七年级下册期中测试题及答案参考

合集下载

七年级语文下册期中测试卷及答案【完美版】

七年级语文下册期中测试卷及答案【完美版】

七年级语文下册期中测试卷及答案【完美版】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列字形字音有误的一项是()A.怂恿.(yǒnɡ)污涩.(sè)蜷.伏(quán)嗔怪(chēn)B.丰腴.(yú)斑斓.(lán)迷惘.(wǎnɡ)蹒.跚(pán)C.窗棂.(línɡ)温煦.(xù)笨拙.(zhuō)放肆(sì)D.暮霭.(ài)卑劣.(liè)羞怯.(què)余辉.(huī)2、下列词语书写全部正确的一项是()A.造访响清静默抖擞精神B.捷毛幽谷昏鸦幸甚至哉C.淅沥宽敞喉咙花枝招展D.萧瑟端庄郎润不知不觉3、下列句子中加点的成语使用有误的一项是()A.这次青少年宫组织的国学知识竞赛,试题题量多、难度大,令我叹为观止....,深感自己传统文化知识储备不足。

B.不管面对多么惊心动魄....的场面,他总是临危不惧,让人十分钦佩。

C.多么美丽的年华,在此地邂逅人生中第一场大雪,情不自禁....地沉醉在冰天雪地的世界,迷恋上白雪皑皑的冬季。

D.从靶场回来的路上,大伙兴高采烈....地谈论着打靶比赛的情况。

4、下列句子中没有语病的一句是()A.通过“三城联创”签字仪式,使我们意识到保护环境对于我们来说是多么重要。

B.“阳光体育活动”要求学生每天参加户外体育锻炼的时间不少于一小时,这对青少年来说,无疑不是个好消息。

C.会不会用心观察,能不能重视积累,是提高写作水平的基础。

D.灯月交映、水波粼粼,西河乐园的夜景令人心旷神怡。

5、下列修辞手法判断有误的一项是()A.看,像牛毛,像花针,像细丝,密密地斜织着。

(排比,比喻)B.盼望着,盼望着,东风来了,春天的脚步近了。

(反复,拟人)C.这样,一道儿白,一道儿暗黄,给山们穿上一件带水纹的花衣。

(拟人,比喻)D.越是倾盆大雨我越高兴,因为那时我便有充足的理由在书店待下支。

2023年七年级语文(下册期中)试卷及参考答案

2023年七年级语文(下册期中)试卷及参考答案

2023年七年级语文(下册期中)试卷及参考答案满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列词语中加点字读音正确的一项是()A.羞怯.(què)余晖.(huī)咒.骂(zhòu)神彩奕.奕(yì)B.麝.香(shè)敛.翅(liǎn)匍匐..(púfú)大相径.庭(jìnɡ)C.温驯.(xùn)小凫.(fú)虐.待(nüè)哺.乳动物(pǔ)D.嗔.怪(zhēn)蹒.跚(pán)模.样(mú)脸色煞.白(shà)2、词语书写完全正确的一项是()A.朗润小心翼翼各得其所混为一谈B.瘫痪尴尬烂慢蛛丝马迹C.点缀搏学笃志众目睽睽人迹罕至D.荫蔽岐斜祷告恍然大悟3、下列各句中,加点的成语使用不正确的一项是()A.春天来了,小芳和哥哥小明都打扮得花枝招展....的,跟着爸爸妈妈去郊游。

B.同学们,一年之计在于春.......。

我们正当青春年少,要珍惜这大好时光,努力学习吧!C.你说话和气一点行不行?老是这样咄咄逼人....,谁还愿意跟你交流呢?D.这鬼天气,淅淅沥沥....的雨还停不停?4、下列各句没有语病的一项是()A.据科学家统计,蜜蜂每酿造一斤蜜,大约需要采集50万朵花左右的花粉。

B.这天晚上,我睡得很香,梦中见到了满山鲜嫩的蘑菇,闻到了蘑菇汤浓浓的香味。

C.我们要养成爱读书,特别是读经典,读名著,让书香满城成为无锡的城市特色。

D.住宿环境的好坏,服务质量的优劣,都是宾馆行业健康发展的重要保证。

5、选出对下列句子运用的修辞方法判断正确的一项()①秋冬之际,树上的叶子落光,抬头就能看到高树顶上的许多鸟窝,宛如一个个黑色蘑菇。

②丝瓜似乎心中有数,无言静观,它怡然泰然悠然坦然,仿佛含笑面对秋阳。

③新荷初露田田叶,垂柳始曳丝丝烟。

④我仿佛能看到富士山的雪峰,听到恒河里的涛声,闻到牛津的花香。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.4的算术平方根是()A.16B.±2C.2D2.在平面直角坐标系中,点P(-3.2)在()A.第一象限B.第二象限C.第三象限D.第三象限3.过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.8,﹣1.9)D.(3.8,﹣2.6)8.我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.根据表中的信息判断,下列语句中正确的是()A=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.515.6<<D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、解答题10.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.1011.计算:(12;(2-12.求出下列等式中x的值:(1)12x2=36;(2)33388x-=.13.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.14.有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.15.如图,点D ,点E 分别在∠BAC 的边AB ,AC 上,点F 在∠BAC 内,若EF ∥AB ,∠BDF =∠CEF .求证:DF ∥AC .16.已知正实数x 的平方根是m 和m +b .(1)当b =8时,求m ;(2)若m 2x +(m +b )2x =4,求x 的值.17.在平面直角坐标系xOy 中,已知点A (a ,a ),B (a ,a ﹣3),其中a 为整数.点C 在线段AB 上,且点C 的横纵坐标均为整数.(1)当a =1时,画出线段AB ;(2)若点C 在x 轴上,求出点C 的坐标;(3)若点C 纵坐标满足15y <<,直接写出a 的所有可能取值:.18.如图,已知AB ∥CD ,点E 是直线AB 上一个定点,点F 在直线CD 上运动,设∠CFE =α,在线段EF 上取一点M ,射线EA 上取一点N ,使得∠ANM =160°.(1)当∠AEF =2a 时,α=;(2)当MN ⊥EF 时,求α;(3)作∠CFE 的角平分线FQ ,若FQ ∥MN ,直接写出α的值:.19.对于平面直角坐标系xOy 中的不同两点A (x 1,y 1),B (x 2,y 2),给出如下定义:若x 1x 2=1,y 1y 2=1,则称点A ,B 互为“倒数点”.例如,点A (12,1),B (2,1)互为“倒数点”.(1)已知点A (1,3),则点A 的倒数点B 的坐标为;将线段AB 水平向左平移2个单位得到线段A ′B ′,请判断线段A ′B ′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF 中,点C 坐标为(12,12),点D 坐标为(32,12),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.三、填空题20.将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为_____.21.如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数_____.22.如图,直线a,b相交,若∠1与∠2互余,则∠3=_____.23.依据图中呈现的运算关系,可知a=_____,b=_____.24.平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是_____.25.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D 在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE 的度数是_____.26.如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中_____号点的位置时,接收到的信号最强(填序号①,②,③或④).27.若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线PA,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域_____时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有_____种连线方案.参考答案1.C【解析】【分析】根据算术平方根的定义解答即可.【详解】∵2的平方为4,∴4的算术平方根为2.故选C.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根,正数a的平方根记作正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵-3<0,2>0,,∴点P(-3,2)在第二象限,故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.D【解析】【分析】根据垂线段的定义判断即可.【详解】根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选D.【点睛】本题考查了垂线段的定义,过直线外一点做直线的垂线,这点与垂足间的线段叫做这点到直线的垂线段.4.D【解析】【分析】先根据两直线平行,内错角相等求出∠CAB=144°,然后根据邻补角的定义求出∠2的度数.【详解】∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选D.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角. 5.B【解析】【分析】根据平行线的判定定理即可得到结论.【详解】由平行线的画法知道,画出的同位角相等,即同位角相等,两直线平行.∴同位角相等,两直线平行.故选B.【点睛】本题考查了作图-复杂作图,平行线的判定定理,熟练掌握平行线的定理是解题的关键.行线的判定方法:①两同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.6.C【解析】【分析】据平移的性质确定平移过程中扫过的图形的形状,从而确定面积.【详解】根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选C.【点睛】本题考查了平移的性质,能够确定平移形成的图形是确定面积的基础,难度不大.7.B【解析】【分析】根据平面直角坐标系的定义建立平面直角坐标系,然后根据象限特点解答即可.【详解】解:由图可知,(﹣1.9,0.7)距离原点最近,故选B.【点睛】本题考查了坐标确定位置,主要利用了平面直角坐标系的定义和在平面直角坐标系中确定点的位置的方法.8.A【解析】【分析】根据平行公理,平行线的判定方法及余角的性质解答即可.【详解】①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选A.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.C【解析】【分析】据表格中的信息可知x2和其对应的算术平方根的值,然后依次判断各选项即可.【详解】A15.9=,1.59,故选项不正确;B15.3=<∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,<<,故选项正确;∴只有3个正整数n满足15.515.6D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选C.【点睛】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.10.D【解析】【分析】把各选项中x的值代入计算即可.【详解】A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选D.【点睛】此题考查了算术平方根的意义,解答本题的关键就是弄清楚题图给出的计算程序,按程序一步一步计算.11.(1)73;(2).【解析】【分析】(1)先根据算术平方根及立方根的意义逐项化简,再根据有理数的加减法法则计算;(2)先根据二次根式的乘法计算,再合并同类二次根式即可.【详解】(1)原式=1 423+-=7 3(2)原式=2--=2--.【点睛】本题考查了实数的混合运算,熟练掌握算术平方根及立方根的意义、二次根式的运算法则是解答本题的关键.12.(1)x=;(2)x=3.【解析】【分析】(1)两边都除以12,再根据平方根的意义求解即可;(2)先去分母、移项、合并同类项化为x3=27,再根据立方根的意义求解.【详解】(1)x2=3∴x=(2)x3﹣24=3x3=27∴x=3【点睛】本题考查了利用平方根及立方根的意义解方程,熟练掌握平方根及立方根的意义是解答本题的关键.13.(1)(3,1);(2)详见解析.【解析】【分析】(1)利用清华大学的坐标为(0,3),北京大学的坐标为(-3,2)画出直角坐标系,进而即可得结果;(2)根据点的坐标的意义即可描出表示中国人民大学的坐标即可得.【详解】(1)如图,北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.14.不能将这张贺卡不折叠的放入此信封中.【解析】【分析】设长方形信封的长为5xcm,宽为3xcm.根据长方形的面积列出关于x的方程,解之求得x的值,再由其宽和长与10的大小可得答案.【详解】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x(负值舍去)所以长方形信封的宽为:3x=,=10,∴正方形贺卡的边长为10cm.∵()2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.【点睛】本题主要考查了平方根的应用,解题的关键是根据长方形的面积得出关于x的方程.15.详见解析.【解析】【分析】由EF∥AB,可证∠CEF=∠A,由等量代换可得∠BDF=∠A,从而可证DF∥AC.【详解】∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.【点睛】本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.16.(1)m=﹣4;(2)x【解析】【分析】(1)根据正数有两个互为相反数的平方根列式求解即可;(2)根据正实数x的平方根是m和m+b,可得(m+b)2=x,m2=x,从而原方程可变为x2+x2=4,然后根据平方根的意义求解即可.【详解】(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等=±,0于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.17.(1)详见解析;(2)点C的坐标是(0,0),(1,0),(2,0),(3,0);(3)2,3,4,5.【解析】【分析】(1)根据坐标与图形的特点解答即可;(2)根据x轴的点的特点解答即可;(3)根据无理数的估计和坐标特点解答即可.【详解】解:(1)如图,(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a 的所有可能取值是2,3,4,5.故答案为2,3,4,5.【点睛】本题考查了坐标与图形,关键是根据坐标与图形的特点和代数式求值解答.18.(1)α=120°;(2)α=110°;(3)α=40°.【解析】【分析】(1)根据平行线的性质即可得到结论;(2)如图1所示,过点M 作直线PM ∥AB ,由平行公理推论可知:AB ∥PM ∥CD .根据平行线的性质即可得到结论;(3)如图2,根据角平分线的定义和平行线的性质即可得到结论.【详解】解:(1)∵AB ∥CD ,∴∠AEF +∠CFE =180°,∵∠CFE =α,∠AEF =2α,∴α+2α=180°,∴α=120°;(2)如图所示,过点M 作直线PM ∥AB ,由平行公理推论可知:AB ∥PM ∥CD .∵∠ANM =160°,∴∠NMP =180°﹣160°=20°,又∵NM ⊥EF ,∴∠NMF =90°,∠PMF =∠NMF ﹣∠NMP =90°﹣20°=70°.∴α=180°﹣∠PMF =180°﹣70°=110°;(3)如图2,∵FQ 平分∠CFE ,∴∠QFM =2α,∵AB ∥CD ,∴∠NEM =180°﹣α,∵MN ∥FQ ,∴∠NME =2α,∵∠ENM =180°﹣∠ANM =20°,∴20°+2α+180°﹣α=180°,∴α=40°.故答案为120°,40°.【点睛】本题考查了平行线的性质,角平分线定义,熟练掌握平行线的性质定理是解题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.19.(1)(1,13);是;(2)该正方形各边上存在“倒数点”,理由详见解析;(3)1.【解析】【分析】(1)设A (x 1,y 1),B (x 2,y 2),由题意得出x 2=1,y 2=13,点B 的坐标为(1,13),由平移的性质得出A′(-1,3),B′(-1,13),即可得出结论;(2)①若点M(x1,y1)在线段CF上,则x1=12,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=12,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=32,点N(x2,y2)应当满足y2=23,得出N(32,23),此时点M(23,32)在线段EF上,满足题意;(3)由题意得出各边上点的横坐标和纵坐标的绝对值都≤1,得出正方形面积的最大值为1即可.【详解】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=13,点B的坐标为(1,13),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,1 3),∵﹣1×(﹣1)=1,3×13=1,∴线段A′B′上存在“倒数点”,故答案为(1,1 3);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=12,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=12,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=32,点N(x2,y2)应当满足y2=23,∴点N只可能在线段DE上,N(32,23),此时点M(23,32)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(23,32),N(32,23);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为1.【点睛】本题考查了正方形的性质、新定义“倒数点”、平面直角坐标系、平移的性质等知识;熟练掌握正方形的性质,正确理解新定义“倒数点”是解题的关键.20.(﹣1,7)【解析】【分析】根据“上加下减”的规律求解即可.【详解】将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为(﹣1,7),【点睛】本题考查了平面直角坐标系中图形的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.21(答案不唯一,无理数在﹣1与2之间即可)【解析】【分析】根据点C表示的数大于-1且小于2解答即可.【详解】解:由C点可得此无理数应该在﹣1与2之间,又∵<2,1与2之间即可),【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.22.135°.【解析】【分析】由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.【详解】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为135°.【点睛】本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键. 23.-2019﹣2019.【解析】【分析】根据立方根与平方根的意义求解即可.【详解】依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为﹣2019,-2019.【点睛】本题考查了平方根及立方根的意义,正数a有两个平方根,它们互为相反数;正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.24.(﹣2,2)或(8,2).【解析】【分析】根据平行于x轴的直线上的点的纵坐标相等,再分点B在点A的左边与右边两种情况讨论求解.【详解】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为(﹣2,2)或(8,2).【点睛】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等、平行于y轴的直线上的点的横坐标相等是解题的关键,难点在于要分情况讨论.25.15°【解析】【分析】利用平行线的性质即可解决问题.【详解】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.【点睛】本题考查平行线的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补. 26.①【解析】【分析】根据垂线段最短得出即可.【详解】根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为①.【点睛】本题考查了垂线的性质,能知道垂线段最短是解此题的关键.27.②6.【解析】【分析】(1)由相交线的定义可以找到点Q所在的区域;(2)因为要求所有连线不能相交,所以可按图示6种方法连接.【详解】(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为②,6.【点睛】本题考查了信息迁移及直线、射线、线段的画法,掌握它们的定义是解题的关键.。

