1929年诺贝尔物理学奖——电子的波动性
诺贝尔奖与生命科学_ 放大世界的秘密_ 透射电子显微镜与超微结构观察_
射的关系,并首次演示了电子衍射。 1940年, Boersch发现了菲涅耳衍射条纹(正
焦,欠焦过焦有不同的衬度),并给出了正确 的解释。
体感强,可用来观察生物样品 的各种表面微形态特征。
常规电镜制样技术
负染色技术 冰冻蚀刻技术 超薄切片技术 电镜三维重构技术
负染技术
用重金属盐(如磷钨酸)对铺展在载网上的样品染色;吸去染料, 干燥后,样品凹陷处铺了一层重金属盐,而凸的出地方没有 染料沉积,从而出现负染效果,分辨力可达1.5nm左右。
A Yeast Cell 酵母细胞
Figure 3-26. Freeze-fracture electron micrograph of the thylakoid membranes from the chloroplast of a plant cell. These membranes, which carry out photosynthesis, are stacked up in multiple layers. The largest particles seen in the membrane are the complete photosystem II-a complex of multiple proteins.
冰冻蚀刻 freeze-etching
亦称冰冻断裂。标本置于干冰或液氮中冰冻。然后断开,升温 后,冰升华,暴露出了断面结构。向断裂面上喷涂一层蒸汽碳和 铂,然后将组织溶掉,把碳和铂的膜剥下来,此膜即为复膜。
Figure 3-27. Freeze-etch electron microscopy.The specimen is rapidly frozen, and the block of ice is fractured with a knife (A). The ice level is then lowered by sublimation in a vacuum, exposing structures in the cell that were near the fracture plane (B). Following these steps, a replica of the still frozen surface is prepared, and this is examined in a transmission electron microscope.
1921-1934杜苗苗诺贝尔物理学奖获得者
1924:发现X射线的光谱
曼内· 西格巴恩 (Karl Manne Georg Siegbahn) 1886.12.3-1978.9.26
瑞典物理学家,1924年,他因为发现X射
线的光谱,而获得当年度的诺贝尔物理学奖 殊荣。值得一提的是,他的儿子凯· 西格巴恩 亦是1981年的诺贝尔物理学奖得主。
曼内· 西格巴恩
发现X射线的光谱的意义
X射线吸收谱分析法测量透过样品的X射线强度随波长的
变化,根据所揭示的吸收限的波长,即可鉴定样品中所存在 的元素。再通过测定各吸收限上所出现的吸收强度的变化, 还可进行定量分析。
1925:发现那些支配原子和电子碰撞的定律
詹姆斯· 弗兰克 (James Franck) 1882.8.26-1964.5.21 德国物理学家,德皇威廉学院 物理部门的负责人。曾获得者授予 一级铁十字勋章、马克斯· 普朗克奖 章、格丁根荣誉市民、拉姆福德奖 和英国皇家学会外籍会员等荣誉称 号。因发现了支配电子与原子相互 碰撞的定律而获得诺贝尔物理学奖。
罗伯特· 密立根
油滴实验的意义
密立根的实验装置随着技术的进步而得到了不断的改进, 但其实验原理至今仍在当代物理科学研究的前沿发挥着作用, 例如,科学家用类似的方法确定出基本粒子──夸克的电量。
油滴实验中将微观量测量转化为宏观量测量的巧妙设想和精
确构思,以及用比较简单的仪器,测得比较精确而稳定的结 果等都是富有启发性的。
爱因斯坦被誉为是“现代物理学之父”及二十世 纪世界最重要科学家之一。
Байду номын сангаас
光电效应的意义
光电效应现象是突破麦克斯韦电磁理论的一个重要证据。
其中给出的光量子解释不仅推广了普朗克的量子理论,也为
诺贝尔物理学奖获得者及得奖项目
7
时间 获奖者 国籍
研究成果
1915 亨利•布拉格 英
(W.H.Bragg)
劳伦斯•布拉 英 格
(W.L.Bragg)
1917 巴克拉
英
(L.G.Barkla)
利用X射线分析晶体 结构 同上(父子共同)
发现元素的特征X射 线
8
时间 获奖者
国籍
研究成果
1918 普朗克 (M.Planck)
宇称不守恒
美籍 同上 (中)
28
时间 获奖者
国籍
研究成果
1958 切仑科夫
苏 1934年发现切仑科
(P.A.Cherenkov)
夫效应
弗兰克 (I.M.Frank)
苏 1937年理论解释切 仑科夫效应
塔姆(I.E.Tamm) 苏 同上
29
时间
获奖者
国籍 研究成果
1959
西格里 (E.G.Segrè) 张伯伦 (O.Chamberlain)
物质凝聚态理论 的研究,特别是液 氦
31
时间
获奖者
1963
迈耶夫人 (M.G.Mayer)
詹森 (J.H.D.Jenson) 维格纳 (E.P.Wigner)
国籍 研究成果
美籍 1949年提出核壳 (德) 层模型 德 同上
美籍 核和基本粒子理 (匈) 论
32
时间
获奖者
国籍 研究成果
1964 汤斯(C.H.Townes) 美 独立制成微波激
奥 1924年发现泡利不相 容原理
20
时间 获奖者
国籍
研究成果
1946 布里奇曼
美 高压装置发明及高压
19-6德布罗意波、波粒二象性
K
电子射线 U
G
φ
单晶 镍
(下一页) 下一页)
8
根据衍射理论,衍射最大值: 根据衍射理论,衍射最大值:
2dsin φ = kλ
(k = 1, 2, 3⋅ ⋅⋅)
h 电子的波长: 电子的波长: λ = 2em0U
所以衍射电子束强度达最大值时 φ 所满足的方程: 所满足的方程:
h 2dsin φ = k 2m0eU
υ可与 c比较
p= m0υ 1 − υ2 c2
h 2 2 1− υ c λ= m0υ
4
(一页) 下一页)
在速度较小的情况下: 在速度较小的情况下: 加速后,其速度由下式决定: 电子经加速电势差 U 加速后,其速度由下式决定:
1 2 m0υ = eU 2
代入德布罗意公式得到电子的德布罗意波波长为: 代入德布罗意公式得到电子的德布罗意波波长为:
h E = hν = hω (h = 2π) 2π P = h λ = h / k (k = ) λ
(下一页) 下一页)
3
E = hν
P=h λ
德布罗意关系式
与实物粒子相联系的波称为德布罗意波或物质波, 与实物粒子相联系的波称为德布罗意波或物质波, 德布罗意波 称为德布罗意波长 德布罗意波长。 λ 称为德布罗意波长。 静质量为 m0 的 h 速率 υ << c λ= 非相对论粒子 动量 p = m0υ m0υ 相对论粒子
(k = 1, 2, 3⋅ ⋅⋅)
(下一页) 下一页)
9
戴维孙—革末实验中安排 戴维孙 革末实验中安排: 革末实验中安排 φ= 50
o
U =54V
晶格常数 d = 9.1
10
-11
历年诺贝尔物理学奖
J.斯坦伯格
英国 粒子对称结构进行论证
1989 N.F.拉姆齐
美国
W.保罗
德国
H.G.德梅尔特 美国
发明原子铯钟及提出氢微波 激射技术 创造捕集原子的方法以达到 能极其精确地研究一个电子 或离子
1990 J.杰罗姆 H.肯德尔 R.泰勒
美国 美国 加拿大
发现夸克存在的第一个实验 证明
年份 获奖者 1991 P.G.德燃纳 1992 J.夏帕克
德国 法国
获奖原因
发现标识元素的次级伦琴 辐射
研究辐射的量子理论,发 现基本量子,提出能量量 子化的假设,解释了电磁 辐射的经验定律
发现阴极射线中的多普勒 效应和原子光谱线在电场 中的分裂
发现镍钢合金的反常性以 及在精密仪器中的应用
年份 获奖者
国籍
获奖原因
1921 A.爱因斯坦
德国
对现物理方面的贡献,特 别是阐明光电效应的定律
发明点燃航标灯和浮标灯 的瓦斯自动调节器
在低温下研究物质的性质 并制成液态氦
发现伦琴射线通过晶体时 的衍射,既用于决定X射 线的波长又证明了晶体的 原子点阵结构
用伦琴射线分析晶体结构
年份 获奖者 1917 C.G.巴克拉 1918 M.V.普朗克
1919 J.斯塔克 1920 C.E.吉洛姆
国籍 英国 德国
1922 N.玻尔
丹麦 研究原子结构和原子辐射, 提出他的原子结构模型
1923 R.A.密立根
美国
研究元电荷和光电效应,
通过油滴实验证明电荷有
最小单位
1924 K.M.G.西格班 瑞典
伦琴射线光谱学方面的发 现和研究
1925 J.弗兰克 G.L.赫兹
德国 德国
结构化学发展历史与Nobel奖
结构化学发展历史与Nobel奖1. 量子力学(QM—Quantum Mechanics)普朗克(1858-1947, Max Karl Ernst Ludwig Planck)因发现能量子(量子理论)获1918年Nobel 物理奖爱因斯坦(1879-1955, Albert Einstein)因在数学物理方面的成就,特别是发现了光电效应规律,获1921 年Nobel物理奖尼尔斯·玻尔(1885-1962, Niels Henrik David Bohr)因原子结构和原子辐射的研究,获1922年Nobel物理奖德布罗意(1892-1987, Louis Victor De Broglie)因发现电子的波动性,获1929年Nobel物理奖海森伯(1901-1976,Werner Heisenberg)因创立量子力学和应用该理论发现氢的同位素1932 年获Nobel物理奖薛定谔(1887-1961, Erwin Schrödinger)发现原子理论的有效新形式波动力学狄拉克(1902-1984,Paul Advien Maurice Dirac)相对论性的波动力学方程,1933 年获Nobel物理奖泡利(1900-1958, Wolfgang Pauli)发现Pauli不相容原理,1945年获Nobel物理奖波恩(1882-1970, Max Born)量子力学基础研究,特别是波函数的统计解释, 1954年获Nobel物理奖2. 量子化学(QC — Quantum Chemistry)鲍林(1901-1994, Linus Carl Pauling)因对化学键本质的研究并用以阐明复杂物质的结构,1954年Nobel化学奖, 1962年Nobel和平奖马利肯(1896-1986, Robert Sanderson Mulliken)因在分子化学键和电子结构方面的奠基性工作—分子轨道理论, 1966年获Nobel化学奖福井谦一(1918-1998, Fukui Kenichi)前沿轨道理论霍夫曼(1937-, Roald Hoffmann)分子轨道对称守恒原理1981年获Nobel化学奖科恩(1923-, Walter Kohn)因发展密度泛函理论,1998年Nobel化学奖。
