第3章MATLAB矩阵分析与处理

合集下载

MATLAB矩阵及运算

MATLAB矩阵及运算

重点
y矩阵中每一列最大的值
y向量中最大的值
最大值的位置
最大值的位置
注意:输入矩阵类型不同, 则执行的操作不同。
2.1.4 函数
因为matlab函数太多,所以要养成使用help
命令,得到有关函数的具体用法:
例:help max
2.1表达式
表达式
(即语句):将变量、数值、函 数用操作符连接起来,就构成了表达式 。
应用:可以和其它语言程序进行数据通信。 举例:
通过MATLAB提供的函数产生矩阵
用内部函数可生成一些特殊矩阵 (函数见书上P50)
重点
通过MATLAB提供的函数产生矩阵
1、单位矩阵(
E方阵)和广义单位矩阵的
产生
重点
通过MATLAB提供的函数产生矩阵
2、随机数矩阵的产生
随机数的产生常常用在控制系统仿真以 及信号分析,是一个非常重要的手段。 MATLAB提供了很好的随机数产生函数: rand() randn()
A/ B A*B
1
A\B A
重点
1
*B
Matlab右除法表示形式:
C=A/B 或 C=A * i n v ( B )
Matlab左除法表示形式: C=A\B 或 C=i n v ( A ) * B
注意:只有行列式不为0的方阵才存在逆阵!!!
矩阵元素的右除、左除
a1 A a3 a2 a4
2)变量名由字母、数字和下划线构成。第一个 字母必须是英文字母。 3)有字符个数限制(版本5.0 :最多31个字符)
2.1.2 变量

MAT
重点
(注意大小写!)
i或j: 错误:5+j7

第三章_matlab矩阵运算

第三章_matlab矩阵运算
Matlab 仿真及其应用
主讲:陈孝敬 E-mail:chenxj9@
第3章
数学运算
主要内容:
①矩阵运算; ②矩阵元素运算;
3.1 矩阵运算
3.1.1 矩阵分析
1.向量范式定义:
x x x
1

n
k 1
xk
2 k
2

k 1 n
x
n

1/ 2


k 1
xk
向量的3种常用范数及其计算函数 在MATLAB中,求向量范数的函数为: (1) norm(V)或norm(V,2):计算向量V的2—范数。 (2) norm(V,1):计算向量V的1—范数。 (3) norm(V,inf):计算向量V的∞—范数。
3.1.2 矩阵分解
矩阵分解:把矩阵分解成比较简单或对它性质比较熟悉的若干 矩阵的乘积的形式;
1.Cholesky分解: Cholesky分解是把对称正定矩阵表示成上三角矩阵的转 置与其本身的乘积,即:A=RTR,在Matlab中用函数chol 来计算Cholesky分解 例3-13 求矩阵A=pascal(4)的Cholesky分解, A=pascal(4) R=chol(A) R’*R
例3-18.求解方程组
x1 x2 3 x3 x4 1 3 x1 x2 3 x3 4 x4 4 x 5x 9 x 8x 0 2 3 4 1
解 先用Matlab函数null求出对应的齐次线性方程组的基础解 系,再利用其系数矩阵的上、下三角阵求出方程组的一个特解, 这样即可得到该方程组的通解,程序如下: >> >> >> >> >> >> A=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8]; b=[1 4 0] ′; format rat C=null(A , ′r′); %求基础解系 [L,U]=lu(A); %A=LU,L为上三角阵,U为下三角阵 X0= U\(L\b) %用LU求出一个齐次方程的特解

matlab课后习题答案第三章

matlab课后习题答案第三章

第3章数值数组及其运算习题3及解答1 要求在闭区间]2,0[ 上产生具有10个等距采样点的一维数组。

试用两种不同的指令实现。

〖目的〗●数值计算中产生自变量采样点的两个常用指令的异同。

〖解答〗%方法一t1=linspace(0,2*pi,10)%方法二t2=0:2*pi/9:2*pi %要注意采样间距的选择,如这里的2*pi/9.t1 =Columns 1 through 70 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 Columns 8 through 104.88695.58516.2832t2 =Columns 1 through 70 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 Columns 8 through 104.88695.58516.28322 由指令rng('default'),A=rand(3,5)生成二维数组A,试求该数组中所有大于0.5的元素的位置,分别求出它们的“全下标”和“单下标”。