2023年人教版七年级数学下册期中考试题及答案【完整版】

2023年人教版七年级数学下册期中考试题及答案【完整版】

2023年人教版七年级数学下册期中考试题及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°6.﹣6的倒数是()A.﹣16B.16C.﹣6 D.67.如图,下列各组角中,互为对顶角的是()A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 8.64的立方根是()A.4 B.±4 C.8 D.±89.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图所示的几何体的主视图是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1. 35______,|12|=_______327的数为________.2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________.4.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4935x y x y -+=⎧⎨+=⎩ (2)3224()5()2x y x y x y +=⎧⎨+--=⎩2.已知关于x、y的二元一次方程组352{2718 x y a x y a-=+=-(1)若x,y的值互为相反数,求a的值;(2)若2x+y+35=0,解这个方程组.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a= ,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?6.某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱) 销售价(元/箱)甲25 35乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、D5、A6、A7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1-1 ±32、1253、同位角相等,两直线平行4、45、-1或-46、10三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)71xy=⎧⎨=⎩2、(1)a的值是8;(2)这个方程组的解是17 {1xy=-=-.3、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)详略;(2)70°.5、(1)30,补图见解析;(2)扇形B的圆心角度数为50.4°;(3)估计获得优秀奖的学生有400人.6、(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.。

七年级数学下册期中测试卷【及参考答案】

七年级数学下册期中测试卷【及参考答案】

七年级数学下册期中测试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .116.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .47.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm8.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.关于x 的不等式组12x x m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m 的取值范围为( )A .m >-3B .m <-2C .m -3≤<-2D .m -3<≤-2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a 4410m =,则m =________.4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.如果a、b互为倒数,c、d互为相反数,且m1=-,则()22ab c d m-++=___________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:(2)解方程组:2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.已知:如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,连接AF.求证:AF平分∠BAC.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、82、90°3、104、(4,2)或(﹣2,2).5、①③④⑤.6、3三、解答题(本大题共6小题,共72分)1、(1);(2).2、(1)a+b=0,cd=1,m=±2;(2)3或-13、略4、证明略.5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、略。

部编人教版七年级数学下册期中测试卷(带答案)

部编人教版七年级数学下册期中测试卷(带答案)

部编人教版七年级数学下册期中测试卷(带答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 用科学记数法表示2350000正确的是()A. 235×104B. 0.235×107C. 23.5×105D. 2.35×1062.实数a、b在数轴上的位置如图所示, 且|a|>|b|, 则化简的结果为()A. 2a+bB. -2a+bC. bD. 2a-b3.已知平面内不同的两点A(a+2, 4)和B(3, 2a+2)到x轴的距离相等, 则a的值为()A. ﹣3B. ﹣5C. 1或﹣3D. 1或﹣54.若ax=6, ay=4, 则a2x﹣y的值为()A. 8B. 9C. 32D. 405.若关于x的不等式组恰有3个整数解, 则a的取值范围是()A. B. C. D.6.如图所示, 圆的周长为4个单位长度, 在圆的4等分点处标上数字0, 1, 2, 3, 先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合, 再让圆沿着数轴按顺时针方向滚动, 那么数轴上的数-2017将与圆周上的哪个数字重合()A. 0B. 1C. 2D. 37.如图, △ABC的面积为3, BD:DC=2:1, E是AC的中点, AD与BE相交于点P, 那么四边形PDCE的面积为()A. B. C. D.8.如图, , 平分, 若, 则的度数为()A. B. C. D.9. 如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A. ①②B. ②③C. ①③D. ①②③10.若x﹣m与x+3的乘积中不含x的一次项, 则m的值为()A. 3B. 1C. 0D. ﹣3二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若a-b=1, 则的值为____________.2.若关于x、y的二元一次方程组的解是, 则关于a、b的二元一次方程组的解是________.3. 分解因式: x3y﹣2x2y+xy=________.4. 多项式﹣3x+7是关于x的四次三项式, 则m的值是________.5. 如图, 直线a, b与直线c相交, 给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8, 其中能判断a∥b的是________(填序号)6.将一副三角板如图放置, 若, 则的大小为________.三、解答题(本大题共6小题, 共72分)1. 解方程:(1)(2)2. 若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长, 且这个等腰三角形的周长为9, 求a的值.3. 如图, 在Rt△ABC中, ∠ACB=90°, ∠A=40°, △ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE, 交AC的延长线于点F, 求∠F的度数.4. 如图, △ABC中, ∠ACB=90°, AD平分∠BAC, DE⊥AB于E,(1)若∠BAC=50°, 求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5. 某校为加强学生安全意识, 组织全校学生参加安全知识竞赛. 从中抽取部分学生成绩(得分取正整数值, 满分为100分)进行统计, 绘制以下两幅不完整的统计图.请根据图中的信息, 解决下列问题:(1)填空:a=_____, n=_____;(2)补全频数直方图;(3)该校共有2000名学生. 若成绩在70分以下(含70分)的学生安全意识不强, 则该校安全意识不强的学生约有多少人?6. 某商场计划用元从厂家购进台新型电子产品, 已知该厂甲型乙型丙型家生产甲、乙、丙三种不同型号的电子产品, 设甲、乙型设备应各买入台, 其中()1购买丙型设备台(用含,x y的代数式表示) ;若商场同时购进三种不同型号的电子产品(每种型号至少有一台), 恰好用了元, 则商场有哪几种购进方案?在第题的基础上, 为了使销售时获利最多, 应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、D2、C3、A4、B5、A6、B7、B8、B9、A10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、12、3212 ab⎧=⎪⎪⎨⎪=-⎪⎩3.xy(x﹣1)24、55.①③④⑤.6.160°三、解答题(本大题共6小题, 共72分)1.(1);(2).2.(1)a>1;(2)2;(3)a的值是2.3、(1) 65°;(2) 25°.4.(1)65°(2)证明略5、(1)75, 54;(2)补图见解析;(3)600人.6、(1) ; (2) 购进方案有三种, 分别为:方案一:甲型台, 乙型台, 丙型台;方案二:甲型台, 乙型台, 丙型台;方案三:甲型台, 乙型台, 丙型台;(3) 购进甲型台, 乙型台, 丙型台, 获利最多, 为元。

七年级语文下册期中测试卷及答案【完整版】

七年级语文下册期中测试卷及答案【完整版】

七年级语文下册期中测试卷及答案【完整版】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列词语中加点字的注音全部正确的一项是()A.绽.开(dìng)罕.至(hǎn)倜傥.(tǎng)逾.矩(yú)B.感慨.(kǎi)和蔼.(ǎi)惭愧.(kuì)锦簇.(cù)C.确凿.(zuó)油蛉.(líng)收敛.(liǎn)书塾.(shū)D.淋.漓(línɡ)啄.食(zhuó)奥.秘(ào)企.盼(qǐ)2、下列词语书写全都正确的一项是()A.莅临朗润烘托秋风潇瑟B.健壮澄清骄媚呼朋引伴C.淅沥草垛干涩花枝招展D.缭亮静谧喉咙咄咄逼人3、下列句子中的加点词语使用不正确的一项是()A.2017年世界乒乓球锦标赛上,马龙以目空一切....的气势击败所有对手,夺得冠军。