历年诺贝尔物理学奖
历年诺贝尔物理学奖1、1901年:威尔姆·康拉德·伦琴(德国)发现X射线2、1902年:亨德瑞克·安图恩·洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:安东尼·亨利·贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:伽利尔摩·马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德华(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:卡末林-昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:马克斯·凡·劳厄(德国)发现晶体中的X射线衍射现象15、1915年:威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:查尔斯·格洛弗·巴克拉(英国)发现元素的次级X辐射特性18、1918年:马克斯·卡尔·欧内斯特·路德维希·普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:阿尔伯特·爱因斯坦(德国)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:尼尔斯·亨利克·大卫·玻尔(丹麦)关于原子结构以及原子辐射的研究23、1923年:罗伯特·安德鲁·密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德布罗意(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:维尔纳·海森伯(德国)在量子力学方面的贡献33、1933年:埃尔温·薛定谔(奥地利)创立波动力学理论;保罗·阿德里·莫里斯·狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:恩利克·费米(意大利)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:欧内斯特·奥兰多·劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940—1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:沃尔夫冈·E·泡利(奥地利)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子49、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:马克斯·玻恩(英国)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(美籍华人)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、欧文·张伯伦(OwenChamberlain)(美国)发现反质子58、1960年:格拉塞(美国)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费因曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:马丁·赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:阿格·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:谢尔登·李·格拉肖、史蒂文·温伯格(美国)、阿布杜斯·萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒79、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:卡洛·鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W和Z粒子的实验成为可能83、1985年:冯·克里津(德国)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料86、1988年:莱德曼、施瓦茨、斯坦伯格(美国)产生第一个实验室创造的中微子束,并发现中微子,从而证明了轻子的对偶结构87、1989年:拉姆齐(美国)发明分离振荡场方法及其在原子钟中的应用;德默尔特(美国)、保尔(德国)发展原子精确光谱学和开发离子陷阱技术88、1990年:弗里德曼、肯德尔(美国)、理查·爱德华·泰勒(加拿大)通过实验首次证明夸克的存在89、1991年:皮埃尔·吉勒德-热纳(法国)把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中90、1992年:夏帕克(法国)发明并发展用于高能物理学的多丝正比室91、1993年:赫尔斯、J·H·泰勒(美国)发现脉冲双星,由此间接证实了爱因斯坦所预言的引力波的存在92、1994年:布罗克豪斯(加拿大)、沙尔(美国)在凝聚态物质研究中发展了中子衍射技术93、1995年:佩尔(美国)发现τ轻子;莱因斯(美国)发现中微子94、1996年:D·M·李、奥谢罗夫、R·C·理查森(美国)发现了可以在低温度状态下无摩擦流动的氦同位素95、1997年:朱棣文、W·D·菲利普斯(美国)、科昂·塔努吉(法国)发明用激光冷却和捕获原子的方法96、1998年:劳克林、霍斯特·路德维希·施特默、崔琦(美国)发现并研究电子的分数量子霍尔效应97、1999年:H·霍夫特、韦尔特曼(荷兰)阐明弱电相互作用的量子结构98、2000年:阿尔费罗夫(俄国)、克罗默(德国)提出异层结构理论,并开发了异层结构的快速晶体管、激光二极管;杰克·基尔比(美国)发明集成电路99、2001年:克特勒(德国)、康奈尔、卡尔·E·维曼(美国)在“碱金属原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基本性质研究”方面取得成就100、2002年:雷蒙德·戴维斯、里卡尔多·贾科尼(美国)、小柴昌俊(日本)“表彰他们在天体物理学领域做出的先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面的成就。
历年诺贝尔物理学奖得主(1901-2018)
历年诺贝尔物理学奖得主(1901-2016) 年份 获奖者 国籍 获奖原因 1901年 威廉·康拉德·伦琴 德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年亨得里克·洛仑兹 荷兰“关于磁场对辐射现象影响的研究”(即塞曼效应) 彼得·塞曼 荷兰1903年 亨利·贝克勒 法国“发现天然放射性” 皮埃尔·居里 法国“他们对亨利·贝克勒教授所发现的放射性现象的共同研究” 玛丽·居里 法国1904年 约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩) 1905年 菲利普·爱德华·安东·冯·莱纳德德国“关于阴极射线的研究” 1906年 约瑟夫·汤姆孙 英国"对气体导电的理论和实验研究" 1907年 阿尔伯特·迈克耳孙 美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908年 加布里埃尔·李普曼 法国“他的利用干涉现象来重现色彩于照片上的方法” 1909年 古列尔莫·马可尼 意大利“他们对无线电报的发展的贡献” 卡尔·费迪南德·布劳恩德国1910年 范德华 荷兰“关于气体和液体的状态方程的研究” 1911年 威廉·维恩 德国“发现那些影响热辐射的定律” 1912年 尼尔斯·古斯塔夫·达伦 瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀”1913年 海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914年 马克斯·冯·劳厄 德国“发现晶体中的X 射线衍射现象” 1915年 威廉·亨利·布拉格 英国“用X 射线对晶体结构的研究” 威廉·劳伦斯·布拉格英国1917年 查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918年 马克斯·普朗克 德国“因他的对量子的发现而推动物理学的发展” 1919年 约翰尼斯·斯塔克 德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920年 夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921年 阿尔伯特·爱因斯坦 德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922年 尼尔斯·玻尔 丹麦“他对原子结构以及由原子发射出的辐射的研究” 1923年 罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924年 卡尔·曼内·乔奇·塞格巴恩瑞典“他在X 射线光谱学领域的发现和研究”[3] 1925年詹姆斯·弗兰克 德国“发现那些支配原子和电子碰撞的定律” 古斯塔夫·赫兹 德国1926年 让·佩兰 法国“研究物质不连续结构和发现沉积平衡” 1927年 阿瑟·康普顿 美国 “发现以他命名的效应”查尔斯·威耳逊英国“通过水蒸气的凝结来显示带电荷的粒子的轨迹的方法”1928年欧文·理查森英国“他对热离子现象的研究,特别是发现以他命名的定律”1929年路易·德布罗意公爵法国“发现电子的波动性”1930年钱德拉塞卡拉·文卡塔·拉曼印度“他对光散射的研究,以及发现以他命名的效应”1932年维尔纳·海森堡德国“创立量子力学,以及由此导致的氢的同素异形体的发现”1933年埃尔温·薛定谔奥地利“发现了原子理论的新的多产的形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程)保罗·狄拉克英国1935年詹姆斯·查德威克英国“发现中子”1936年维克托·弗朗西斯·赫斯奥地利“发现宇宙辐射”卡尔·戴维·安德森美国“发现正电子”1937年克林顿·约瑟夫·戴维孙美国“他们有关电子被晶体衍射的现象的实验发现”乔治·汤姆孙英国1938年恩里科·费米意大利“证明了可由中子辐照而产生的新放射性元素的存在,以及有关慢中子引发的核反应的发现”1939年欧内斯特·劳伦斯美国“对回旋加速器的发明和发展,并以此获得有关人工放射性元素的研究成果”1943年奥托·施特恩美国“他对分子束方法的发展以及有关质子磁矩的研究发现”1944年伊西多·艾萨克·拉比美国“他用共振方法记录原子核的磁属性”1945年 