概率统计作业

合集下载

应用概率统计综合作业一

应用概率统计综合作业一

应用概率统计综合作业一一、填空题每小题2分,共20分 1.已知随机事件A 的概率5.0)(=A P ,事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,则事件B A 的概率=)(B AP .2.设在三次独立试验中,随机事件A 在每次试验中出现的概率为31,则A 至少出现一次的概率为 19/27 . 3.设随机事件A,B 及其和事件B A的概率分别是,和,则积事件B A 的概率=)(B A P .4.一批产品共有10个正品和两个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 1/5 .5.设10件产品中有4件不合格品,从中任取2件,已知所取2件产品中有一件是不合格品,则另1件也是不合格品的概率为 . 6.设随机变量),3(~2σN X ,且3.0)53(=<<X P ,则=<)1(X P .7.设随机变量X 绝对值不大于1,且81)1-(==X P ,41)1(==X P ,则=<<)11-(X P 7/16 .8.设随机变量X 的密度函数为⎩⎨⎧<<=,其他,010,x 2)(f x x 以Y 表示对X 的三次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X出现的次数,则{}2=Y P 9/64 . 9.设随机变量X 的概率分布为2.0)1(==X P ,3.0)2(==X P ,5.0)3(==X P ,则随机变量X 的分布函数=)(x F fx= x=1x=2 x=30 x 不为1、2、3之中的任一个 .10.设随机变量X 的密度函数为)1(1)(f2x x +=π,求随机变量31X-=Y 的密度函数=)y (Y f 3/π1+1 y 3. .二、选择题每小题2分,共20分1.同时抛掷3枚均匀对称的硬币,则恰有2枚正面向上的概率为 D A B C D2.某人独立地投入三次篮球,每次投中的概率为,则其最可能失败没投中的次数为 A A2 B2或3 C3 D13.当随机事件A 与B 同时发生时,事件C 必发生,则下列各式中正确的是B A 1)()()(-+≤B P A P C P B 1)()()(-+≥B P A P C P C )()(AB P C P = D )()(B A P C P =4.设1)(0<<A P ,1)(0<<B P ,1)|()|(=+B A P B A P ,则BA 事件A 和B 互不相容 B 事件A 和B 互相对立C 事件A 和B 互不独立D 事件A 和B 相互独立 5.设A 与B 是两个随机事件,且1)(0<<A P ,0)(>B P ,)|()|(A B P A B P =,则必有 C A )|()|(B A P B A P = B )|()|(B A P B A P ≠C )()()(B P A P AB P =D )()()(B P A P AB P ≠6.设随机变量X 的密度函数为)(f x ,且)(f )(f x x =-,)(F x 为X 的分布函数,则对任意实数a ,有BA dx x f a⎰-=0)(1)-a (F B dx x f a⎰-=0)(21)-a (F C )a (F )-a (F= D 1)a (F 2)-a (F -= 7.设随机变量X 服从正态分布),(2σμN ,则随着σ的增大,概率{}σμ<-XP 为 CA 单调增大B 单调减少C 保持不变D 增减不定8.设两个随机变量X 和Y 分别服从正态分布)4,(2μN 和)5,(2μN ,记{}41-≤=μX P P ,{}52+≥=μX P P ,则 AA 对任意实数μ,都有21P P =B 对任意实数μ,都有21P P <C 只对μ的个别值,才有21P P =D 对任意实数μ,都有21P P >9.设随机变量X 服从正态分布)4,0(N ,则=<)1(X P B Adxx e81221-⎰πBdxxe41041-⎰ C2121-eπDdxx e221221-∞-⎰π10.设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≤<≤<=,5,1,50,251,0x ,0)(F 2x x x x 则=<<)53(X P C A254 B 259 C 2516D 1 三、10分摆地摊的某赌主拿了8个白的、8个黑的围棋子放在一个签袋里,并规定凡愿摸彩者每人交一元钱作手续费,然后一次从口袋口摸出5个棋子,中彩情况如下:摸棋子 5个白 4个白 3个白其他彩金20元2元纪念品价值5角同乐一次无任何奖品试计算:①获得20元彩金的概率; ②获得2元彩金的概率; ③获得纪念品的概率;④按摸彩1000次统计,赌主可望净赚多少钱解:1.2.3.4.净赚大哟为1000-692=308元.四、10分已知连续型随机变量X 的密度函数为⎩⎨⎧<≥=-,0,0,0,)(22x x e Ax x f x 试求:1常数A ;2);20(,)2(<<=X P XP 3X 的分布函数;解答:1由于∫+∞∞fx d x=1,即∫0∞ke x d x+∫2014d x=k+12=1∴k=122由于Fx=PXx=∫x∞fx d x,因此当x<0时,Fx=∫x∞12e x d x=12e x;当0x<2时,Fx=∫0∞12e x d x+∫x014d x=12+14x;当2x时,Fx=∫0∞12e x d x+∫2014d x=1∴Fx=12e x12+14x1,x<0,0x<2,x23由于连续型随即变量在任意点处的概率都为0,因此P{X=1}=0而P{1<X<2}=F2F1=14.五、10分设10件产品中有5件一级品,3件二级品,2件次品,无放回地抽取,每次取一件,求在取得二级品之前取得一级品的概率;解:先取得一级品的概率为5÷10=1/2那么当取出一级品再取得二级品的概率就为3÷10-1=1/3所以在取二级品之前取得一级品的概率为1/2×1/3=1/6六、10分某地抽样调查结果表明,考生的外语成绩X百分制近似服从正态分布,平均成绩为72分,96分以上的占考生总数的%,试求考生的外语成绩X在60分至84分之间的概率;.),(1841Φ=ΦΦ=1(=)2.977).(,5)933.解答:因为F96=∮96-72/x===∮2所以x=12成绩在60至84分之间的概率:F84-F60=∮84-72/12-∮60-72/12=∮1-∮-1=2∮1-1=2×=七、10分设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份;随机地取一个地区的报名表,从中先后抽出2分;试求:1先抽出的一份是女生表的概率p;2若后抽到的一份是男生表,求先抽到的一份是女生表的概率q;解答:设事件:Hi={抽到的报名表示i区考生的}i=1,2,3;事件:Hj={第j次抽到的报名表是男生报名表}j=1,2,3.事件:A={第一次抽到的报名表示女生的}事件:B={第二次抽到的报名表示男生的}显然有,抽到三个区的概率是相等的,即:PH1=PH2=PH3=13PA|H1=310;PA|H2=715PA|H3=525=151根据全概率公式有:PA=PA|H1PH1+PA|H2PH2+PA|H3PH3=13×310+13×715+13×15=2 9902根据全概率公式,第二次抽到男生的概率为:PB=pB|H1×PH1+pB|H2×PH2+pB|H3×PH3显然:pB|H1=710;pB|H2=815;pB|H3=2025=45故:PB=pB|H1×PH1+pB|H2×PH2+pB|H3×PH3=710×13+815×13+45×13=6190第一次抽到女生,第二次抽到男生的概率为:PAB=PAB|H1×PH1+pAB|H2×PH2+pAB|H3×PH3而PAB|H1=310×79=730;PAB|H2=715×814=415;PAB|H3=525×2024=16故:PAB=PAB|H1×PH1+pAB|H2×PH2+pAB|H3×PH3=730×13+415×1 3+16×13=29根据条件概率公式有:pA|B=PABpB=29÷6190=2061即:p=2061故第一份抽到的是女生的概率为2990,在第二份抽到是男生的前提下,第一次抽到是女生的概率p为2061.的泊松分八、10分假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为t布,1求相继两次故障之间间隔时间T的概率分布;2求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率q;解答:1由泊松过程的定义,时间间隔分布为参数是λ的指数分布.即PT02PN16=0|N8=0=PN16=0/PN8=0=exp-16λ/exp-8λ=exp-8λ。

概率统计2.第3章作业题

概率统计2.第3章作业题

第三章作业题一. 填空:1、已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率=>>),(b Y a X P .2.已知),(Y X 的联合分布函数为),(y x F ,且d c b a <<,,则=≤<≤<),(d Y c b X a P3. 已知随机变量),(Y X 的联合分布密度函数如下, 则常数=K=),(y x f ⎩⎨⎧≤≤≤≤-其它。

,0;0,10),1(x y x x y K 二、选择1、设随机变量X 和Y 相互独立, 且都服从)1,0(区间上的均匀分布, 则仍服从均匀分布的随机变量是)(A Y X Z += )(B Y X Z -= )(C ),(Y X )(D ),(2Y X2、设二维随机变量(X,Y)取下列数组(-1,0),(-1,1),(0,0),(1,0)的概率依次为3/(4c),1/(2c),3/(4c),1/c ,其余数组概率为0,则c 的取值为( )A . 1B . 2C . 3D . 4三、综合1.已知随机变量X ,Y 的联合概率分布如下表(1)写出X 与Y 的边缘概率分布.(2)Y X ,是否相互独立?为什么?(3) 写出XY , Y X -的分布(4) 求1X =的条件下Y 的条件分布2. 已知随机变量X ,Y 的联合概率密度函数为⎩⎨⎧>>=+-其它,00,0,6),()32(y x e y x f y x(1)求X 与Y 的边缘密度)(x f X 及)(y f Y(2)判断X 与Y 是否相互独立,为什么?(3)求概率(1)P X Y +≤,(1,2)P X Y ≤≤3.设二维随机变量(X,Y )在区域 }||,10|),({x y x y x G ≤≤≤= 上服从均匀分布。

求:边缘密度函数(),()X Y f x f y .4.设随机变量X 与Y 相互独立,X ,Y 分别服从参数为)(,μλμλ≠的指数 分布,试求Y X Z 23+=的密度函数)(z f Z .5.设二维随机向量),(Y X 的联合密度函数为2,01,(,)0,C x x y x f x y ⎧<<<<=⎨⎩其他, 试求:(1)常数C ;(2)边际密度函数(),()X Y f x f y ,并讨论X 和Y 的独立性;(3))2(X Y P < 。

(整理)概率统计作业题(6)

(整理)概率统计作业题(6)