B.看起来这几个骗子配合得天衣无缝....,但还是被警察识破了他们的骗局。

C.如果我们再不注意保护动物,过不了多久,好多动物就会像恐龙一样销声匿...迹.。

D.这对热恋中的情侣一起发誓:即使海枯石烂....也永不变心。

4、下列句子没有语病的一项是()A.通过观看央视节目《经典咏流传》,让我更加热爱祖国的优秀传统文化。

B.滨州市创建“全国文明城市”活动,在全体市民的共同努力下,已经阶段性取得了成果。

C.大量事实表明,领先科技出现在哪里,高端人才流向哪里,发展的制高点和经济的竞力就转向哪里。

D.绿色发展是构建高质量现代化经济体系必然要求,是能否解决污染问题的根本之策。

5、下列各句所使用的修辞手法与其他三项不同的一项是( )A.优美而动人的旋律,像涓涓细流,从她那灵巧的手中轻轻地流泻而出,飘荡在幽静的宅院里。

B.人类在历史上的生活正如旅行一样。

C.宁静的夜晚,只有那天上的星星正在窃窃私语。

D.这些字帖挂在我们课桌的铁杆上,就好像许多面小国旗在教室里飘扬。

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x32.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A. B. C. D.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角4.在圆周长C=2πR中,常量与变量分别是( )A. 2是常量,C、π、R是变量B. 2π是常量,C,R是变量C. C、2是常量,R是变量D. 2是常量,C、R是变量5.如图,能判定AB∥CD的条件是()A ∠1=∠3 B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A. 120°B. 125°C. 130°D. 135°8.在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,连接OC.则下列说法中正确的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤二.填空题9.用科学记数法表示:0.007398=_____.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD=___________° .11.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是_____.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .14.已知(9n)2=38,则n=_____.15.若多项式a2+2ka+1是一个完全平方式,则k的值是_____.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.17.如图,已知AB∥CD,则∠A、∠C、∠P关系为_____.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)220.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.21.已知()25a b +=,()23a b -=,求下列式子的值:(1)22a b +;(2)4ab .22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示(1)甲速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A 后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?24.在△ABC 中,AB =AC ,点D 是射线CB 上一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).答案与解析一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x3[答案]B[解析][分析]直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.[详解]A、x2+x2=2x2,故此选项错误;B、x2•x3=x5,正确;C、x6÷x2=x4,故此选项错误;D、(2x)3=8x3,故此选项错误;故选B.[点睛]此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A B. C. D.[答案]B[解析][分析]根据轴对称的性质求解.[详解]观察选项可知,A中的两个图形可以通过平移,旋转得到,C中可以通过平移得到,D中可以通过放大或缩小得到,只有B可以通过对称得到.故选B.[点睛]本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角[答案]D[解析][分析] 根据同位角、对顶角、同旁内角以及余角的定义对各选项作出判断即可.[详解]解:A 、∠1与∠5是同位角,故本选项不符合题意;B 、∠2与∠4对顶角,故本选项不符合题意;C 、∠3与∠6是同旁内角,故本选项不符合题意.D 、∠5与∠6互为补角,故本选项符合题意.故选:D .[点睛]本题主要考查了同位角、对顶角、同旁内角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.在圆的周长C =2πR 中,常量与变量分别是( )A. 2是常量,C 、π、R 是变量B. 2π是常量,C,R 是变量C. C 、2是常量,R 是变量D. 2是常量,C 、R 是变量[答案]B[解析][分析]根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.[详解]在圆的周长公式中2R C π=中,C 与r 是改变的,π是不变的;所以变量是C ,R ,常量是2π.故答案选B[点睛]本题考查了变量与常量知识,属于基础题,正确理解变量与常量的概念是解题的关键.5.如图,能判定AB ∥CD 的条件是( )A. ∠1=∠3B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°[答案]B[解析][分析]在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.[详解]A. ∵∠1=∠3,∴AD∥BC,而不能判定AB∥CD,故A错误;B.∵∠2=∠4,∴AB∥CD,故B正确,C.∵∠DCE=∠D,∴AD∥BC,而不能判定AB∥CD,故C错误;D. ∵∠B+∠BAD=180°,∴AD∥BC,而不能判定AB∥CD,故D错误.故选:B[点睛]本题考查了平行线的判定方法,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB[答案]D[解析][分析]由题意可知,∠ABC=∠DCB,BC=CB,然后利用三角形全等的判定定理逐个进行判定即可.[详解]解:由题意∠ABC=∠DCB,BC=CB∴A. ∠A=∠D,可用AAS定理判定△ABC≌△DCBB. ∠ACB=∠DBC,可用ASA定理判定△ABC≌△DCBC. AB=DC,可用SAS定理判定△ABC≌△DCBD. AC=DB,不一定能够判定两个三角形全等故选:D[点睛]本题考查三角形全等的判定,掌握判定定理灵活应用是本题的解题关键.7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于( )A. 120°B. 125°C. 130°D. 135°[答案]D[解析][分析] 根据全等三角形的判定定理可得出BCA BDE ∆≅∆,从而有3CAB ∠=∠,这样可得1390∠+∠=︒,根据图形可得出245∠=︒,这样即可求出123∠+∠+∠的度数.[详解]解:在ABC ∆与BDE ∆中AC DE C D CB DB =⎧⎪∠=∠⎨⎪=⎩, ()BCA BDE SAS ∴∆≅∆,3CAB ∴∠=∠,由图可知,1=90CAB ∠+∠︒,∴1390∠+∠=︒,由图可知,245∠=︒,1239045135∴∠+∠+∠=︒+︒=︒.故选:.[点睛]此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定BCA BDE ∆≅∆,这是解答本题关键.8.在△ABC 中,AB =AC ,∠BAC =45°.若AD 平分∠BAC 交BC 于D ,BE ⊥AC 于E ,且交A 于O ,连接OC .则下列说法中正确的是( )①AD ⊥BC ;②OC 平分BE ;③OE =CE ;④△ACD ≌△BCE ;⑤△OCE 的周长=AC 的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤[答案]C[解析][分析]①正确,利用等腰三角形的三线合一即可证明;②错误,证明OB=OC>OE即可判断;③正确,证明∠ECO =∠OBA=45°即可;④错误,缺少全等的条件;⑤正确,只要证明BE=AE,OB=OC,EO=EC即可判断.[详解]解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,即①正确,∴OB=OC,∵BE⊥AC,∵OC>OE,∴OB>OE,即②错误,∵∠ABC=∠ACB,∠OBC=∠OCB,BE⊥AC,∴∠ABE=∠ACO=45°,∴∠ECO=∠EOC=45°,∴OE=CE,即③正确,∵∠AEB=90°,∠ABE=45°,∴AE=EB,∴△OEC的周长=OC+OE+EC=OE+OB+EC=EB+EC=AE+EC=AC,即⑤正确,无法判断△ACD≌△BCE,故④错误,故选:C.[点睛]本题考查等腰三角形的性质,等腰直角三角形的判定和性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二.填空题9.用科学记数法表示:0.007398=_____.[答案]3⨯7.39810-绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.007398=7.398×10﹣3.故答案为:37.39810-⨯.[点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD =___________°.[答案]70.[解析][分析]根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC 的度数,计算出结果.[详解]解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故答案为70.[点睛]本题考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是_____.[答案]6cm 或7cm .当腰长=6cm时,底边=20﹣6﹣6=8cm,当底边=6cm时,腰长=2062﹣=7cm,根据三角形的三边关系,即可推出腰长.[详解]解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20﹣6﹣6=8cm,即6+6>8,能构成三角形,∴当底边=6cm时,腰长=2062﹣=7cm,即7+6>7,能构成三角形,∴腰长是6cm或7cm,故答案为6cm或7cm.[点睛]本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)[答案](a+2b)(a+3b)=a2+5ab+6b2[解析][分析]根据图形求面积有直接求和间接求两种方法,列出等式即可.[详解]解:根据题意得:整个长方形的面积:S=(a+2b)(a+3b),同时,这个图形是由5个长是a宽是b的小长方形和6个边长是b的小正方形和一个边长是a的正方形组成的,所以面积S=a2+5ab+6b2.∴(a+2b)(a+3b)=a2+5ab+6b2.故答案为:(a+2b)(a+3b)=a2+5ab+6b2.[点睛]这道题主要考查整式的乘法的推导,难度较低,利用数形结合的方法是解题的关键.13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________.[答案]γ=2α+β.[解析][分析]根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.[详解]由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为γ=2α+β.[点睛]此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.14.已知(9n)2=38,则n=_____.[答案]2[解析][分析]先把9n化为32n,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n=8,即可求得n的值.[详解](9n)2=(32n)2=34n=38,∴4n=8,解得n =2.[点睛]此题考查幂的乘方,解题关键在于掌握运算法则.15.若多项式a 2+2ka+1是一个完全平方式,则k 的值是_____.[答案]±1[解析]分析:完全平方式有两个:222a ab b ++和222a ab b -+,根据以上内容得出221ka a =±⋅,求出即可. 详解:∵221a ka ++ 是一个完全平方式,∴2ka =±2a ⋅1, 解得:k =±1, 故答案是:±1. 点睛:考查完全平方公式,熟记公式是解题的关键.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.[答案]50°或130°;[解析][分析]根据平行线的性质:两直线平行,同位角相等即可解答此题.[详解]解:如图:当α=∠2时,∠2=∠1=50°,当β=∠2时,∠β=180°−50°=130°,故答案为:50°或130°;[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.17.如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.[答案]∠A+∠C﹣∠P=180°[解析][详解]如图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APE,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm[答案]5[解析][分析]过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,根据轴对称的相关性质以及两点之间线段最短可以得出此时PE+QE最小,并且等于Q,进一步利用全等三角形性质求解即可.[详解]如图,过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,此时PE+QE最小.∵与P关于BD对称,∴PE=E,BP=B=2cm,∴PE+QE= Q,又∵等边△ABC中,BD⊥AC于点D,AD=3.5cm,∴AC=BC=AB=7cm,∵BP=AQ=2cm,∴QC=5cm,∵B=2cm,∴C=5cm,∴△Q C为等边三角形,∴Q=5cm.∴PE+QE=5cm.所以答案为5.[点睛]本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,熟练掌握相关概念是解题关键.三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)2[答案](1)22++-;(2)2-5ab+4a4b2.m mn n444[解析][分析](1)根据平方差公式和完全平方公式计算即可;(2)根据整式乘法,加减运算法则进行计算即可.[详解]解:(1)(2m+n﹣2)(2m+n+2)()2m n+-=2422m mn n++-;=444(2)(2+a)(2﹣a)﹣a(5b﹣a)+ 3a4b2+(﹣a2b)2=2-a2-5ab+a2+3a4b2+ a4b2=2-5ab+4a4b2.[点睛]本题考查了整式的乘法运算和乘法公式,解题的关键是牢记平方差公式和完全平方公式,并严格按照整式乘法法则进行.20.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.[答案](1)53-;(2)2x y -,4. [解析][分析](1)根据负整数指数幂,0指数幂,积的乘方逆运算计算,再进行加减运算即可;(2)先根据完全平方公式和平方差公式展开合并,再根据多项式除以单项式计算,最后代入求值即可.[详解]解:(1)(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 20182018223=21332⎛⎫⎛⎫⎛⎫-++-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()20182=113⎛⎫-+-⨯- ⎪⎝⎭ 2=13⎛⎫-+- ⎪⎝⎭ =53-; (2)[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x =22224442x xy y x y x ⎡⎤-++-÷⎣⎦=2242x xy x ⎡⎤-÷⎣⎦=2x y -,当x =2,y =﹣1时,原式=()221-⨯-=4.[点睛]本题考查了负整数指数幂,0指数幂,积的乘方逆运算,整式的加减乘除混合运算及代入求值等知识,解题关键是牢记相关知识,严格按法则进行计算.21.已知()25a b +=,()23a b -=,求下列式子值:(1)22a b +;(2)4ab .[答案](1)4;(2)2;(1)直接利用完全平方公式将原式展开,进而求出22a b +的值;(2)直接利用(1)中所求,进而得出ab 的值,求出答案即可.[详解]解:(1)∵()25a b +=,()23a b -=,∴22+25a b ab +=,2232b a b a +-=,∴()2228a b +=,解得:224a b +=,(2)∵224a b +=,∴4+2ab=5,解得:ab=12, ∴4ab =14=22⨯; [点睛]本题主要考查了完全平方公式,掌握完全平方公式是解题的关键.22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____[答案]见解析根据平行线的性质结合已知得到∠D=∠BFC,证明DE∥BF,利用平行线的性质得出结论.[详解]证明:∵AB∥CD,∴∠B=∠BFC.(两直线平行,内错角相等),又∵∠B=∠D,∴∠D=∠BFC.(等量代换)∴DE∥BF.(同位角相等,两直线平行),∴∠l+∠2=180°.(两直线平行,同旁内角互补).故答案为:∠BFC;两直线平行,内错角相等;∠D;∠BFC;DE;BF;同位角相等,两直线平行;两直线平行,同旁内角互补.[点睛]本题考查了平行线的判定和性质,熟练掌握平行线的性质和判定定理是解题的关键.23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示(1)甲的速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?[答案](1)16,43;(2) 78;(3)283或60分钟[解析][分析](1)根据路程与时间的关系,可得甲乙的速度;(2)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案;(3)根据题意列方程即可解答.[详解]解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米, 设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43,即乙的速度为43米/分钟.故答案为16;43;(2)甲、乙相遇时,乙所行驶的路程:4401033⨯=(千米)相遇后乙到达A站还需1416263⎛⎫⨯÷=⎪⎝⎭(分钟),相遇后甲到达B站还需411036⎛⎫⨯÷⎪⎝⎭=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B.故答案为78;(3)110606÷=(分钟),设甲出发了x分钟后,甲、乙之间的距离为10千米时,根据题意得,16x+43(x-6)=16-10,解得x=283,答:甲出发了283或60分钟后,甲、乙之间的距离为10千米时.[点睛]本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.24.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 线段CB 上,且∠BAC =90°时,那么∠DCE =______度.(2)设∠BAC =α,∠DCE =β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).[答案](1)90°;(2)①α+β=180°;②α=β.[解析]试题分析:(1)利用等腰三角形证明ABD ≅ACE,所以∠ECA=∠DBA,所以∠DCE =90°.(2)方法类似(1)证明△ABD ≌△ACE ,所以∠B=∠ACE ,再利用角的关系求αβ180+=︒. (3)同理方法类似(1).试题解析:解:(1) 90 度.∠DAE =∠BAC ,所以∠BAD =∠EAC,AB=AC,AD=AE ,所以ABD ≅ACE,所以∠ECA=∠DBA,所以∠ECA =90°.(2)① αβ180+=︒.理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE,又AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠B=∠ACE .∴∠B +∠ACB =∠ACE+∠ACB ,∴B ACB DCE β∠∠∠+==.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.(3)补充图形如下, αβ=.。

