气举采油法的名词解释
气举采油方法资料
气举动态曲线
产 液 量
P GLR
给定注气量
极限注气量 注气量
流入动态曲线
不同气液比下的产量和流 压关系曲线
Q
气举井管理
◆施工管理 --重点工序要求旁站监督,严把作业施工质量; ◆投产管理 --保证油井投产安全,顺利卸荷,严格控制投
产程序和卸荷速度;
◆生产管理 ----生产资料录取 气举井故障排除 生产工况分析诊断, 注气量调配、清蜡等
连续气举的卸荷过程
2、间歇气举
间歇气举主要分为常规间歇、柱塞间歇、球塞间歇等几类,其主要原理为: 地面间歇注气,实现油井间歇生产。
特点:
1、降低液体滑脱损失,减少注气量; 2、适应低产井、高含水井气举(产量<20m3/d) 。
四、气举采油采用什么样的 管柱结构?
出油 出油 进气 进气 进气
连续气举
需要经过油 1 产液量 >20 m3/d的井应采用连续气举。 田开发经济 技术论证 设计注气压力与油井地质特征和地面增压
2
装置的能力相匹配。
二、基础数据及来源
1 油井数据:
a) c) e) g) i) j) l) m) 油层中部深度,m ; b) 油层静压,MPa ; 静液面深度,m ; d) 地层水密度,kg/m3 ; 原油密度,kg/m3 ; f) 油井含水率,% ; 生产油压,MPa ; h) 产液指数,m3/(MPa· d) 压井液压力梯度,MPa/m ; 井口温度,℃ ; k) 井底温度,℃ ; 地层气液比,m3/m3 ; 设计日产液量,m3/d 。
② 气举节点系统分析优选参数
流入:地层+注入气 流出:油管 用于分析油管尺
QGI
qL qL pwf
寸、出油管线、注气
采油工程综合复习资料
采油工程综合复习资料一.名词解释1.油井流入动态:指油井产量与井底流压的关系。
表示油藏向该井供油的能力。
2.吸水指数:单位压差下的日注水量。
3.蜡的初始结晶温度:由于温度降低油气井开始结蜡时所对应的井底温度。
4.气举采油法:利用从地面注入高压气体将井内原油举升到地面的一种人工采油方法。
5.等值扭矩:就是用一个不变化的固定扭矩代替变化的实际扭矩,两种扭矩下电动机的发热条件相同,此固定扭矩即为实际变化的扭矩的等值扭矩。
6.气液滑脱现象:在气液两相流动中,由于气液密度差,产生气体流速超过液体流速的现象。
7.扭矩因素:对扭矩的各种影响因素。
8.配注误差:配注误差等于实际注水量与设计配注量之差同设计配注量比值的百分数.9.填砂裂缝的导流能力:流体通过裂缝的流动能力。
10.气举启动压力:在气举采油过程中,压缩机所对应的最大功率。
11.采油指数:单位生产压差下的产量。
12.注水指示曲线:表示注入压力与注入量的关系曲线。
13.冲程损失:抽油杆因弹性变性而引起的变化量。
14.余隙比:泵内为充满的体积与整个泵体积之比。
15.流动效率:油井的理想生产压差与实际生产压差之比。
16.酸的有效作用距离:酸液由活性酸变为残酸之前所流经裂缝的距离。
17.面容比:表面积与体积的比值。
二:填空题1.自喷井井筒气液两相管流过程中可能出现的流型有(纯油流),(泡流),(段塞流),(环流),(雾流)。
2.气举采油法根据其供液方式的不同分为(自喷)和(人工举升)两种类型。
3.表皮系数S与流动效率FE的关系判断:S>0时,FE(<)1;S=0时,FE(=)1;S<0时,FE(>)04.抽油机型号CYJ3-1.2-7HB中,“3”代表(悬点载荷30KN),“1.2”代表(最大冲程长度1.2米),“7”代表(减速箱额定扭矩7KN.M)和“B”代表(曲柄平衡)。
5.常规有杆抽油泵的组成包括(工作筒)(活塞)(阀)三部分。
6.我国研究地层分层吸水能力的方法主要有两大类,一类是(早期注水),另一类是(注水井调剖)。
气举采油
1 油井连续稳定生产。连续气举适应产能较高的油井。连续气举有好几级气举
阀,当气体从环空注入时,所有气举阀打开,环空液体从每一级气举阀进入 油管,当第一级气举阀露出液面,气体进入第一级气举阀,产能增大。当液 面往下推,第二级气举阀露出液面,气体同时进入第一第二级气举阀,环空 压力下降,这时第一级气举阀关闭。随着液面往下移直到气体从注气工作阀 进入油管。只有底部工作阀打开注气,其它阀门都处于关闭状态,才算完成
② 井底流压:气举采油必须具有一定的井底流压,不能象其他人工举升
方法一样达到最低井底流压。对于低压井可能不适应。 ③ 开采稠油和乳化液的油井不适应于气举采油。
气举分类
气举井简单介绍
重点介绍连续气举和间歇气举。 ① 连续气举顾名思义是连续不断往井下注气,使油井持续稳定生产。连续气举 是通过注入气体与井中的液体混合,气体不断膨胀,降低液体密度,从而使
气举井简单介绍
气举阀的结构和工作原理
气举阀的结构:气举阀有很多类型,但气
1 举阀的结构基本相同。气举阀主要由阀
体、风包、球和球座、单流阀和上下密
封圈组成。
气举阀工作原理:气举阀其实是一个注气 调节阀,是无量级可调的气嘴,它与孔 板固定气嘴不同。它不仅与上、下游压 力有关,而且与风包压力有关,它通过 球的开启度来控制注气量的大小。这是 气举阀和固定嘴子的孔板的不同之处。
有不当之处请提出宝贵意见
谢 谢!