沃尔夫冈·泡利 奥地利 “发现不相容原理,也称泡利原理”1946年 珀西·威廉斯·布里奇曼美国“发明获得超高压的装置,并在高压物理学领域作出发现” 1947年 爱德华·维克托·阿普尔顿英国“对高层大气的物理学的研究,特别是对所谓阿普顿层的发现” 1948年 帕特里克·梅纳德·斯图尔特·布莱克特英国“改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现” 1949年 汤川秀树 日本“他以核作用力的理论为基础预言了介子的存在” 1950年 塞西尔·弗兰克·鲍威尔英国“发展研究核过程的照相方法,以及基于该方法的有关介子的研究发现” 1951年 约翰·道格拉斯·考克饶夫英国“他们在用人工加速原子产生原子核嬗变方面的开创性工作” 欧内斯特·沃吞 爱尔兰1952年费利克斯·布洛赫 美国“发展出用于核磁精密测量的新方法,并凭此所得的研究成果” 爱德华·珀塞尔 美国1953年 弗里茨·塞尔尼克 荷兰“他对相衬法的证实,特别是发明相衬显微镜” 1954年马克斯·玻恩 英国“在量子力学领域的基础研究,特别是他对波函数的统计解释” 瓦尔特·博特 德国“符合法,以及以此方法所获得的研究成果” 1955年威利斯·尤金·兰姆 美国“他的有关氢光谱的精细结构的研究成果” 波利卡普·库施 美国“精确地测定出电子磁矩” 1956年 威廉·布拉德福德·肖克利美国“他们对半导体的研究和发现晶体管效应” 约翰·巴丁 美国沃尔特·豪泽·布喇顿美国1957年杨振宁中国“他们对所谓的宇称不守恒定律的敏锐地研究,该定律导致了有关基本粒子的许多重大发现”李政道中国1958年帕维尔·阿列克谢耶维奇·切连科夫苏联“发现并解释切连科夫效应”伊利亚·弗兰克苏联伊戈尔·叶夫根耶维奇·塔姆苏联1959年埃米利奥·吉诺·塞格雷美国“发现反质子”欧文·张伯伦美国1960年唐纳德·阿瑟·格拉泽美国“发明气泡室”1961年罗伯特·霍夫施塔特美国“关于对原子核中的电子散射的先驱性研究,并由此得到的关于核子结构的研究发现”鲁道夫·路德维希·穆斯堡尔德国“他的有关γ射线共振吸收现象的研究以及与这个以他命名的效应相关的研究发现”1962年列夫·达维多维奇·朗道苏联“关于凝聚态物质的开创性理论,特别是液氦”1963年耶诺·帕尔·维格纳美国“他对原子核和基本粒子理论的贡献,特别是对基础的对称性原理的发现和应用”玛丽亚·格佩特-梅耶美国“发现原子核的壳层结构”J·汉斯·D·延森德国1964年查尔斯·汤斯美国“在量子电子学领域的基础研究成果,该成果导致尼古拉·根纳季耶维奇·巴索夫苏联了基于激微波-激光原理建造的振荡器和放大器" 亚历山大·普罗霍罗夫苏联1965年朝永振一郎 日本“他们在量子电动力学方面的基础性工作,这些工作对粒子物理学产生深远影响” 朱利安·施温格 美国理查德·菲利普·费曼美国1966年 阿尔弗雷德·卡斯特勒法国“发现和发展了研究原子中赫兹共振的光学方法” 1967年 汉斯·阿尔布雷希特·贝特美国“他对核反应理论的贡献,特别是关于恒星中能源的产生的研究发现” 1968年 路易斯·沃尔特·阿尔瓦雷茨美国“他对粒子物理学的决定性贡献,特别是因他发展了氢气泡室技术和数据分析方法,从而发现了一大批共振态” 1969年 默里·盖尔曼 美国“对基本粒子的分类及其相互作用的研究发现” 1970年汉尼斯·奥洛夫·哥斯达·阿尔文瑞典“磁流体动力学的基础研究和发现,及其在等离子体物理学富有成果的应用” 路易·奈耳 法国“关于反铁磁性和铁磁性的基础研究和发现以及在固体物理学方面的重要应用” 1971年 伽博·丹尼斯 英国“发明并发展全息照相法” 1972年约翰·巴丁 美国“他们联合创立了超导微观理论,即常说的BCS 理论” 利昂·库珀 美国约翰·罗伯特·施里弗美国1973年 江崎玲于奈 日本 “发现半导体和超导体的隧道效应”伊瓦尔·贾埃弗挪威布赖恩·戴维·约瑟夫森英国“他理论上预测出通过隧道势垒的超电流的性质,特别是那些通常被称为约瑟夫森效应的现象”1974年马丁·赖尔英国“他们在射电天体物理学的开创性研究:赖尔的发明和观测,特别是合成孔径技术;休伊什在发现脉冲星方面的关键性角色”安东尼·休伊什英国1975年奥格·尼尔斯·玻尔丹麦“发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系发展了有关原子核结构的理论”本·罗伊·莫特森丹麦利奥·詹姆斯·雷恩沃特美国1976年伯顿·里克特美国“他们在发现新的重基本粒子方面的开创性工作”丁肇中美国1977年菲利普·沃伦·安德森美国“对磁性和无序体系电子结构的基础性理论研究”内维尔·莫特英国约翰·凡扶累克美国1978年彼得·列昂尼多维奇·卡皮查苏联“低温物理领域的基本发明和发现”阿尔诺·艾伦·彭齐亚斯美国“发现宇宙微波背景辐射”罗伯特·伍德罗·威尔逊美国1979年谢尔登·李·格拉肖美国“关于基本粒子间弱相互作用和电磁相互作用的统一理论的,包括对弱中性流的预言在内的贡献”阿卜杜勒·萨拉姆巴基斯坦史蒂文·温伯格美国1980年詹姆斯·沃森·克罗宁美国“发现中性K介子衰变时存在对称破坏”瓦尔·洛格斯登·菲奇美国1981年凯·西格巴恩瑞典“对开发高分辨率电子光谱仪的贡献”尼古拉斯·布隆伯根美国“对开发激光光谱仪的贡献”阿瑟·肖洛美国1982年肯尼斯·威尔逊美国“对与相转变有关的临界现象理论的贡献”1983年苏布拉马尼扬·钱德拉塞卡美国“有关恒星结构及其演化的重要物理过程的理论研究”威廉·福勒美国“对宇宙中形成化学元素的核反应的理论和实验研究”1984年卡洛·鲁比亚意大利“对导致发现弱相互作用传递者,场粒子W和Z的大型项目的决定性贡献”西蒙·范德梅尔荷兰1985年克劳斯·冯·克利青德国“发现量子霍尔效应”1986年恩斯特·鲁斯卡德国“电子光学的基础工作和设计了第一台电子显微镜”格尔德·宾宁德国“研制扫描隧道显微镜”海因里希·罗雷尔瑞士1987年约翰内斯·贝德诺尔茨德国“在发现陶瓷材料的超导性方面的突破”卡尔·米勒瑞士1988年利昂·莱德曼美国“中微子束方式,以及通过发现梅尔文·施瓦茨美国子中微子证明了轻子的对偶结构”1989年诺曼·拉姆齐美国“发明分离振荡场方法及其在氢激微波和其他原子钟中的应用”汉斯·德默尔特美国“发展离子陷阱技术”沃尔夫冈·保罗德国1990年杰尔姆·弗里德曼美国“他们有关电子在质子和被绑定的中子上的深度非弹性散射的开创性研究,这些研究对粒子物理学的夸克模型的发展有必不可少的重要性”亨利·肯德尔美国理查·泰勒加拿大1991年皮埃尔-吉勒·德热纳法国“发现研究简单系统中有序现象的方法可以被推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中”1992年乔治·夏帕克法国“发明并发展了粒子探测器,特别是多丝正比室”1993年拉塞尔·赫尔斯美国“发现新一类脉冲星,该发现开发了研究引力的新的可能性”约瑟夫·泰勒美国1994年伯特伦·布罗克豪斯加拿大“对中子频谱学的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”克利福德·沙尔美国“对中子衍射技术的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”1995年马丁·佩尔美国“发现τ轻子”,以及对轻子物理学的开创性实验研究弗雷德里克·莱因斯美国“发现中微子,以及对轻子物理学的开创性实验研”1996年戴维·李美国“发现了在氦-3里的超流动性”道格拉斯·奥谢罗夫美国罗伯特·理查森美国1997年朱棣文美国“发展了用激光冷却和捕获原子的方法”克洛德·科昂-唐努德日法国威廉·菲利普斯美国1998年罗伯特·劳夫林美国“发现一种带有分数带电激发的新的量子流体形式”霍斯特·施特默德国崔琦美国1999年杰拉德·特·胡夫特荷兰“阐明物理学中弱电相互作用的量子结构”马丁纽斯·韦尔特曼荷兰2000年若雷斯·阿尔费罗夫俄罗斯“发展了用于高速电子学和光电子学的半导体异质结构”赫伯特·克勒默德国杰克·基尔比美国“在发明集成电路中所做的贡献”2001年埃里克·康奈尔美国“在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究”卡尔·威曼美国沃尔夫冈·克特勒德国2002年雷蒙德·戴维斯美国“在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子”小柴昌俊日本里卡尔多·贾科尼美国“在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X射线源的发现”2003年阿列克谢·阿布里科索夫俄罗斯“对超导体和超流体理论做出的先驱性贡献”维塔利·金兹堡俄罗斯安东尼·莱格特美国2004年戴维·格娄斯美国“发现强相互作用理论中的渐近自由”休·波利策美国弗朗克·韦尔切克美国2005年罗伊·格劳伯美国“对光学相干的量子理论的贡献”约翰·霍尔美国“对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,”特奥多尔·亨施德国2006年约翰·马瑟美国“发现宇宙微波背景辐射的黑体形式和各向异乔治·斯穆特美国性”2007年艾尔伯·费尔法国“发现巨磁阻效应”彼得·格林贝格德国2008年小林诚日本“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在”益川敏英日本南部阳一郎美国“发现亚原子物理学的自发对称性破缺机制”2009年高锟英国“在光学通信领域光在纤维中传输方面的突破性成就”威拉德·博伊尔美国“发明半导体成像器件电荷耦合器件”乔治·史密斯美国2010年安德烈·海姆俄罗斯“在二维石墨烯材料的开创性实验”康斯坦丁·诺沃肖洛夫俄罗斯2011年布莱恩·施密特澳大利亚“透过观测遥距超新星而发现宇宙加速膨胀”亚当·里斯美国索尔·珀尔马特美国2012年塞尔日·阿罗什法国“能够量度和操控个体量子系统的突破性实验手法”大卫·维因兰德美国2013年彼得·W·希格斯英国对希格斯玻色子的预测[1][4-6]弗朗索瓦·恩格勒比利时2014年赤崎勇日本“发明一种新型高效节能光源,即蓝色发光二极管(LED)”天野浩日本中村修二美国2015年梶田隆章日本“通过中微子振荡发现中微子有质量。
1929年诺贝尔物理学奖——电子的波动性
1929年诺贝尔物理学奖——电子的波动性1929年诺贝尔物理学奖授予法国巴黎索本大学的路易斯·德布罗意(Prince Louis-victor de Broglie,1892——1987),以表彰他发现了电子的波动性。
路易斯·德布罗意出身法国贵族,1892年2月15日诞生于下塞纳的迪耶普,中学时代显示出文学才华,1910年获巴黎大学文学学士学位。
后来志趣转向理论物理学,1913年又获理学士学位。
第一次世界大战期间,在埃菲尔铁塔上的军用无线电报站服役。
平时爱读科学著作,特别是庞加莱、洛伦兹和朗之万的著作。
后来对普朗克、爱因斯坦和玻尔的工作发生了兴趣,转而研究物理学。
退伍后跟随朗之万攻读物理学博士学位。