第一章练习题1. 如图,设1、2、3、4、5、6表示开关,用B表示“电路接通”i A表示“第i个开关闭合”请用i A表示事件B解:2.一大型超市声称,进入商店的小偷有60%可以被电视监测器发现,有40%被保安人员发现,有20%被监测器和保安人员同时发现,试求小偷被发现的概率.解:3. 周昂,李虎和张文丽是同班学生.如果他们到校先后次序的模式的出现的可能性是一样的,那么周昂比张文丽先到校的概率是多少?解:4.甲、乙两城市都位于长江下游,根据一百余年来,气象的记录,知道甲、乙两城市一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问(1) 乙市为雨天时,甲市为雨天的概率是多少?(2) 甲市为雨天时,乙市为雨天的概率是多少?(3) 甲、乙两城市至少有一个为雨天的概率是多少?解:5.某种动物由出生活到20岁的概率为0.8,活到25岁的概率为0.4,问现年20岁的这种动物活到25岁的概率是多少?解:6.发报台分别以0.6和0.8发出信号”*”和”+”,由于通信受到干扰,当发出信号为”*”时,收报台分别以概率0.8和0.2收到信号”*”和”+”.又若发出信号为”+”时,收报台分别以概率0.9和0.1收到信号”+”和”*”,求当收报台收到信号”*”时,发报台确实发出信号”*”的概率.解:7.某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求全厂产品的次品率.解:8.某高校甲系二年级1、2、3班的学生人数分别为16、25、25人,其中参加义务献血的人数分别为12、15、20人,从这三个班中随机抽取一个,再从该班的学生名单中任意抽取2人.(1)求第一次抽取的是已献血的人的概率;(2)如果已知第二次抽到的是未参加献血的,求第一次抽到的是已献血的学生的概率.解:9.美国总统常常从经济顾问委员会寻求各种建议.假设有三个持有不同经济理论的顾问(Perlstadt,Kramer,和Oppenheim).总统正在考虑采取一项关于工资和价格控制的新政策,并关注这项政策对失业率的影响.每位顾问就这种影响给总统一个个人预测,他根据以前与这些顾问一起工作的经验,总统已经形成了关于每位顾问有正确的经济理论的可能性的一个先验估计,分别为P(Perlstadt正确)=1/6P(Kramer正确)=1/3P(Oppenheim正确)=1/2假设总统采纳了所提出的政策,一年后,失业率上升了,总统应如何调整他对其顾问的理论正确性的估计.解:10.甲、乙、丙三人向同一架飞机射击.设甲、乙、丙击中的概率分别为0.4,0.5,0.7,又设只有一人击中,飞机坠毁的概率为0.2;若二人击中,飞机坠毁的概率为0.6;若三人击中,飞机必坠毁.求飞机坠毁的概率.解:11.如果)()(C B P C A P ≥,)()(C B P C A P ≥,则()().P A P B ≥证明:12.选择题(1).设C B A ,,三事件两两独立,则C B A ,,相互独立的充分必要条件是( )(A) A 与BC 独立; (B) AB 与C A 独立; (C) AB 与AC 独立; (D) B A 与C A 独立. (2).设当事件A 和B 同时发生时,事件C 必发生,则下述结论正确的是( )(A) 1)()()(-+≤B P A P C P ; (B) 1)()()(-+≥B P A P C P ; (C) )()(AB P C P =; (D) )()(B A P C P =.(3).设事件A 和B 满足B A ⊂,0)(>B P ,则下列选项必然成立的是( )(A) )()(B A P A P <; (B) )()(B A P A P ≤; (C) )()(B A P A P >; (D) )()(B A P A P ≥.(4).n 张奖券中有m 张可以中奖,现有k 个人每人购买一站张,其中至少有一个人中奖的概率为( )(A)knk mn m C C C 11--; (B)k nC m; (C) k nk m n C C --1; (D)∑=ki k ni mC C 1.(5).一批产品的一、二、三等品各占60%、30%、10%,从中任意取出一件,结果不是三等品,则该产品为一等品的概率为( )(A)21; (B) 41; (C) 31; (D) 32.第二章练习题1.一袋中有3个白球5个红球,从中任取2个球,求其中红球个数X的概率函数.解:2.自动生产线在调整以后出现废品的概率为p,生产过程中出现废品时立即重新调整,求两次调整之间生产的合格品数X的分布.解:3.一张考卷上有5道题目,同时每道题列出4个选择答案,其中有一个答案是正确的.某学生凭猜测能答对至少4道题的概率是多少?解:4.分析病史资料表明,因患感冒而最终死亡(相互独立)比例占0.2%.试求,目前正在患感冒的1000个病人中:(1)最终恰有4个人死亡的概率;(3)最终死亡人数不超过2个人的概率.解:5.某公司经理拟将一提案交董事会代表批准,规定如提案获多数代表赞成则通过.经理估计各代表对此提案投赞成票的概率是0.6,且各代表投票情况独立.为以较大概率通过提案,试问经理请三名懂事代表好还是五名好?解:6.一电话交换台每分钟收到呼唤次数服从参数为4的泊松分布,求(1)每分钟恰有8次呼唤的概率;(2)每分钟呼唤次数大于10次的概率.解:7.设某射手有5发子弹,连续向一目标射击,直到击中或子弹用完为止.已知其每次击中的概率为0.8,设X为射击的次数.求(1)X的概率分布;(2)未用完子弹的概率;(3)用完子弹且击中目标的概率;(4)已知用完子弹的条件下,其射中目标的概率.解:8.设随机变量X 的概率密度为:∞<<∞-=-x ce x f x)(,求:(1)常数c ;(2)X 的值落)1,1(-在内的概率; (3)X 的分布函数.解:9.设若)4,3(~N X ,(1)求}3{},2{},104{},52{>>≤<-≤<X P X P X P X P ; (2)确定c ,使得}{}{c X P c X P ≤=>.解:10.设)2,1(~U X ,求23+=X Y 的分布. 解:10.研究了英格兰在1875—1951年内,在矿山发生导致10人以上死亡的事故的频繁程度,得知相继两次事故之间的时间T (以日计)服从指数分布,其概率密度为: 002411)(241≤>⎪⎩⎪⎨⎧=-t t et f t,求分布函数)(t F ,并求概率}10050{<<T P . 解:11.选择题:(1).如果随机变量X 服从指数分布,则随机变量)2,min(X Y =的分布函数( ). (A) 是连续函数; (B) 至少有两个间断点; (C) 是阶梯函数; (D) 恰好有一个间断点.(2).设)1,1(~N X ,概率密度函数为)(x ϕ,下述选项正确的是( ).(A) 5.0)0()0(=≤=≥X P X P ; (B) 5.0)1()1(=≥=≤X P X P ;(C) )()(x x -=ϕϕ,),(+∞-∞∈x ; (D) )(1)(x F x F --=,),(+∞-∞∈x . (3).设!/)(k e a k X P k λλ-==),4,2,0( =k ,是随机变量X 的概率分布,则λ,a 一定满足( ).(A)0>λ; (B) 0>a ; (C) 0>λa ; (D) 0>λ且0>a . (4).设随机变量X 的密度函数为)1(1)(2x x f +=π,则X Y 2=的概率密度函数为( ).(A))41(12x +π; (B))4(22x +π; (C))1(22x +π; (D))4(12x +π.(5) .设随机变量),(~211σμN X ,随机变量),(~222σμN Y ,且1{1}P X μ-<> 2{1},P Y μ-<则必有(A)21σσ>; (B) 21σσ<; (C) 21μμ>; (D) 21μμ<.第三章练习题1.甲乙二人轮流投篮,假定每次甲的命中率为0.4,乙的命中率为o.6,且各次投篮相互独立.甲先投,乙再投,直到有人命中为止.求甲乙投篮次数X 与Y 的联合分布.解:2.设随机变量(X,Y)的联合概率密度为=),(y x f ⎩⎨⎧--其它,0),6(y x k ;40,20<<<<y x求:(1)常数k ;(2));3,1(<<Y X P (3));5.1(<X P (4))4(≤+Y X P解:3.已知X 与Y 同分布且概率密度为⎪⎩⎪⎨⎧<<=其他,030,814)(3x x x f设事件}0{>>=a X A 和}0{>>=a Y B 独立,且9/5)(=⋃B A P ,求常数a .解:4.一批产品中有a 件合格品与b 件次品.每次从这批产品中任取一件产品,共取两次,抽样方式是:(1)放回抽样;(2)不放回抽样.设随机变量X 及Y 分别表示第一次及第二次取出的次品数,写出上述两种情况下二维随机变量(X ,Y )的概率分布及边缘分布,并说明X 与Y 是否独立.解:5.设二维随机变量),(Y X 的联合密度函数为⎪⎩⎪⎨⎧≤≤=其他,01,421),(22y x y x y x f求条件密度函数和条件概率}2143{=>x Y P 解:6.设二维随机变量),(Y X 的概率函数为求:(1))0,1(≤≥Y X P ;(2))02(≤=Y X P ;(3)讨论Y X ,的独立性; 解:7.设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎪⎩⎪⎨⎧≤>=-.0,0;0,)(y y e y f y Y 求随机变量Y X Z +=的概率密度.解:8.设随机变量X ,Y 相互独立,并且]1,0[~U X ,)1(~e Y ,求Y X +,},max{Y X ,},min{Y X 的概率密度函数.解:9.设(X ,Y )的分布律为试求:(1)Y X Z +=解:10.选择题:(1).下列函数可以作为二维分布函数的是( ).(A) ⎩⎨⎧>+=.,0,8.0,1),(其他y x y x F (B) ⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt ey x F y x t s(C) ⎰⎰=∞-∞---y x ts dsdt ey x F ),(; (D) ⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x ey x F y x(2).设事件B A ,满足41)(=A P ,21)|()|(==A B P B A P .令 ⎩⎨⎧=.,0,,1不发生若发生若A A X ⎩⎨⎧=.,0,,1不发生若发生若B B Y 则===)0,0(Y X P .(A)81; (B) 83; (C) 85; (D) 87.(3).设随机变量X 与Y 相互独立且同分布:21)1()1(====Y P X P ,21)1()1(=-==-=Y P X P ,则==)1(XY P . (A)21; (B) 31; (C) 32; (D) 41. (4).设(),10~,N X (),21~,N Y Y X ,相互独立,令X Y Z 2-=,则~Z ( )(A ))5,2(-N ; (B) )5,1(N ; (C) )6,1(N ; (D) )9,2(N .(5).设二维随机变量),Y X (服从G 上的均匀分布,G 的区域由曲线2x y =与x y =所围,则),Y X (的联合概率密度函数为 .(A )⎩⎨⎧∈=他其,0),(,6),(G y x y x f ; (B )⎩⎨⎧∈=他其,0),(,6/1),(Gy x y x f ;(C )⎩⎨⎧∈=他其,0),(,2),(G y x y x f ; (D )⎩⎨⎧∈=他其,0),(,2/1),(Gy x y x f第四章练习题1. 设随机变量X 的分布律为如下, 求)(X E ,)12(-X E ,)(2X E .解:2. 射击比赛,每人射4次,每次射一发,约定全都不中得0分,只中一弹得15分,中两弹得30分,中三弹得55分,中四弹得100分.甲每次射击命中率为0.6,问他期望得多少分?解:3. 9粒种子分种在3个坑内,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求 的数学期望.解:4.(1)(2) 求完成该任务的期望天数;(3) 该任务的费用由两部分组成:20000元的固定费用加每天2000元,求整个项目费用的期望值;(4) 求完成天数的方差和标准差.解:5. 设离散型随机变量X的概率分布为(1)(2)试求DXEX,解:6. 设两个相互独立的随机变量X和Y均服从正态分布(1,1/5).如果随机变量X-aY+2满足条件X+-aYD=XaYE)2-[(]+(2)2求(1)a的值;(2))2-aYX(+D-aY(+XE及)2解:7. 游客乘电梯从底层到电视塔的顶层观光,电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行.一游客在早上八点的第X分钟到达底层候梯处,且X在[0,60]上服从均匀分布,求该游客等候时间Y的数学期望.解:8. 某电力排灌站,一天内停电的概率为0.1(设若停电,全天不能工作),若4天内全不停电,可获得利润6万元;如果停电一次,可获利3万元;如果有二次停电,则获利为0万元;若有三次以上停电,要亏损1万元.求4天内期望利润是多少?解:9. 一台设备由三大部件构成,在设备运行中各部件需要调整的概率相应为0.10,0.20,0.30.假设各部件的状态相互独立,以X表示同时需要调整的部件数,求X的概率分布、数学期望EX和方差DX.解:10. 一商店经销某种商品,每周进货的数量X与顾客对该种商品的需求量Y是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品可得利润500元.试计算此商店经销该种商品每周所得利润的期望值.解:11. 已知X ,Y 的相关系数为.,,d cY b aX +=+=ηζρ,求ηζ,的相关系数ζηρ 解:12. 设),0(~),,0(~2221σσN Y N X ,且相互独立Y a X a V Y a X a U 2121,-=+= (1)分别写出U,V 的概率密度函数;(2)求U,V 的相关系数; (3)讨论U,V 的独立性;(4)当U,V 相互独立时,写出(U,V)的联合密度函数解:13. 设A ,B 是二随机事件;随机变量 ⎩⎨⎧-=不出现若,出现若A A X 1,1 ⎩⎨⎧-=不出现若,出现若B B Y 1,1试证明随机变量X 和Y 不相关的充分必要条件是A 与B 相互独立. 解:14.试验证21X Y =与X 不相关,而32X Y =与X 却相关. 解:15.选择题:(1).随机变量X 的概率分布为:)1(21)(+==n n n X P ,),3,2,1( =n .则其数学期望)(X E 为( ).(A) 0; (B) 0.5; (C) 1; (D) 不存在. (2).随机变量X 与Y 独立同分布,令Y X -=ξ,Y X +=η,则随机变量ξ和η必然( ) (A) 独立; (B) 不独立; (C) 相关系数为0; (D) 相关系数不为0. (3).对任意随机变量X 与Y ,则下列等式中一定成立的为( )(A) )()()(Y D X D Y X D +=+; (B) )()()(Y E X E Y X E +=+; (C) )()()(Y D X D XY D =; (D) )()()(Y E X E XY E =.(4).设X 与Y 为任意随机变量,若)()()(Y E X E XY E =,则下述结论中成立的为( )(A) )()()(Y D X D Y X D +=+; (B) )()()(Y D X D XY D =;(C) X 与Y 相互独立; (D) X 与Y 不独立.(5).设离散型随机变量X 的可能取值为1、2、3,且3.2)(=X E ,9.5)(2=X E ,则对应取值1、2、3的概率应为( )(A)1.01=p ,2.02=p ,7.03=p ; (B) 3.01=p ,2.02=p ,5.03=p ; (C) 1.01=p ,4.02=p ,5.03=p ; (D) 2.01=p ,3.02=p ,5.03=p .第五章练习题1.利用Chebychev 不等式证明:能以大于0.97的概率断言,掷1000次均匀硬币,正面出现的次数在400到600次之间.解:2.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>=-0,00,)(x x xe x f x用Chebychev 不等式证明 2/1}40{≥<<X P解:3.电视机厂每月生产10000台电视机,但它的显象管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显象管,该车间每月应生产多少只显象管?