥0.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.4.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案.【解答】解:当S=1时,不满足退出循环的条件,故S=1,i=3;当S=1时,不满足退出循环的条件,故S=3,i=5;当S=3时,不满足退出循环的条件,故S=15,i=7;当S=15时,不满足退出循环的条件,故S=105,i=9;当S=105时,不满足退出循环的条件,故S=945,i=11;当S=945时,不满足退出循环的条件,故S=10395,i=13;当S=10395时,满足退出循环的条件,故输出的i=13,故选:D.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5.【分析】分类讨论,第一类,一班的2名同学在甲车上;第二类,一班的2名同学不在甲车上,再利用组合知识,问题得以解决.【解答】解:由题意,第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个为C32=3,然后分别从选择的班级中再选择一个学生为C21C21=4,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,为C31=3,然后再从剩下的两个班级中分别选择一人为C21C21=4,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式,故选:B.【点评】本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.6.【分析】由三视图知该几何体是侧棱垂直于底面的四棱锥,画出图形结合图形求出它的表面积.【解答】解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;正视图和侧视图是腰长为1的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,其中一条侧棱PD⊥底面ABCD,且侧棱AD=1,∴四棱锥的四个侧面都为直角三角形,且PA=PC=,∴四棱锥的表面积为S=S底面ABCD+2S△SAD+2S△SAB=1+2××1×1+2××1×=2+.故选:C.【点评】本题考查了利用空间几何体的三视图求几何体表面积的应用问题,是基础题.7.【分析】作出题中不等式组表示的平面区域,得到如图的△MNP及其内部,而圆C表示以(﹣1,﹣1)为圆心且半径为r的圆.观察图形,可得半径r<CM 或r>CP时,圆C不经过区域D上的点,由此结合平面内两点之间的距离公式,即可得到r的取值范围.【解答】解:作出不等式组表示的平面区域,得到如图的△MNP及其内部,其中M(1,1),N(2,2),P(1,3)∵圆C:(x+1)2+y2=r2(r>0)表示以C(﹣1,0)为圆心,半径为r的圆,∴由图可得,当半径满足r<CM或r>CP时,圆C不经过区域D上的点,∵CM==,CP==.∴当0<r<或r>时,圆C不经过区域D上的点,故选:A.【点评】本题给出动圆不经过已知不等式组表示的平面区域,求半径r的取值范围.着重考查了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面区域等知识,属于中档题.8.【分析】根据条件可先求出,而由即可得出,这样即可用分别表示出,然后进行数量积的运算即可.【解答】解:等边三角形ABC的边长为3;∴;;∴;∴==,=;∴===﹣2.故选:B.【点评】考查向量数量积的运算及计算公式,以及向量的数乘运算,向量加法的几何意义.9.【分析】根据函数f(x)=3sin(2x﹣)+1(x∈R),结合三角函数的性质即可判断各选项.【解答】解:函数f(x)=3sin(2x﹣)+1(x∈R),周期T=,对于A:由f(x1)=f(x2)=1,可能x1与x2关于其中一条对称轴是对称的,此时x1﹣x2不是π的整数倍;∴A 不对.对于B:由诱导公式,3sin(2x﹣)+1=3cos[﹣(2x﹣)]+1=3cos(2x ﹣)+1.∴B不对.对于C:令x=,可得f()=3sin(2×﹣)+1=﹣1=,∴C不对,对于D:当x=﹣时,可得f()=3sin(﹣﹣)+1=﹣1×3+1=﹣2,f(x)的图象关于直线x=﹣对称.故选:D.【点评】本题主要考查利用y=Asin(ωx+φ)的信息特征,判断各选项的正误,属于中档题.10.【分析】利用分离参数法,再求出对应函数在x∈[1,3]上的最大值,即可求m 的取值范围.【解答】解:由题意,f(x)<﹣m+4,可得m(x2﹣x+1)<5.∵当x∈[1,3]时,x2﹣x+1∈[1,7],∴不等式f(x)<0等价于m<.