连续气举从排液到稳定生产的全过程。
② 间歇气举是间断地把气体注入油井中,通过气举阀进入油管,把气举阀上面 的液柱段举升到地面。间歇气举可以是半开式或闭式(有封隔器和单流阀) 。
气举井简单介绍
连续气举的排液过程示意图 1
气举启动
气举启动时压缩机压力变化
气举采油
pi 1 p max pt (i 1)
pi 1 10 1 g
四、 连续气举设计
1. 气举井内的压力及其分布(如图11-31所示 )
1)套管内的气柱静压力近似直线分布,即
p g ( x) p c 0 (1
gsc gTsc x
p sc Tav Z av
)
(11-35)
带有封隔器的管柱称为半闭式管柱,它既可用于 连续气举,也可用于间歇气举。这种管柱虽然克服了开 式管柱的某些缺点,但对于间歇气举仍不能防止大量注 入气进入油管后,通过油管对地层的作用。
(3) 闭式管柱
闭式管柱,是在半闭式管柱的油管底部加单流阀, 以防止注气压力通过油管作用在油层上。闭式管柱只适 用于间歇气举。此外,还有一些特殊的气举装置,如用 于间歇气举的各种箱式(腔式)及柱塞气举装置等。
L1 g ≥ p e
≥ h' 1 g
式中 p e ——气举时的启动压力,Pa;
1 ——井内液体密度,kg/m3;
L——油管长度,m
三、 气举阀及其下入深度
在压缩机的额定工作压力有限的情况下,为实现气举就 需降低启动压力。最常用的是在油管柱上装设气举阀。
1. 气举阀工作简况
p wf p wh G Duf H gi G Ddf ( H 0 L)
5)平衡点套压与注气点油管内压力之差Δp是为了保证 注入气通过工作阀进入油管并排出注气点以上的井内 液体。
2. 限定井口油压和注气量条件下注气点深度和 产量的确定
连续气举设计的内容是很丰富的,这里仅以限定井口 油压和注气量条件下确定注气点深度和产量为例,来 说明气举设计方法及其与节点系统分析的联系。在有 些情况下并不规定产量,而是希望在可提供的注气压 力和注气量下,尽量获得最大可能的产量,其确定注 气点深度及产量的步骤如下所述(图11-32)。
气举采油
当p油(Ab-Av)+p套Ab>
pbAb
凡尔打开注气 当p油(Ab-Av)+p套Ab<
13
pbAb
14
15
问:如何计算凡尔的开启压力和关闭的压力?
2.工作条件下凡尔的开启压力pop
凡尔开启压力——指凡尔将要开启瞬间凡尔处的套 管压力。 试图打开凡尔的力 F0=p0p(Ab-Av)+ptAb 保持凡尔关闭的力 Fc=pbAb 压力平衡: pop(Ab-AV)+ptAv=pb Ab
(2-106)
TEF── 油管效率系数(可根据气举阀的结构查表)。
17
3.工作条件下凡尔关闭压力
凡尔关闭压力 pvc——指凡尔即将关闭瞬间凡尔处 的套管压力。 压力平衡: pvc(Ab-AV)+ pvc Av=pb Ab
pvc =pb
(2-107)
* 由上式可看出,凡尔关闭压力仅与封包内的压力 有关,与油管压力无关。
10
讨论: *当静液面接近井口, h* ≈ L(液体不被挤入油层)
′ pe = pe max = 9.8 Ld r
*若油层渗透性好,环形空间被挤压的液体全
部Hale Waihona Puke 油层吸收′ pe′ = pe min = 9.8h d r
*
′ pe 式中:
── 最大启动压力,kPa; L ── 油管长度,m; ′ pe′ ── 最小的启动压力,kPa。
11
′ ′ pe′ ≤ pe ≤ pe
pe 越大, pe 与工作压力的差值较大。
问:如何减少pe与po的差值?