他的兄长莫里斯·德布罗意是一位研究X射线的专家,路易斯曾随莫里斯一道研究X射线,两人经常讨论有关的理论问题。
莫里斯曾在1911年第一届索尔威会议上担任秘书,负责整理文件。
这次会议的主题是关于辐射和量子论。
会议文件对路易斯有很大启发。
莫里斯和另一位X 射线专家亨利·布拉格联系密切。
亨利·布拉格曾主张过X射线的粒子性。
这个观点对莫里斯很有影响,所以他经常跟弟弟讨论波和粒子的关系。
这些条件促使德布罗意深入思考波粒二象性的问题。
法国物理学家布里渊(M.Brillouin)在1919年——1922年间发表过一系列论文,提出了一种能解释玻尔定态轨道原子模型的理论。
他设想原子核周围的“以太”会因电子的运动激发一种波,这种波互相干涉,只有在电子轨道半径适当时才能形成环绕原子核的驻波,因而轨道半径是量子化的。
这一见解被德布罗意吸收了,他把以太的概念去掉,把以太的波动性直接赋予电子本身,对原子理论进行深入探讨。
1923年9月——10月间,德布罗意连续在《法国科学院通报》上发表了三篇有关波和量子的论文。
第一篇题目是“辐射——波与量子”,提出实物粒子也有波粒二象性,认为与运动粒子相应的还有一正弦波,两者总保持相同的位相。
诺贝尔物理学奖110年知识竞答题目(全)
诺贝尔物理学奖110年知识竞答一、填空题1.1901年,德国物理学家因发现以及对性质的研究,获得了第一届诺贝尔物理学奖。
因当时不知该射线的本质,故称为。
现已知是波长约为10-1~103Å的电磁辐射,其长波端与紫外线谱的短波端重叠,短波端与γ射线谱重叠。
2.在110年中仅有两位女科学家获得诺贝尔物理学奖,一位是法国的,她于年因而获奖;另一位是美国的,她于年因而获奖。
3.最年轻的诺贝尔物理学奖得主是英国物理学家,他于年因而获奖,时年岁,最年长的物理学奖得主是美国物理学家,他于年因在而获奖,当时已88岁高龄。
4.1915年,和父子因在用X射线研究晶体结构方面所做出的杰出贡献分享了该年度诺贝尔物理学奖。
他们提出了著名的方程:nλ=2d sinθ, n =1,2,3,…从而把X射线的波长λ和反射出现的掠射角θ联系起来,式中d为相邻原子面的间距,n为光谱的阶数。
他们俩开创了父子同获诺贝尔奖的先例。
5.在从经典物理学到量子物理学的过渡中,X 射线的研究起了十分重要的作用。
20世纪30年代之前,7位物理学家因为在这方面的研究工作获得了诺贝尔物理学奖。
他们分别是:(1901年)、(1914年)、(1915年)、(1917年)、(1924年)、(1927年)。
6.1905年,爱因斯坦在物理学三个不同领域中取得了历史性成就,特别是狭义相对论的建立和光量子论的提出,推动了物理学的革命;1915年,他又建立了广义相对论。
但是,使他获得1921年诺贝尔物理学奖的原因却是运用概念成功地解释了。
7.在110年中,共有6位华裔物理学家获诺贝尔物理学奖,他们分别是:1957年,和因发现在弱作用过程中宇称不守恒而获奖;1976年因发现后来称为J/ψ的新粒子而获奖;1997年,因发展激光冷却和陷俘原子的方法而获奖;1998年,因发现分数量子霍尔效应而获奖;2009年,因在有关光在纤维中的传输以及将其用于光学通信方面取得了突破性成就而获奖。
物理学家简介
著名美籍华裔科学家、诺贝尔物理学奖获得者。
主要成就是:杨振宁--米耳斯规范场理论和弱相互作用下宇称不守恒定律。
代表作品:《对弱相互作用中宇称守恒的质疑》、《规范场理论》。
语录:我一生中最大的贡献,就是帮助中国人克服了认为自己不如别人的心理。
趣闻轶事:杨振宁认为实验是物理学的基础,于是他决定做费米的研究生,先从实验入手。
但是他的特长并不在实验室。
经过一年多的工作,杨振宁发现自己的动手能力是不行的,当时他所在的实验室有一个笑话:“凡是有爆炸的地方一定有杨振宁。
”Rudolf Hertz,1857年2月22日-1894年1月1日),德国物理学家,于1888年首先证实了电磁波的存在。
并对电磁学有很大的贡献,故频率的国际单位制单位赫兹以他的名字命名。
发现电磁波:1885年他获得卡尔斯鲁厄大学正教授资格,并在那里发现电磁波。
罗伯特·奥本海默(J. RobertOppenheimer,1904年4月22日—1967年2月18日),美国犹太人物理学家,曼哈顿计划的主要领导者之一,被美国誉为“原子弹之父”。
生平追求:奥本海默一生中所追求的目的是什么?他曾经在一次演讲中对此做了精彩的阐述:……在工作和生活中,他们应互相帮助并帮助一切人……我们应该保持我们美好的感情和创造美好感情的能力,并在那遥远的不可理解的陌生的地方找到这个美好的感情。
高锟,华裔物理学家,生于中国上海,祖籍江苏金山(今上海市金山区),拥有英国、美国国籍并持中国香港居民身份,目前在香港和美国加州山景城两地居住。
高锟为光纤通讯、电机工程专家,华文媒体誉之为“光纤之父”、普世誉之为“光纤通讯之父”(Father of Fiber Optic Communications),曾任香港中文大学校长。
2009年,与威拉德·博伊尔和乔治·埃尔伍德·史密斯共享诺贝尔物理学奖。
高锟,是继李政道,杨振宁、丁肇中、李远哲、朱棣文、崔琦及钱永健之后,第八位获得诺贝尔科学奖的华裔科学家。
诺贝尔物理学奖
诺贝尔和诺贝尔物理学奖诺贝尔(Alfred Bernhard Nobel,1833—1896)是一位瑞典发明家的儿子,他从小健康欠佳,因此主要靠家庭教师教育。
他曾在彼得堡学习工程,也曾到美国,在伊里克逊(John Ericsson)指导下学习了大约一年。
诺贝尔在他父亲的工厂里做实验时,发现当把甘油炸药分散在漂白土或木浆之类的惰性物质中时,可以更安全地处理。
他还发明了其它炸药和雷管,并取得了这些发明的专利权。
诺贝尔因炸药的制造和巴库油田的开发而得到了一笔巨额财产。
他终生未婚,被认为是一个有自卑感和孤独感的人。
他对同伴常抱一种嘲笑态度,但他为人心肠慈善,对人类的未来满怀希望。
诺贝尔留下9百万美元的基金,他在遗嘱中写道:“这些基金的利息每年以奖金的形式分发给那些在前一年中对人类作出最大贡献的人,上述利息分为相等的五部分:一部分奖给在物理学领域有最重要发现和发明的人;一部分奖给在化学上有最重要发现和改革的人;一部分奖给在生理学或医学上有最重要发现的人;一部分奖给文学领域内著有带理想主义倾向的最杰出作品的人;一部分奖给在促进国家之间友好、取缔或裁减常备军以及举行和促进和平会议方面作出显著贡献的人。
“物理学奖和化学奖由瑞典科学院颁发,生理学或医学奖由斯德哥尔摩的加罗琳斯卡研究院颁发,文学奖由斯德哥尔摩研究院颁发,和平奖由挪威议会推选出的一个五人委员会颁发。
”诺贝尔的遗产留给了一个当时并不存在的基金会。
1897年元月,当他的遗嘱宣读后,他的某些亲属曾对此提出了争议。
一些被委派负责颁发奖金的机构(因事先都未曾商量)开始时也对承担这一困难任务感到犹豫,三年后问题才得到解决,1900年6月作为遗产合法继承者的诺贝尔基金会成立,1901年12月颁发了第一届诺贝尔奖。
诺贝尔提出奖金只授予“前一年间”所做的工作这一规定,从一开始就未实行。
这是因为推选委员会考虑到要确认一项成果对物理学的贡献的价值,往往需要许多年。
诺贝尔奖不授予毕生的工作,而授予那些有特殊成果的工作。
德布罗意
德布罗意与物质波理论路易斯一维克多·德布罗意(1892-1987)是法国著名理论物理学家,物质波理论的创立者.德布罗意主要从事理论物理、尤其是关于量子问题的研究,他在该领域取得的重大研究成果为现代物理的发展做出了杰出的贡献.1924年11月,德布罗意在博士论文中阐述了著名的物质波理论,并指出电子的波动性.这一理论为建立波动力学奠定了坚实基础.由于这一划时代的研究成果,使他获得1929年的诺贝尔物理学奖,同时也使他成为第一个以学位论文获得诺贝尔奖金的学者.本文就德布罗意的科学生涯以及他关于物质波的理论作一探讨.一、德布罗意的科学生涯德布罗意1892年8月15日出生于法国塞纳河畔的蒂厄浦,是法国一贵族家庭的次子.德布罗意家族自17世纪以来在法国军队、政治、外交方面颇具盛名.祖父J.V.A德布罗意(1821~1901)是法国著名政治家和国务活动家,1871年当选为法国国民议会下院议员,同年担任法国驻英国大使,后来还担任过法国总理和外交部长等职务.德布罗意从18岁开始在巴黎大学学习理论物理,但是因为打算沿其家族传统,以后从事外交活动,他也学习历史,并且于1909年获得历史学位.由于他哥哥(M.德布罗意)是一位实验物理学家,拥有设备精良的私人实验室,从事物理实验研究.因而德布罗意在学习历史的二象性.人类对自然的认识由浅入深、由片面到全面、由现象到本质不断深化.对光本性的认识同时,受到他哥哥的影响,参与一些物理研究工作.从他哥哥那里德布罗意了解到普朗克和爱因斯坦关于量子方面的工作,这些引起了他对物理学的极大兴趣.经过一翻思想斗争之后,德布罗意终于放弃了已决定的研究法国历史的计划,选择了物理学的研究道路,并且希望通过物理学研究获得博士学位.第一次世界大战期间,德布罗意在军队服役,被分配到无线电台工作,中断了他的理论物理研究.1919年,德布罗意重新回到他哥哥的实验室研究X射线,在这里,他不仅获得了许多原子结构的知识,而且接触到X射线时而象波、时而象粒子的奇特性质.德布罗意曾经与其兄就X射线的性质进行了长时间的讨论,他对其兄及其同事们的实验工作发生了浓厚的兴趣.为了对这些现象做出理论解释,1920年,德布罗意重新开始研究理论物理,特别是关于量子问题,他的研究终于取得了可喜成果.1923年9月和10月,德布罗意发表了三篇关于物质波的论文,创立了物质波理论.之后,他投人博士论文的写作,1924年11月他以题为《量子理论的研究》的论文通过博士论文答辩,获得博士学位.在这篇论文中,包括了德布罗意近两年取得的一系列重要研究成果,全面论述了物质波理论及其应用.德布罗意获得博士学位后,继续留在巴黎大学,他又发表了有关波动力学的有创造性的研究成果,同时担任教学任务.德布罗意在神也是沿着这个认识规律发展的.在认识发展中,物质生产水平、实验条件起了决定性的作用,同时促进人类认识水平的不断提高.学院担任了两年义务讲座后,1928年被聘为新建立的巴黎大学享利·彭加勒学院理论物理教授,他担任这一职务从事教学工作一直到1962年退休.1945年以后,他还担任法国原子能委员会顾问.1930年到1950年间,德布罗意的研究工作主要是波动力学的推广,他的研究取得了许多成果,发表了大量评论和论文.1951年以后的一段时间,德布罗意研究粒子和波之间的关系,目的是通过研究用经典的空间和时间概念对波动力学作出因果解释.此时重新研究他于1927年提出的引导波理论,但不久他就放弃这方面的工作,回到了以前的研究领域,探索微观现象产生的原因和决定论的科学哲学观点,用波动力学的观点探讨热力学和分子生物学.德布罗意一生的研究成果颇丰,他的著作就达25本之多.由于德布罗意的杰出贡献,他获得了很多的荣誉.1929年获法国科学院享利.彭加勒奖章,同年又获诺贝尔物理学奖.1932年,获摩纳哥阿尔伯特一世奖,1952年联合国教科文组织授予他一级卡琳加奖,1956年获法国家科学研究中心的金质奖章.