解:4.保险公司对20岁男青年卖保险,每年交300元,约定:若在今后5年内投保历史资料表明一个人若能活到25岁并一直投保,则平均保险公司可获利1500元.试问:(1)20岁男青年能活过25岁以上的概率有多大?(2)收300元保险费,而一旦死亡要赔10万元,两者差距似乎很大,而公司还能获利,为什么?设有十万人投保能获利多少?(3)试求对每个20 岁投保人,大致可获利多少?(5)为了准备获利1000000元,应征集多少20岁男青年投保?解:5.药厂断言,该工厂生产的某种药品对于治疗一种疑难的疾病的治愈率为0.8.某医院试用了这种药品,任意抽查了100个服用次药品的病人,如果其中多于75人治愈,医院就接受药厂的这一断言,否则就拒绝之.问:(1)若实际上次药品对这种疾病的治愈率为0.8,那么,医院接受这一断言的概率是多少?(2)若实际上次药品对这种疾病的治愈率为0.7,那么,医院接受这一断言的概率是多少?解:6.某商店负责供应某地区1000人所需商品,其中一商品在一段时间内每人需用一件的概率为0.6,假定在这一段时间内个人购买与否彼此无关,问商店应预备多少件这样的商品,才能以99.7%的概率保证不会脱销(假定该商品在某一段时间内每人最多可以买一件).解:7.选择题(1).设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.(2).设随机变量序列}{n X 相互独立,],[~n n U X n -, ,2,1=n ,则对}{n X ( ). (A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律;(C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律. (3).设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1 =.m 表示事件A 在n次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εni i n p n n mP 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. (4).设 ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X Pn i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→; (C) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ. (5).设随机变量序列 ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (D) 01lim 212=⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P第六章练习题1. 在总体)3.6,52(2N 中随机抽取一容量为36的样本,求样本均值X 落在50.8至53.8之间的概率.解:由题意:)363.6,2.5(~2N X , 8293.0]8729.01[9564.0)1429.1()7143.1()63.6528.50()63.6528.53()8.538.50(=--=-Φ-Φ=-Φ--Φ=<<∴X P 2. 已知某种白炽灯泡的使用寿命服从正态分布, 在某星期所生产的该种灯泡中随机抽取10只,测得其寿命(以小时计)为:1067 919 1196 785 1126 936 918 1156 920 948试用样本数字特征法求出寿命总体的均值μ和方差2σ的估计值,并估计这种灯泡的寿命大于1300小时的概率.解:由题设知:样本容量10=n 样本均值1.997)9489201156918936112678511969191067(101=+++++++++=X 样本方差17305)1.997109489201156918936112678511969191067(91222222222222=⨯-+++++++++=S.0107.09893.01)3026.2(1)55.1311.9971300(1)173051.9971300(1)1300(1)1300(=-=Φ-=-Φ-=-Φ-≈≤-=>X P X P3. 设各种零件的重量都是随机变量, 它们相互独立, 且服从相同的分布,其数学期望为0.5公斤,均方差为0.1公斤,问5000只零件的总重量超过2510公斤的概率是多少?(提示:当n 较大时,随机变量之和n X X X X +++= 21近似地服从正态分布,以下第6题,第7题也适用)解:由题设知5000=n ,已知)50001.0,5.0(~5000500050001N X X X i i 近似∑===33.06700.01)444.0(1)0045.0002.0(1)50001.05.05020.0(1)5020.0(1)5020.0()500025105000()2510(=-=Φ-=Φ-=-Φ-=≤-=>=>=>∴X P X P X P X P4. 部件包括10个部分, 每部分的长度是一个随机变量, 它们相互独立, 且服从同一分布. 其数学期望为2毫米, 均方差为0.05毫米,规定总长度为1.020±毫米时产品合格, 试求产品合格的概率.解:由题设知102,1,05.0)(,2,10 ====i X D EX n i i则总长度∑==101i iXX ,且5.005.010,20210=⨯==⨯=DX EX则产品合格的概率为.1114.01)1414.0(2)5.01.0()5.01.0()1.0201.020(=-Φ=-Φ-Φ=+≤≤-X P 5. 计算机进行加法时, 对每个加数取整(即取最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布.(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少? (2) 几个数加在一起, 可使得误差总和的绝对值小于10的概率为0.90?解:由题设知15002,1,121)(,0,1500 ====i X D EX n i i则误差总和∑==15001i i X X ,且121500,0==DX EX(1).1802.0)]3416.1(1[2]1)12150015(2[1)15(1)15(=Φ-=-Φ-=≤-=>X P X P(2)∑==ni i n X X 1且12,0n DX EX n == 90.01)1210(21)10(=-Φ==<n X P n441121095.0)1210(=⇒⇒=Φ⇒n n n6.设总体X 具有概率密度 ⎩⎨⎧<<=其它0102)(x x x f从总体X 抽取样本4321,,,X X X X ,求最大顺序统计量max =T (4321,,,X X X X )的概率密度.解:)()]([4)(,)]([)(34t f t F t f t F t F T T ==⎪⎩⎪⎨⎧≥<<≤==⎰∞-111000)()(2t t t t dt t f t F t⎩⎨⎧<<==∴otherst t t f t F t f T 0108)()]([4)(737.已知一台电子设备的寿命T (单位:h )服从指数分布,其概率密度为⎪⎩⎪⎨⎧≤>=-0,00,001.0)(001.0t t e t f t现在检查了100台这样的设备,求寿命最短的时间小于10h 的概率解:设min =M (10021,X X X ))()](1[100)(,)](1[1)(99100m f m F m f m F m F M M -=--=⎩⎨⎧>-==-∞-⎰othersm e dt t f m F mm001)()(001.0⎩⎨⎧>=-=∴-othersm e m f m F m f M 01.0)()](1[100)(1.099则1.01)10(e M P -=<8.设n X X X ,,,21 是来自正态总体),(2σμN 的简单随机样本,2n S 为样本方差,求满足下式的最小值n : 95.0)5.1(22≥≤σn S P .解:因为)1(~)1(222-χσ-n S n n 95.0)5.1(22=≤σn S P 95.0))1(5.1)1((22=-≤σ-⇒n S n P n 27=⇒n9.设1021,,,X X X 为)3.0,0(2N 的一个样本,求∑>=1012}44.1{i i X P解:因为∑=χ10122)9(~3.0/i i X∑=>1012}44.1{i i X P ∑=>=101222}3.0/44.13.0/{i i X P1.0}163.0/{110122=≤-=∑=i i X P10.假定),(21X X 是取自正态总体),0(2σN 的一个样本,试求概率].4)/()[(221221<-+X X X X P解:),1.0(~221N X X σ+),1.0(~221N X X σ-)1(~2)(22221χσ+∴X X ,)1(~2)(22221χσ-∴X X)1,1(~)/()(221221F X X X X -+∴ .7.0]4)/()[(221221=<-+∴X X X X P11.已知321,,X X 是从正态总体),0(2σN 抽取的样本.证明:∑+∑-==-=-16122121612212)(/)(i i i i i i X X X X T )16,16(~F证明:),1.0(~2212N X X ii σ+-),1.0(~2212N X X ii σ--),16(~2)(216122212χσ+∑=-i i i X X ,),16(~2)(216122212χσ-∑=-i i i X X ∑∑=-=-+-=∴16122121612212)(/)(i i i i i i X X X X T)16,16(~2)(/2)(1612221216122212F X X X X i i i i i i ∑∑=-=-ο+ο-=12.选择题(1)、设12(,,,)n X X X 为来自总体X 的一个样本,则n X X X ,,,21 必然满足(C ) (A )独立不同分布 (B )不独立但同分布 (C )独立同分布 (D )无法确定(2)、设),,,(21n X X X 为来自总体),(~2σμN X 的一个样本,其中2,μσ未知,则下 面不是统计量的是(D ) (A )i X (B )11n i i X X n ==∑ (C )211()1n i i X X n =-∑- (D )211()n i i X n μ=-∑ (3)、设总体)16,3(~N X ,126,,,X X X 为来自总体X 的一个样本,X 为样本均值,则 (没正确答案)(A ))1,0(~3N X - (B ))1,0(~)3(4N X - (C ))1,0(~43N X - (D ))1,0(~23N X - (4)、设),,,(21n X X X (1)n >来自总体)1,0(~N X ,X 与S 分别为样本均值和样本标准差,则有(C ) (A )(0,1)X N (B )(0,1)nXN (C) 221()ni i X n χ=∑ (D )(1)Xt n S-(5)、设),,,(21n X X X 为来自总体)1,0(~N X 的一个样本,统计量Y ,则(B )(A )2(1)Y n χ- (B) (1)Yt n - (C) (1,1)Y F n - (D)(1,1)YF n -第七章练习题1. 对目标独立地进行射击,直到命中为止,假设n 轮(n >1)这样射击,各轮射击的次数相应地为n k k k ,,,21 ,试求命中率p 的极大似然估计和矩估计.解:2.设某计算机用来产生某彩票摇奖时所需的10个随机数0,1,2, …, 9.设某人用该机做了100天试验,每天都是第一次摇到数字1为止.此100天中各天的试验次数分布如下:假设每次试验相互独立且产生数字1的概率p 保持不变.(1)求p 的最大然估计值p ˆ;(2)如果所得1.0ˆ≠p,请做出所有可能的解释;(3)求p 的矩估计值p ˆ. 解:3.已知总体的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它010)1()(x x x f ββ现抽取n =6的样本,样本观察值分别为0.2,0.3,0.9,0.7,0.8,0.7试用矩估计法和极大似然估计法求出β的估计量.解:4.设总体服从瑞利分布00,0,)(22>⎪⎩⎪⎨⎧<≥=-θθθx x ex x f xh 为参数n X X X ,,,21 为简单随机样本求θ的极大似然估计量;(2)该估计量是否为无偏估计量?说明理由.解:5.设随机变量X 在区间],0(θ上服从均匀分布,由此总体抽出的一随机样本n X X X ,,,21 .试证明θ的有偏估计)()1(1ˆn n X n n +=θ及一个无偏估计)()2(1ˆn n X nn +=θ都是θ的一致估计.证明:8.设总体X 在区间],0[θ上服从均匀分布,其中0>θ是未知参数,求θ的最大似然估计量,并判断它是否为θ的无偏估计.解:9.某车间生产的螺杆直径服从正态分布,今随机抽取5只,测得直径(单位:mm )为: 22.5 21.5 22.0 21.8 21.4(1) 已知0.3σ=,求μ的0.95置信区间; (2) σ未知,求μ的0.95置信区间. 解:10.从总体X 中抽取样本321,X X X ,,证明下列三个统计量,632ˆ3211X X X ++=μ,442ˆ3212X X X ++=μ,333ˆ3213X XX ++=μ 都是总体均值μ=)(X E 的无偏估计量;并确定哪个估计量更有效.解:11.从正态总体中抽取容量为5的样本,其观测值为: 1.86 , 3.22 , 1.46 , 4.01 , 2.64 ,σ及标准差σ的0.95置信区间.试求正态总体方差2解:12.为了研究施肥和不施肥对某钟农作物产量的影响,选了十三个小区在其他条件相同的情况下进行对比实验,收获量如下表:均产量之差的置信水平为0.95的置信区间.解:13.从甲乙两个生产蓄电池的工厂的产品中,分别抽取一些样品,测得蓄电池的电容量(A.h)如下:甲厂:144 141 138 142 141 143 138 137;乙厂:142 143 139 140 138 141 140 138 142 136.设两个工厂生产的蓄电池的容量分别服从正态分布),(2xx N σμ及),(2y y N σμ,求: (1)电容量的方差比22yx σσ的置信水平为95%的置信区间;(2)电容量的均值差y x μμ-的置信水平为95%的置信区间(假定22y x σσ=).解:14.从汽车轮胎厂生产的某种轮胎中抽取个10样品进行磨损试验,直至轮胎行驶到磨坏为止,测得它们的行驶路程(km)如下:41250 41010 42650 38970 40200 42500 43500 40400 41870 39800 设汽车行驶路程服从正态分布),(~2σμN X ,求:(1)μ的置信水平为95%的单侧置信下限;(2)σ的置信水平为95%的单侧置信上限.解:16.选择题 (1)、θ为总体X 的未知参数,θ的估计量为θ,则有 (A )θ是一个数,近似等于θ; (B )θ是一个随机变量;(C )θ是一个统计量,且()E θθ=; (D )当n 越大,θ的值可任意靠近θ. (2)、设12(,)X X 为来自任意总体X 的一个容量为2的样本,则在下列EX 的无偏线性估 计量中,最有效的估计量是(A )122133X X + (B )121344X X + (C )122355X X + (D )121()2X X +(3)、设θ是参数θ的无偏估计,且有()0D θ≠,则2θ必为2()θ的(A )无偏估计 (B )一致估计 (C )有效估计 (D )有偏估计(4)、设总体2(,)XN μσ,其中2σ已知,若已知样本容量和置信度1α-均不变,则对于不同的样本观察值,总体均值μ的置信区间的长度(A )变长 (B )变短 (C) 不变 (D )不能确定(5)、已知一批零件的长度X (单位:cm )服从正态总体(,1)N μ,从中随机抽取16个零件,测得其长度的平均值为40cm ,则μ的置信度为0.95的置信区间是 (注:标准正态分布函数值(1.96)0.975,(1.645)0.95Φ=Φ=)(A )(31.95, 40.49) (B) (39.59, 40.41) (C) (-∞, 31.95) (D) (40.49, +∞)第八章练习题1.一个停车场,有12个位置排成一行,某人发现有8个位置停了车,而有4个相连的位置空着。