三、气举阀(气举凡尔) 气举阀相当于在油管上开设的一个智能孔眼。 1、 气举阀的结构及工作原理
气举采油(zjl)
H gv 2
( p c 2 p t1 ) H gv1 10 l g
H gvi H gv(i 1)
pi 1 10 l g
pi 1 p max pt (i 1)
连续气举设计
气举井内的压力及其分布 套管内的气柱静压力近 似直线分布,即
gsc gTsc x p g ( x) p co 1 p scTav Z av
气举采油
气举采油的井口、井下设备比较简单,管理 调节较方便。特别是对于高气油比及高产量深井、 海上采油定向丛式井、水平井、井中含砂、水、 气较多和含有腐蚀性成分而不适宜用泵进行举升 的油井,都可以采用气举方法,在新井诱导油流 及作业井的排液方面气举也有其优越性。 但气举需要压缩机站及大量高压管线,地面 设备系统复杂、投资大,受气源限制且气体能量 利用率低,使其应用受到限制。
PROSPER气举设计效益
要全盘考虑井的动态 每阀最佳注入气液比 较深注入时需要的最低气量 卸载阀最佳平衡调整 产量最优化 设计的适应性 1、; 2、; 3、。
配 套 技 术
气举管柱优化设计
可投捞气举
柱塞气举
小油管气举
半闭式气举
高效气举封隔器
实例:文东增压站1座, 压缩机13台,配气站 25座。日供气能力150 万方,外输压力 10.5MPa,气举井103 口,日产液3390t,日 产油750t,平均注入 气液比386m3/t,平均 举深2543米。
18
配 套 技 术
高压气
节流阀 气源井
气举阀
19
谢 谢
连续气举采油设计
3、以给定的井口油压为起点,利用多相管流压力梯 度公式,根据对应产量的总气液比向下计算每个产量下 的油管压力分布曲线Dl,D2,D3 … 。它们与注气点深度 线C的交点,即为每个产量对应的注气点a1,a2,a3 … 和 注气深度Hgi1,Hgi2,Hgi3……。 4、从每个产量对应的注气点压力和深度开始,利用多 相管流压力梯度公式根据地层生产气液比向下计算每个产 量对应的注气点以下的压力分布线Al,A2,A3 … 及井底流 压pwf1,pwf2,pwf3 …
2001级《采油工程》标准答案
2001级《采 油 工 程》 期 末 考 试 (标准答案)一、名词解释(10×2分=20分)1 采油指数:是指单位压差下的油井产量,反映了油层性质、流体物性、完井条件及泄油面积等与产量的关系。
2 气举采油:是指人为地从地面将高压气体注入停喷(间喷或自喷能力差)的油井中,以降低举升管中的流压梯度(气液混合物密度),利用气体的能量举升液体的人工举升方法。
3 吸水指数:表示注水井在单位井底压差下的日注水量。
4 沉没度:泵下入动液面以下深度谓之。
5 原油的密闭集输:在原油的集输过程中,原油所经过的整个系统(从井口经管线到油罐等)都是密闭的,即不与大气接触。
6 滤失系数:压裂液在每√1分钟内通过裂缝壁面1米3面积的滤失量,米3/米2.√分。
7 滑脱现象:气液混流时,由于气相密度明显小于液相密度,在上升流动中,轻质气相其运动速度会快于重质液相,这种由于两相间物性差异所产生的气相超越液相流动称为滑脱现象。
8 酸液有效作用距离:当酸液浓度降低到一定程度后(一般为初始浓度的10%),酸液变为残酸。
酸液由活性酸变为残酸之前所流经裂缝的距离称为酸液的有效作用距离。
二、绘图题(3×2分=6分)1、用图示意典型的油井IPR 曲线。
2、用图示意有气体影响和充不满影响的示功图。
图1-1 典型的油井IPR 曲线q ma3、用图示意酸浓度对酸—岩反应速度的影响。
三、简述题(6×51 简述气液两相垂直管流压力梯度方程的求解步骤(任选一种)。
要点:以按深度迭代为例(1)、已知任一点(井口或井底)的压力o P 作为起点,任选一个合适的压力降P ∆作为计算压力的间隔。
(2)、估计一个对应于P ∆的深度增量估h ∆,以便根据温度梯度估算该段下端的温度T1。
(3)、计算出该管段的平均温度T 及平均压力P ,并确定该T 和P 下全部流体性质参数(溶解油气比R ,原油体积系数Bo ,油、气、混合物粘度,气体密度ρg ,及表面张力σ等)。
自喷与气举采油
第二章自喷与气举采油一、名词解释:1、自喷:油层能量充足时,利用油层本身的能量就能将油举升到地面的方式称为自喷。