德布罗意于1933年当选为法国科学院院土,1942年以后任数学科学常务秘书.他还是华沙大学、雅典大学等六所著名大学的荣誉博士,是欧、美、印度等18个科学院院士.二、物质波理论的形成德布罗意开始研究物理学时,适逢现代物理学发生深刻革命的时期.1900年,普朗克研究黑体辐射时假定谐振子取分立的能量,提出量子的概念,由此出发,他推导出能够描述黑体辐射规律的普朗克黑体辐射公式.但是,人们并没有认识能量子的重要性,只把能量子看作仅仅是在支配物质和辐射相互作用过程中是合适的,频率为V的物质振子仅仅以hV的倍数发射或吸收能量.直到1905年,量子概念才发生了重要发展.1905年,爱因斯坦发表了题为《关于光的产生和转化的一个启发性观点》的论文,文中通过对黑体辐射的研究和论证,得到并提出了光量子的概念,并用它成功地解释了光电效应.这一工作的意义之一在于,光量子的概念是在分析和研究黑体辐射基础上得到的,表明量子概念具有比较普遍的意义.爱因斯坦认为:密度小的单色辐射,从其热现象方面的行为看,仿佛是由一些独立的能量所组成.本世纪初期,人们通过对X射线的研究认识到,X射线具有时而象波、时而象粒子的奇特性质.1913年,玻尔提出原子中的电子运动的量子化条件,原子中的电子只有可能进行某些运动,成功地解释了氢原子光谱.玻尔的量子化条件没有理论基础,是人为规定的.1919-1922年,法国物理学家布里渊提出了一个解释玻尔基于化条件的理论.布里渊把电子和波作为一个整体进行研究,设想在原子核周围存在着一层以太,电子在其中运动掀起波,这些波相互干涉在原子核周围形成驻波.这些研究成果,尤其是布里渊的理论对德布罗意提出物质被思想产生巨大影响.德布罗意重新开始研究理论物理,物理学面临着的主要困难是:对于光需要有微粒说和波动说两种理论;确定原子中电子的稳定运动涉及到整数,这些都是当时人们无法理解的事实.德布罗意首先考察光量子理论和玻尔的量子化条件.确定光微粒能量的表达式是W=hv,这个公式中包含着频率v,而纯粹的粒子理论不包含频率的因素;确定原子中电子的稳定运动涉及到整数,而物理学中涉及到整数的只是干涉现象和本征振动现象.这些结果使德布罗意想到,对于光需要同时引进粒子的概念和周期的概念;对于电子不能简单地用微粒来描述电子本身,还必须赋予它们周期的概念.于是,德布罗意形成了指导他进行研究的全部概念:在所有情况下,都必须假设微粒伴随着波而存在,他的首要目的就是建立微粒的运动和缔合波的传播之间的对应关系.1923年夏末,德布罗意已开始形成他的相波(后来他称为相位波)概念,9月10日,他发表了关于物质波理论的第一篇论文——《波和量子》,文中提出的思想可以被看作是波动力学理论的开端.两个星期后,德布罗意又发表了《光量子、衍射和干涉》的论文,明确提出相干波的概念.文中明确指出:要描述一个动点的运动,观察者必须将这一运动与一个非物质的、在同一方向上传播的正弦波联系起来.在观察者看来,这一波的频率等于上述动点的总能量除以普朗克常量h.同年10月8日,德布罗意发表关于物质波理论的第三篇论文《量子、气体运动理论以及费马原理》.文中阐述了波与粒子的对应关系,他假定与任何粒子相联系的相波,在空间任何点与粒子同相位.相波的频率与速度由粒子的能量和速度所决定.德布罗意的这三篇论文是物质波理论奠基工作的开端.继这三篇论文之后,德布罗意着手撰写他的博士论文《量子理论的研究》.1924年11月,德布罗意通过论文答辩,获博士学位.他的博士论文包括了近两年研究的一些成果,比较系统地论述了物质波理论,得到物质波的一些重要结果.德布罗意认为,任何运动着的物体都伴随着一种波动,而且不可能将物体的运动和波的传播分开,这种波称为相位波.存在相位波是物体的能量和动量同时满足量子条件和相对论关系的必然结果.德布罗意考虑静止质量为外、相对于静止观察者的速度为的粒子,他假设粒子是周期性内在现象的活动中心,它的频率,是普朗克常数,是粒子的内在能量.以狭义相对论原理和严格的量子关系式为基础,L.德布罗意通过严格论征得到:相位波的波长是,是普朗克常数,是相对论动量,这就是著名的德布罗意波长与动量的关系.此外,德布罗意把相位波的相速度和群速度(能量传递的速度)联系起来,证明了波的群速度等于粒子速度,确定了群速度与粒子速度的等同性.他的这些研究成果形成了比较完整的物质波理论.三、物质波理论的实验验证德布罗意撰写论文时,他的哥哥(M.德布罗意)建议他的论文应包括实验部分,可是他没有采纳这个建议.他的物质波理论是在没有得到任何已知事实支持的情况下提出来的,这就使得答辩委员会对物质波的真实性存在疑虑,答辩委员会主席佩兰就提出了物质波如何用实验来证实的问题.对佩兰的提问,德布罗意回答:用晶体对电子的衍射实验验证物质波的存在是可能的.他的这个思想是早已形成的,他曾在1923年9月24日《光量子、衍射和干涉》一文中指出:从很小的孔穿过的电子束,可能产生衍射现象,这也许会成为在实验上验证物质具有波粒二象性的方法.他还曾向他哥哥的同事道维里叶提出做电子的衍射实验,后者因忙于电视实验而将其搁置.物理学的发展需要理论的和实验的两只脚向前迈进,现在理论这只脚已经先向前迈进了一步,这就给实验提出了研究课题.物质波理论提出后,如何从实验上证实物质波存在就成了人们关注的一个热点.按照德布罗意理论,经过几千伏加速电压的电子束,其波长数量级为10-10米,这与X射线的波长是同一个数量级,因而可以用晶体对电子的衍射实验验证物质波.德布罗意的理论一传到美国,就在纽约开始了显示电子衍射的实验.尽管这个实验开始并不是为验证波动理论而做的,但是到了1926年,这项工作的目的已经转变为验证物质波理论.1927年初,戴维森和革末通过实验发现,在镍晶体对电子的衍射实验中,有19个事例可以用来验证波长和动量之间的关系,而且每次都在测量精确度范围内证明了德布罗意公式的正确性.戴维森实验所用电子束的电子能量很低,仅有50-600电子伏特.同年G.P.汤姆逊用较高能量的电子做了晶体对电子束衍射的实验,他让电子能量为1000-8000电子伏特的电子束垂直射入赛玛哈、金、铂或铝等薄膜上,观测产生的衍射图样。
历年诺贝尔物理学奖
历年诺贝尔物理学奖各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:历年诺贝尔物理学奖历年诺贝尔物理学奖(1901-2014)年份获奖者国籍1901年威廉·康拉德·伦琴德国亨得里克·洛仑兹荷兰1902年彼得·塞曼荷兰亨利·贝克勒法国1903年皮埃尔·居里法国玛丽·居里法国1904年约翰·威廉·斯特拉斯英国菲利普·爱德华·安东·冯·莱1905年德国纳德1906年约瑟夫·汤姆孙英国1907年阿尔伯特·迈克耳孙美国1908年加布里埃尔·李普曼法国古列尔莫·马可尼意大利1909年卡尔·费迪南德·布劳恩德国1910年范德华荷兰1911年威廉·维恩德国1912年尼尔斯.古斯塔夫·达伦瑞典1913年海克·卡末林·昂内斯荷兰获奖原因“发现不寻常的射线,之后以他的名字命名”(即X射线,又称伦琴射线,并伦琴做为辐射量的单位)“关于磁场对辐射现象影响的研究”(即塞曼效应)“发现天然放射性” “他们对亨利·贝克勒教授所发现的放射性现象的共同研究” “对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩)“关于阴极射线的研究” “对气体导电的理论和实验研究” “他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” “他的利用干涉现象来重现色彩于照片上的方法” “他们对无线电报的发展的贡献” “关于气体和液体的状态方程的研究” “发现那些影响热辐射的定律” “发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” “他在低温下物体性质的研究,尤其是液态氦的制成”1914年马克斯·冯·劳厄德国威廉·亨利·布拉格英国1915年威廉·劳伦斯·布拉格英国1917年查尔斯·格洛弗·巴克拉英国1918年马克斯·普朗克德国1919年约翰尼斯·斯塔克德国1920年夏尔·爱德华·纪尧姆瑞士1921年阿尔伯特·爱因斯坦德国1922年尼尔斯·玻尔丹麦1923年罗伯特·安德鲁·密立根美国1924年卡尔·曼内·乔奇·塞格巴恩瑞典詹姆斯·弗兰克德国1925年古斯塔夫·赫兹德国1926年让·佩兰法国阿瑟·康普顿美国1927年查尔斯·威耳逊英国1928年欧文·理查森英国1929年路易·德布罗意公爵法国钱德拉塞卡拉·文卡塔·拉1930年印度曼1932年维尔纳·海森堡德国1933年埃尔温·薛定谔奥地利“发现晶体中的X射线衍射现象” “用X射线对晶体结构的研究” “发现元素的特征伦琴辐射” “因他的对量子的发现而推动物理学的发展” “发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” “他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” “他对理论物理学的成就,特别是光电效应定律的发现” “他对原子结构以及由原子发射出的辐射的研究” “他的关于基本电荷以及光电效应的工作” “他在X射线光谱学领域的发现和研究”[3] “发现那些支配原子和电子碰撞的定律” “研究物质不连续结构和发现沉积平衡” “发现以他命名的效应” “通过水蒸气的凝结来显示带电荷的粒子的轨迹的方法” “他对热离子现象的研究,特别是发现以他命名的定律” “发现电子的波动性” “他对光散射的研究,以及发现以他命名的效应” “创立量子力学,以及由此导致的氢的同素异形体的发现” “发现了原子理论的新的多产的形式”(即量子力学的基本方程——薛定谔方程和狄拉保罗·狄拉克1935年詹姆斯·查德威克维克托·弗朗西斯·赫斯英国英国克方程)“发现中子” 奥地利“发现宇宙辐射” 