〖目的〗●数组下标的不同描述:全下标和单下标。

●sub2ind, int2str, disp的使用。

●随机发生器的状态控制:保证随机数的可复现性。

〖解答〗rng('default')A=rand(3,5)[ri,cj]=find(A>0.5);id=sub2ind(size(A),ri,cj);ri=ri';cj=cj';disp(' ')disp('大于0.5的元素的全下标')disp(['行号 ',int2str(ri)])disp(['列号 ',int2str(cj)])disp(' ')disp('大于0.5的元素的单下标')disp(id')A =0.8147 0.9134 0.2785 0.9649 0.95720.9058 0.6324 0.5469 0.1576 0.48540.1270 0.0975 0.9575 0.9706 0.8003大于0.5的元素的全下标行号 1 2 1 2 2 3 1 3 1 3列号 1 1 2 2 3 3 4 4 5 5大于0.5的元素的单下标1 2 4 5 8 9 10 12 13 153 采用默认全局随机流,写出产生长度为1000的“等概率双位(即取-1,+1)取值的随机码”程序指令,并给出 -1码的数目。

第3章 MATLAB矩阵分析与处理1

第3章  MATLAB矩阵分析与处理1

(3) 希尔伯特矩阵 在MATLAB中,生成希尔伯特矩阵的函数 是hilb(n)。 使用一般方法求逆会因为原始数据的微小 扰动而产生不可靠的计算结果。MATLAB 中,有一个专门求希尔伯特矩阵的逆的函 数invhilb(n),其功能是求n阶的希尔伯特矩 阵的逆矩阵。
例3.4 求4阶希尔伯特矩阵及其逆矩阵。 命令如下: format rat %以有理形式输出 H=hilb(4) H=invhilb(4)
(5) 伴随矩阵 MATLAB生成伴随矩阵的函数是compan(p), 其中p是一个多项式的系数向量,高次幂系 数排在前,低次幂排在后。例如,为了求 多项式的x3-7x+6的伴随矩阵,可使用命令: p=[1,0,-7,6]; compan(p)
(6) 帕斯卡矩阵 我们知道,二次项(x+y)n展开后的系数随n 的增大组成一个三角形表,称为杨辉三角 形。由杨辉三角形表组成的矩阵称为帕斯 卡(Pascal)矩阵。函数pascal(n)生成一个n阶 帕斯卡矩阵。
12
(2)构造对角矩阵
如果V是一个m个元素的向量,diag(V)将产生一个m×m对角 矩阵,
其主对角线元素即为向量V的元素。
例如:
diag([1,2,-1,4])
ans =
1000
0200 0 0 -1 0 0004 例如: diag(1:3,-1)
ans = 0000 1000 0200 0030
46.7390 33.3411 25.2880 46.8095 24.1667
y = 0.6 + sqrt(0.1)*randn(5)
2024/8/10
Application of Matlab Language
2
3.1.2 用于专门学科的特殊矩阵 (1) 魔方矩阵 魔方矩阵有一个有趣的性质,其每行、每 列及两条对角线上的元素和都相等。对于n 阶魔方阵,其元素由1,2,3,…,n2共n2个整数 组成。MATLAB提供了求魔方矩阵的函数 magic(n),其功能是生成一个n阶魔方阵。

MATLAB之(一)数组、矩阵和函数及运算

MATLAB之(一)数组、矩阵和函数及运算

说明 4位小数
3.14159265358979 15位小数
3.14
2位小数
355/113
最接近的有理数
format short e,t =pi 3.1416e+000
科学计数
format long e ,t =pi 四、函数
3.141592653589793e+000
MATLAB提供了大量的函数,按照起用法分为标量函数、 向量函数和矩阵函数。
14
b= 1 3 5 7
c=6:-3:-6(从6到-6公差为-3的等差数组)
c=
6 3 0 -3 -6 e=[0:2:8,ones(1,3)](等差数组和行向量的拼接)
e=
0 2468111
2数组的运算
数组除作为1×n矩阵(行向量)遵循矩阵运算外,
MATLAB还为数组提供了一些特殊运算。两个数组间的
的最重要特征是按元素进行运算。
2021/4/14
13
1 数组的输入 ⑴可以像1×n矩阵(即行向量)一样输入,如: a=[2,3,4,5] a=
2345
⑵数组常用“:”来方便地生成一些特殊的数组。如:
a=1:5(从1到5公差为1的等差数组)
a=
12345
b=1:2:7(从1到7公差为2的等差数组)
2021/4/14
(5) randn(生成正态分布随机矩阵); U=ones(3)
W=zeros(2,3) V=eye(2,4)
U=
W=
V=
111
000
2021/4/14
000
1000 0100
111
9
111
X=rand(2,3)
X=