2023年七年级语文(下册期中)试题及答案(完整)

2023年七年级语文(下册期中)试题及答案(完整)

2023年七年级语文(下册期中)试题及答案(完整)满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列画线字的注音全都正确的一项是()A.窠臼(kē) 霎时(chà) 粗犷(guǎng) 菜畦(qí)B.贮蓄(zhù) 菡萏(hàn) 倜傥(tǎng) 秕谷(bí)C.攲(qī)斜 攒成(cuán) 直窜(cuàn) 整宿(xiǔ)D.搓捻(liǎn) 譬如(pì) 侍弄(shì) 徘徊(huái)2、下列词语书写完全正确的一项是()A.感慨奥秘轻捷花枝招展B.鉴赏憔悴一霎波光鳞鳞C.烂漫骄媚睫毛咄咄逼人D.高邈嘹亮郎润混为一谈3、下列句中加点的词语使用不恰当的一项是( )A.要达到“问责必严”这一要求和目标,必须揪住问题不放、针对问题“不求..甚解..”。

B.他带领当地干部群众,将不毛之地....变成郁郁葱葱的生态旅游海岛。

C.我们应该对“欠薪”问题来个刨根问底....,找出真正的症结,并对症施治。

D.在“中国诗词大会”赛场,选手们自信满满,对答如流....,精彩的表现折服了观众。

4、下列句子没有语病的一项是()A.我国首架大型民用飞机C919第一次首飞成功,国人欢呼雀跃。

B.能否有效预防校园欺凌,关键在于相关部门主动关心未成年人。

C.《朗读者》栏目精心挑选经典美文,旨在达到感染人、鼓舞人、教育人。

D.读书不仅能够使人远离纷扰的环境,保持内心沉静,而且可以使人感受世界,体悟人生,获得启迪。

5、下列句子不是比喻句的一项是()A.春天像小姑娘,笑着,走着。

B.对于一个刚由伦敦回来的人,像我,冬天要能看得见日光,便觉得是怪事。

C.山上的矮松越发的青黑,树尖儿上顶着一髻儿白花,好像日本看护妇。

D.理想是闹钟,敲碎你的黄金梦。

6、下列句子排序正确的一项是( )①而海呢,你看她没有一刻静止!②从天边微波粼粼地直卷到岸边,触着崖石,更欣然地溅跃了起来,开了灿然万朵的银花!③山是静的,海是动的。

2023年部编版七年级数学下册期中测试卷(附答案)

2023年部编版七年级数学下册期中测试卷(附答案)

2023年部编版七年级数学下册期中测试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m-m-10m-m-m2=+,则计算:的结果为().A.3B.-3C.5D.-52.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣54.按一定规律排列的一列数:3,82,153,244,…,其中第6个数为()A.377B.355C.356D.2335.如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为()A.1°B.2°C.4°D.8°6.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( )A .正数B .负数C .非正数D .非负数8.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=________.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =________.5.若一个多边形的内角和是900º,则这个多边形是________边形.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.已知方程组351ax by x cy +=⎧⎨-=⎩,甲正确地解得23x y =⎧⎨=⎩,而乙粗心地把C 看错了,得36x y =⎧⎨=⎩,试求出a ,b ,c 的值.3.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF 与BE 、CF 之间有怎样的关系.(2)如图②,若AB ≠AC ,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF 与BE 、CF 间的关系还存在吗?(3)如图③,若△ABC 中∠B 的平分线BO 与三角形外角平分线CO 交于O ,过O 点作OE ∥BC 交AB 于E ,交AC 于F .这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.4.如图①,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如果∠A =80°,求∠BPC 的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、D7、A8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、53、43 32a≤≤4、2 35、七6、±3三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、a=3,b=﹣1,c=3.3、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。

人教版七年级数学下册期中测试卷(及参考答案)

人教版七年级数学下册期中测试卷(及参考答案)

人教版七年级数学下册期中测试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.超市出售的某种品牌的面粉袋上, 标有质量为(25±0.2)kg的字样, 从中任意拿出两袋, 它们的质量最多相差-()A. 0.2 kgB. 0.3 kgC. 0.4 kgD. 50.4 kg2.如图, 将矩形ABCD沿GH折叠, 点C落在点Q处, 点D落在AB边上的点E 处, 若∠AGE=32°, 则∠GHC等于()A. 112°B. 110°C. 108°D. 106°3.下列倡导节约的图案中, 是轴对称图形的是()A. B. C. D.4.如果a与1互为相反数, 则|a+2|等于()A. 2B. -2C. 1D. -15.如图, 在△ABC和△DEC中, 已知AB=DE, 还需添加两个条件才能使△ABC≌△DEC, 不能添加的一组条件是()A. BC=EC, ∠B=∠EB. BC=EC, AC=DCC. BC=DC, ∠A=∠DD. ∠B=∠E, ∠A=∠D6.如图, 下列条件:中能判断直线的有()A. 5个B. 4个C. 3个D. 2个7.如图, AB∥CD, BP和CP分别平分∠ABC和∠DCB, AD过点P, 且与AB垂直.若AD=8, 则点P到BC的距离是()A. 8B. 6C. 4D. 28.一个几何体的表面展开图如图所示, 则这个几何体是()A. 四棱锥B. 四棱柱C. 三棱锥D. 三棱柱9.如图是一个切去了一个角的正方体纸盒, 切面与棱的交点A, B, C均是棱的中点, 现将纸盒剪开展成平面, 则展开图不可能是()B. C. D.10.如图, 在△ABC中, DE是AC的垂直平分线, 且分别交BC, AC于点D和E, ∠B=60°, ∠C=25°, 则∠BAD为()A. 50°B. 70°C. 75°D. 80°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是________.2.如图所示, 计划把河水引到水池A中, 先作AB⊥CD, 垂足为B, 然后沿AB开渠, 能使所开的渠道最短, 这样设计的依据是___________________.3. 如果的平方根是, 则_________。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

人教版数学七年级下册期中测试卷及答案

人教版数学七年级下册期中测试卷及答案

人教版数学七年级下册期中测试题一、填空题(每题3分,共30分)l、已知∠a的对顶角是81°,则∠a=______.2、把“等角的补角相等”写成“如果…,那么…”的形式_________________________________.3、在平面直角坐标系中,点P(-4,5)到x轴的距离为______,到y轴的距离为________.4、若等腰三角形的边长分别为3和6,则它的周长为________.5、如果P(m+3,2m+4)在y轴上,那么点P的坐标是________.6、如果一个等腰三角形的外角为100°,则它的底角为________..7、一个长方形的三个顶点坐标为(―1,―1),(―1,2)(3,―1),则第四个顶点的坐标是______________.8、将点P(-3,4)先向下平移3个单位,再向左平移2个单位后得到点Q,则点Q的坐标是_____________.9、武夷中学运动场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.10、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2010个球止,共有实心球_____________个。

”二、选择题(每题3分,共30分)11、在同一平面内,两直线可能的位置关系是()A.相交B.平行C.相交或平行D.相交、平行或垂直12、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().(A)120°(B)130°(C)140°(D)150°13、在△ABC中,已知∠A:∠B:∠C=1:2:3则△ABC是().A、锐角三角形B、直角三角形C、钝角三角形D以上都不对54D3E21CBA14、如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是().A.相等B.互余或互补C.互补D.相等或互补15、如右图,下列能判定AB ∥CD 的条件有()个.(1)︒=∠+∠180BCD B ;(2)21∠=∠;(3)43∠=∠;(4)5∠=∠B .A.1B.2C.3D.4第15题图16、下列说法:①三角形的高、中线、角平分线都是线段;②内错角相等;③坐标平面内的点与有序数对是一一对应;④因为∠1=∠2,∠2=∠3,所以∠1=∠3。

2023年七年级语文下册期中考试题及参考答案

2023年七年级语文下册期中考试题及参考答案

2023年七年级语文下册期中考试题及参考答案满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列词语中加点字的注音全对的一组是()A.朗润.(rùn)应和.(hé)着.落(zháo)分歧.(qí)B.贮.蓄(zhù)粗犷.(kuàng)静谧.(bì)絮叨.(dāo)C.澄.清(dèng)霎.时(chà)吝啬.(sè)徘徊.(huí)D.憔悴.(cuì)匿.笑(nì)祷.告(dǎo)侍.弄(shì)2、下列词语书写完全正确的一项是()A.引人瞩目栩栩如生呼朋引伴流连忘返B.名列前矛杞人忧天汗流浃背再接再励C.笑逐眼开披蓑戴笠赏心悦目巧妙绝伦D.鳞次栉比通霄达旦按排工序鸦口无言3、下列加点成语使用有误的一项是()A.要想取得优异的成绩,我们必须对知识不求甚解....。