应用概率统计作业

应用概率统计作业

应⽤概率统计作业应⽤概率统计1⼀、填空题1.设C B A 、、是3个随机事件,则事件“A 、B 、C 都不发⽣”,⽤C B A 、、表⽰为;2.设随机变量X 服从⼆项分布),(p n B ,则=EXDX; 3.设随机变量X 的分布律为() ,2,1,0!)(=?==k k a k X P kλ,其中0>λ为已知常数,则常数a 为;4.若事件C B A 、、相互独⽴,且25.0)(=A P ,5.0)(=B P ,4.0)(=C P ,则)(C B A P = ;5.设随机变量X 在()1,0服从均匀分布,则X e Y =的概率密度为; 6.设随机变量X 的分布律为则12+X 的分布律为;7.随机变量X 、Y 的相关系数XY ρ定义为;8.若b a ,为常数,X 的⽅差为)(X D ,则=+)(b aX D ; 9.设n X X X ,,,21 是来⾃正态总体()2 ,~σµN X 的样本,2S 为样本⽅差,则()2S E 为;10.设n X X X ,,,21 是来⾃总体),(~2σµN X 的样本,且2σ未知,⽤样本检验假设0H :0µµ=时,采⽤统计量是。

姓名:___________ 学号:___________得分:___________ 教师签名:___________⼆、判断题1.设C B A 、、表⽰3个事件,则________C B A ABC =;() 2.n X X X ,,,21 是来⾃于总体),(2σµN 的样本,则∑==ni iXnX 11~),(2σµn n N 分布() 3.若()2,~σµNX ,则()()σµ==X D X E ,;() 4.设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表⽰{}10|<<x x ;()5.若事件A 与B 互斥,则A 与B ⼀定相互独⽴;() 6.对于任意两个事件B A 、,必有=B A B A ;() 7.在5次独⽴重复试验中,事件A 发⽣了2次,则()52=A P ;() 8.设随机变量ξ的⽅差1=ξD ,且βαξη+=(α、β为⾮零常数),则ηD 为βα+2;()9.两个相互独⽴的随机变量Y X ,的⽅差分别为4与2;则()2823=-Y X D ()10.设总体)1,(~µN X , 1X ,2X ,3X 是来⾃于总体的样本,则321?X X X ++=µ是µ的⽆偏估计量。

经济概率统计作业参考答案(第一章)

经济概率统计作业参考答案(第一章)

第一章 随机事件及概率作业题1、同时抛掷两颗骰子,以),(y x 表示第一颗、第二颗骰子分别出现的点数,设事件A 表示“两颗骰子出现点数之和为奇数”,B 表示“两颗骰子出现点数之差为0”,C 表示“两颗骰子出现点数之积不超过16”,写出事件A ,BC ,A B -中所含的样本点。

解:=A {(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5)}=BC {(1,1),(2,2),(3,3),(4,4)} =-A B {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}2、设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示下列有关随机事件:(1)A 、B 都发生而C 不发生;(2)B 发生;(3)A ,B ,C 至少一个发生;(4)A ,B ,C 恰有一个发生;(5)A ,B ,C 不多于两个发生。

解:(1)C AB (2)B (3)C B A(4)C B A C B A C B A ++ (5)ABC3、袋中有球12个,2白10黑,今从中取4个,试求(1)恰有一个白球的概率;(2)至少有一个白球的概率。

解:(1)331641231012=C C C (2)33194122102241231012=+C C C C C C4、从30件产品中(其中27件合格品,3件不合格品)任取3件产品,求下的概率:(1)正好1个不合格品;(2)至少一个不合格品;(3)最多一个不合格品。

解:(1)40601053)(33022713==C C C A P (2)8122271)(330327=-=C C B P (3)20301989)(33022713330327=+=C C C C C C P5、某种饮料每箱12听,不法商人在每箱中放入4听假冒货,今质检人员从一箱中抽取3听进行检验,问查出假冒货的概率。

概率统计作业题

概率统计作业题

《概率统计》习题(一)一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B )A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7, 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 (A )P (A+B) = P (A); (B )()P(A);P AB = (C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销” (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。

3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 4. 对于事件A ,B ,下列命题正确的是 (A )若A ,B 互不相容,则A 与B 也互不相容。

(B )若A ,B 相容,那么A 与B 也相容。

(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。

(D )若A ,B 相互独立,那么A 与B 也相互独立。

5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -=三、计算题1. 10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。