第3章MATLAB矩阵分析与处理

第3章MATLAB矩阵分析与处理

第3章MATLAB矩阵分析与处理MATLAB是一种强大的数学计算软件,用于实现矩阵分析与处理。

在MATLAB中,矩阵是最常用的数据结构之一,通过对矩阵的分析和处理,可以实现很多有用的功能和应用。

本章将介绍MATLAB中矩阵分析与处理的基本概念和方法。

1.矩阵的基本操作在MATLAB中,我们可以使用一些基本的操作来创建、访问和修改矩阵。

例如,可以使用“[]”操作符来创建矩阵,使用“(”操作符来访问和修改矩阵中的元素。

另外,使用“+”、“-”、“*”、“/”等运算符可以对矩阵进行加减乘除等运算。

2.矩阵的运算MATLAB提供了一系列的矩阵运算函数,可以对矩阵进行常见的运算和操作,例如矩阵的转置、求逆、行列式、特征值和特征向量等。

这些函数可以帮助我们进行矩阵的分析和求解。

3.矩阵的分解与合并在MATLAB中,我们可以对矩阵进行分解或合并操作。

例如,可以将一个矩阵分解为其QR分解、LU分解或奇异值分解等。

另外,可以使用“[]”操作符来将多个矩阵合并为一个矩阵,或者使用“;”操作符来将多个矩阵连接为一个矩阵。

4.矩阵的索引与切片MATLAB提供了灵活的索引和切片功能,可以方便地访问和修改矩阵中的元素。

可以使用单个索引来访问单个元素,也可以使用多个索引来访问/修改一行或一列的元素。

此外,还可以通过切片操作来访问矩阵的一部分。

5.矩阵的应用矩阵分析与处理在MATLAB中有着广泛的应用。

例如,可以使用矩阵进行图像处理,通过对图像矩阵的操作,可以实现图像的缩放、旋转、滤波等。

另外,矩阵还可以用于线性回归、分类、聚类和模式识别等领域。

总之,MATLAB提供了丰富的功能和工具,可以方便地进行矩阵分析与处理。

无论是简单的矩阵运算,还是复杂的矩阵分解与合并,MATLAB 都提供了相应的函数和操作符。

通过熟练使用MATLAB,我们可以高效地进行矩阵分析与处理,从而实现各种有用的功能和应用。

matlab实验

matlab实验

实验一 MATLAB基本操作一、实验目的1、了解MATLAB应用程序环境2、掌握MATLAB语言程序的书写格式和MATLAB语言程序的结构。

3、掌握在MATLAB应用环境下编写程序4、掌握MATALB调试过程,帮助文件5、掌握MATLAB语言上机步骤,了解运行一个MATLAB程序的方法。

6、本实验可在学习完教材第一章后进行。

二、主要仪器及耗材PC电脑,MATLAB6.5软件三、实验内容和步骤1、MATLAB语言上机步骤:(1)、进入系统在C盘或其他盘上找到MATLAB或MATLAB6.5,然后双击其图标打开文件夹。

然后进行编辑源程序->编译->连接->执行程序->显示结果(2)、常用命令编辑切换(F6),编译(F9),运行(CTRL+F9),显示结果(ALT+F5)其它常用命令见“附录一”。

2、有下面的MATLAB程序。

(1)数值计算功能:如,求方程 3x4+7x3 +9x2-23=0的全部根p=[3,7,9,0,-23]; %建立多项式系数向量x=roots(p) %求根(2)绘图功能:如,绘制正弦曲线和余弦曲线x=[0:0.5:360]*pi/180;plot(x,sin(x),x,cos(x));(3)仿真功能:如,请调试上述程序。

3、熟悉MATLAB环境下的编辑命令,具体见附录一。

三、实验步骤1、静态地检查上述程序,改正程序中的错误。

2、在编辑状态下照原样键入上述程序。

3、编译并运行上述程序,记下所给出的出错信息。

4、按照事先静态检查后所改正的情况,进行纠错。

5、再编译执行纠错后的程序。

如还有错误,再编辑改正,直到不出现语法错误为止。

四、实验注意事项1、记下在调试过程中所发现的错误、系统给出的出错信息和对策。

分析讨论对策成功或失败的原因。

2、总结MATLAB程序的结构和书写规则。

五、思考题1、matlab到底有多少功能?2、MATLAB的搜索路径3、掌握使用MATLAB帮助文件实验二 MATLAB 矩阵及其运算一、 实验目的1、了解矩阵的操作,包括矩阵的建立、矩阵的拆分、矩阵分析等2、了解MATLAB 运算,包括算术运算、关系运算、逻辑运算等3、掌握字符串的操作,了解结构数据和单元数据。