2、嘴流:对自喷井,原油流到井口后还有通过油嘴的流动。
3、采油方法:将流到井底的原油采到地面上所采用的方法,其中包括自喷采油法和人工举升两大类。
4、自喷采油法:利用油层自身的能量使油喷到地面的方法。
5、分层开采:在多油层条件下,为充分发挥各油层的生产能力,调整层间矛盾,而对各小层分别控制开采。
可分为单管分采与多管分采两种井下管柱结构。
6、节点系统分析:简称节点分析。
是指通过生产系统中各影响因素对节点处流入流出动态的敏感性分析,进行综合评价,实现目标产量并优化生产系统。
7、普通节点:节点本身不产生于流量相关的压力损失。
8、函数节点:压力不连续的节点称为函数节点,流体通过该节点时,会产生与流量相关的压力损失。
9、临界流动:流体的流速达到压力波在流体介质中的传播速度即声波速度时的流动状态。
10、气举采油:依靠从地面注入井内的高压气体,使井筒内气液混合物密度降低,而将原油举升到地面的方法。
11、气举阀打开压力:对于套压控制阀,指在实际工作条件下,打开阀所需的注气压力;12、试验架打开压力:确定了气举阀的打开压力和关闭压力,就须在室内调试装置上把气举阀调节在某一打开压力,此压力相当于井下该气举阀所需的打开压力。
13、气举阀关闭压力:使气举阀关闭的就地(气举阀深度处)油压或套压。
14、转移压力:允许从较低的气举阀注气的压力,以实现从上一级阀转移到当前阀。
15、过阀压差:气体经过阀孔节流会产生压力损失,阀上、下游压差称为过阀压差。
16、老化处理:将阀置于老化器中,密闭加压,模拟井下承压加至2.987MPa,保持15min。
17、恒温处理:氮气压力受温度的影响很敏感,故调试过程中,需恒温以提高调试精度。
一、叙述题1、人工举升或机械采油的方法是什么?答案要点:当油层能量低不能自喷生产时,则需要利用一定的机械设备给井底的油流补充能量,从而将油采到地面。
气举采油
气举采油当油层能量不足以维持油井自喷时,为使油井继续出油,人为地将天然气压入井底,使原油喷出地面,这种采油方法称为气举采油法。
一、气举采油原理1、气举采油原理气举采油原理:依靠从地面注入井内的高压气体与油层产出流体在井筒中的混合,利用气体的膨胀使井筒中的混合液密度降低,从而将井筒内流体举出。
2、气举方式(1)气举按注气方式可分为连续气举和间歇气举。
连续气举就是从油套环空(或油管)将高压气体连续地注入井内,排出井筒中的液体。
连续气举适用于供液能力较好、产量较高的油井。
间歇气举就是向油套环空内周期性地注入气体,气体迅速进入油管内形成气塞,推动停注期间在井筒内聚集的油层流体段塞升至地面,从而排出井中液体的一种举升方式。
间歇气举主要用于井底流压低,采液指数小,产量低的油井。
(2)气举方式根据压缩气体进入的通道分为环形空间进气系统和中心进气方式系统环形空间进气是指压缩气体从环形空间注入,原油从油管中举出;中心进气方式与环形空间进气方式相反3、井下管柱按下入井中的管子数量,气举可分为单管气举和多管气举。
(1)开式管柱。
它只适用于连续气举和无法下入封隔器的油井。
(2)半闭式管柱。
它既可用于连续气举,也可用于间歇气举。
(3)闭式管柱。
闭式管柱只适用于间歇气举。
二、气举启动压力1、气举启动过程开动压风机向油、套管环形空间注入压缩气体,环形空间内液面被挤压向下,油管内液面上升,在此过程中压风机的压力不断升高。
当环形空间内的液面下降到管鞋时,如图2—39(b)所示,压风机达到最大的压力,此压力称为气举井的启动压力随压缩气进入油管,使油管内原油混气,因而使油管内混合物的密度急剧减小,液面不断升高直至喷出地面,如图2—39(c)所示。
油管鞋压力急剧降低,此时,井底压力及压风机压力亦迅速下降。
当井底压力低于油层压力时,液体则从油层流入井底。
由于油层出油使油管内混气液体的密度稍有增加,因而使压风机的压力又有所上升,直到油层的油和环形空间的气体以不变的比例进入油管后压力趋于稳定,此时压风机的压力称为工作压力。
气举采油设计方法
一、气举采油的概念气举采油是依靠地面注入井内的高压气体与油层产出流体在井筒中混合,利用气体的膨胀使井筒中的混合液密度降低,将流入到井内的原油举升到地面的一种采油方式。
二、气举采油的方式气举采油主要分为连续气举、间歇气举、腔式气举和柱塞气举四类。