B.在众目睽睽....之下,一向害羞的她脸一下子红了。

C.他们夜以继日废寝忘食....地工作,终于按时完成了任务。

D.他小心翼翼....地对爸爸说他想星期六到公园去玩,但还是遭到爸爸的反对。

4、下列各句中,有语病的一项是()A.通过本单元的学习,我们感受到了亲情的温暖,母爱的伟大。

B.为了防止不再发生安全事故,学校加强了安全保卫工作。

C.秋天的北京香山是一个旅游的好去处。

D.也许,青春本身就是一本成长的流水账,需要我们小心地记录,精心地收藏。

5、下列各句修辞手法不同的一项是()A.半空中似乎总挂着透明的水雾的丝帘。

牵动着阳光的彩棱镜、B.桃树、杏树、梨树,你不让我,我不让你,都开满了花赶趟儿。

C.一个老城,有山有水,全在蓝天下很暖和安适地睡着,只等春风来把他们唤醒……D.每一棵树仿佛都睁开特别明亮的眼睛,树枝的手臂也顿时柔软了。

6、按顺序排列下面的语句,组成语意连贯的一段话,排序正确的一项是()①一夜枕上听雨,辗转不能成寐,清晨推窗望去,雨却停了。

人教版七年级下册数学期中测试卷【含答案】

人教版七年级下册数学期中测试卷【含答案】

人教版七年级下册数学期中测试卷【含答案】专业课原理概述部分一、选择题1. 下列哪一个数是负数?()A. -5B. 0C. 3D. 82. 如果 a > b,那么下列哪一个表达式是正确的?()A. a b > 0B. a + b > 0C. a b > 0D. a / b > 03. 下列哪一个数是偶数?()A. 21B. 34C. 47D. 504. 下列哪一个数是质数?()A. 12B. 17C. 20D. 275. 下列哪一个数是无理数?()A. √9B. √16C. √25D. √2二、判断题1. 整数包括正整数、负整数和零。

()2. 两个负数相乘的结果是正数。

()3. 两个奇数相加的结果是偶数。

()4. 两个偶数相乘的结果是偶数。

()5. 两个质数相加的结果一定是质数。

()三、填空题1. 最大的负整数是______。

2. 两个质数相乘的结果至少有______个因数。

3. 如果 a 是正数,那么 -a 是______。

4. 两个奇数相乘的结果是______。

5. 两个负数相除的结果是______。

四、简答题1. 请解释什么是质数。

2. 请解释什么是无理数。

3. 请解释什么是因数。

4. 请解释什么是偶数。

5. 请解释什么是负数。

五、应用题1. 计算下列各题的值:a. 3 + (-5)b. -2 4c. 15 / (-3)d. (-8) ^ 2e. √(-9)2. 判断下列各题的正误,并解释原因:a. 两个负数相加的结果是正数。

b. 两个偶数相乘的结果是奇数。

c. 两个质数相加的结果一定是质数。

d. 两个无理数相乘的结果是有理数。

e. 两个负数相除的结果是正数。

六、分析题1. 请分析并解释为什么两个质数相乘的结果至少有4个因数。

2. 请分析并解释为什么负数的平方是正数。

七、实践操作题1. 请用纸和剪刀剪出一个正方形,并计算其面积。

2. 请用计算器计算下列各题的值,并解释计算过程:a. 7 + (-9)b. -3 6c. 20 / (-5)d. (-4) ^ 3e. √36八、专业设计题1. 设计一个面积为24平方米的长方形花园,并计算其周长。