实验二matlab矩阵分析与处理

实验二matlab矩阵分析与处理

《MATLAB及应用A》第二次上机作业一、一球从100米高度自由落下,每次落地后反弹回原高度的一半,再落下。

求它在第10次落下时共经过多少米?第10次反弹多高?MATLAB源程序:MATLAB运行结果:二、有如下一段MATLAB程序,请解释说明每个语句的功能,必要时用数学表达式(不是在MATLAB中的输入形式);并给出y1、y2、y3的值(可从MATLAB中复制)。

MATLAB源程序:x=linspace(0,6);y1=sin(2*x);y2=sin(x.^2);y3=(sin(x)).^2;各条命令语句的功能如下:y1、y2、y3的值分别为:三、教材第55页习题三,第3题。

MATLAB源程序:MATLAB运行结果:四、选择题(1) i=2; a=2i; b=2*i; c=2*sqrt(-1); 程序执行后,a, b, c的值分别是多少?()(A) a=4, b=4, c=2.0000i(B) a=4, b=2.0000i, c=2.0000i(C) a=2.0000i, b=4, c=2.0000i(D) a=2.0000i, b=2.0000i, c=2.0000i(2) 求解方程x4-4x3+12x-9 = 0 的所有解,其结果为()(A) 1.0000, 3.0000, 1.7321, -1.7321(B) 1.0000, 3.0000, 1.7321i, -1.7321i(C) 1.0000i, 3.0000i, 1.7321, -1.7321(D) -3.000-0i, 3.0000i, 1.7321, -1.7321五、求[100,1000]之间的全部素数(选做)。

MATLAB源程序: MATLAB运行结果:一、一球从100米高度自由落下,每次落地后反弹回原高度的一半,再落下。

求它在第10次落下时共经过多少米?第10次反弹多高?MATLAB源程序:>> a=(0:-1:-9) %产生一个行向量aa =0 -1 -2 -3 -4 -5 -6 -7 -8 -9>> b=pow2(a) %对行向量a中的每一个元素分别求幂函数b =1.0000 0.5000 0.2500 0.1250 0.0625 0.0313 0.0156 0.007 8 0.0039 0.0020>> h=100*b %对行向量b中的每一个元素分别乘以100h =100.0000 50.0000 25.0000 12.5000 6.2500 3.1250 1.5625 0. 7813 0.3906 0.1953>> s1=sum(h) %对行向量h中的元素求和s1 =199.8047>> s=s1*2-100 %求出第10次落下时经过的高度s =299.6094>> h10=h(10)/2 %求出第10次反弹的高度h10 =0.0977二、有如下一段MATLAB程序,请解释说明每个语句的功能,必要时用数学表达式(不是在MATLAB中的输入形式);并给出y1、y2、y3的值(可从MATLAB 中复制)。

MATLAB程序设计期末复习题集

MATLAB程序设计期末复习题集

第1章 MATLAB系统环境一、选择题1.最初的MATLAB核心程序是采用()语言编写的。

A.FORTRAN B.C C.BASIC D.PASCAL2.2016年3月发布的MATLAB版本的编号为()。

A.MATLAB 2016Ra B.MATLAB R2016aC.MATLAB 2016Rb D.MATLAB R2016b3.下列选项中能反应MATLAB特点的是()。

A.算法最优 B.不需要写程序C.程序执行效率高 D.编程效率高4.当在命令行窗口执行命令时,如果不想立即在命令行窗口中输出结果,可以在命令后加上()。

A.冒号(:) B.逗号(,) C.分号(;) D.百分号(%)5.如果要重新执行以前输入的命令,可以使用()。

A.左移光标键(←) B.右移光标键(→)C.下移光标键(↓) D.上移光标键(↑)6.MATLAB命令行窗口中提示用户输入命令的符号是()。

A.> B.>> C.>>> D.>>>>7.plot(x,y)是一条()命令。

A.打印 B.输出 C.绘图 D.描点8.以下两个命令行的区别是()。

>> x=5,y=x+10>> x=5,y=x+10;A.第一个命令行同时显示x和y的值,第二个命令行只显示x的值B.第一个命令行同时显示x和y的值,第二个命令行只显示y的值C.第一个命令行只显示x的值,第二个命令行同时显示x和y的值D.第一个命令行只显示y的值,第二个命令行同时显示x和y的值9.下列命令行中,输出结果与其他3项不同的是()。