(1)连续气举方式连续气举是连续不断往井下注气,使油井持续稳定生产。
连续气举适应产能较高的油井,产量可以适应16m3/d~11924m3/d。
连续气举生产管柱可以分为开式管柱、半开式管柱和闭式管柱,如图1所示。
对于开式管柱而言,可以环空注气,油管采油。
也可以是油管注气,环空采油。
图1 气举管柱的类型(2)间歇气举方式间歇气举是间断地把气体注入油井中,通过气举阀进入油管,把气举阀上面的液柱段举升到地面。
间歇气举可以是半开式或闭式,一般采用闭式作为间歇气举。
间歇气举由于具有单流阀可以达到很低的井底流压,一般适应于低压低产井,产量从0.16m3/d ~80 m3/d。
(3)腔式气举方式腔式气举是一种特殊的间歇气举,主要应用于低产能井。
腔式气举的生产管柱下面有一个集液腔包,以便有足够的液柱,如图2所示。
它的排液和举升与间歇气举相似。
不同的是当气举工作阀打开时,气体把腔包的液体往下推,由于下面有单流阀,迫使液体进入油管,气体把这段液柱举升到地面。
这时地面控制阀(连续气举不存在)关闭,工作阀也关闭。
环空(腔包)通过泄压孔与油管压力平衡,防止气锁,这样腔包压力下降,单流阀打开,地层液体进入腔包。
该过程不断循环进行腔式间歇气举。
图2 腔式气举生产管柱图3 柱塞气举生产管柱(4)柱塞气举方式柱塞气举就是在举升的气体和液柱之间增加一个固体柱塞,防止液柱滑脱,以提高举升的效率。
此外,柱塞气举还能起到油管清蜡的作用。
柱塞气举把气体注入环空中,通过气举阀注入在柱塞下面,把柱塞上面的液柱举到地面。
当柱塞到达地面时,与防喷器顶针相撞时,柱塞中间的阀门打开,柱塞上下压力平衡,由于重力作用,柱塞落到油管下面。
气举采油
中心管进气时, 中心管进气时,被举升的液体在环形空间 的流速较低,其中的砂易沉淀、蜡易积聚, 的流速较低,其中的砂易沉淀、蜡易积聚,故 常用环形空间进气的举升方式。 常用环形空间进气的举升方式。 2. 井下管柱 井下管柱 按下入井中的管子数气举可分为单管气举 和多管气举。 和多管气举。 多管气举可同时进行多层开采, 多管气举可同时进行多层开采,但其结构 复杂、钢材消耗量多,一般很少采用。 复杂、钢材消耗量多,一般很少采用。 简单而又常用的单管气举管柱有开式、 简单而又常用的单管气举管柱有开式、半 闭式和闭式三种。 闭式和闭式三种。
(1) 第一个阀的下入深度H gv 第一个阀的下入深度 I 1) 井中液面在井口附近,在注气过程中途即溢出井 口时,可由下式计算阀Ⅰ的下入深度 H I = p max − 20 gv ρ1 g 减20 m是为了在第一个阀内外建立0.2 MPa的压差,以保证气体进入阀Ⅰ。 2) 井中液面较深,中途未溢出井口时,可由下式计 2 算阀Ⅰ的下入深度: p max d ti 式中 H sl ——气举前井
气点深度线C的交点,即为各个产量所对应的注气 点 a 、a 、 3 …和注气深度 H gi1 、 gi 2 、 gi 3 …。 H a H
1 2
4) 从每个产量对应的注气点压力和深度开始,利用多 相管流压力梯度公式根据地层生产气液比向下计算每 个产量对应的注气点以下的压力分布线 A1 、 、 … A2 A3 及井底流压 p wf 1 、 wf 2 、 p wf 3 …。 p 5) 在IPR曲线(图11-33)上,根据上述计算结果绘出产量 与计算流压的关系曲线(油管工作曲线),它与IPR曲线 的交点所对应的压力和产量,即为该井在给定注气量 和井口油管压力下的最大产量q和相应的井底流动压力, 亦即协调产量和流压。根据给定气量和协调产量q可计 算出相应的注入气液比,进而计算出总气液比。
8第7章 气举采油
适用条件:
高产量的深井;含砂量少、含水低、 高产量的深井;含砂量少、含水低、气油比高和含有 腐蚀性成分低的油井;定向井和水平井等。 腐蚀性成分低的油井;定向井和水平井等。
一、气举分类(按注气方式) 气举分类(
将高压气体连续地注入井内, 连续气举 将高压气体连续地注入井内 , 排出 井筒中液体。 适应于供液能力较好、 井筒中液体 。 适应于供液能力较好 、 气举 产量较高的油井。 产量较高的油井。
图2-41 凡尔深度计算示意图
气举阀实质: 气举阀实质:一种用于井下的压力调节器
阀打开条件: 阀打开条件:
pu ( Ab − Ap ) + pd Ap > F