人教版数学七年级下册《期中测试卷》附答案

人教版数学七年级下册《期中测试卷》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(本题满分30分,每题3分)1. 下列计算中,正确的是( ) A. (a 2)3=a 5B. a 2•a 3=a 6C. 2a •3a =6a 2D. 2a +3a =5a 22. 世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A. 15.610-⨯B. 25.610-⨯C. 35.610-⨯D. 0.5610⨯3. 小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m )与时间t(min )的大致图象是( )A. B. C. D.4. 如图,将一张含有30角的三角形纸片的两个顶点放在直尺的两条对边上,若110∠=︒,则2∠的度数是( )A. 30B. 40︒C. 50︒D. 60︒5. 下列多项式乘法中可以用平方差公式计算的是( ) A. (﹣a +b )(a ﹣b )B. (x +2)(2+x )C. (3x +y )(y ﹣3x) D. (x ﹣2)(x +1)6. 如图,在下列给出条件中,不能判定AC∥DE 的是( )A. ∠1=∠AB. ∠A=∠3C. ∠3=∠4D. ∠2+∠4=180°7. 用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( ) A. 100(0.6)y n m=+ B. 100()0.6y n m=+ C. (1000.6)y n m =+ D. 1000.6y mn =+8. 若a 、b 、c 是正数,下列各式,从左到右的变形不能用如图验证的是( )A. (b +c )2=b 2+2bc +c 2B. a (b +c )=ab +acC. (a +b +c )2=a 2+b 2+c 2+2ab +2bc +2acD. a 2+2ab =a (a +2b )9. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( ) A. 3-,4-B. 3-,4C. 3,4-D. 3,410. 如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A. B. C. D.二、填空题(本题满分24分,每题3分)11. 一个角的余角为40︒,则这个角的补角是______度. 12. 计算2132x y xy ⎛⎫÷-⎪⎝⎭的结果是______.13. 如图,//AB CD ,130AGE ∠=︒,HM 平分EHD ∠,则MHD ∠的度数是______度.14. 若2a x =,3b x =,2a b x +=______.15. 某烤鸭店在确定烤鸭烤制时间时,主要依据的是下表的数据: 鸭质量/千克 1 15 2 2.5 3 3.5 4 烤制时间/分6080100120140160180设鸭的质量为千克,烤制时间为,估计当6x =千克时,的值为______分. 16. 若2254x kx ++是一个完全平方式,则k =______ .17. 一个圆柱的底面半径为cm R ,高为6cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192cm π3.则R =______厘米.18. 计算:20192020133⎛⎫⋅-= ⎪⎝⎭______.三、解答题(本题共有6道小题,满分66分)19. 计算: (1)2201901(1)(3.14)3π-⎛⎫-+--- ⎪⎝⎭(2)()()3222223a ba b a b -+⋅-(3)()()3232a b c a b c +--+ (4)()()()312x x x x +---(5)用乘法公式计算:2202020182022-⨯.20. 先化简,再求值:22(2)()()5(4)x y x y x y y x ⎡⎤+-+--÷-⎣⎦,其中3x =-,13y =. 21. 如图:已知直线AB 、CD 相交于点,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数;(2)若:2:7BOD BOC ∠∠=,求AOE ∠的度数. 22. 填空,将理由补充完整.如图,CF AB ⊥于,DE AB ⊥于,1180EDC ∠+∠=︒,求证://FG BC .证明:∵CF AB ⊥,DE AB ⊥(已知) ∴90BED BFC ∠=∠=︒(垂直的定义) ∴//ED FC (________________________) ∴23∠∠=(________________________) ∵1180EDC ∠+∠=︒(已知)又∵2180EDC ∠+∠=︒(________________________) ∴12∠=∠(________________________) ∴13∠=∠(________________________) ∴//FG BC (________________________)23. 如图,已知//DC AB ,CE 平分BCD ∠,CE 与AB 相交于点M ,AME E ∠=∠.试说明//ED BC ,并写出每一步的根据.24. 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程 s (米)与时间 t (分)之间的关系.(1)小明从家到学校的路程共 米,从家出发到学校,小明共用了 分钟; (2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?25. (1)如图:若//AB CD ,点在AB 、CD 内部,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)如图,若//AB CD ,将点移到AB 、CD 外部,则BPD ∠、B 、D ∠的数量关系是______.(3)在下图中,将直线AB 绕点逆时针方向旋转一定角度交直线CD 于点,则BPD ∠、B 、D ∠、BED ∠之间满足的数量关系是______.答案与解析一、单选题(本题满分30分,每题3分)1. 下列计算中,正确的是( ) A. (a 2)3=a 5 B. a 2•a 3=a 6C. 2a •3a =6a 2D. 2a +3a =5a 2[答案]C [解析] [分析]根据幂的乘方、同底数幂的乘法、单项式乘单项式、合并同类项的法则分别进行计算,即可得出答案. [详解]A.(a 2)3=a 6,A 选项错误; B.a 2•a 3=a 5,B 选项错误; C.2a •3a =6a 2,C 选项正确; D.2a +3a =5a ,D 选项错误; 故选:C .[点睛]本题考查了幂的乘方、同底数幂的乘法、单项式乘单项式、合并同类项,掌握运算法则是解题关键. 2. 世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A. 15.610-⨯ B. 25.610-⨯C. 35.610-⨯D. 0.5610⨯[答案]B [解析] [分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. [详解]0.056=25.610-⨯. 故选:B .[点睛]本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3. 小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m )与时间t(min )的大致图象是( )A. B. C. D.[答案]C [解析]试题分析:小明从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长, 故选C . 考点:函数图象4. 如图,将一张含有30角的三角形纸片的两个顶点放在直尺的两条对边上,若110∠=︒,则2∠的度数是( )A. 30B. 40︒C. 50︒D. 60︒[答案]B [解析] [分析]利用平行线的性质,三角形的外角的性质解决问题即可. [详解]如图,∵AB ∥CD , ∴∠3=∠2,∵∠3=∠1+30,∠1=10°, ∴∠2=∠3=40︒, 故选:B .[点睛]本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5. 下列多项式乘法中可以用平方差公式计算的是( ) A. (﹣a +b )(a ﹣b ) B. (x +2)(2+x )C. (3x +y )(y ﹣3x ) D. (x ﹣2)(x +1)[答案]C [解析]本题考查平方差公式的特点.选项A 和B 都是完全平方式, C 、211111()()()()33339x y y x y x y x y x +-=+-=-. 6. 如图,在下列给出的条件中,不能判定AC∥DE 的是( )A. ∠1=∠AB. ∠A=∠3C. ∠3=∠4D. ∠2+∠4=180°[答案]B [解析] [分析]根据平行线的判定,逐项进行判断即可.[详解]解:当∠1=∠A 时,可知是DE 和AC 被AB 所截得到的同位角,可得到DE ∥AC ,故A 可以; 当∠A=∠3时,可知是AB 、DF 被AC 所截得到的同位角,可得AB ∥DF ,故B 不可以; 当∠3=∠4时,可知是DE 和AC 被AB 所截得到的内错角,可得DE ∥AC ,故C 可以; 当∠2+∠A=180°时,是一对同旁内角,可得DE ∥AC ;故D 可以; 故选B .[点睛]本题主要考查平行线的判定方法,掌握平行线的判定方法是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.7. 用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( ) A. 100(0.6)y n m=+ B. 100()0.6y n m=+ C. (1000.6)y n m =+ D. 1000.6y mn =+[答案]A [解析] [分析]用100元钱加上购买m 本书的邮寄费列解析式即可.[详解]解:根据题意可得:y=n (100m+0.6);故选A[点睛]此题考查函数关系式,理解题意,找出数量关系,列出解析式即可.8. 若a、b、c是正数,下列各式,从左到右的变形不能用如图验证的是( )A. (b+c)2=b2+2bc+c2B. a(b+c)=ab+acC. (a+b+c)2=a2+b2+c2+2ab+2bc+2acD. a2+2ab=a(a+2b)[答案]D[解析][分析]通过几何图形面积之间的数量关系完全平方公式或其他等式作出几何解释即可.[详解]依据①②③④四部分的面积可得,(b+c)2=b2+2bc+c2,故A能验证;依据⑤⑥两部分的面积可得,a(b+c)=ab+ac,故B能验证;依据整个图形的面积可得,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故C能验证;图中不存在长为a+2b,宽为a的长方形,故D选项不能验证;故选D.[点睛]本题主要考查了完全平方公式的几何背景,用大正方形的面积和作为相等关系,即可得到完全平方公式.9. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2-7x+12,则a,b的值可能分别是( )A. 3-,4-B. 3-,4C. 3,4-D. 3,4 [答案]A[解析][分析]根据题意可得规律为712a bab+=-⎧⎨=⎩,再逐一判断即可.[详解]根据题意得,a,b的值只要满足712a bab+=-⎧⎨=⎩即可,A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.[点睛]本题考查了多项式乘多项式,解题的关键是根据题意找出规律.10. 如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.[答案]B[解析]解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;二、填空题(本题满分24分,每题3分)11. 一个角的余角为40︒,则这个角的补角是______度.[答案]130[解析][分析]首先计算出这个角度数,再计算出它的补角即可.[详解]设这个角为x ,则:90°−x =40°,解得:x =50°,则它的补角是:180°−50°=130°.故答案为:130.[点睛]此题主要考查了余角和补角,关键是掌握:余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角. 补角:如果两个角和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.12. 计算2132x y xy ⎛⎫÷- ⎪⎝⎭的结果是______. [答案]-6x[解析][分析]根据单项式的除法运算法则即可求解.详解]2132x y xy ⎛⎫÷- ⎪⎝⎭=6x - 故答案为:6x -.[点睛]此题主要考查单项式的除法,解题的关键是熟知其运算法则.13. 如图,//AB CD ,130AGE ∠=︒,HM 平分EHD ∠,则MHD ∠的度数是______度.[答案]25°[分析]由题意可由平行线的性质,求出∠EHD 的度数,再由HM 平分∠EHD ,即可求出∠MHD 的度数.[详解]由题意得:∠AGE =∠BGF =130°,∵AB ∥CD ,∴∠EHD =180°−∠BGF =50°,又∵HM 平分∠EHD ,∴∠MHD =12∠EHD =25°. 故答案为:25°.[点睛]本题考查平行线的性质,关键在于掌握两直线平行,同位角相等,内错角相等,同旁内角互补. 14. 若2a x =,3b x =,2a b x +=______.[答案]18[解析][分析]根据幂的运算公式及逆运算即可求解.[详解]∵2a x =,3b x =∴()22a b a bx x x +=⋅=2×32=18. 故答案为:18.[点睛]此题主要考查幂的运算,解题的关键是熟知幂的运算公式及逆运算.15. 某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为千克,烤制时间为,估计当6x =千克时,的值为______分.[答案]260[解析][分析]观察表格可知,烤鸭的质量每增加1千克,烤制时间增加40分钟,由此可判断出函数关系式,再将x =6千克代入即可求出烤制时间.[详解]从表中可以看出,烤鸭的质量每增加1千克,烤制的时间增加40分钟,由此可知烤制时间t 与烤鸭质量的函数关系式为t=60+40(x-1)=40x+20.当x=6千克时,t=40×6+20=260分钟.故答案:260.[点睛]本题考查了的是函数关系式,解题的关键是根据题目的已知及图表条件得到相关的信息.16. 若2254x kx++是一个完全平方式,则k=______.[答案]±20[解析][分析]利用完全平方公式的结构特征判断即可确定出k的值.[详解]∵2254x kx++是一个完全平方式,∴k=±20,故答案为:±20.[点睛]此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.17. 一个圆柱的底面半径为cmR,高为6cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192cmπ3.则R=______厘米.[答案]7[解析][分析]表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.[详解]依题意得:6π(R+2)2−6πR2=192π,解得R=7.故答案为:7.[点睛]本题考查了一元一次方程的应用.解题的关键是了解圆柱的体积的计算方法.18. 计算:20192020133⎛⎫⋅-=⎪⎝⎭______.[答案]-3[解析][分析]根据积的乘方逆运算即可求解.[详解]20192020133⎛⎫⋅-= ⎪⎝⎭20191333⎡⎤⎛⎫⨯⨯- ⎪⎢⎥⎝⎭⎣⎦=()201931⨯-=-3故答案为:-3. [点睛]此题主要考查幂的运算,解题的关键是熟知积的乘方逆运算公式.三、解答题(本题共有6道小题,满分66分)19. 计算:(1)2201901(1)(3.14)3π-⎛⎫-+--- ⎪⎝⎭(2)()()3222223a b a b a b -+⋅- (3)()()3232a b c a b c +--+(4)()()()312x x x x +---(5)用乘法公式计算:2202020182022-⨯.[答案](1)7(2)6317a b (3)2229124a b bc c -+-(4)43x -(5)4[解析][分析](1)根据实数的性质进行化简即可求解;(2)根据幂及单项式乘法运算法则即可求解;(3)根据乘法公式即可求解;(4)根据多项式的乘法法则即可求解(5)根据平方差公式即可求解.[详解](1)2201901(1)(3.14)3π-⎛⎫-+--- ⎪⎝⎭ =191-+-=7(2)()()3222223a b a b a b -+⋅- =6324229a b a b a b -+⋅=636318a b a b -+=6317a b(3)()()3232a b c a b c +--+=()()3232a b c a b c +---⎡⎤⎡⎤⎣⎦⎣⎦=()2232a b c --=()2229124a b bc c --+=2229124a b bc c -+-(4)()()()312x x x x +---=22332x x x x x +---+=43x -(5)2202020182022-⨯=22020(20202)(20202)--⨯+=22202020204-+=4.[点睛]此题主要考查整式的乘法运算,解题的关键是熟知实数的性质、负指数幂的运算及整式的乘法运算法则.20. 先化简,再求值:22(2)()()5(4)x y x y x y y x ⎡⎤+-+--÷-⎣⎦,其中3x =-,13y =. [答案]-y , -13[解析][分析] 先算乘法,再合并同类项,最后代入求出即可.[详解]22(2)()()5(4)x y x y x y y x ⎡⎤+-+--÷-⎣⎦=[x 2+4xy +4y 2−x 2+y 2−5y 2]÷(-4x )=4xy ÷(-4x )=-y ,当3x =-,13y =时,原式=-13. [点睛]本题考查了整式的混合运算的应用,主要考查学生的计算能力和化简能力,题目比较好,难度适中. 21. 如图:已知直线AB 、CD 相交于点,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数;(2)若:2:7BOD BOC ∠∠=,求AOE ∠的度数.[答案](1)58°(2)130°[解析][分析](1)根据∠BOE =180°−∠AOC−∠COE 直接解答即可;(2)根据平角的定义可求∠BOD ,根据对顶角的定义可求∠AOC ,根据角的和差关系可求∠AOE 的度数.[详解](1)∵∠COE =90°,∠AOC =32°,∴∠BOE =180°−∠AOC−∠COE=180°−32°−90°=58°(2)∵∠BOD :∠BOC =2:7,∠BOD +∠BOC =180°,∴∠BOD =40°,∵∠BOD =∠AOC ,∴∠AOC =40°,∵∠COE =90°,∴∠AOE =∠COE +∠AOC =90°+40°=130°.[点睛]此题考查了对顶角、邻补角,熟练掌握平角等于180度,直角等于90度,对顶角相等是解答本题的关键. 22. 填空,将理由补充完整.如图,CF AB ⊥于,DE AB ⊥于,1180EDC ∠+∠=︒,求证://FG BC .证明:∵CF AB ⊥,DE AB ⊥(已知)∴90BED BFC ∠=∠=︒(垂直的定义)∴//ED FC (________________________)∴23∠∠=(________________________)∵1180EDC ∠+∠=︒(已知)又∵2180EDC ∠+∠=︒(________________________)∴12∠=∠(________________________)∴13∠=∠(________________________)∴//FG BC (________________________)[答案]同位角相等,两直线平行;两直线平行,同位角相等;平角的定义;等量代换;等量代换;内错角相等,两直线平行[解析][分析]由垂直的定义得出∠BED =∠BFC =90°;由同位角相等得出ED ∥FC ;由两直线平行,同位角相等,得出∠2=∠3;由∠1+∠EDC =180°,∠2+∠EDC =180°,等量代换得出∠1=∠2,等量代换得出∠1=∠3;由内错角相等,两直线平行即可得出结论.[详解]证明:∵CF ⊥AB ,DE ⊥AB (已知),∴∠BED =∠BFC =90°(垂直的定义),∴ED ∥FC (同位角相等,两直线平行),∴∠2=∠3 (两直线平行,同位角相等),∵∠1+∠EDC =180°(已知),又∵∠2+∠EDC =180°(平角的定义),∴∠1=∠2 (等量代换),∴∠1=∠3(等量代换),∴FG ∥BC (内错角相等,两直线平行).故答案为:同位角相等,两直线平行;两直线平行,同位角相等;平角定义;等量代换;等量代换;内错角相等,两直线平行.[点睛]本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.23. 如图,已知//DC AB ,CE 平分BCD ∠,CE 与AB 相交于点M ,AME E ∠=∠.试说明//ED BC ,并写出每一步的根据.[答案]见解析[解析][分析]由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由CE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.[详解]证明:∵AB∥DC(已知)∴∠2=∠AME(两直线平行,同位角相等)∠(已知)∵CE平分BCD∴∠1=∠2(角平分线的定义)∴∠AME=∠1(等量代换)∠=∠(已知)∵AME E∴∠1=∠E(等量代换)∴AD∥BC(内错角相等,两直线平行).[点睛]此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.24. 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?[答案](1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)[解析][分析](1)根据纵轴的最大值为2000,可得出学校离家的距离为2000米;根据横轴的最大值为20,可得出小明到达学校时共用时间20分钟;(2)用15-10可求出修车时间(3)根据速度=路程÷时间,分别求出修车前、后的平均速度.[详解](1)∵纵轴的最大值为2000,∴学校离家的距离为2000米.∵横轴的最大值为20,∴小明到达学校时共用时间20分钟(2)15-10=5(分钟),小明修车用了5分钟.(3)修车前的骑行平均速度为1000÷10=100(米/分钟), 修车后的骑行平均速度为(2000-1000)÷(20-15)=200(米/分钟)[点睛]此题考查了学生从图象中读取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.25. (1)如图:若//AB CD ,点在AB 、CD 内部,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)如图,若//AB CD ,将点移到AB 、CD 外部,则BPD ∠、B 、D ∠的数量关系是______.(3)在下图中,将直线AB 绕点逆时针方向旋转一定角度交直线CD 于点,则BPD ∠、B 、D ∠、BED ∠之间满足的数量关系是______.[答案](1)BPD ∠=B +D ∠(2)∠B =D ∠+BPD ∠(3)BPD ∠=B +D ∠+BED ∠[解析][分析](1)延长BP 交CD 于点E ,根据AB ∥CD 得出∠B =∠BED ,再由三角形外角的性质即可得出结论;(2)根据AB ∥CD 得出∠B =∠BOD ,再由三角形外角的性质即可得出结论;(3)连接EP 并延长,由三角形外角的性质得出∠BPH =∠B +∠BEP ,∠DPH =∠D +∠DEP ,由此可得出结论.[详解](1)延长BP 交CD 于点E ,∵AB ∥CD∴∠B =∠BED∵BPD ∠=D ∠+∠BED∴BPD ∠=B +D ∠故答案为:BPD ∠=B +D ∠;(2)∵AB ∥CD∴∠B =∠BOD∵∠BOD =D ∠+BPD ∠∴∠B =D ∠+BPD ∠故答案为:∠B =D ∠+BPD ∠;(3)连接EP 并延长,在△BEP 中,∠BPH =∠B +∠BEP ,在△DEP 中,∠DPH =∠D +∠DEP ,又BED ∠=∠BEP+∠DEP ,BPD ∠=∠BPH+∠DPH∴BPD ∠=B +D ∠+BED ∠故答案为:BPD ∠=B +D ∠+BED ∠.[点睛]本题考查的是平行线的性质,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.。