A.>> 10+20+... B.>> ...30 10+20+30C.>> 10+20+30%5 D.>> %10+20+3010.下列选项中,不是MATLAB帮助命令的是()。

A.lookfor B.lookfor –all C.search D.help二、填空题1.MATLAB一词来自的缩写。

第三章MATLAB有限元分析与应用

第三章MATLAB有限元分析与应用

第三章MATLAB有限元分析与应用有限元分析(Finite Element Analysis, FEA)是一种工程计算方法,用于解决结构力学和流体力学等问题。

它将一个复杂的结构分割成多个简单的离散单元,通过建立数学模型和求解方程组,得到结构的力学、热力学和流体力学等性能参数。

MATLAB是一种功能强大的数学计算软件,具有直观的用户界面和丰富的工具箱,可以方便地进行有限元分析。

本章将介绍在MATLAB中进行有限元分析的基本步骤和方法,以及一些常见的应用例子。

首先,进行有限元分析需要将结构进行离散化。

常用的离散化方法有节点法和单元法。

节点法是将结构的几何形状划分为小的节点,并在节点上进行计算。

单元法是将结构划分为多个小的单元,并在每个单元内进行计算。

在MATLAB中,可以通过创建节点和单元的矩阵来描述结构和单元的关系。

例如,创建一个2D结构形式的节点矩阵:nodes = [0 0; 1 0; 0 1; 1 1];然后,通过创建描述节点连接关系的矩阵,来定义结构的单元:elements = [1 2 3; 2 4 3];这里的每一行代表一个单元,数字表示节点的编号。

接下来,需要定义材料的力学参数和边界条件。

材料的力学参数包括弹性模量、泊松比等。

边界条件包括支座约束和加载条件。

在MATLAB中,可以通过定义力学参数和边界条件的向量来描述。

例如,定义弹性模量和泊松比的向量:E=[200e9200e9];%弹性模量nu = [0.3 0.3]; % 泊松比定义支座约束的向量(1表示固定,0表示自由):constraints = [1 1; 0 0; 0 1; 0 1];定义加载条件的向量(包括点力和面力):最后,通过求解方程组得到结构的应力和位移等结果。

在MATLAB中,可以利用有限元分析工具箱中的函数进行计算。

例如,可以使用“assem”函数将节点和单元的信息组装成方程组,并使用“solveq”函数求解方程组。

matlab 第3章 数值运算基础

matlab 第3章 数值运算基础

HYIT
8
说明: 1.N阶方阵特征多项式系数矢量一定是n+1阶的 2.特征多项式系数矢量的第一个元素必须为1。
1 A 2 2
2 2 1 2 的特征多项式 2
1
2 2
2 2
2 ( )( 1) 3 9 5
HYIT
12
3.1.2 多项式运算
求多项式的值 求多项式的根 多项式的乘除运算 多项式的微积分 多项式的部分分式展开 多项式拟合
HYIT
13
求多项式的值
方法:函数polyval:按数组运算规则求值 函数polyvalm:按矩阵运算规则求值 格式: y=polyval(p,x) p为多项式,x可为标量/数组/矩阵 y=polyvalm(p,x) x可为标量/方阵
注:系数中的零不能省!
HYIT
4
创建多项式的方法
系数矢量直接输入法 特征多项式输入法 由根矢量创建多项式
HYIT
5
系数矢量直接输入法
适用于: 已知系数 → 表达式
方法: 函数poly2sym +系数矢量
例: 例: >> poly2sym([1 2 3 4]) >> poly2str([1 2 3 4],‘y') ans = ans = x^3+2*x^2+3*x+4 y^3 + 2 y^2 + 3 y + 4 说明: poly2str 以习惯方式显示多项式 poly2sym 双精度多项式系数转为符号多项式
HYIT
14
例: p=[1 1 1]; x=[0 1 2 3]; xm=[0 1; 2 3]; y1=polyval(p,x) y2=polyval(p,xm) ym=polyvalm(p,xm)