阀关闭条件: 阀关闭条件:
F > pu ( Ab − Ap ) + pd Ap
pu = pd
图2-30 压力调节器结构示意图
F > pd Ab
封隔器封隔油套环空,其余均与开式装置相同。 半闭式装置 封隔器封隔油套环空,其余均与开式装置相同。 封隔器封隔油套环空,在油管柱上安装了一个固定阀, 封隔器封隔油套环空,在油管柱上安装了一个固定阀 , 其作用是防止气体压力通过油管作用于地层。 其作用是防止气体压力通过油管作用于地层。
闭式装置 箱式装置
图2-29 气举井启动时的压缩机压力 随时间的变化曲线
(3)启动压力计算 第一种情况: 第一种情况:不考虑液体 被挤入地层, 被挤入地层,而且当环空 液面降低到管鞋时, 液面降低到管鞋时,液体 并未从井口溢出, 并未从井口溢出,启动压 力与油管液柱静压相平衡。 力与油管液柱静压相平衡。 即
h*
D2 pe = h* ρg 2 d
(二)几种常用的气举阀简介 自学要点: 自学要点: 结构状况,类型; (1) 结构状况,类型; (2) 工作条件下阀的开启压力; 工作条件下阀的开启压力; 工作条件下阀的关闭压力; (3) 工作条件下阀的关闭压力; 阀的工作压差(阀的距) (4) 阀的工作压差(阀的距); 静气柱压力分布计算相关式。 (5) 静气柱压力分布计算相关式。
气举采油
3)闭式气举 由于装有封隔器和油管部固定阀,气举逐 步建立上部,气举阀打开到底部固定阀关 闭,防止高压注入气体进入油层,而特别 是井底流压低的井更要装固定阀。当停产 后,油管内液柱也不回落压入地层,称为 闭式, 应用:仅实用于间歇气举。
二、气举采油过程及压缩机压力变化
1、气举过程,图3—2 停产时井筒内液面为静 液面高h,气举开始向井 内注汽,环空液面降低 到油管鞋时,油管中液 柱上升△h,当连续向井 内压入气体时,气体经 管鞋进入油管使油管内 液体混气,并被举升出 井。连续供气,则气举 已建立。
1 h1 Hg 2 Hg1 ( Pa2 Pt1 ) g Pa2 Pt1 Hg 2 Hg1 10 g
式中 △h1—第1阀进气后,环空液面继续下降的距 离,m; Pa2—阀工环空处压力,Pa; Pt1—阀1油管内压力,Pa。 减10m为在阀2处,阀内的建立100kPa压差,确 保阀2气体进入。 同理第i级阀:
H gi Hg(i 1)
P(i 1)
g
10
式中 Hgi—第三级阀安装深度,m; Hg(i-1)—第i-1级阀的安装深度,m; △P(i-1)—第i级阀的最大关闭压差,Pa; Pt(i-1)—第i-1—阀油管内可能达最小压 力。 注意:不同气举阀,打开内处压差不同, 减去的数值不同。
四、腔式气举 1、腔室气举是一种闭式间歇气举。腔室气举时, 注入气进入腔室后位于被举升液体之上,在注入 气进入油管前,液体段塞的速度就已经达到或接 近举升速度了,从而可以减少注入气的窜流,减 少了注入气损失。 2、应用:特别适用于低产及低压高产井,是气 举装置最终采竭低压井的一种方法。 3、优点:在同一井口,采用腔室气举,比采用 常规气举达到更低的井底平均流动压力,因而生 产压差也更大,减少注入气损失,用气量少,防 水在产层的积聚。 4、腔室气举的不足:产量与间歇井一样受限等
采油复习1
一、名词解释1.油井流入动态 :指油井产量与井底流动压力的关系,它反映了油藏向该井供油的能力。
2.吸水指数:表示(每米厚度油层)单位注水压差下的日注水量,它的大小表示油层吸水能力的好坏。
3.蜡的初始结晶温度:当温度降低到某一值时,原油中溶解的蜡便开始析出,蜡开始析出的温度称为蜡的初始结晶温度。
4.气举采油法:气举采油是依靠从地面注入井内的高压气体与油层产出流体在井筒中混合,利用气体的密度小以及气体膨胀使井筒中的混合液密度降低,将流入到井内的原油举升到地面的一种采油方式。
5.等值扭矩:用一个不变化的固定扭矩代替变化的实际扭矩,使其电动机的发热条件相同,则此固定扭矩即为实际变化的扭矩的等值扭矩。
6.气液滑脱现象:在气液两相流中,由于气体和液体间的密度差而产生气体超越液体流动的现象叫气液滑脱现象。
7.扭矩因数:悬点载荷在曲柄上造成的扭矩与悬点载荷的比值。
8.配注误差:指配注量与实际注入量的差值与配注量比值的百分数。