1936年卡尔·戴维·安德森美国克林顿·约瑟夫·戴维孙美国1937年乔治·汤姆孙英国1938年恩里科·费米意大利1939年欧内斯特·劳伦斯美国1943年奥托·施特恩美国1944年伊西多·艾萨克·拉比美国1945年沃尔夫冈·泡利奥地利1946年珀西·威廉斯·布里奇曼美国1947年爱德华·维克托·阿普尔顿英国帕特里克·梅纳德·斯图尔1948年英国特·布莱克特1949年汤川秀树日1950年塞西尔·弗兰克·鲍威尔英国约翰·道格拉斯·考克饶夫英国1951年欧内斯特·沃吞爱尔兰费利克斯·布洛赫美国1952年爱德华·珀塞尔美国“发现正电子” “他们有关电子被晶体衍射的现象的实验发现” “证明了可由中子辐照而产生的新放射性元素的存在,以及有关慢中子引发的核反应的发现” “对回旋加速器的发明和发展,并以此获得有关人工放射性元素的研究成果” “他对分子束方法的发展以及有关质子磁矩的研究发现” “他用共振方法记录原子核的磁属性” “发现不相容原理,也称泡利原理” “发明获得超高压的装置,并在高压物理学领域作出发现” “对高层大气的物理学的研究,特别是对所谓阿普顿层的发现” “改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现” “他以核作用力的理论为基础预言了介子的存在” “发展研究核过程的照相方法,以及基于该方法的有关介子的研究发现” “他们在用人工加速原子产生原子核嬗变方面的开创性工作” “发展出用于核磁精密测量的新方法,并凭此所得的研究成果”1953年弗里茨·塞尔尼克荷兰马克斯·玻恩英国1954年瓦尔特·博特德国威利斯·尤金·兰姆美国1955年波利卡普·库施美国威廉·布拉德福德·肖克利美国1956年约翰·巴丁美国沃尔特·豪泽·布喇顿美国杨振宁中国1957年李政道中国帕维尔·阿列克谢耶维苏联奇·切连科夫1958年伊利亚·弗兰克苏联伊戈尔·叶夫根耶维奇·塔苏联姆埃米利奥·吉诺·塞格雷美国1959年欧文·张伯伦美国1960年唐纳德·阿瑟·格拉泽美国罗伯特·霍夫施塔特美国1961年鲁道夫·路德维希·穆斯堡德国尔“他对相衬法的证实,特别是发明相衬显微镜” “在量子力学领域的基础研究,特别是他对波函数的统计解释” “符合法,以及以此方法所获得的研究成果” “他的有关氢光谱的精细结构的研究成果” “精确地测定出电子磁矩” “他们对半导体的研究和发现晶体管效应” “他们对所谓的宇称不守恒定律的敏锐地研究,该定律导致了有关基本粒子的许多重大发现” “发现并解释切连科夫效应” “发现反质子” “发明气泡室” “关于对原子核中的电子散射的先驱性研究,并由此得到的关于核子结构的研究发现” “他的有关γ射线共振吸收现象的研究以及与这个以他命名的效应相关的研究发现”1962年列夫·达维多维奇·朗道苏联耶诺·帕尔·维格纳美国1963年玛丽亚·格佩特-梅耶美国J·汉斯·D·延森德国查尔斯·汤斯美国尼古拉·根纳季耶维奇·巴1964年苏联索夫亚历山大·普罗霍罗夫苏联朝永振一郎日1965年朱利安·施温格美国理查德·菲利普·费曼美国1966年阿尔弗雷德·卡斯特勒法国1967年汉斯·阿尔布雷希特·贝特美国路易斯·沃尔特·阿尔瓦雷1968年美国茨1969年默里·盖尔曼美国汉尼斯·奥洛夫·哥斯达·阿瑞典1970年尔文路易·奈耳法国1971年伽博·丹尼斯英国约翰·巴丁美国1972年利昂·库珀美国“关于凝聚态物质的开创性理论,特别是液氦” “他对原子核和基本粒子理论的贡献,特别是对基础的对称性原理的发现和应用” “发现原子核的壳层结构” “在量子电子学领域的基础研究成果,该成果导致了基于激微波-激光原理建造的振荡器和放大器” “他们在量子电动力学方面的基础性工作,这些工作对粒子物理学产生深远影响” “发现和发展了研究原子中赫兹共振的光学方法” “他对核反应理论的贡献,特别是关于恒星中能源的产生的研究发现” “他对粒子物理学的决定性贡献,特别是因他发展了氢气泡室技术和数据分析方法,从而发现了一大批共振态” “对基本粒子的分类及其相互作用的研究发现” “磁流体动力学的基础研究和发现,及其在等离子体物理学富有成果的应用” “关于反铁磁性和铁磁性的基础研究和发现以及在固体物理学方面的重要应用” “发明并发展全息照相法” “他们联合创立了超导微观理论,即常说的BCS理论”篇二:历届诺贝尔物理学奖获得者名单历届诺贝尔物理学奖获得者名单(1901-2012)1、1901年:威尔姆·康拉德·伦琴(德国)发现X射线2、1902年:亨德瑞克·安图恩·洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:安东尼·亨利·贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:伽利尔摩·马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德华(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:卡末林-昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:马克斯·凡·劳厄(德国)发现晶体中的X射线衍射现象15、1915年:威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:查尔斯·格洛弗·巴克拉(英国)发现元素的次级X辐射特性18、1918年:马克斯·卡尔·欧内斯特·路德维希·普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:阿尔伯特·爱因斯坦(德国)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:尼尔斯·亨利克·大卫·玻尔(丹麦)关于原子结构以及原子辐射的研究23、1923年:罗伯特·安德鲁·密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德布罗意(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:维尔纳·海森伯(德国)在量子力学方面的贡献33、1933年:埃尔温·薛定谔(奥地利)创立波动力学理论;保罗·阿德里·莫里斯·狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:恩利克·费米(意大利)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:欧内斯特·奥兰多·劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940—1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:沃尔夫冈·E·泡利(奥地利)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子49、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:马克斯·玻恩(英国)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(美籍华人)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、欧文·张伯伦(OwenChamberlain)(美国)发现反质子58、1960年:格拉塞(美国)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费因曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:马丁·赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:阿格·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:谢尔登·李·格拉肖、史蒂文·温伯格(美国)、阿布杜斯·萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒79、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:卡洛·鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W和Z粒子的实验成为可能83、1985年:冯·克里津(德国)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料篇三:历年诺贝尔物理学奖历年诺贝尔物理学奖1901年诺贝尔物理学奖——X射线的发现1902年诺贝尔物理学奖——塞曼效应的发现和研究1904年诺贝尔物理学奖——氩的发现1906年诺贝尔物理学奖——气体导电1907年诺贝尔物理学奖——光学精密计量和光谱学研究1909年诺贝尔物理学奖——无线电报1911年诺贝尔物理学奖——热辐射定律的发现1913年诺贝尔物理学奖——低温物质的特性1914年诺贝尔物理学奖——晶体的X射线衍射1916年诺贝尔物理学奖——未授奖1918年诺贝尔物理学奖——能量级的发现1919年诺贝尔物理学奖——斯塔克效应的发现1924年诺贝尔物理学奖——X射线光谱学1925年诺贝尔物理学奖——弗兰克-赫兹实验1926年诺贝尔物理学奖——物质结构的不连续性1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1928年诺贝尔物理学奖——热电子发射定律1929年诺贝尔物理学奖——电子的波动性《历年诺贝尔物理学奖》各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
1929年诺贝尔物理学奖
1929年诺贝尔物理学奖1929年物理学奖得主,是法国人路易斯·德布罗意(Louis V.P.de Broglie),获奖理由是他发现了电子的波动性。
路易斯·维克多·皮埃尔·德布罗意(Louis Victor Pierre de Broglie,1892—1987),生于世袭的贵族之家,但并没有染上纨绔之气。
德布罗意的哥哥莫里斯比他大17岁,是一位物理学家,很早便开始研究X射线,对德布罗意的影响很大。
1906年,德布罗意14岁那年,父亲去世了,哥哥成了他的引路人。
1911年,德布罗意在巴黎大学求学期间,有一次看到哥哥从一个会议上带回的许多量子力学的资料,让他大开眼界,感受到量子世界的神秘与奥妙,决心改学物理学,他原来所学的专业是历史。
在哥哥的帮助下,他只用两年时间就学完了自然科学的基础课程,并且获得了理学毕业证书。
第一次世界大战爆发后,德布罗意中断了研究,应征入伍,分管埃菲尔铁塔上的无线电台。
战争期间,尽管他没有从事科学研究,但头脑并没有停止思考,结合所学的科学知识,思考了很多深奥的问题。
第一次世界大战结束后,德布罗意回到巴黎大学拜朗之万为师。
朗之万是居里的学生,已是法国著名的物理学家。
当时人们已经知道,光具有波粒二像性。
德布罗意想到,能不能将光的这种特性推广到其他的基本粒子呢?甚至是宏观的物体。
1923年,德布罗意在《法国科学院通报》上连续发表了三篇论文,详细论述了他的观点。
在第一篇论文《辐射——波与量子》中,他提出实物粒子也具有波粒二像性,认1为与运动粒子相应的还有一个正弦波,两者总保持相同的相位,后来他把这种假想的非物质波称为位相波。
在第二篇论文《光学——光量子,衍射的干涉》中,他提出如下设想:“在一定的情况下,任一运动质点能够被衍射。
穿过一个相当小的开孔的电子群会表现出衍射现象。
正是在这一方面,有可能寻找我们观点的实验证据。
”在第三篇论文《量子气体运动理论及费马原理》中,他进一步指出:“只有满足位相波谐振,才是原子中电子的稳定轨道。
波粒二象性
氢原子从基态变
成电离态所需的氢 原子的电离能为:
4 n=3
激 发 态
-3.39
n=2
氢原子能级图
E电离 E E1
13.6eV
-13.6
n=1
基态
En 0 -0.85 -1.51
eV
氢原子光谱中的不同谱线 连续区
40.50
18.75
n =3
-3.39
1215.68 1025.83 972.54
此波长的数量级与 X 射线波长的数量 级相当.