MATLAB矩阵分析与处理

MATLAB矩阵分析与处理

THANKS
线性判别分析(LDA)
寻找最佳投影方向,使得同类数据投 影后尽可能接近,不同类数据投影后 尽可能远离。
数据可视化
散点图
展示两个变量之间的关系。
柱状图
展示一个或多个分类变量的频 数分布。
热力图
展示矩阵或数据集中的数值大 小,通过颜色的深浅表示数值 的大小。
可视化树
展示层次结构数据的图形表示 ,如决策树、组织结构图等。
矩阵的属性
维度
描述矩阵的行数和列数。
大小
描述矩阵中元素的数量。
类型
描述矩阵中元素的数据类型。
矩阵的基本操作
01
加法
对应元素相加。
02
减法
对应元素相减。
03
数乘
所有元素乘以一个数。
04
转置
将矩阵的行和列互换。
02 矩阵运算
矩阵加法与减法
矩阵加法
对应元素相加,结果矩阵与原矩阵具 有相同的维度。
矩阵减法
处理效果。
机器学习中的矩阵运算
数据矩阵的建立
在机器学习中,数据通常以矩阵形式表示,每一行表示一个样本,每一列表示一个特征。
矩阵运算在机器学习中的应用
通过矩阵运算,如线性代数运算、矩阵分解、特征值分解等,可以用于构建机器学习模型 ,如线性回归、逻辑回归、决策树等。
模型评估与优化
使用Matlab中的机器学习工具箱,可以对机器学习模型进行评估和优化,如交叉验证、 网格搜索等。
数值分析中的矩阵运算
数值分析中的矩阵运算
数值分析中涉及大量的矩阵运算,如矩阵乘法、矩阵除法、矩阵求 逆等。
矩阵运算在数值分析中的应用
通过这些矩阵运算,可以求解线性方程组、求解特征值问题、进行 矩阵分解等。

(完整版)Matlab矩阵分析与处理

(完整版)Matlab矩阵分析与处理

河北农业大学理学院______________________________________ 数学实验报告 实验名称:Matlab 矩阵分析与处理2、产生5阶希尔伯特矩阵H 和5阶帕斯卡矩阵P,且求其行列式的值Hh 和Hp 以及它们的条件数Th 和Tp,判断哪个矩阵性能更好。

为什么?3、建立一个5X 5矩阵,求它的行列式值,迹,秩和范数。

(1) 求方程的解。

(3) 计算系数矩阵A 的条件数并分析结论。

6,建立A 矩阵,是比较sqrtm (A )和sqrt (A ),分析他们的区别。

三、实验结果1/ 2 1/3 1/ 4 X 1 0.95 1/ 3 1/4 1/5 X 2 0.67 1/ 41/51/6X 30.525、下面是一个线性方程组: 实验项目:专业班级:信息与计算科学 0901 指导教师:王斌 一、 实验目的1. 掌握生成特殊矩阵的方法。

2. 掌握矩阵分析的方法。

3. 用矩阵求逆法解线性方程组。

二、 实验内容及要求姓名:吴飞飞 成绩:学号:2009254020122 实验日期:2011-10-151、设有分块矩阵AE3 3 O 2 3R3 2 S2 2,其中E,RQ,S 分别为单位矩阵,随机矩阵,零矩阵和对角阵,试通过数值计算验证A E R 2RS 。

O S 24、已知A292081812求A 的特征值及特征向量,5并分析其数学意义。

(2) 将方程右边向量元素b 3改为0.53, 再求解,并比较b 3的变化和解的相对变化。

1程序:E=eye(3); %助3行3列的单位矩阵R=ra nd(3,2); %沏3行2列的随机矩阵O=zeros(2,3); %0为2行3列的全0矩阵S=diag([2,3]); %S为对角矩阵A=[E R;O S];B1=A^2B2=[E R+R*S;O S^2] %验证B1=B2 ,即:A2=[E R+R*S ;O S 2] 结果:SI =i.oooa0^.65350 1.00000 2.71?4 2. E294a a 1.00000,38100.1902a004_00000a a9.000000E2 =1.000()00£•4442 3.^5350 1.00000 2.ri?4 2. E204a a 1.00000,38100.3902a a04_OOOD00a00S.OOOOB1=B2,原式得证。

如何在Matlab中进行矩阵操作和计算

如何在Matlab中进行矩阵操作和计算

如何在Matlab中进行矩阵操作和计算在Matlab中进行矩阵操作和计算Matlab是一种用于数值计算和可视化的高级程序语言,广泛应用于科学计算、工程设计、统计分析等领域。

其中,矩阵操作和计算是Matlab的核心功能之一。

在本文中,我们将探讨如何利用Matlab进行矩阵操作和计算的一些基本技巧和高级功能。

一、创建矩阵在Matlab中创建矩阵非常简单。

我们可以使用特定的语法来定义一个矩阵,并赋予其初值。

例如,我们可以使用方括号将矩阵的元素排列成行或列的形式,用逗号或空格分隔开每个元素。

```MatlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9]; % 创建一个3x3的矩阵B = [10 11 12; 13 14 15; 16 17 18]; % 创建一个3x3的矩阵```除此之外,我们还可以使用内置函数来创建特殊类型的矩阵,如单位矩阵、零矩阵、对角矩阵等。