[数学]概率统计作业题6

[数学]概率统计作业题6

第一章练习题1. 如图,设1、2、3、4、5、6表示开关,用B表示“电路接通”i A表示“第i个开关闭合”请用i A表示事件B解:2.一大型超市声称,进入商店的小偷有60%可以被电视监测器发现,有40%被保安人员发现,有20%被监测器和保安人员同时发现,试求小偷被发现的概率.解:3. 周昂,李虎和张文丽是同班学生.如果他们到校先后次序的模式的出现的可能性是一样的,那么周昂比张文丽先到校的概率是多少?解:4.甲、乙两城市都位于长江下游,根据一百余年来,气象的记录,知道甲、乙两城市一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问(1) 乙市为雨天时,甲市为雨天的概率是多少?(2) 甲市为雨天时,乙市为雨天的概率是多少?(3) 甲、乙两城市至少有一个为雨天的概率是多少?解:5.某种动物由出生活到20岁的概率为0.8,活到25岁的概率为0.4,问现年20岁的这种动物活到25岁的概率是多少?解:6.发报台分别以0.6和0.8发出信号”*”和”+”,由于通信受到干扰,当发出信号为”*”时,收报台分别以概率0.8和0.2收到信号”*”和”+”.又若发出信号为”+”时,收报台分别以概率0.9和0.1收到信号”+”和”*”,求当收报台收到信号”*”时,发报台确实发出信号”*”的概率.解:7.某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求全厂产品的次品率.解:8.某高校甲系二年级1、2、3班的学生人数分别为16、25、25人,其中参加义务献血的人数分别为12、15、20人,从这三个班中随机抽取一个,再从该班的学生名单中任意抽取2人.(1)求第一次抽取的是已献血的人的概率;(2)如果已知第二次抽到的是未参加献血的,求第一次抽到的是已献血的学生的概率.解:9.美国总统常常从经济顾问委员会寻求各种建议.假设有三个持有不同经济理论的顾问(Perlstadt,Kramer,和Oppenheim).总统正在考虑采取一项关于工资和价格控制的新政策,并关注这项政策对失业率的影响.每位顾问就这种影响给总统一个个人预测,他们所预测的失业率的概率综述于下表:根据以前与这些顾问一起工作的经验,总统已经形成了关于每位顾问有正确的经济理论的可能性的一个先验估计,分别为P (Perlstadt 正确)=1/6P (Kramer 正确)=1/3 P (Oppenheim 正确)=1/2假设总统采纳了所提出的政策,一年后,失业率上升了,总统应如何调整他对其顾问的理论正确性的估计.解:10.甲、乙、丙三人向同一架飞机射击.设甲、乙、丙击中的概率分别为0.4,0.5,0.7,又设只有一人击中,飞机坠毁的概率为0.2;若二人击中,飞机坠毁的概率为0.6;若三人击中,飞机必坠毁.求飞机坠毁的概率.解:11.如果)()(C B P C A P ≥,)()(C B P C A P ≥,则()().P A P B ≥证明:12.选择题(1).设C B A ,,三事件两两独立,则C B A ,,相互独立的充分必要条件是( )(A) A 与BC 独立; (B) AB 与C A 独立; (C) AB 与AC 独立; (D) B A 与C A 独立. (2).设当事件A 和B 同时发生时,事件C 必发生,则下述结论正确的是( )(A) 1)()()(-+≤B P A P C P ; (B) 1)()()(-+≥B P A P C P ; (C) )()(AB P C P =; (D) )()(B A P C P =.(3).设事件A 和B 满足B A ⊂,0)(>B P ,则下列选项必然成立的是( )(A) )()(B A P A P <; (B) )()(B A P A P ≤; (C) )()(B A P A P >; (D) )()(B A P A P ≥.(4).n 张奖券中有m 张可以中奖,现有k 个人每人购买一站张,其中至少有一个人中奖的概率为( )(A)knk mn m C C C 11--; (B)k nC m; (C) k nk m n C C --1; (D)∑=ki k ni mC C 1.(5).一批产品的一、二、三等品各占60%、30%、10%,从中任意取出一件,结果不是三等品,则该产品为一等品的概率为( )(A)21; (B) 41; (C) 31; (D) 32.第二章练习题1.一袋中有3个白球5个红球,从中任取2个球,求其中红球个数X的概率函数.解:2.自动生产线在调整以后出现废品的概率为p,生产过程中出现废品时立即重新调整,求两次调整之间生产的合格品数X的分布.解:3.一张考卷上有5道题目,同时每道题列出4个选择答案,其中有一个答案是正确的.某学生凭猜测能答对至少4道题的概率是多少?解:4.分析病史资料表明,因患感冒而最终死亡(相互独立)比例占0.2%.试求,目前正在患感冒的1000个病人中:(1)最终恰有4个人死亡的概率;(3)最终死亡人数不超过2个人的概率.解:5.某公司经理拟将一提案交董事会代表批准,规定如提案获多数代表赞成则通过.经理估计各代表对此提案投赞成票的概率是0.6,且各代表投票情况独立.为以较大概率通过提案,试问经理请三名懂事代表好还是五名好?解:6.一电话交换台每分钟收到呼唤次数服从参数为4的泊松分布,求(1)每分钟恰有8次呼唤的概率;(2)每分钟呼唤次数大于10次的概率.解:7.设某射手有5发子弹,连续向一目标射击,直到击中或子弹用完为止.已知其每次击中的概率为0.8,设X为射击的次数.求(1)X的概率分布;(2)未用完子弹的概率;(3)用完子弹且击中目标的概率;(4)已知用完子弹的条件下,其射中目标的概率.解:8.设随机变量X的概率密度为:∞f x)(,求:cex=-x<<-∞(1)常数c;(2)X的值落)1,1(-在内的概率;(3)X的分布函数.解:9.设若)4,3(X,~N(1)求}3≤<X≤P<-XP;XPPX>{},{2{>},2},{5410(2)确定c,使得}XP≤c=>.{c{P}X解:10.设)2,1(~UX,求2Y的分布.3+=X解:10.研究了英格兰在1875—1951年内,在矿山发生导致10人以上死亡的事故的频繁程度,得知相继两次事故之间的时间T (以日计)服从指数分布,其概率密度为: 002411)(241≤>⎪⎩⎪⎨⎧=-t t et f t,求分布函数)(t F ,并求概率}10050{<<T P . 解:11.选择题:(1).如果随机变量X 服从指数分布,则随机变量)2,min(X Y =的分布函数( ). (A) 是连续函数; (B) 至少有两个间断点; (C) 是阶梯函数; (D) 恰好有一个间断点.(2).设)1,1(~N X ,概率密度函数为)(x ϕ,下述选项正确的是( ).(A) 5.0)0()0(=≤=≥X P X P ; (B) 5.0)1()1(=≥=≤X P X P ;(C) )()(x x -=ϕϕ,),(+∞-∞∈x ; (D) )(1)(x F x F --=,),(+∞-∞∈x . (3).设!/)(k e a k X P k λλ-==),4,2,0( =k ,是随机变量X 的概率分布,则λ,a 一定满足( ).(A)0>λ; (B) 0>a ; (C) 0>λa ; (D) 0>λ且0>a . (4).设随机变量X 的密度函数为)1(1)(2x x f +=π,则X Y 2=的概率密度函数为( ).(A))41(12x +π; (B))4(22x +π; (C))1(22x +π; (D))4(12x +π.(5) .设随机变量),(~211σμN X ,随机变量),(~222σμN Y ,且1{1}P X μ-<>2{1},P Y μ-<则必有(A)21σσ>; (B) 21σσ<; (C) 21μμ>; (D) 21μμ<.第三章练习题1.甲乙二人轮流投篮,假定每次甲的命中率为0.4,乙的命中率为o.6,且各次投篮相互独立.甲先投,乙再投,直到有人命中为止.求甲乙投篮次数X 与Y 的联合分布.解:2.设随机变量(X,Y)的联合概率密度为=),(y x f ⎩⎨⎧--其它,0),6(y x k ;40,20<<<<y x求:(1)常数k ;(2));3,1(<<Y X P (3));5.1(<X P (4))4(≤+Y X P解:3.已知X 与Y 同分布且概率密度为⎪⎩⎪⎨⎧<<=其他,030,814)(3x x x f设事件}0{>>=a X A 和}0{>>=a Y B 独立,且9/5)(=⋃B A P ,求常数a .解:4.一批产品中有a 件合格品与b 件次品.每次从这批产品中任取一件产品,共取两次,抽样方式是:(1)放回抽样;(2)不放回抽样.设随机变量X 及Y 分别表示第一次及第二次取出的次品数,写出上述两种情况下二维随机变量(X ,Y )的概率分布及边缘分布,并说明X 与Y 是否独立.解:5.设二维随机变量),(Y X 的联合密度函数为⎪⎩⎪⎨⎧≤≤=其他,01,421),(22y x y x y x f求条件密度函数和条件概率}2143{=>x Y P 解:6.设二维随机变量),(Y X 的概率函数为求:(1))0,1(≤≥Y X P ;(2))02(≤=Y X P ;(3)讨论Y X ,的独立性; 解:7.设X 与Y 两个相互独立的随机变量,其概率密度分别为 ⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎪⎩⎪⎨⎧≤>=-.0,0;0,)(y y e y f y Y 求随机变量Y X Z +=的概率密度.解:8.设随机变量X ,Y 相互独立,并且]1,0[~U X ,)1(~e Y ,求Y X +,},max{Y X ,},min{Y X 的概率密度函数.解:9.设(X ,Y )的分布律为试求:(1)Y X Z +=解:10.选择题:(1).下列函数可以作为二维分布函数的是( ).(A) ⎩⎨⎧>+=.,0,8.0,1),(其他y x y x F (B) ⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt ey x F y x t s(C) ⎰⎰=∞-∞---y x ts dsdt ey x F ),(; (D) ⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x ey x F y x(2).设事件B A ,满足41)(=A P ,21)|()|(==A B P B A P .令 ⎩⎨⎧=.,0,,1不发生若发生若A A X ⎩⎨⎧=.,0,,1不发生若发生若B B Y 则===)0,0(Y X P .(A)81; (B) 83; (C) 85; (D) 87.(3).设随机变量X 与Y 相互独立且同分布:21)1()1(====Y P X P ,21)1()1(=-==-=Y P X P ,则==)1(XY P . (A)21; (B) 31; (C) 32; (D) 41. (4).设(),10~,N X (),21~,N Y Y X ,相互独立,令X Y Z 2-=,则~Z ( )(A ))5,2(-N ; (B) )5,1(N ; (C) )6,1(N ; (D) )9,2(N .(5).设二维随机变量),Y X (服从G 上的均匀分布,G 的区域由曲线2x y =与x y =所围,则),Y X (的联合概率密度函数为 . (A )⎩⎨⎧∈=他其,0),(,6),(G y x y x f ; (B )⎩⎨⎧∈=他其,0),(,6/1),(Gy x y x f ;(C )⎩⎨⎧∈=他其,0),(,2),(G y x y x f ; (D )⎩⎨⎧∈=他其,0),(,2/1),(Gy x y x f第四章练习题1. 设随机变量X 的分布律为如下, 求)(X E ,)12(-X E ,)(2X E .解:2. 射击比赛,每人射4次,每次射一发,约定全都不中得0分,只中一弹得15分,中两弹得30分,中三弹得55分,中四弹得100分.甲每次射击命中率为0.6,问他期望得多少分?解:3. 9粒种子分种在3个坑内,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.解:4.(1)(2) 求完成该任务的期望天数;(3) 该任务的费用由两部分组成:20000元的固定费用加每天2000元,求整个项目费用的期望值;(4) 求完成天数的方差和标准差.解:5. 设离散型随机变量X的概率分布为(1)(2)试求DXEX,,众数和中位数.解:6. 设两个相互独立的随机变量X和Y均服从正态分布(1,1/5).如果随机变量X-aY+2满足条件XE-aYaYDX+-)2][()2+(2=求(1)a的值;(2))2-aYX(+D(+E及)2-aYX解:7. 游客乘电梯从底层到电视塔的顶层观光,电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行.一游客在早上八点的第X分钟到达底层候梯处,且X在[0,60]上服从均匀分布,求该游客等候时间Y的数学期望.解:8. 某电力排灌站,一天内停电的概率为0.1(设若停电,全天不能工作),若4天内全不停电,可获得利润6万元;如果停电一次,可获利3万元;如果有二次停电,则获利为0万元;若有三次以上停电,要亏损1万元.求4天内期望利润是多少?解:9. 一台设备由三大部件构成,在设备运行中各部件需要调整的概率相应为0.10,0.20,0.30.假设各部件的状态相互独立,以X 表示同时需要调整的部件数,求X 的概率分布、数学期望EX 和方差DX .解:10. 一商店经销某种商品,每周进货的数量X 与顾客对该种商品的需求量Y 是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品可得利润500元.试计算此商店经销该种商品每周所得利润的期望值.解:11. 已知X ,Y 的相关系数为.,,d cY b aX +=+=ηζρ,求ηζ,的相关系数ζηρ 解:12. 设),0(~),,0(~2221σσN Y N X ,且相互独立Y a X a V Y a X a U 2121,-=+=(1)分别写出U,V 的概率密度函数; (2)求U,V 的相关系数; (3)讨论U,V 的独立性;(4)当U,V 相互独立时,写出(U,V)的联合密度函数解:13. 设A ,B 是二随机事件;随机变量 ⎩⎨⎧-=不出现若,出现若A A X 1,1 ⎩⎨⎧-=不出现若,出现若B B Y 1,1试证明随机变量X 和Y 不相关的充分必要条件是A 与B 相互独立. 解:14.试验证21X Y =与X 不相关,而32X Y =与X 却相关. 解:15.选择题:(1).随机变量X 的概率分布为:)1(21)(+==n n n X P ,),3,2,1( =n .则其数学期望)(X E 为( ).(A) 0; (B) 0.5; (C) 1; (D) 不存在.(2).随机变量X 与Y 独立同分布,令Y X -=ξ,Y X +=η,则随机变量ξ和η必然( ) (A) 独立; (B) 不独立; (C) 相关系数为0; (D) 相关系数不为0.(3).对任意随机变量X 与Y ,则下列等式中一定成立的为( )(A) )()()(Y D X D Y X D +=+; (B) )()()(Y E X E Y X E +=+; (C) )()()(Y D X D XY D =; (D) )()()(Y E X E XY E =.(4).设X 与Y 为任意随机变量,若)()()(Y E X E XY E =,则下述结论中成立的为( )(A) )()()(Y D X D Y X D +=+; (B) )()()(Y D X D XY D =;(C) X 与Y 相互独立; (D) X 与Y 不独立.(5).设离散型随机变量X 的可能取值为1、2、3,且3.2)(=X E ,9.5)(2=X E ,则对应取值1、2、3的概率应为( )(A)1.01=p ,2.02=p ,7.03=p ; (B) 3.01=p ,2.02=p ,5.03=p ; (C) 1.01=p ,4.02=p ,5.03=p ; (D) 2.01=p ,3.02=p ,5.03=p .第五章练习题1.利用Chebychev 不等式证明:能以大于0.97的概率断言,掷1000次均匀硬币,正面出现的次数在400到600次之间.解:2.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>=-0,00,)(x x xe x f x 用Chebychev 不等式证明 2/1}40{≥<<X P解:3.