9.填砂裂缝的导流能力:在油层条件下,裂缝宽度与填砂裂缝渗透率的乘积,常用FRCD表示。
10.气举启动压力 :气举井启动过程中的最大井口注气压力。
11.采油指数:是一个反映油层性质、厚度、流体参数、完井条件及泄油面积与产量之间的关系的综合指标。
其数值等于单位生产压差下的油井产油量。
12.注水指示曲线:稳定流动条件下,注入压力与注水量之间的关系曲线。
13.冲程损失:由于抽油杆和油管在交变载荷作用下发生弹性伸缩,而引起的深井泵柱塞实际行程与光杆冲程的差值。
14.余隙比:余隙体积与泵上冲程活塞让出的体积之比。
15.流动效率:所谓油井的流动效率是指该井的理想生产压差与实际生产压差之比。
16.酸的有效作用距离:酸液由活性酸变为残酸之前所流经裂缝的距离。
17.面容比:岩石反应表面积与酸液体积之比1、示踪剂:是指能随流体运动,易溶且低浓度下仍可被检测,用于指示溶解它的液体在多孔介质中的存在、流动方向或透速度的物质。
石油课堂采油工程名词解释
石油课堂采油工程名词解释1.采油指数采油指数是一个反映油层性质、厚度、流体参数、完井条件及泄油面积等与产量之间的关系的综合指标。
其数值等于单位生产压差下油井的油井产油量。
2.折算液面(深度)把一定套压下测得的液面折算成套管压力为零时的液面。
或把套压不为零时的液面(深度)折算成套压为零时的液面(深度)。
3.吸水指数表示单位注水压差下的日注水量。
4.米吸水指数地层吸水指数除以油层有效厚度,表示1米厚地层在1MPa注水压差下的日注水量。
5. 酸岩复相反应速度单位时间内酸浓度的降低值,或单位时间内岩石单位反应面积的溶蚀量来表示。
6.滑脱效应在气液多相垂直管流中,由于气象密度小于液相密度,产生气相超越液相流动的现象叫滑脱效应。
由滑脱效应产生的附加压力损失叫滑脱压力损失。
7.油嘴临界流动指油气混合物通过油嘴的流动速度达到压力波在该流体介质中的传播速度。
8.滤失速度地层综合滤失系数与时间t的开方的比值9.光杆功率通过光杆来提升液体和克服井下损耗所需要消耗的功率。
10.滤失百分数压裂液滤失体积除以地面单元体积液在缝中的剩余体积。
11.砾石充填将割缝衬管或是绕丝筛的管下入井内防砂层段处,用一定质量的流体携带地面选好的具有一定粒度的砾石,充填于管和油层之间,形成一定厚度的砾石层,以防止油层砂粒流入井内防砂方法。
12.酸液有效作用距离酸液由活性酸变为残酸前所流经的裂缝距离。
13.泵的充满程度泵工作过程中被液体充满的程度等于进入泵内的液体体积和柱塞让出的体积之比。
14.压裂井增产倍数压裂后的采油指数与压裂前采油指数的比值。
15.酸岩反应速度单位时间内酸浓度的降低值,或单位时间内岩石单位反应面积的溶蚀量。
16.动液面、静液面静液面是关井后环形空间中液面恢复到静止(与地层压力相平衡)时的液面。
可以用从井口算起的深度,也可以用从油层中部算起的液面高度来表示其位置。
动液面是油井生产时,油套环形空间的液面。
可以用从井口算起的深度,亦可用从油层中部算起的高度来表示其位置。
气举采油方法
qL
最经济产量
经济注气量
单位注气增量举升原油所获得利润,恰好 等于该单位增注的气体成本,此时的总气液比 就是最经济气液比,对应注气量为最经济注气
量。
qinj
实例:确定注气点深度
③ 确定注气点
平衡点:流压梯度线和注 气压力梯度线相交的点。
pt
pko
注气点:注入气进入油管
的位置,工作阀下入深度 Δp工作压差,指注气点处 油管和套管内压力之差, 一般取0.5~0.7MPa
(1)气举设计基本资料
地层参数
油气井IPR曲线、地层压力、地温及地温梯 度,含水率、地层气液比; 井筒及生产条件 井深、油套管尺寸、地面出油管线长度及尺 寸、分离器压力、井口压力、注气设备能力; 流体物性
油、气、水高压物性资料;
(2)确定气举方式
连续气举 从油套环空(或油管)将高压气连续地注入井内, 使油管(或油套环空)中的液体充气以降低其密度,从 而降低井底流压,排出井中液体的一种人工举升方式。 间歇气举
连续气举的卸荷过程
2、间歇气举
间歇气举主要分为常规间歇、柱塞间歇、球塞间歇等几类,其主要原理为 :地面间歇注气,实现油井间歇生产。
特点:
1、降低液体滑脱损失,减少注气量; 2、适应低产井、高含水井气举(产量<20m3/d) 。
四、气举采油采用什么样的 管柱结构?