0
12.2 0 A U
1937诺贝尔物理学奖
C.J.戴维孙
通过实验
发现晶体对 电子的衍射 作用
二、电子衍射实验(物质波的实验验证)
1927年戴维孙(C.J.Davisson)和革末 (L.H.Germer)用加速后的电子投射到晶体上进行 电子衍射实验。
2. 频率假设——原子从一个定态跃迁到另一定 态时,将辐射电磁波,电磁波的频率由下式决定:
h k n = En ν
时,角动量只能取分立值: L
Ek
3. 角动量量子化假设——电子作圆轨道运动
其中n为正整数,称为量子数。
n h = 2π
三、氢原子轨道半径和能量的计算 由牛顿定律: 2 2 e v 2 = m r π ε
所以宏观粒子坐标及动量可以同时确定。
px x h
[例2]一电子以速度
0
x 1.0 106 m s 1
的速度穿过晶体。 晶格常数
x d 1 A
由测不准原理
d
(m x ) x
34
10 31 m s 1 ( x ) m x 10 10 10
电子的波粒二象性
17~18世纪光的微粒说与光的波动说一直是争论的焦点,直至20世纪初,才公认光有“二象性”,即既有波动性又有粒子性。
de Broglie L V在光的波粒二象性启发下,于1924年提出了所有微观粒子如电子、原子等也具有波粒二象性。
他将反映光的二象性的公式应用到微粒上,提出了“物质波”公式或称为德布罗意关系式,即p代表微粒的动量,m代表微粒的质量,v代表微粒的运动速度,λ代表微粒波的波长德布罗意关系式把微观粒子的粒子性p(m 、v)和波动性λ统一起来。
de Broglie 因此荣获1929年诺贝尔物理学奖。
德布罗意关系式的正确性三年后被科学实验所证实。
美国贝尔电话实验室的Davisson C J和Germer L H用电子束代替X射线通过一薄层镍的晶体(作为衍射光栅),投射到照相底片上,得到了完全类似单色光通过小圆孔那样的衍射图象,如图9-2所示。
同年英国Thomson G P (发现电子的Thomson J J的孙子)将电子束通过金箔也得到电子衍射图电子衍射图示意图电子能发生衍射现象,说明电子束通过镍箔所得衍射图与光相似,具有波动性。
实例分析:⑴电子在1V电压下的速度为5.9×105 m·s-1,电子质量m = 9.1×10-31kg,h为6.626×10-34 J·s ,电子波的波长是多少?⑵质量1.0×10-8kg的沙粒以1.0×10-2 m·s-1速度运动,波长是多少?解⑴ 1J = 1kg·m2·s-2 ,h = 6.626×10-34kg·m2·s-1根据德布罗意关系式可得⑵从这个例子中可以看出,物体质量愈大,波长愈小。
宏观物体的波长,小到难以测量,以致其波动性难以察觉,仅表现出粒子性。
而微观世界粒子质量小,其德布罗意波长不可忽略。
对电子波动性的正确解释是统计解释。
历年诺贝尔物理学奖
历年诺贝尔物理学奖1901-19101901年诺贝尔物理学奖—— X射线的发现1902年诺贝尔物理学奖——塞曼效应的发现和研究1903年诺贝尔物理学奖——放射形的发现和研究1904年诺贝尔物理学奖——氩的发现1905年诺贝尔物理学奖——阴极射线的研究1906年诺贝尔物理学奖——气体导电1907年诺贝尔物理学奖——光学精密计量和光谱学研究1908年诺贝尔物理学奖——照片彩色重现1909年诺贝尔物理学奖——无线电报1910年诺贝尔物理学奖——气夜状态方程1911-19201911年诺贝尔物理学奖——热辐射定律的发现1912年诺贝尔物理学奖——航标灯自动调节器1913年诺贝尔物理学奖——低温物质的特性1914年诺贝尔物理学奖——晶体的X射线衍射1915年诺贝尔物理学奖—— X射线晶体结构分析1916年诺贝尔物理学奖——未授奖1917年诺贝尔物理学奖——元素的标识X辐射1918年诺贝尔物理学奖——能量级的发现1919年诺贝尔物理学奖——斯塔克效应的发现1920年诺贝尔物理学奖——合金的反常特性1921-19301921年诺贝尔物理学奖——对理论物理学的贡献1922年诺贝尔物理学奖——原子结构和原子光谱1923年诺贝尔物理学奖——基本电荷和光电效应实验1924年诺贝尔物理学奖—— X射线光谱学1925年诺贝尔物理学奖——弗兰克-赫兹实验1926年诺贝尔物理学奖——物质结构的不连续性1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1928年诺贝尔物理学奖——热电子发射定律1929年诺贝尔物理学奖——电子的波动性1930年诺贝尔物理学奖——拉曼效应1931-19401931年诺贝尔物理学奖——未授奖1932年诺贝尔物理学奖——量子力学的创立1933年诺贝尔物理学奖——原子理论的新形式1934年诺贝尔物理学奖——未授奖1935年诺贝尔物理学奖——中子的发现1936年诺贝尔物理学奖——宇宙辐射和正电子的发现1937年诺贝尔物理学奖——电子衍射1938年诺贝尔物理学奖——中子辐照产生新放射性元素1939年诺贝尔物理学奖——回旋加速器的发明1940年诺贝尔物理学奖——未授奖1941-19501942年诺贝尔物理学奖——未授奖1943年诺贝尔物理学奖——分子束方法和质子磁矩1944年诺贝尔物理学奖——原子核的磁特性1945年诺贝尔物理学奖——泡利不相容原理1946年诺贝尔物理学奖——高压物理学1947年诺贝尔物理学奖——电离层的研究v1948年诺贝尔物理学奖——云室方法的改进1949年诺贝尔物理学奖——预言介子的存在1950年诺贝尔物理学奖——核乳胶的发明1951-19601951年诺贝尔物理学奖——人工加速带电粒1952年诺贝尔物理学奖——核磁共振1953年诺贝尔物理学奖——相称显微法1954年诺贝尔物理学奖——波函数的统计解释和用符合法作出的发现1955年诺贝尔物理学奖——兰姆位移与电子磁矩1956年诺贝尔物理学奖——晶体管的发明1957年诺贝尔物理学奖——宇称守恒定律的破坏1958年诺贝尔物理学奖——切连科夫效应的发现和解释1959年诺贝尔物理学奖——反质子的发现1960年诺贝尔物理学奖——泡室的发明1961-19701961年诺贝尔物理学奖——核子结构和穆斯堡尔效应1962年诺贝尔物理学奖——凝聚态理论1963年诺贝尔物理学奖——原子核理论和对称性原理1964年诺贝尔物理学奖——微波激射器和激光器的发明1965年诺贝尔物理学奖——量子电动力学的发展1966年诺贝尔物理学奖——光磁共振方法1967年诺贝尔物理学奖——恒星能量的生成1968年诺贝尔物理学奖——共振态的发现1969年诺贝尔物理学奖——基本粒子及其相互作用的分类1970年诺贝尔物理学奖——磁流体动力学和新的磁性理论1971-19801971年诺贝尔物理学奖——全息术的发明1972年诺贝尔物理学奖——超导电性理论1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现1974年诺贝尔物理学奖——射电天文学的先驱性工作1975年诺贝尔物理学奖——原子核理论1976年诺贝尔物理学奖—— J/?粒子的发展1977年诺贝尔物理学奖——电子结构理论1978年诺贝尔物理学奖——低温研究和宇宙背景辐射1979年诺贝尔物理学奖——弱电统一理论1980年诺贝尔物理学奖—— C_P破坏的发现1981-19901981年诺贝尔物理学奖——激光光谱学与电子能谱学1983年诺贝尔物理学奖——天体物理学的成就1984年诺贝尔物理学奖—— W±和Z?粒子的发现1985年诺贝尔物理学奖——量子霍尔效应1986年诺贝尔物理学奖——电子显微镜与扫描隧道显微镜1987年诺贝尔物理学奖——高温超导电性1988年诺贝尔物理学奖——中微子的研究1989年诺贝尔物理学奖——原子钟和离子捕集技术1990年诺贝尔物理学奖——核子的深度非弹性散射1991-20011991年诺贝尔物理学奖——液晶和聚合物1992年诺贝尔物理学奖——多斯正比室的发明1993年诺贝尔物理学奖——新型脉冲星1994年诺贝尔物理学奖——中子谱学和中子衍射技术1995年诺贝尔物理学奖——中微子和重轻子的发现1996年诺贝尔物理学奖——发现氦-3中的超流动性1997年诺贝尔物理学奖——激光冷却和陷俘原子1998年诺贝尔物理学奖——分数量子霍耳效应的发现1999年诺贝尔物理学奖——亚原子粒子之间电弱相互作用的量子结构2000年诺贝尔物理学奖——半导体研究的突破性进展2001年诺贝尔物理学奖——玻色爱因斯坦冷凝态的研究2002年诺贝尔物理学奖——天体物理学领域的卓越贡献(资料来源:山东大学物理系张承踞老师)。
历届诺贝尔物理学成果