电视机厂每月生产10000台电视机,但它的显象管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显象管,该车间每月应生产多少只显象管?解:4.保险公司对20岁男青年卖保险,每年交300元,约定:若在今后5年内投保历史资料表明一个人若能活到25岁并一直投保,则平均保险公司可获利1500元.试问:(1)20岁男青年能活过25岁以上的概率有多大?(2)收300元保险费,而一旦死亡要赔10万元,两者差距似乎很大,而公司还能获利,为什么?设有十万人投保能获利多少?(3)试求对每个20 岁投保人,大致可获利多少?(5)为了准备获利1000000元,应征集多少20岁男青年投保?解:5.药厂断言,该工厂生产的某种药品对于治疗一种疑难的疾病的治愈率为0.8.某医院试用了这种药品,任意抽查了100个服用次药品的病人,如果其中多于75人治愈,医院就接受药厂的这一断言,否则就拒绝之.问:(1)若实际上次药品对这种疾病的治愈率为0.8,那么,医院接受这一断言的概率是多少?(2)若实际上次药品对这种疾病的治愈率为0.7,那么,医院接受这一断言的概率是多少?解:6.某商店负责供应某地区1000人所需商品,其中一商品在一段时间内每人需用一件的概率为0.6,假定在这一段时间内个人购买与否彼此无关,问商店应预备多少件这样的商品,才能以99.7%的概率保证不会脱销(假定该商品在某一段时间内每人最多可以买一件).解:7.选择题(1).设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.(2).设随机变量序列}{n X 相互独立,],[~n n U X n -, ,2,1=n ,则对}{n X ( ). (A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律;(C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律. (3).设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1 =.m 表示事件A 在n 次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εn i i n p n n m P 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. (4).设 ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→;(C) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ.(5).设随机变量序列 ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσn i i n X n P ; (D) 01lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσn i i n X n P第六章练习题1. 在总体)3.6,52(2N 中随机抽取一容量为36的样本,求样本均值X 落在50.8至53.8之间的概率.解:由题意:)363.6,2.5(~2N X , 8293.0]8729.01[9564.0)1429.1()7143.1()63.6528.50()63.6528.53()8.538.50(=--=-Φ-Φ=-Φ--Φ=<<∴X P2. 已知某种白炽灯泡的使用寿命服从正态分布, 在某星期所生产的该种灯泡中随机抽取10只,测得其寿命(以小时计)为:1067 919 1196 785 1126 936 918 1156 920 948试用样本数字特征法求出寿命总体的均值μ和方差2σ的估计值,并估计这种灯泡的寿命大于1300小时的概率.解:由题设知:样本容量10=n 样本均值1.997)9489201156918936112678511969191067(101=+++++++++=X 样本方差17305)1.997109489201156918936112678511969191067(91222222222222=⨯-+++++++++=S .0107.09893.01)3026.2(1)55.1311.9971300(1)173051.9971300(1)1300(1)1300(=-=Φ-=-Φ-=-Φ-≈≤-=>X P X P3. 设各种零件的重量都是随机变量, 它们相互独立, 且服从相同的分布,其数学期望为0.5公斤,均方差为0.1公斤,问5000只零件的总重量超过2510公斤的概率是多少?(提示:当n 较大时,随机变量之和n X X X X +++= 21近似地服从正态分布,以下第6题,第7题也适用)解:由题设知5000=n ,已知)50001.0,5.0(~5000500050001N X X X i i 近似∑===33.06700.01)444.0(1)0045.0002.0(1)50001.05.05020.0(1)5020.0(1)5020.0()500025105000()2510(=-=Φ-=Φ-=-Φ-=≤-=>=>=>∴X P X P X P X P4. 部件包括10个部分, 每部分的长度是一个随机变量, 它们相互独立, 且服从同一分布. 其数学期望为2毫米, 均方差为0.05毫米,规定总长度为1.020±毫米时产品合格, 试求产品合格的概率.解:由题设知102,1,05.0)(,2,10 ====i X D EX n i i则总长度∑==101i iXX ,且5.005.010,20210=⨯==⨯=DX EX则产品合格的概率为.1114.01)1414.0(2)5.01.0()5.01.0()1.0201.020(=-Φ=-Φ-Φ=+≤≤-X P 5. 计算机进行加法时, 对每个加数取整(即取最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布.(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少? (2) 几个数加在一起, 可使得误差总和的绝对值小于10的概率为0.90?解:由题设知15002,1,121)(,0,1500====i X D EX n i i则误差总和∑==15001i i X X ,且121500,0==DX EX(1).1802.0)]3416.1(1[2]1)12150015(2[1)15(1)15(=Φ-=-Φ-=≤-=>X P X P(2)∑==ni i n X X 1且12,0nDX EX n ==90.01)1210(21)10(=-Φ==<n X P n441121095.0)1210(=⇒⇒=Φ⇒n n n6.设总体X 具有概率密度 ⎩⎨⎧<<=其它0102)(x x x f从总体X 抽取样本4321,,,X X X X ,求最大顺序统计量m ax =T (4321,,,X X X X )的概率密度.解:)()]([4)(,)]([)(34t f t F t f t F t F T T ==⎪⎩⎪⎨⎧≥<<≤==⎰∞-111000)()(2t t t t dt t f t F t⎩⎨⎧<<==∴otherst t t f t F t f T 0108)()]([4)(737.已知一台电子设备的寿命T (单位:h )服从指数分布,其概率密度为⎪⎩⎪⎨⎧≤>=-0,00,001.0)(001.0t t e t f t 现在检查了100台这样的设备,求寿命最短的时间小于10h 的概率解:设min =M (10021,X X X ))()](1[100)(,)](1[1)(99100m f m F m f m F m F M M -=--=⎩⎨⎧>-==-∞-⎰othersm e dt t f m F mm001)()(001.0⎩⎨⎧>=-=∴-othersm e m f m F m f M 001.0)()](1[100)(1.099则1.01)10(e M P -=<8.设n X X X ,,,21 是来自正态总体),(2σμN 的简单随机样本,2n S 为样本方差,求满足下式的最小值n : 95.0)5.1(22≥≤σnS P .解:因为)1(~)1(222-χσ-n S n n95.0)5.1(22=≤σn S P 95.0))1(5.1)1((22=-≤σ-⇒n S n P n 27=⇒n9.设1021,,,X X X 为)3.0,0(2N 的一个样本,求∑>=1012}44.1{i i X P解:因为∑=χ10122)9(~3.0/i i X∑=>1012}44.1{i i X P ∑=>=101222}3.0/44.13.0/{i i X P1.0}163.0/{110122=≤-=∑=i i X P10.假定),(21X X 是取自正态总体),0(2σN 的一个样本,试求概率].4)/()[(221221<-+X X X X P解:),1.0(~221N X X σ+),1.0(~221N X X σ-)1(~2)(22221χσ+∴X X ,)1(~2)(22221χσ-∴X X )1,1(~)/()(221221F X X X X -+∴ .7.0]4)/()[(221221=<-+∴X X X X P11.已知321,,X X 是从正态总体),0(2σN 抽取的样本.证明:∑+∑-==-=-16122121612212)(/)(i i i i i i X X X X T )16,16(~F证明:),1.0(~2212N X X ii σ+-),1.0(~2212N X X ii σ--),16(~2)(216122212χσ+∑=-i i i X X ,),16(~2)(216122212χσ-∑=-i i i X X ∑∑=-=-+-=∴16122121612212)(/)(i i i i i i X X X X T)16,16(~2)(/2)(1612221216122212F X X X X i i i i i i ∑∑=-=-ο+ο-=12.选择题(1)、设12(,,,)n X X X 为来自总体X 的一个样本,则n X X X ,,,21 必然满足(C ) (A )独立不同分布 (B )不独立但同分布 (C )独立同分布 (D )无法确定(2)、设),,,(21n X X X 为来自总体),(~2σμN X 的一个样本,其中2,μσ未知,则下 面不是统计量的是(D ) (A )i X (B )11n i i X X n ==∑ (C )211()1n i i X X n =-∑- (D )211()n i i X n μ=-∑ (3)、设总体)16,3(~N X ,126,,,X X X 为来自总体X 的一个样本,X 为样本均值,则 (没正确答案)(A ))1,0(~3N - (B ))1,0(~)3(4N - (C ))1,0(~43N X - (D ))1,0(~23N X - (4)、设),,,(21n X X X (1)n >来自总体)1,0(~N X ,X 与S 分别为样本均值和样本标准差,则有(C ) (A )(0,1)XN (B )(0,1)nXN (C) 221()ni i X n χ=∑ (D )(1)Xt n S-(5)、设),,,(21n X X X 为来自总体)1,0(~N X 的一个样本,统计量Y =,则(B )(A )2(1)Yn χ- (B) (1)Yt n - (C) (1,1)Y F n - (D)(1,1)YF n -第七章练习题1. 对目标独立地进行射击,直到命中为止,假设n 轮(n >1)这样射击,各轮射击的次数相应地为n k k k ,,,21 ,试求命中率p 的极大似然估计和矩估计.解:2.设某计算机用来产生某彩票摇奖时所需的10个随机数0,1,2, …, 9.设某人用该机做了100天试验,每天都是第一次摇到数字1为止.此100天中各天的试验次数分布如下:假设每次试验相互独立且产生数字1的概率p 保持不变.(1)求p 的最大然估计值p ˆ;(2)如果所得1.0ˆ p,请做出所有可能的解释;(3)求p 的矩估计值p ˆ. 解:3.已知总体的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它010)1()(x x x f ββ 现抽取n =6的样本,样本观察值分别为0.2,0.3,0.9,0.7,0.8,0.7试用矩估计法和极大似然估计法求出β的估计量.解:4.设总体服从瑞利分布 00,0,)(22>⎪⎩⎪⎨⎧<≥=-θθθx x ex x f xh 为参数n X X X ,,,21 为简单随机样本求θ的极大似然估计量;(2)该估计量是否为无偏估计量?说明理由.解:5.设随机变量X 在区间],0(θ上服从均匀分布,由此总体抽出的一随机样本n X X X ,,,21 .试证明θ的有偏估计)()1(1ˆn n X n n +=θ及一个无偏估计)()2(1ˆn n X nn +=θ都是θ的一致估计.证明:8.设总体X 在区间],0[θ上服从均匀分布,其中0>θ是未知参数,求θ的最大似然估计量,并判断它是否为θ的无偏估计.解:9.某车间生产的螺杆直径服从正态分布,今随机抽取5只,测得直径(单位:mm )为: 22.5 21.5 22.0 21.8 21.4(1) 已知0.3σ=,求μ的0.95置信区间; (2) σ未知,求μ的0.95置信区间. 解:10.从总体X 中抽取样本321,X X X ,,证明下列三个统计量,632ˆ3211X X X ++=μ,442ˆ3212X X X ++=μ,333ˆ3213X XX ++=μ 都是总体均值μ=)(X E 的无偏估计量;并确定哪个估计量更有效.解:11.从正态总体中抽取容量为5的样本,其观测值为: 1.86 , 3.22 , 1.46 , 4.01 , 2.64 ,试求正态总体方差2σ及标准差σ的0.95置信区间.解:12.为了研究施肥和不施肥对某钟农作物产量的影响,选了十三个小区在其他条件相同的情况下进行对比实验,收获量如下表:均产量之差的置信水平为0.95的置信区间.解:13.从甲乙两个生产蓄电池的工厂的产品中,分别抽取一些样品,测得蓄电池的电容量(A.h)如下:甲厂:144 141 138 142 141 143 138 137;乙厂:142 143 139 140 138 141 140 138 142 136.设两个工厂生产的蓄电池的容量分别服从正态分布),(2x x N σμ及),(2y y N σμ,求:(1)电容量的方差比22yxσσ的置信水平为95%的置信区间;(2)电容量的均值差y x μμ-的置信水平为95%的置信区间(假定22yx σσ=). 解:14.从汽车轮胎厂生产的某种轮胎中抽取个10样品进行磨损试验,直至轮胎行驶到磨坏为止,测得它们的行驶路程(km)如下:41250 41010 42650 38970 40200 42500 43500 40400 41870 39800 设汽车行驶路程服从正态分布),(~2σμN X ,求:(1)μ的置信水平为95%的单侧置信下限;(2)σ的置信水平为95%的单侧置信上限.解:16.选择题 (1)、θ为总体X 的未知参数,θ的估计量为θ,则有 (A )θ是一个数,近似等于θ; (B )θ是一个随机变量;(C )θ是一个统计量,且()E θθ=; (D )当n 越大,θ的值可任意靠近θ. (2)、设12(,)X X 为来自任意总体X 的一个容量为2的样本,则在下列EX 的无偏线性估 计量中,最有效的估计量是(A )122133X X + (B )121344X X + (C )122355X X + (D )121()2X X +(3)、设θ是参数θ的无偏估计,且有()0D θ≠,则2θ必为2()θ的(A )无偏估计 (B )一致估计 (C )有效估计 (D )有偏估计 (4)、设总体2(,)XN μσ,其中2σ已知,若已知样本容量和置信度1α-均不变,则对于不同的样本观察值,总体均值μ的置信区间的长度(A)变长(B)变短(C) 不变(D)不能确定(5)、已知一批零件的长度X(单位:cm)服从正态总体(,1)Nμ,从中随机抽取16个零件,测得其长度的平均值为40cm,则μ的置信度为0.95的置信区间是(注:标准正态分布函数值(1.96)0.975,(1.645)0.95Φ=Φ=)(A)(31.95, 40.49) (B) (39.59, 40.41) (C) (-∞, 31.95) (D) (40.49, +∞)第八章练习题1.一个停车场,有12个位置排成一行,某人发现有8个位置停了车,而有4个相连的位置空着。