∵当x=3时,的最小值为,∴若要不等式m<恒成立,则必须m<,因此,实数m的取值范围为(﹣∞,),故选:D.【点评】本题考查恒成立问题,考查分离参数法的运用,解题的关键是分离参数,正确求最值,属于中档题.11.【分析】根据垂径定理求出圆心到直线的距离为d=4,再根据点到直线的距离公式可得=4,得到5b=4c,即可求出a=c,根据正弦定理可得===【解答】解:双曲线的一条渐近线方程为y=x,双曲线的渐近线被圆M:x2+y2﹣10x=0,即(x﹣5)2+y2=25所截得的两条弦长之和为12,设圆心到直线的距离为d,则d==4,∴=4,即5b=4c,即b=c∵a2=c2﹣b2=c2,∴a=c,∴|AP﹣BP|=2a,由正弦定理可得===2R,∴sinB=,sinA=,sinP=,∴===,故选:C.【点评】本题考查了双曲线的简单性质以及圆的有关性质和正弦定理,属于中档题12.【分析】f(x)=e2x﹣2+x2﹣2f(0)•x,令x=0,则f(0)=.由f′(x)=f′(1)•e2x﹣2+2x﹣2f(0),令x=1,可得f(0).进而得出f′(1),f(x),f(2).令h(x)=e2x g(x),及其已知g′(x)+2g(x)<0,可得h′(x)=e2x[g′(x)+2g(x)]<0,利用函数h(x)在R上单调递减,即可得出.【解答】解:f(x)=e2x﹣2+x2﹣2f(0)•x,令x=0,则f(0)=.∵f′(x)=f′(1)•e2x﹣2+2x﹣2f(0),令x=1,则f′(1)=f′(1)+2﹣2f(0),解得f(0)=1.∴f′(1)=2e2.∴f(x)=e2x+x2﹣2x,∴f(2)=e4.令h(x)=e2x g(x),∵g′(x)+2g(x)<0,∴h′(x)=e2x g′(x)+2e2x g(x)=e2x[g′(x)+2g(x)]<0,∴函数h(x)在R上单调递减,∴h(2016)>h(2018),∴e2016×2g(2016)>e2018×2g(2018),可得:g(2016)>e4g(2018).∴g(2016)>f(2)g(2018).故选:C.【点评】本题考查了利用导数研究函数的单调性极值与最值、构造法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.二、填空题(本题共4小题,每小题5分,共20分)13.【分析】根据微积分基本定理首先求出a的值,然后再根据二项式的通项公式求出r的值,问题得以解决.【解答】解:由于a=(cosx﹣sinx)dx=(sinx+cosx)|=﹣1﹣1=﹣2,∴(﹣2﹣)6=(2+)6的通项公式为T r+1=26﹣r C6r•x3﹣r,令3﹣r=2,求得r=1,故含x2项的系数为26﹣1C61=192.故答案为:192【点评】本题主要考查定积分、二项式定理的应用,二项式展开式的通项公式,属于基础题.14.【分析】由已知中函数f(x)为奇函数,f(﹣x)=﹣f(x)恒成立,可得a,b 的值,进而可得f(a+b)的值.【解答】解:∵函数f(x)==为奇函数,故f(﹣x)=﹣f(x)恒成立,故.即,∴f(x)=,∴f(a+b)=f(1)=1﹣2=﹣1,故答案为:﹣1.【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数求值,难度中档.15.【分析】由题意求出正三棱柱的高、底面边长,即可求出AA1的长度.【解答】解:由题意,△ABC的外接圆即为球的大圆,r=2,设底面△ABC外接圆圆心G,即GA=GB=GC=2,从而正三角形ABC边长2,设球心O,由题意,E、D在球面上,OE=OD=2,F为DE中点,则OF⊥DE,OF=GD=GC=1,在Rt△OEF中,OE=2,OF=1,∴EF=,∴DE=2,∴AA1=2.故答案为:2.【点评】本题考查正三棱柱的内切球与正三棱柱的关系,通过二者的关系求出正三棱柱的体积,考查计算能力,逻辑推理能力.16.【分析】确定∠COD,在△OCD中利用正弦定理求得CD的长度,根据所需渔网长度,即图中弧AC、半径OC和线段CD长度之和,确定函数的解析式,利用导数确定函数的最值,求得所需渔网长度的最大值.【解答】解:由CD∥OA,∠AOB=,∠AOC=θ,得∠OCD=θ,∠ODC=,∠COD=﹣θ;在△OCD中,由正弦定理,得CD=sin(﹣θ),θ∈(0,),设渔网的长度为f(θ),可得f(θ)=θ+1+sin(﹣θ),所以f′(θ)=1﹣cos(﹣θ),因为θ∈(0,),所以﹣θ∈(0,),令f′(θ)=0,得cos(﹣θ)=,所以﹣θ=,所以θ=.θ(0,)(,)f′(θ)+0﹣f(θ)极大值所以f(θ)∈(2,].故所需渔网长度的最大值为.【点评】本题考查了正弦定理的应用问题,也考查了函数模型的构建与最值应用问题,是难题.三、解答题(共70分)17.