```MatlabC = eye(3); % 创建一个3x3的单位矩阵D = zeros(2, 4); % 创建一个2x4的零矩阵E = diag([1 2 3]); % 创建一个对角矩阵,对角线元素分别为1、2、3```二、矩阵运算Matlab提供了丰富的矩阵运算函数,方便我们进行各种矩阵操作。

例如,我们可以使用加法、减法、乘法、除法等运算符对矩阵进行基本的运算。

```MatlabF = A + B; % 矩阵相加G = A - B; % 矩阵相减H = A * B; % 矩阵相乘I = A / B; % 矩阵相除```此外,Matlab还提供了求转置、求逆、求行列式等常用的矩阵运算函数,可以通过调用这些函数来完成相应的操作。

```MatlabJ = transpose(A); % 求矩阵A的转置K = inv(A); % 求矩阵A的逆矩阵L = det(A); % 求矩阵A的行列式```三、矩阵索引与切片在Matlab中,我们可以使用索引和切片操作来访问矩阵的特定元素或子矩阵。

MATLAB矩阵分析及多项式运算

MATLAB矩阵分析及多项式运算

A=
1 8 27 125 1 1 1 4 2 1 9 3 1 25 5 1
(8) Hilbert(希尔伯特矩阵)与逆Hilbert矩阵 Hilbert矩阵的元素为:
1 1 1 hi, j , n阶矩阵表示为: H 2 i j 1 1 n
1 1 n 2 1 1 3 n 1 1 1 n 1 2n 1
例: >>r =[1,2,3,4]
>>c=[5,6,7,8]
r=
1 2 3 4 >>T=toeplitz(r) T= 1 2 3 4
c=
5 6 7 8
T=toeplitz(c,r)
T= 5 2 3 4 6 5 2 3 7 6 5 2 8 7 6 5
2 1 2 3
3 2 1 2
4
3 2 1
(10) 伴随矩阵 MATLAB生成伴随矩阵的函数是compan(p),其中p 是一个多项式的系数向量,高次幂系数排在前,低 次幂排在后。 例如,求多项式的x3-7x+6的伴随矩阵,可使用命令: p=[1,0,-7,6]; compan(p) ans = 0 7 -6 1 0 0 0 1 0
(11) 帕斯卡矩阵 二次项(x+y)n展开后的系数随n的增大组成 一个三角形表,称为杨辉三角形。由杨辉 三角形表组成的矩阵称为帕斯卡(Pascal)矩 阵。 函数pascal(n)生成一个n阶帕斯卡矩阵。
例:求(x+y)5的展开式。 在MATLAB命令窗口,输入命令: >> pascal(6) ans = 1 1 1 1 1 1 1 2 3 4 5 6 1 3 6 10 15 21 1 4 10 20 35 56 1 5 15 35 70 126 1 ,10,10,5,1即为展开式的系数。

(完整版)Matlab矩阵分析与处理

(完整版)Matlab矩阵分析与处理

1程序:E=eye(3); %E为3行3列的单位矩阵R=rand(3,2); %R为3行2列的随机矩阵O=zeros(2,3); %O为2行3列的全0矩阵S=diag([2,3]); %S为对角矩阵A=[E R;O S];B1=A^2B2=[E R+R*S;O S^2] %验证B1=B2,即:A2=[E R+R*S;O S2]结果:B1=B2,原式得证。

2程序:H=hilb(5);P=pascal(5);Hh=det(H) %矩阵H的行列式值Hp=det(P) %矩阵P的行列式值Th=cond(H) %矩阵H的条件数Tp=cond(P) %矩阵P的条件数结果:所以,矩阵H的性能更好。

因为H的条件数Th更接近1。

3程序:A=[1 25 45 58 4;45 47 78 4 5;2 58 47 25 9 ;58 15 36 4 96;58 25 12 1 35]; Ha=det(A) %矩阵A的行列式值Ja=trace(A) %矩阵A的迹Za=rank(A) %矩阵A的秩Fa=norm(A) %矩阵A的范数结果:4程序:A=[-29 6 18;20 5 12;-8 8 5];[V D]=eig(A) %D为全部特征值构成的对角阵;V的列向量分别为相应的特征向量结果:5程序:A=[1/2 1/3 1/4;1/3 1/4 1/5;1/4 1/5 1/6];b=[0.95 0.67 0.52]';X=A\b %方程的解c=[0.95 0.67 0.53]'; %将b3=0.52改为0.53Y=A\c %b3改变后的解t=cond(A) %系数矩阵的条件数结果:6程序:A=[4 2;3 9];B1=sqrtm(A) %矩阵A的平方根B2=sqrt(A)Sqrtm(A)求出的是矩阵A的平方根,即:A1^A1=A,求出的是A1Sqrt(A)求出的是A中每个元素的平方根,即:A2.^A2=A,求出的是A2。