2023年人教版七年级数学下册期中测试卷附答案

2023年人教版七年级数学下册期中测试卷附答案

2023年人教版七年级数学下册期中测试卷附答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .923.若整数x 满足19x ≤45+2,则x 的值是( )A .8B .9C .10D .114.一5的绝对值是( )A .5B .15C .15-D .-55.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤77.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .89.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .30°D .25°10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.分解因式:4ax2-ay2=_____________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解不等式组:3(2)421152x xx x--≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.2.解不等式组并求出它所有的非负整数解.3.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a2|b40++-=,点C的坐标为(0,3).(1)求a,b的值及S三角形ABC;(2)若点M在x轴上,且S三角形ACM =13S三角形ABC,试求点M的坐标.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:类别次数购买A商品数量(件)购买B商品数量(件)消费金额(元)第一次 4 5 320解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、A5、C6、A7、C8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、如果两个角是等角的补角,那么它们相等.2、105°3、0.4、40或805、a(2x+y)(2x-y)6、2或-8三、解答题(本大题共6小题,共72分)1、-7<x≤1.数轴见解析.2、0,1,2.3、(1)9(2)(0,0)或(-4,0)4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件。

人教版数学七年级下册《期中检测题》附答案

人教版数学七年级下册《期中检测题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列方程中:①470x -=;②3x y z +=;③27x x -=;④43xy =;⑤23x y x +=;⑥31x =,属于一元一次方程的个数有( )A. 0个B. 1个C. 2个D. 3个 2. 已知31x y =⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A B. 13- C. 1 D. 53. 把不等式2x -<1的解集在数轴上表示正确的是A. B. C. D. 4. 把方程23x y -=改写成用含的式子表示的形式,正确的是( )A. 23y x =-+B. 23y x =--C. 23y x =-D. 23y x =+ 5. 下列方程的变形中正确的是A. 由7x=4x-3移项得7x-4x=3B. 由2x 1x 3132--=+去分母得2(2x-1)=1+3(x-3) C. 由2(2x-1)-3(x-3)=1去括号得4x-2-3x-9=1D. 由2(x+1)=x+7解得x=56. 若01m <<,则21,,m m m 的大小关系是 ( ) A. 21m m m << B. 21m m m << C. 21m m m << D. 21m m m<< 7. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为( )A. 4.5112y x y x -=⎧⎪⎨-=⎪⎩B. 4.5112x y y x -=⎧⎪⎨-=⎪⎩C. 4.5112x y x y -=⎧⎪⎨-=⎪⎩D. 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 8. 关于的方程211x a -=+的解是12x =-,则()21a +的值是( ) A. 14 B. 4 C. 1 D. 09. 已知不等式组213{0x x a -≥->解集是2x ≥,则实数的取值范围是( ) A. 2a > B. 2a ≥C. 2a <D. 2a ≤ 10. 利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A. 84cmB. 85cmC. 86cmD. 87cm二、填空题11. 如果23x -和4x -互为相反数,则2020x 的值为______.12. 不等式 4153x x +≤+ 的最大负整数解为________.13. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠2=_____.14. 在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场扣1分.某队预计在2019-2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛.则这个队至少要胜__场才有希望进入季后赛. 15. 对于有理数,我们规定[]m 表示不大于最大整数,例如:[1,2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数的取值是__________. 三、解答题16. 解方程或方程组(1)331123x x+-+=(2)3131632x yx y-=-⎧⎨+=⎩17. 解不等式组()3241213x xxx⎧--≤-⎪⎨+>-⎪⎩①②并把解集在数轴上表示出来.18. 老师在黑板上写了一道解方程的题:212134x x--=-,小明马上就举起了手,要求到黑板上去做,他是这样做的:()()421132x x-=-+①84136x x-=--②111x=-③111x=-④老师说:小明解一元一次方程的一般步骤都掌握了,但是解题时有一步做错了.请你指出他错在第______步(填写编号),然后再细心解下面的方程,相信你一定能做对.(1)3157146 a a---=(2)253210 0.60.8x x+--=19. 2020年春节,新型冠状病毒肆虐,小明一家响应国家的号召防疫在家不出门.这天,小明和爸爸在家里玩起了“投乒乓球”的游戏,商定规则:小明投中一个得3分,爸爸投中一个得1分.结果两人一共投中了20个,经过计算,发现两人的得分恰好相同,你能知道他们两人各投中几个吗?20. 若m是整数,且关于x,y的方程组2-2,-5x y mx y+=⎧⎨=⎩的解满足x≥0,y<0,试确定m的值.21. 重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?22. 在解方程组2628mx yx ny+=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n,得解为7323xy⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m,得解为24xy=-⎧⎨=⎩.(1)则m,n的值分别是多少?(2)正确的解应该是怎样的?23. 根据下面两种移动电话计费方式表,解答下列问题:(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?答案与解析一、选择题1. 下列方程中:①470x -=;②3x y z +=;③27x x -=;④43xy =;⑤23x y x +=;⑥31x =,属于一元一次方程的个数有( )A. 0个B. 1个C. 2个D. 3个 [答案]B[解析]分析]根据一元一次方程的定义解答即可.[详解]解:①4x-7=0符合一元一次方程的定义,故正确;②3x+y=z 是三元一次方程,故错误;③x-7=x 2是一元二次方程,故错误;④4xy=3是二元二次方程,故错误; ⑤23x yx+=属于二元一次方程,故错误; ⑥31x =属于分式方程,故错误.故选:B .[点睛]本题考查了一元一次方程的概念.解答关键是根据定义解答问题.2. 已知31x y=⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A. B. 13- C. 1D. 5[答案]C[解析]分析]把x 与y 的值代入方程计算即可求出m 的值.[详解]解:把31x y =⎧⎨=⎩代入方程得:3m-1=2,解得:m=1,故选C.[点睛]此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3. 把不等式2x -<1的解集在数轴上表示正确的是 A.B. C. D. [答案]A[解析][分析]先解不等式2x -<1得到1<x ,根据数轴表示数的方法得到解集在1的右边.[详解]由2x -<1,移项得1<x ,根据数轴表示数的方法得到解集在1的右边.故选A.[点睛]本题考查在数轴上表示不等式的解集和解一元一次不等式,解题的关键是掌握在数轴上表示不等式的解集和解一元一次不等式.4. 把方程23x y -=改写成用含的式子表示的形式,正确的是( )A. 23y x =-+B. 23y x =--C. 23y x =-D. 23y x =+ [答案]C[解析]分析]把x 看做已知数求出y 即可.[详解]方程2x−y =3,解得:y =2x−3,故选:C .[点睛]此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.5. 下列方程的变形中正确的是A. 由7x=4x-3移项得7x-4x=3B. 由2x 1x 3132--=+去分母得2(2x-1)=1+3(x-3) C. 由2(2x-1)-3(x-3)=1去括号得4x-2-3x-9=1D. 由2(x+1)=x+7解得x=5[答案]D[解析][分析]根据等式的基本性质,即可得到答案.[详解]∵由7x=4x-3移项得7x-4x=-3,∴A 错误, ∵由2x 1x 3132--=+去分母得2(2x-1)=6+3(x-3),∴B 错误, ∵由2(2x-1)-3(x-3)=1去括号得4x-2-3x+9=1,∴C 错误,∵由2(x+1)=x+7解得x=5,∴D 正确,故选D.[点睛]本题主要考查一元一次方程的移项,去分母,去括号法则,熟练掌握解一元一次方程的步骤和方法是解题的关键.6. 若01m <<,则21,,m m m 的大小关系是 ( ) A. 21m m m <<B. 21m m m <<C. 21m m m <<D. 21m m m << [答案]B[解析][分析]根据01m <<时,可得越平方越小,11m >,从而得到大小关系式.[详解]01m <<,11m> 21m m <<,1m m <, 21m m m<<, 故选:B .[点睛]本题考查了简单的实数的比较,可利用特殊值法即可比较大小,也可利用当01m <<时,的指数越大则数值越小解题.7. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为( ) A. 4.5112y x y x -=⎧⎪⎨-=⎪⎩B. 4.5112x y y x -=⎧⎪⎨-=⎪⎩C. 4.5112x y x y -=⎧⎪⎨-=⎪⎩D. 4.5112y x x y -=⎧⎪⎨-=⎪⎩ [答案]B[解析][分析]本题的等量关系是:绳长木长 4.5=;木长12-绳长1=,据此可列方程组求解. [详解]设绳长尺,长木为尺, 依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B .[点睛]此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.8. 关于的方程211x a -=+的解是12x =-,则()21a +的值是( ) A. 14 B. 4 C. 1 D. 0[答案]B[解析][分析] 把12x =-代入方程,得出一个关于的方程,求出方程的解,再代入求出答案即可. [详解]解:把12x =-代入方程211x a -=+得:111a --=+, 解得:3a =-,所以22(1)(31)4a +=-+=,故选:.[点睛]本题考查了解一元一次方程和一元一次方程的解,能得出一个关于的一元一次方程是解此题的关键.9. 已知不等式组213{0x x a -≥->的解集是2x ≥,则实数的取值范围是( ) A. 2a >B. 2a ≥C. 2a <D. 2a ≤ [答案]C[解析][分析]应先求出不等式组中两个不等式的解集,根据所给的解集进行判断.[详解]解不等式组得2x x a≥⎧⎨⎩>∵已知解集为解集是2x ≥,∴2a <.故选C .[点睛]主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向相同,数字相同时情况.(如:x >a ,x >a ,其解集也是x >a ),在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10. 利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A. 84cmB. 85cmC. 86cmD. 87cm[答案]B[解析][分析] 设长方体长x cm ,宽y cm ,高a cm ,由图象建立方程组求出其解就可以得出结论.[详解]设长方体长x cm ,宽y cm ,高a cm ,由题意,得9080x a y y a x +=+=-⎧⎨-⎩,解得:2a =170,∴a =85.故选B.[点睛]本题考查的是三元一次方程组的应用,熟练掌握三元一次方程组是解题的关键.二、填空题11. 如果23x -和4x -互为相反数,则2020x 的值为______.[答案][解析][分析]根据相反数的定义计算出x 的值,再代入2020x 即可作答.[详解]解:(23)(4)0x x -+-=从而有1x =-,代入2020x 有:20202020(1)1x-==;故答案为:1.[点睛]本题主要考查了相反数定义以及积的乘方运算,其中根据相反数的定义计算出x 的值是解题的关键. 12. 不等式 4153x x +≤+ 的最大负整数解为________.[答案]-1[解析][分析]先根据不等式的性质求出不等式的解集,然后在不等式的解集中找出最大负整数即可.[详解]解: 4x+1≤5x+3,则4x-5x≤3-1,-x≤2,∴x≥-2.∴最大的负整数为-1.[点睛]本题主要考查了一元一次不等式的特殊解,掌握一元一次不等式的解是解题的关键.13. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠2=_____.[答案]18°[解析][分析]根据题意结合图形列出方程组,解方程组即可求解.[详解]解:由题意得:12901254︒︒⎧∠+∠=⎨∠-∠=⎩,解得∠1=72°,∠2=18°.故答案为18°.[点睛]此题主要考查二元一次方程组的应用,解题的关键是根据图形找到等量关系进行列式.14. 在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场扣1分.某队预计在2019-2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛.则这个队至少要胜__场才有希望进入季后赛.[答案]20[解析][分析]本题需要设未知数,设胜的场次为x ,则负的场次为32-x .根据题意列出不等式.[详解]设胜的场次为x ,则负的场次为32-x ,则根据题意可得:3(1)(32)48x x ⋅+-⋅-≥,解得不等式为20x ≥,故这个队至少要胜20场才有希望进入季后赛.[点睛]本应用题关键学会利用方程的思想解不等式.15. 对于有理数,我们规定[]m 表示不大于的最大整数,例如:[1,2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数的取值是__________. [答案]-17,-16,-15. [解析][分析] 根据[x]表示不大于x 的最大整数,列出不等式组,再求出不等式组的解集即可.[详解]∵[x]表示不大于x 的最大整数,∴-5≤23x +<-5+1, 解得-17≤x <-14.∵x 是整数,∴x 取-17,-16,-15.故答案为:-17,-16,-15.[点睛]本题考查的是有理数的大小比较,关键是根据[x]表示不大于x 的最大整数,列出不等式组,求出不等式组的解集.三、解答题16. 解方程或方程组(1)331123x x +-+= (2)3131632x y x y -=-⎧⎨+=⎩[答案](1)19x =-;(2)11x y . [解析][分析](1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)方程组利用加减消元法求出解即可.[详解]解:(1)去分母得:()()332316x x ++-=,去括号得:976x +=移项合并得:91x =-, 解得:19x =-; (2)3131632x y x y -=-⎧⎨+=⎩①②, ②×3-①得:22y =22, 解得:y =1,把y =1代入②得:x =-1,则方程组的解为11x y =-⎧⎨=⎩. [点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17. 解不等式组()3241213x x x x ⎧--≤-⎪⎨+>-⎪⎩①②并把解集在数轴上表示出来.[答案]14x ≤<,在数轴上表示解集见解析.[解析][分析]先分别解出各个不等式的解集,再利用‘大小小大取中间’写出不等式组的解集,然后将解集表示在数轴上即可.[详解]解:(1)解不等式①,得:1≥x ,解不等式②,得:4x <,则不等式组的解集为14x ≤<,将不等式组的解集表示在数轴上如下:[点睛]本题考查了解一元一次不等式组、用数轴表示不等式的解集,属于基础题,关键是正确解出不等式(组)的解集,注意不等号的方向.18. 老师在黑板上写了一道解方程的题:212134x x --=-,小明马上就举起了手,要求到黑板上去做,他是这样做的: ()()421132x x -=-+①84136x x -=--②111x =-③111x =-④ 老师说:小明解一元一次方程的一般步骤都掌握了,但是解题时有一步做错了.请你指出他错在第______步(填写编号),然后再细心解下面的方程,相信你一定能做对.(1)3157146a a ---= (2)2532100.60.8x x +--= [答案]小明错在第①步;(1)1a =-;(2) 2.x =[解析][分析]观察发现,第①步没有分母的项1没有乘以分母的最小公倍数,所以第①步错误;(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.[详解]解:第(1)步小明错在去分母时,等式两边各项都应该乘以公分母,但是小明等号右边的1还是1.(1)3157146a a ---= ()()63124457a a --=-186242028a a --=-22830a -=-+22a -=1a =-.(2)2532100.60.8x x +--= 2532168x x +--= ()()825632)48x x +--=1640181248x x +-+=24x -=-2x =.[点睛]此题考查了解一元一次方程,去分母时注意各项都要乘以各分母的最小公倍数.19. 2020年春节,新型冠状病毒肆虐,小明一家响应国家的号召防疫在家不出门.这天,小明和爸爸在家里玩起了“投乒乓球”的游戏,商定规则:小明投中一个得3分,爸爸投中一个得1分.结果两人一共投中了20个,经过计算,发现两人的得分恰好相同,你能知道他们两人各投中几个吗?[答案]小明和爸爸分别投中了5个和15个.[解析][分析]根据题干,设小明投进了x 个,则小明爸爸投进了(20-x )个,根据两个人的得分相等,即可列出方程解决问题.[详解]解:设小明和爸爸分别投中了个和个.由题意得:203x y x y +=⎧⎨=⎩,解得515x y =⎧⎨=⎩答:小明和爸爸分别投中了5个和15个.[点睛]本题考查了二元一次方程的应用,解题关键是找到关键描述语,得到等量关系:小明投中球的个数+爸爸投中球的个数=20,小明得分=爸爸得分.是解决此题的关键.20. 若m 是整数,且关于x,y 的方程组2-2,-5x y m x y +=⎧⎨=⎩的解满足x≥0,y<0,试确定m 的值. [答案]m=-1,0,1,2,3.[解析][分析]]把m 当作已知数,解方程组求出方程组的解(x 、y 的值)根据已知得出不等式组,求出m 的取值范围即可.[详解]2-2-5x y m x y +=⎧⎨=⎩①②,①+②,得2x=2m+3,解得x=2m32+,把x=2m32+代入②,解得y=2m-7 2,∵x≥0,y<0,∴2m32+≥0,即m≥-32,2m-72<0,即m<72,∴解集为-32≤m<72,∵m是整数,∴m=-1,0,1,2,3.[点睛]本题综合考查了解方程组和解不等式组的应用,关键是根据题意求出关于m的不等式组.21. 重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?[答案](1)200元和100元(2)至少6件[解析][分析](1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.[详解]解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得4600351100x yx y+=⎧⎨+=⎩,解得:200100xy=⎧⎨=⎩,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.22. 在解方程组2628mx yx ny+=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n,得解为7323xy⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m,得解为24xy=-⎧⎨=⎩.(1)则m,n值分别是多少?(2)正确的解应该是怎样的?[答案](1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩[解析][分析](1)将第一组解代入方程组的第一个方程求出m的值,将第二组解代入方程组的第二个方程求出n的值即可;(2)确定出正确的方程组,求出解即可.[详解](1)将7,32,3xy⎧=⎪⎪⎨⎪=⎪⎩代入方程组的第一个方程得:74633m+=,解得:m=2;将2,4.xy=-⎧⎨=⎩代入方程组的第二个方程得:−4+4n=8,解得:n=3;(2)方程组3238x yx y+=⎧⎨+=⎩①②,②−①×2得:y=2,将y=2代入①得:x=1,则方程组正确的解为12. xy=⎧⎨=⎩[点睛]考查二元一次方程组的解以及解二元一次方程组,熟练掌握加减消元法是解题的关键.23. 根据下面的两种移动电话计费方式表,解答下列问题:(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?[答案](1) 250分钟;(2) 选择全球通比较合算[解析]试题分析:(1)从表格中可知道全球通月租25元,每打一分钟0.2元,神州行没有月租,每分钟0.3元,因此可设一个月内本地通话x分钟时,两种通讯方式的费用相同;(2)根据第一问求得数据后可知,大于这个数据,应该用全球通,小于这个数据应该用神州行.试题解析:解:(1)设一个月内本地通话x分钟时,两种通讯方式的费用相同.25+0.2x=0.3x,x=250,故一个月内本地通话250分钟时,两种通讯方式的费用相同.(2)若使用全球通时,90元可以使用的时间为:(90﹣25)÷0.2=375(分钟)若使用神州行时,90元可以使用的时间为:90÷0.3=300(分钟)因为375>300,故选择全球通合适.点睛:本题考查理解题意的能力,关键是求出两种通讯方式的费用相同时,一个月内的本地通话是多少分钟,找到此临界点,其他问题就能回答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册期中测试题及答案参考
一、选择题(每小题2分,共16分)
1、下列加线词语完全准确的一项是:()
A 倜傥(tǎng)秕谷(bǐ)迭起(dié)气冲斗牛(dǒu )
B祈祷(qǐ)赫然(hè)炽痛(chì) 迥乎不同(jiǒng )
C亘古(gèn)嫉妒(jí)喧闹(xuān)热情澎湃(bài )
D重荷(hè)木屐(jī)哺育(pǔ )锲而不舍(qiè )
2. 下列词语书写无误的是()
A.怪诞轻捷一泄万丈家喻户晓
B. 幽寂污秽鞠躬尽瘁义愤填膺
C. 殉职骊歌一拍即合荒草凄凄
D. 屏障谰语九屈连环呕心沥血
3.下列各句中,加线的成语使用不恰当的一项是 ( )
A.陈教练当时就断定,只要假以时日,韩晓鹏一定会有让人刮目相看的那一天。