【分析】(1)6S n=+3a n+2,n∈N*.n≥2时,6a n=6S n﹣6S n﹣1,化为(a n+a n﹣1)(a n﹣a n﹣1﹣3)=0,由a n>0,可得a n﹣a n﹣1=3,n=1时,6a1=+3a1+2,且a1<2,解得a1.利用等差数列的通项公式可得a n.(2)b n=(﹣1)n=(﹣1)n(3n﹣2)2.b2n﹣1+b2n=﹣(6n﹣5)2+(6n﹣2)2=3(12n﹣7)=36n﹣21.利用分组求和即可得出.【解答】解:(1)6S n=+3a n+2,n∈N*.n≥2时,6a n=6S n﹣6S n﹣1=+3a n+2﹣(+2),化为:(a n+a n﹣1)(a n﹣a n﹣1﹣3)=0,∵a n>0,∴a n﹣a n﹣1=3,n=1时,6a1=+3a1+2,且a1<2,解得a1=1.∴数列{a n}是等差数列,首项为1,公差为3.∴a n=1+3(n﹣1)=3n﹣2.(2)b n=(﹣1)n=(﹣1)n(3n﹣2)2.∴b2n+b2n=﹣(6n﹣5)2+(6n﹣2)2=3(12n﹣7)=36n﹣21.﹣1∴数列{b n}的前2n项的和T2n=36(1+2+……+n)﹣21n=﹣21n=18n2﹣3n.【点评】本题考查了数列递推关系、等差数列的定义通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.18.【分析】(1)推导出△BAD≌△EDC,∠DBA=∠DEH,从而BD⊥EC,由PH⊥平面ABCD,得BD⊥PH,由此能证明BD⊥平面PEC,从而PC⊥BD.(2)推导出PH、EC、BD两两垂直,建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,利用向量法能求出线段PC上存在一点F,当点F满足CF=3时,二面角B﹣DF﹣C的余弦值是.【解答】证明:(1)∵AB∥CD,∠BAD=90°,∴∠EDC=∠BAD=90°,∵DC=DA=2AB,E为AD的中点,∴AB=ED,∴△BAD≌△EDC,∴∠DBA=∠DEH,∵∠DBA+∠ADB=90°,∴∠DEH+∠ADB=90°,∴BD⊥EC,又∵PH⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PH,又∵PH∩EC=H,且PH,EC⊂平面PEC,∴BD⊥平面PEC,又∵PC⊂平面PEC,∴PC⊥BD.解:(2)由(1)可知△DHE∽△DAB,由题意得BD=EC=5,AB=DE=,∴,∴EH=1,HC=4,DH=2,HB=3,∵PH、EC、BD两两垂直,建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,H(0,0,0),B(3,0,0),C(0,4,0),D(﹣2,0,0),P(0,0,4),假设线段PC上存在一点F满足题意,∵与共线,∴存在唯一实数λ,(0≤λ≤1),满足=λ,解得F(0,4﹣4λ,4λ),设向量=(x,y,z)为平面CPD的一个法向量,且=(0,﹣4,4),=(﹣2,﹣4,0),∴,取x=2,得=(2,﹣1,﹣1),同理得平面CPD的一个法向量=(0,λ,λ﹣1),∵二面角B﹣DF﹣C的余弦值是,∴|cos<>|===,由0≤λ≤1,解得λ=,∴=,∵CP=4,∴线段PC上存在一点F,当点F满足CF=3时,二面角B﹣DF﹣C的余弦值是.【点评】本题考查线线垂直垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.【分析】(1)把组中值看作各小组的平均数,根据加权平均数公式计算;(2)根据组合数公式计算各种情况的概率,得出分布列.【解答】解:(1)=45×0.005×10+55×0.015×10+65×0.02×10+75×0.03×10+85×0.025×10+95×0.005×10=72(分),众数为75分.(2)90分以上的人数为160×0.005×10=8人.∴ξ的可能取值为2,3,4,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==.∴ξ的分布列为:ξ234P∴ξ的数学期望是E(ξ)=2×+3×+4×=.【点评】本题考查了频率分布直方图,离散型随机变量的分布列和数学期望,属于中档题.20.【分析】(1)先求出p的值,即可求出c的值,根据离心率求出a的值,即可得到椭圆方程,(2)设直线l的方程为y=kx+m,设A(x1,y1),B(x2,y2),由,根据直线AM与BM的斜率乘积为﹣,求出m=0,再根据弦长公式求出|AB|和|ON|,表示出三角形的面积来,再利用二次函数的性质即可求出最小值.