《概率统计》作业题参考答案

《概率统计》作业题参考答案

《概率统计》作业题参考答案《概率统计》作业题答案cy091017 王少玲1. 某工厂生产的产品以100个为一批.在进行抽样检查时,只从每批抽取3个来检查,如果发现其有次品,则认为这批产品不合格.假定每批产品求(1(2)在一批产品能通过检查的条件下,这批产品没有次品的概率.[解] (1)记A ={产品能通过检查},B i ={产品有i 个次品} (i =0,1,2),则3.0)(,4.0)(,3.0)(210===B P B P B P 941.0)|(,97.0)|(,1)|(31003982310039910=====C C B A P C C B A P B A P 由全概率公式,得所求概率为970.0)|()()(20∑=≈=i i i B A P B P A P(2)我们要求的概率是309.0970.03.01)()()|()()()|(0000≈⨯===A P B P B A P A P AB P A B P2. 发报台分别以概率0.6及0.4发出信号“·”及“-”。

由于通讯系统受到干扰,当发出信号“·”时,收报台以概率0.8及0.2收到信号“·”及“-”;又当发出信号“-”时,收报台以概率0.9及0.1收到信号“-”及“·”。

求: (1)收报台收到信号“·”的概率;(2)当收报台收到信号“-”时,发报台确系发出信号“-”的概率。

[解] (1)记 A ={收报台收到信号“·”},B ={发报台发出信号“·”},则4.0)(,6.0)(==B P B P 9.0)|(,1.0)|(,2.0)|(,8.0)|(====B A P B A P B A P B A P由全概率公式,收报台收到信号“·”的概率为52.0)|()()|()()(=+=B A P B P B A P B P A P(2)当收报台收到信号“-”时,发报台确系发出信号“-”的概率是75.048.04.09.0)(1)()|()()()|(=⨯=-==A P B P B A P A P B A P A B P3. 两台机床加工同样的零件 ,第一台出现废品的概率为 0.05,第二台出现废品的概率为0.02,加工的零件混放在一起。

概率统计作业

概率统计作业

1.6 已知 N 件产品中有 M 件是不合格品,今从中随机地抽取 n 件.试求,(1) n 件中恰有 k 件不合格品的概 率;(2) n 件中至少有一件不合格品的概率.假定 k ≤ M 且 n − k ≤ N − M . 1.10 在长度为 T 的时间段内,有两个长短不等的信号随机地进入接收机.长信号持续时间为 t1 (≤ T ) ,短
2.18
已知随机变量 X , Y 的联合概率函数如下.当 α , β 取何值时 X 与 Y 相互独立?
X Y
1 2
1 1/6 1/3
2 1/9
α
3 1/18
β
2.15 两名水平相当的棋手奕棋三盘.设 X 表示某名棋手获胜的盘数, Y 表示他输赢盘数之差的绝对值. 假定没有和棋,且每盘结果是相互独立的.试求(1) X 与 Y 的联合概率函数;(2) X , Y 的边缘概率函数.
3.2
设 F ( x) 是分布函数.验证 F 2 ( x) 满足定理 3.1 的 4 条特征性质,从而证明 F 2 ( x) 必定是某个随机变量的
分布函数.
3.5
Y 表示对 X 作三次独立重复观测中事件 { X < 2} 出现的次 设随机变量 X 服从区间(—1,4)上的均匀分布.
1.26 甲、乙、丙三门高炮同时独立地各向敌机发射一枚炮弹,它们命中敌机的概率都是 0.2.飞机被击中 1 弹而坠毁的概率为 0.1,被击中 2 弹而坠毁的概率为 0.5,被击中 3 弹必定坠毁.(1)试求飞机坠毁的概 率;(2)已知飞机坠毁,试求它在坠毁前只有命中 1 弹的概率.
1.24
某厂生产的钢琴中有 70%可以直接出厂,剩下的钢琴经调试后,其中 80%可以出厂,20%被定为不 1.27 已知甲袋中装有 a 只红球, b 只白球;乙袋中装有 c 只红球, d 只白球.试求下列事件的概率:(1)合并 两只口袋,从中随机地取一只球,该球是红球;(2)随机地取一只袋,再从该袋中随机地取一只球,该球是红 球;(3)从甲袋中随机地取出一只球放人乙袋,再从乙袋中随机地取出一只球,该球是红球.