B.新春,沈丹高速公路车水马龙,显示出一派生机。

这条赶在春运前整修完的高速公路,行车速度明显提升,车流量同时上升。

C. 很多人不喜欢孟子,认为他锋芒毕露,太过张扬,其实,孟子如此咄咄逼人,并不完全是个性使然。

D. 这位离开北京二十年的美籍华人,走在大街上,禁不住感叹这座城市与他当初离开时的面貌简直不可相提并论。

4,依次填入下面句子横线处的词语最恰当的一项是( )
作为语文教师,我们不会笑话学生的__________ ,而是告诉他们,文字的背后是一个人的人生。

巴金的平和是在人生历练过后的______
______ ,冰心的童真和大爱是她的人格力量的______________ 。

人生
如茶,有时__________也是一种成全。

A浅显大功告成表露折磨 B浅薄大彻大悟流露煎熬
C浅易渐入佳境吐露磨难 D肤浅大梦初醒透露痛苦
5、下列文学常识中搭配有误的一项是()
A.《爸爸的花儿落了》——小说——林海音——台湾
B.《邓稼先》——人物传记——杨振宁——美籍华裔物理学家
C.《土地的誓言》——散文——李大钊——当代作家
6.选出修辞方法与其他三项不同的一项()
A.小草偷偷地从土里钻出来。

B.那点薄雪忽然害了羞,微微露出
点粉色。

C.天上的明星现了,好像是点着无数的街灯。

D.东风来了,春天
的脚步近了。

7.选出下列标点符号使用有误的一项。

()
A.你们是赞成明明的意见呢,还是赞成亮亮的意见?
B.“这不是我们的狗,”普洛诃夫接着说,“这是将军的哥哥的狗。


C.小河对岸三、四里处是浅山,好似细浪微波,线条柔和,蜿蜒
起伏。

D.她轻轻地哼起了《摇篮曲》:“月儿明,风儿静,树叶儿遮窗
棂啊……”
8. 下列句子没有语病的是( )
A.冰箱里放有苹果、桔子、香蕉,黄瓜等水果。

B.新建的班委会健全并建立了一系列班级管理制度。

C.我们一些足球运动员的技术水平没有多大改善。

D.小张明天要去北京参加全国青少年计算机知识竞赛。

二、默写(每空一分共9分)
9.请你写出描写春天景色的古诗句,。

10.水何澹澹,。

11 .几处早莺争暖树,。

12.有诗云:“醉卧沙场君莫笑,古来征战几人回”,《木兰诗》中有相似的诗句是:
_______________ ,。

13.我寄愁心与明月,。

14. ,却话巴山夜雨时。

15.烟笼寒水月笼沙,。

三.文言阅读(10分)
【甲】金溪民方仲永,世隶耕。

仲永生五年,未尝识书具,忽啼求之。

父异焉,借旁近与之,即书诗四句,并自为其名。

其诗以养父母、收族为意,传一乡秀才观之。

自是指物作诗立就,其文理皆有可观者。

邑人奇之,稍稍宾客其父,或以钱币乞之。

父利其然也,日扳仲永环谒于邑人,不使学。

相关文档
最新文档