【解答】解:(1)∵点(2,4)在抛物线y2=2px上,∴16=4p,解得p=4,∴椭圆的右焦点为F(2,0),∴c=2,∵椭圆C1:+=1(a>b>0)的离心率为,∴=,∴a=2,∴b2=a2﹣c2=8﹣4=4,∴椭圆C1的方程为+=1,(2)设直线l的方程为y=kx+m,设A(x1,y1),B(x2,y2),由,消y可得(1+2k2)x2+4kmx+2m2﹣8=0,∴x1+x2=,x1x2=,∴y1+y2=k(x1+x2)+2m=,y1y2=k2x1x2+km(x1+x2)+m2=∵M(0,2),直线AM与BM的斜率乘积为﹣,∴k1•k2=•===﹣,解得m=0,∴直线l的方程为y=kx,线段AB的中点为坐标原点,由弦长公式可得|AB|==,∵|AN|=|BN|,∴ON垂直平分线段AB,当k≠0时,设直线ON的方程为y=﹣x,同理可得|ON|==,∴S=|ON|•|AB|=8,△ABN当k=0时,△ABN的面积也适合上式,令t=k2+1,t≥1,0<≤1,则S=8=8=8,△ABN的最小值为.∴当=时,即k=±1时,S△ABN【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查椭圆与二次函数函数的应用,考查计算能力,属于难题.21.【分析】(1)当b=2时,f(x)=ae x+x2﹣2x,(a∈R),f′(x)=ae x+2x﹣2,(a∈R),由题意a=,令h(x)=,则=0,解得x=2,由此能求出当a=﹣或a∈[0,+∞)时,f′(x)在R上有且只有一个零点.(2)由f(x)=ae x+x2﹣bx,得f′(x)=ae x+2x﹣b,假设存在x0,则,利用导数性质推导出不存在实数x0(x0≠m)使得f(x0)﹣n=f′()(x0﹣m)成立.【解答】解:(1)当b=2时,f(x)=ae x+x2﹣2x,(a∈R),f′(x)=ae x+2x﹣2,(a∈R),由题意得ae x+2x﹣2=0,即a=,令h(x)=,则=0,解得x=2,当x<2时,h′(x)<0,h(x)单调递减,当x>2时,h′(x)>0,h(x)单调递增,∴h(x)min=h(2)=﹣,∵当x=﹣1时,h(﹣1)=4e>0,当x>2时,h(x)=<0,由题意得当a=﹣或a∈[0,+∞)时,f′(x)在R上有且只有一个零点.(2)由f(x)=ae x+x2﹣bx,得f′(x)=ae x+2x﹣b,假设存在x0,则有f(x0)==,即,∵f′()=+2﹣b,==+(x0+m)﹣b,∴+2•﹣b=+(x0+m)﹣b,即=,∵a≠0,∴,令t=x0﹣m>0,则,两边同时除以e m,得,即,令g(t)=,∴,令h(t)=﹣﹣1在(0,+∞)上单调递增,且h(0)=0,∴h(t)>0对于t∈(0,+∞)恒成立,即g′(t)>0对于t∈(0,+∞)恒成立,∴g(e)在(0,+∞)上单调递增,g(0)=0,∴g(t)>0对于t∈(0,+∞)恒成立,∴=不成立,同理,t=x0﹣m<0时,∴不存在实数x0(x0≠m)使得f(x0)﹣n=f′()(x0﹣m)成立.【点评】本题考查利用导数研究函数的性质及实数的最值范围的求法、满足条件的实数是否存在的判断与证明,考查函数与方程思想、转化与化归思想,考查运算求解能力、推理论证能力,考查创新意识,是中档题.[选修4-4:坐标系与参数方程选讲]22.【分析】(1)考查直线l1,l2参数方程与极坐标方程的互化,曲线C的极坐标方程与直角坐标方程的互化.重点都是消去参数t.(2)利用l1,l2极坐标方程,结合余弦定理,计算出|AB|的长度.【解答】解:(1)l1,l2的极坐标方程为θ1=α(ρ∈R),θ2=α+(ρ∈R).曲线C的极坐标方程方程为ρ﹣4cosθ=0.即得ρ2﹣4ρcosθ=0,利用ρ2x2+y2,x=ρcosθ得曲线C的直角坐标方程为(x﹣2)2+y2=4.(2)因为ρ1=4cosα,ρ2=4cos(α+),所以|AB|2=+﹣2ρ1.ρ2cos=16[cos2α+cos2()﹣cosαcos ()]=16[cos2α+(cosα﹣sinα)2﹣cosα(cosα﹣sinα)]=8,所以|AB|的值为2.【点评】考查极坐标方程与参数方程,普通方程的互化.记准互化公式和原则是关键,属于中档题目.[选修4-5:不等式选讲]23.【分析】(1)通过讨论x的范围,求出不等式的解集即可;(2)根据绝对值不等式的性质求出a的值,结合基本不等式的性质求出m+n的最小值即可.【解答】解:(1)当x≥2时,x﹣2≥1﹣2x,得x≥1,故x≥2,当x<2时,2﹣x≥1﹣2x,得x≥﹣1,故﹣1≤x<2,综上,不等式的解集是{x|x≥﹣1};(2)∵f(x)+|x﹣1|的最小值是3,∴f(x)+|x﹣1|≥|x﹣a﹣(x﹣1)|=|a﹣1|=3,故a=4,∵m+n=++n≥3=3,当且仅当=n即m=2,n=1时取“=”.【点评】本题考查了解绝对值不等式问题,考查绝对值的性质以及基本不等式的性质,是一道中档题.。

相关文档
最新文档