出油 出油 进气 进气 进气
连续气举
向油套环空内周期性地注入高压气体,气体迅速进 入油管内形成气塞,将停注期间井中的积液推至地面的 一种人工举升方式。 对于低压低产能的井通常采用间歇气举,同时从技 术和经济方面进行综合考虑。
(3)确定气举装置类型
① 开式 缺点:
低产井,注入气从油管鞋窜
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气举采油法的名词解释
气举采油法是一种常用于油田开发的提升技术。
通过注入气体(通常是天然气)到井底,形成气体泡沫,在地层中产生压力,推动原油流向井口,从而实现油藏中的原油提升。
这种方法不仅可以提高油田开采效果,还能有效降低开采成本,因此在油田行业得到广泛应用。
一、气举采油法的工作原理
气举采油法的工作原理是利用注入的气体产生的泡沫使原油浮起,并形成一定
的压力推动原油流向井口。
在注入气体的过程中,气泡与原油颗粒相互作用,形成气油两相流,提高了原油的可流动性和提升效果。
当气体进入井底时,由于温度和压力的变化,气体溶解在原油中,形成气泡。
这些气泡会上升到地层中,进一步推动原油的流动。
同时,气泡与原油颗粒摩擦产生的涡流作用也可以将原油从低渗透地层中提取出来。
二、气举采油法的优点和应用
1. 提高采油效率:气举采油法能够有效地提高原油的采收率,尤其对于高粘度
或高凝固点的油田来说效果显著。
通过注入气体并形成气泡,原油的流动性得到改善,可以将更多的原油从地层中提取出来。
2. 降低开采成本:相比于传统的水驱或蒸汽驱采油法,气举采油法的投入成本
相对较低。
注入气体所需要的设备和维护成本较低,节约了油田开发的经济成本。
3. 适用广泛:气举采油法适用于不同类型的油藏,包括低渗透、高粘度、高凝
固点等。
而且,与其他采油方法相比,气举采油法对油藏的压力要求较低,从而可以开发更多的次生油藏。
4. 环保和可持续:相比于传统的提升方法,如水驱或热力驱动采油法,气举采
油法无需使用大量的水或能源资源。
这使得气举采油法更加环保和可持续,符合可持续发展的理念。
三、气举采油法的挑战和发展趋势
1. 气体选择和输送:气举采油法中,选择合适的气体以及其输送的方式对于提
升效果至关重要。
目前的技术仍然存在着选择气体和管道输送的一些局限性,未来需要不断改进和创新。
2. 气油相互作用的复杂性:气体与原油在地层中相互作用的过程涉及多种物理
和化学现象,如气泡形成、油水界面张力等。
深入研究和理解这些相互作用的规律,可以更好地优化气举采油法的效果。
3. 利用二氧化碳进行气举采油:随着低碳经济和环境保护的要求日益提高,利
用二氧化碳进行气举采油成为一个热门领域。
二氧化碳不仅可以提高采油效率,还可以实现二氧化碳的地质封存,减少温室气体排放。
综上所述,气举采油法作为一种常用的油田开发技术,通过注入气体形成气泡,提高了原油的可流动性和采收率。
它具有提高采油效率、降低开采成本、适用广泛以及环保可持续的优点。
未来的发展趋势包括优化气体选择和输送、深入研究气油相互作用的规律以及利用二氧化碳进行气举采油。
这将进一步推动气举采油法的创新,提高油田开发的效益,同时也符合可持续发展的要求。