《Matlab程序设计》课程教学大纲

《Matlab程序设计》课程教学大纲

Matlab程序设计Matlab Program Design一、课程基本情况课程类别:专业任选课课程学分:2学分课程总学时:32学时,其中讲课:24学时,实验(含上机):8学时课程性质:选修开课学期:第4学期先修课程:计算机基础,高等数学,线形代数适用专业:电子科学与技术教材:MATLAB程序设计教程,中国水利水电出版社,刘卫国,2010,第2版开课单位:电子与信息工程学院电子科学与技术系二、课程性质、教学目标和任务MATLAB程序设计是电子与电气信息类相关专业的专业任选课程之一。

MATLAB是由MathWorks 公司1985 年推出的一种面向科学与工程的计算软件,它具有极强的数值计算、图形文字处理、数据分析、动态仿真、信号处理等功能,涉及了数值分析、自动控制、信号处理、图像处理等十几个领域的计算和图形显示,功能强大。

因此,将MATLAB引入教学,强化应用能力培养,学生在学习专业基础课程时,增加工程应用背景,在打好专业基础的同时,提高学生的应用、创新意识。

通过本课程的学习,使学生学习和掌握如何利用MATLAB对所学理论、原理和方法进行计算机仿真,通过仿真,加深对所学知识的理解和掌握,解决学习相关课程中遇到的抽象问题,为后续专业课程的学习奠定基础。

通过工程软件在电气类专业基础课程的应用,提高学生动手能力、分析问题与解决问题的能力,到达对学生的工程意识培养的目的。

三、教学内容和要求第1章MATLAB系统环境(2学时)(1 )了解MATLAB的影响及其开展历史和MATLAB 7.0的主要功能;(2)理解MATLAB 7.0的运行环境与安装过程,熟悉菜单栏、工具栏的使用;( 3)掌握命令窗口、历史记录窗口、当前目录窗口的使用方法;重点:命令窗口、历史记录窗口、当前目录窗口的使用方法;难点:MATLAB 7.0的辅助局部和MATLAB的数学函数库。

第2章MATLAB数据及其运算(2学时)(1 )了解元胞数组、结构与结构数组;( 2)理解一、二维数组的创立方法;( 3)掌握数值表示、变量表达式、矩阵的表示、字符串矩阵的算术运算、数组运算;重点:矩阵线性运算;创立数组、数组的算术运算;难点:数组运算。

化学软件基础-第3章 第2节-3_矩阵数学运算

化学软件基础-第3章 第2节-3_矩阵数学运算

Q=orth(A)
-0.1409 -0.3439 -0.5470 -0.7501
0.8247 0.4263 0.0278 -0.3706
2019/10/29
矩阵数学运算
12/66
1.1.7 矩阵的简化梯形形式
矩阵A的简化梯形形式:
单位矩阵。

Ir 0
* *
,其中Ir为r阶
rref( ):计算矩阵的简化梯形形式的函数。
例 求矩阵A=[1 2 3 4;1 1 5 6;1 2 3 6;1 1 5 7]的简化梯形形式。
具体代码序列如下: A=[1 2 3 4;1 1 5 6;1 2 3 6;1 1 5 7]; R=rref(A)
2019/10/29
矩阵数学运算
运行结果如下:
R= 1070 0 1 -2 0 0001 0000
矩阵数学运算
20/66
1.3.1 Cholesky分解
对于稀疏矩阵,MATLAB中用函数cholinc( ) 计算不完全Cholesky分解,具体用法如下: R = full(cholinc(sparse(X), DROPTOL)), 其中DROPTOL为不完全Cholesky分解的丢失 容限; R = full(cholinc(sparse (X),‘0’)) , 完 全 Cholesky分解。
det():计算矩阵的行列式的函数。
2019/10/29
矩阵数学运算
8/66
1.1.3 矩阵的行列式
例 求矩阵A=[1 2 3;4 5 6;7 8 9]的行列式。
具体代码序列如下: A=[1 2 3;4 5 6;7 8 9]; A_det=det(A)
运行结果如下: ans=
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档