1、1901年:伦琴(德国)发现X射线2、1902年:洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德瓦尔斯(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:劳厄(德国)发现晶体中的X射线衍射现象15、1915年:W·H·布拉格、W·L·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:巴克拉(英国)发现元素的次级X辐射特性18、1918年:普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:爱因斯坦(德国犹太人)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:玻尔(丹麦犹太人)关于原子结构以及原子辐射的研究23、1923年:密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德·布罗伊(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:海森堡(德国)在量子力学方面的贡献33、1933年:薛定谔(奥地利)创立波动力学理论;狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:费米(意大利犹太人)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940——1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:泡利(奥地利犹太人)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子49、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:玻恩(英国犹太人)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(中国)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、张伯伦(Owen Chamberlain)(美国)发现反质子58、1960年:格拉塞(美国犹太人)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费尔曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:A·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:格拉肖、温伯格(美国)、萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒79、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W和Z粒子的实验成为可能83、1985年:冯·克里津(德国犹太人)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料86、1988年:莱德曼、施瓦茨、斯坦伯格(美国)产生第一个实验室创造的中微子束,并发现中微子,从而证明了轻子的对偶结构87、1989年:拉姆齐(美国)发明分离振荡场方法及其在原子钟中的应用;德默尔特(美国)、保尔(德国)发展原子精确光谱学和开发离子陷阱技术88、1990年:弗里德曼、肯德尔(美国)、理查·爱德华·泰勒(加拿大)通过实验首次证明夸克的存在89、1991年:热纳(法国)把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中90、1992年:夏帕克(法国)发明并发展用于高能物理学的多丝正比室91、1993年:赫尔斯、J·H·泰勒(美国)发现脉冲双星,由此间接证实了爱因斯坦所预言的引力波的存在92、1994年:布罗克豪斯(加拿大)、沙尔(美国)在凝聚态物质研究中发展了中子衍射技术93、1995年:佩尔(美国)发现τ轻子;莱因斯(美国)发现中微子94、1996年:D·M·李、奥谢罗夫、R·C·理查森(美国)发现了可以在低温度状态下无摩擦流动的氦同位素95、1997年:朱棣文、W·D·菲利普斯(美国)、科昂·塔努吉(法国)发明用激光冷却和捕获原子的方法96、1998年:劳克林、斯特默、崔琦(美国)发现并研究电子的分数量子霍尔效应97、1999年:H·霍夫特、韦尔特曼(荷兰)阐明弱电相互作用的量子结构98、2000年:阿尔费罗夫(俄国)、克罗默(德国)提出异层结构理论,并开发了异层结构的快速晶体管、激光二极管;杰克·基尔比(美国)发明集成电路99、2001年:克特勒(德国)、康奈尔、维曼(美国)在“碱金属原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基本性质研究”方面取得成就100、2002年:雷蒙德·戴维斯、里卡尔多·贾科尼(美国)、小柴昌俊(日本)“表彰他们在天体物理学领域做出的先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面的成就。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1929年诺贝尔物理学奖——电子的波动性1929年诺贝尔物理学奖授予法国巴黎索本大学的路易斯·德布罗意(Prince Louis-victor de Broglie,1892——1987),以表彰他发现了电子的波动性。
路易斯·德布罗意出身法国贵族,1892年2月15日诞生于下塞纳的迪耶普,中学时代显示出文学才华,1910年获巴黎大学文学学士学位。
后来志趣转向理论物理学,1913年又获理学士学位。
第一次世界大战期间,在埃菲尔铁塔上的军用无线电报站服役。
平时爱读科学著作,特别是庞加莱、洛伦兹和朗之万的著作。
后来对普朗克、爱因斯坦和玻尔的工作发生了兴趣,转而研究物理学。
退伍后跟随朗之万攻读物理学博士学位。
他的兄长莫里斯·德布罗意是一位研究X射线的专家,路易斯曾随莫里斯一道研究X射线,两人经常讨论有关的理论问题。
莫里斯曾在1911年第一届索尔威会议上担任秘书,负责整理文件。
这次会议的主题是关于辐射和量子论。
会议文件对路易斯有很大启发。
莫里斯和另一位X 射线专家亨利·布拉格联系密切。
亨利·布拉格曾主张过X射线的粒子性。
这个观点对莫里斯很有影响,所以他经常跟弟弟讨论波和粒子的关系。
这些条件促使德布罗意深入思考波粒二象性的问题。
法国物理学家布里渊(M.Brillouin)在1919年——1922年间发表过一系列论文,提出了一种能解释玻尔定态轨道原子模型的理论。
他设想原子核周围的“以太”会因电子的运动激发一种波,这种波互相干涉,只有在电子轨道半径适当时才能形成环绕原子核的驻波,因而轨道半径是量子化的。
这一见解被德布罗意吸收了,他把以太的概念去掉,把以太的波动性直接赋予电子本身,对原子理论进行深入探讨。
1923年9月——10月间,德布罗意连续在《法国科学院通报》上发表了三篇有关波和量子的论文。
第一篇题目是“辐射——波与量子”,提出实物粒子也有波粒二象性,认为与运动粒子相应的还有一正弦波,两者总保持相同的位相。
后来他把这种假想的非物质波称为相波。
他考虑一个静质量为m
的运动粒子的相对论效应,把相应的
c2视为一种频率为v0的简单周期性现象。
他把相波概念应用到以闭内在能量m
合轨道绕核运动的电子,推出了玻尔量子化条件。
在第三篇题为“量子气体运动理论以及费马原理’的论文中,他进一步提出:“只有满足位相波谐振,才是稳定的轨道。
”在第二年的博士论文中,他更明确地写下了:“谐振条件是l=nλ,即电子轨道的周长是位相波波长的整数倍。
”
在第二篇题为“光学——光量子、衍射和干涉”的论文中,德布罗意提出如下设想:“在一定情形中,任一运动质点能够被衍射。
穿过一个相当小的开孔的电子群会表现出衍射现象。
正是在这一方面,有可能寻得我们观点的实验验证。
”
德布罗意在这里并没有明确提出物质波这一概念,他只是用位相波或相波的概念,认为可以假想有一种非物质波。
可是究竟是一种什么波呢?在他的博士论文结尾处,他特别声明:“我特意将相波和周期现象说得比较含糊,就象光量子
的定义一样,可以说只是一种解释,因此最好将这一理论看成是物理内容尚未说清楚的一种表达方式,而不能看成是最后定论的学说。
”物质波是在薛定谔方程建立以后,诠释波函数的物理意义时才由薛定谔提出的。
再有,德布罗意并没有明确提出波长λ和动量p之间的关系式:λ= h/p(h即普朗克常数),只是后来人们发觉这一关系在他的论文中已经隐含了,就把这一关系称为德布罗意公式。
德布罗意的博士论文得到了答辩委员会的高度评价,认为很有独创精神,但是人们总认为他的想法过于玄妙,没有认真地加以对待。
例如:在答辩会上,有人提问有没有办法验证这一新的观念。
德布罗意答道:“通过电子在晶体上的衍射实验,应当有可能观察到这种假定的波动的效应。
”在他兄长的实验室中有一位实验物理学家道威利尔(Dauvillier)曾试图用阴极射线管做这样的实验,试了一试,没有成功,就放弃了。
后来分析,可能是电子的速度不够大,当作靶子的云母晶体吸收了空中游离的电荷,如果实验者认真做下去,肯定会做出结果来的。
德布罗意的论文发表后,当时并没有多大反应。
后来引起人们注意是由于爱因斯坦的支持。
朗之万曾将德布罗意的论文寄了一份给爱因斯坦,爱因斯坦看到后非常高兴。
他没有想到,自己创立的有关光的波粒二象性观念,在德布罗意手里发展成如此丰富的内容,竟扩展到了运动粒子。
当时爱因斯坦正在撰写有关量子统计的论文,于是就在其中加了一段介绍德布罗意工作的内容。
他写道:“一个物质粒子或物质粒子系可以怎样用一个波场相对应,德布罗意先生已在一篇很值得注意的论文中指出了。
”这样一来,德布罗意的工作立即获得大家的注意。
当1926年薛定谔发表他的波动力学论文时,曾明确表示:“这些考虑的灵感,主要归因于德布罗意先生的独创性的论文。
”1927年,美国的戴维森和革末及英国的G.P.汤姆孙通过电子衍射实验各自证实了电子确实具有波动性。
至此,德布罗意的理论作为大胆假设而成功的例子获得了普遍的赞赏,从而使他获得了1929年诺贝尔物理学奖。
后来,德布罗意主要从事的仍是波动力学方面的研究,他在1951年以后着重研究了“双重解理论”,想要在经典的时空概念的基础上对波动力学的几率和因果性作出解释,但这种努力未获得成功。
德布罗意始终对现代物理学的哲学问题感兴趣,喜欢将理论物理学、科学史和自然哲学结合起来考虑,写过一些有关的论文。
德布罗意1926年起在巴黎大学任教,1933年任巴黎大学理学院理论物理学教授,1933年被选为法国科学院院士,1943年起任该院常任秘书,1962年退休。