概率统计课堂作业

概率统计课堂作业

概率统计课堂作业
1.科学上的重大发现往往是由年轻人作出的,下面列出了自16世纪初期至20
限。

2.设某产品的生产工艺发生了改变,在改变前后分别测得了若干产品的技术指标,其结果为:
改变前:21.6 22.8 22.1 21.2 20.5 21.9 21.4
改变后:24.1 23.8 24.7 24.0 23.7 24.3 24.5
假设该产品的技术指标服从正态分布,方差未知且在工艺改变前后不变。

试估计工艺改变后,该技术指标的置信水平为95%的平均值的变化范围。

3.正常人的脉搏平均为72次/秒,某医生测得10例慢性中毒者的脉搏为(单位:次/秒):
54 67 65 68 78 70 66 70 69 67
设中毒者的脉搏服从正态分布,问中毒者和正常人的脉搏有无显著差异(a=0.05)
4.从某电工器材厂生产的一批保险丝中抽取10根,测试其融化时间,得到数据如下:
42 65 75 78 71 59 57 68 55 54
设这批保险丝的融化时间服从正态分布,检验总体方差是否等于144?
5.甲、乙两台机床生产同一型号的滚珠,从这两台机床生产的滚珠中分别抽取若干个样品,测得滚珠的直径(单位:mm)如下:
甲机床:15.0 14.7 15.2 15.4 14.8 15.1 15.2 15.0
乙机床:15.2 15.0 14.8 15.2 15.0 15.0 14.8 15.1 14.9
设两台机床生产的滚珠的直径都服从正态分布,检验它们是否服从相同的正态分布(a=0.05)。

概率统计作业情况

概率统计作业情况
.题目没有交代清楚三个元件所处的系统电压环境是否相同,所以交上来的答案有两种,主流是按三个元件所处电压独立来考虑的,但也有部分是当所处电压一样来算的,我也没给他们算错。
21.小部分人得出的答案是15和19
※24(2).很多人写的是P(x>8|x>6)=P(x>2),没意识到混合后的产品寿命不服从指数分布了
第一次作业:
批改中发现以下问题:
1)第四题出错率较高,且出错结果大体相同。可能没有利用好不相容这一条件。
2)第二题部分同学写成概率形式,用P()表示事件运算;
3)少数几个同学第十题没写;
整体来说,题目简单,出错较少。
第二题的答案有多种表述方法,我可能有些批错的情况,然后部分同学没有审题,写成了概率的表达式
第四题,很多人没考虑不相容的条件
第六题(2),放回的情况,一些人没乘2
第十题(2),部分人得出的答案是0,不过也没过程,不知道理由
第二次作业:
这次作业的大致情况:
1)这次作业做的都比较好,错题的分布不集中,很多是由于计算错误。
2)相对地说,第二章第9题和第12题出错的有点集中。
2)第10题,有些同学误把这个分布看成正态分布;有些同学标注不会做。
其余题目大部分同学都可以很好的完成,只有个别同学可能会出错。
第九次作业:
14(4)有不会的,13(2)问题较多
这次作业同学们做得都很好,没有出现集中地错误。个别同学在第24题,对区间进行估计时,错把方差是未知的当成已知的,因此使用错了估计公式。
第8题,个别同学没有理解题目意思。
大体情况就是这些。
第五次作业:
本次作业毕竟简单,没有错的太多的题目

应用概率统计综合作业三

应用概率统计综合作业三

应用概率统计综合作业三一、填空题每小题2分,共20分1.在天平上重复称量一重为a 的物品,测量结果为1X ,2X ,…,n X ,各次结果相互独立且服从正态分布)2.0,(2a N ,各次称量结果的算术平均值记为n X ,为使95.0)1.0(≥<-a X P n ,则n 的值最小应取自然数 16 .2.设1X ,2X ,…,n X 是来自正态总体)4,(2μN 的容量为10的简单随机样本,2S 为样本方差,已知1.0)(2=>a s P ,则a = 1 .3.设随机变量Y 服从自由度为n 的t 分布,则随机变量2Y 服从自由度为 1,n 的 F 分布.4.设总体X 服从正态分布),12(2σN ,抽取容量为25的简单随机样本,测得样本方差为57.52=S ,则样本均值X 小于12.5的概率为 4/25 .5.从正态分布),(2σμN 中随机抽取容量为16的随机样本,且σμ,未知,则概率=⎪⎪⎭⎫⎝⎛≤041.222σS P 1 .6.设总体X 的密度函数为⎩⎨⎧<<+=,其他,0,10 , )1(),(x x x f a αα其中1->α,1X ,2X ,…,n X 是取自总体X 的随机样本,则参数α的极大似然估计值为.7.设总体X 服从正态分布),(2σμN ,其中μ未知而2σ已知,为使总体均值μ的置信度为α-1的置信区间的长度等于L ,则需抽取的样本容量n 最少为 u=x-u0×sqrtn/σ .8.设某种零件的直径mm 服从正态分布),(2σμN ,从这批零件中随机地抽取16个零件,测得样本均值为075.12=X ,样本方差00244.02=S ,则均值μ的置信度为0.95的置信区间为 :1025.75-21.315,1025.75+21.315=1004.435,1047.065. .9.在假设检验中,若2σ未知,原假设00: μμ=H ,备择假设01: μμ>H 时,检验的拒绝域为 .10.一大企业雇用的员工人数非常多,为了探讨员工的工龄X 年对员工的月薪Y 百元的影响,随机抽访了25名员工,并由记录结果得:∑==251100i iX,∑==2512000i i Y ,∑==2512510i iX ,∑==2519650i i i Y X ,则Y 对X 的线性回归方程为 y= 11.47+2.62x .二、选择题每小题2分,共20分1.设1X ,2X ,…,n X 是来自正态总体),0(~2σN X 的一个简单随机样本,X 为其样本均值,令212)(σ∑=-=ni iX XY ,则Y ~ DA )1(2-n χB )(2n χ C ),(σμN D ),(2nN σμ2.设1X ,2X ,…,n X 是来自正态总体),(~2σμN X 的简单随机样本,X 为样本均值,记∑=--=n i i X X n S 1221)(11,∑=-=n i i X X n S 1222)(1, ∑=--=n i i X n S 1223)(11μ,∑=-=n i i X n S 1224)(1μ, 则服从自由度为1-n 的t 分布的随机变量是 BA 1/1--=n S X T μ B 1/2--=n S X T μ C nS X T /3μ-=D nS X T /4μ-=3.设1X ,2X ,3X ,4X 是来自正态总体)2,(~2μN X 的简单随机样本,若令2432212)43()2(X X X X a Y -+-=,则当2Y 服从2χ分布时,必有 DA 91=a ;1441=b B 1441=a ;91=b C 1001=a ;201=b D 201=a ;1001=b4.设简单随机样本1X ,2X ,…,n X 来自于正态总体),(~2σμN X ,则样本的二阶原点矩∑==n i i X n A 1221的数学期望为 DA 241σB 221σ C 2σ D 22σ 5.设随机变量X 服从自由度为n ,n 的F 分布,已知α满足条件05.0)(=>αX P ,则)1(α>X P 的值为CA0.025 B0.05 C0.95 D0.9756.设总体X 服从正态分布),(2σμN ,1X ,2X ,…,n X 是从X 中抽取的简单随机样本,其中μ,2σ未知,则μ的)%1(100α-的置信区间AA n S z X 2α-,n S z X 2α+ B n S n t X )1(2--α,n S n t X )1(2-+α C nz X σα2-,nz X σα2+ D n S n t X )(2α-,n Sn t X )(2α+ 7.设总体X 服从正态分布),(2σμN ,其中μ未知,2σ未知,1X ,2X ,…,n X 是简单随机样本,记∑==ni i X n X 11,则当μ的置信区间为nz X σ05.0-,n z X σ05.0+时,其置信水平为 CA0.90 B0.95 C0.975 D0.05 8.从总体中抽取简单随机样本1X ,2X ,3X ,易证估计量3211613121ˆX X X ++=μ,3212414121ˆX X X ++=μ3213613131ˆX X X ++=μ,3214525251ˆX X X ++=μ 均是总体均值μ的无偏估计量,则其中最有效的估计量是 BA 1ˆμB 2ˆμC 3ˆμD 4ˆμ 9.从一批零件中随机地抽取100件测量其直径,测得平均直径为5.2cm,标准差为1.6cm,现想知道这批零件的直径是否符合标准5cm,采用t 检验法,并取统计量为10/6.12.5-=X t ,则在显著性水平α下,其接受域为 DA )99(2αt t < B )100(2αt t < C )99(2αt t ≥ D )100(2αt t ≥10.在假设检验中,方差2σ已知,00: μμ=H BA 若备择假设01: μμ≠H ,则其拒绝域为)2(/10αμ-≥-=n t n S X TB 若备择假设01: μμ≠H ,则其拒绝域为2/ασμu n X U ≥-=C 若备择假设01: μμ>H ,则其拒绝域为ασμu nX U ≥-=/0D 若备择假设01: μμ>H ,则其拒绝域为ασμu nX U -≤-=/0三、10分现有一批种子,其中良种数占61,从中任选6000粒,问能从0.99的概率保证其中良种所占的比例与61相差多少 这时相应的良种数在哪一个范围 解答:这个问题属于“二项分布”,且n=6000, p=1/6;故μ=EX=np=6000x1/6=1000, DX=σ²=np1-p=6000x1/6x1-1/6=833.33;切比雪夫不等式为P{|X-μ|<ε}≥1-σ²/ε²;我们取 ε=6000 x 1/100=60粒;所以,P{|X-μ|<ε}≥1-833.33/60² = 1-833.33/3600 = 0.7685;换句话说,“任意选出6000粒种子的良种比例与1/6相比上下不超过1/100的概率”大于等于0.7685;这个概率0.7685不算很低,也就是说,良种比例与1/6相比很可能不超过1/100;四、10分设总体X 服从正态分布),(2σμN ,假如要以99%的概率保证偏差1.0<-μX ,试问:在2.02=σ时,样本容量n 应取多大五、10分设总体X 服从0-1分布:x x q p x X P -==1)(,1.0=x ;其中10<<p ,p q -=1,从总体X 中抽取样本1X ,2X ,…,n X ,求样本均值X 的期望和方差、样本方差2S 的期望.解答:EΣXi=ΣEXi=nEX=np EΣXi/n=ΣEXi/n=EX=p DΣXi/n=ΣDXi/n 2=DX/n=p1-p/n六、10分某商店为了解居民对某种商品的需求,调查了100家住户,得出每户每月平均需要量为10kg,方差为9.设居民对某种商品的需求量服从正态分布,如果此种商品供应该地区10 000户居民,在01.0=α下,试求居民对该种商品的平均需求量进行区间估计;并依此考虑最少要准备多少商品才能以0.99的概率满足需要七、10分某种零件的长度服从正态分布,它过去的均值为20.0现换了新材料,为此从产品中随机抽取8个样品,测量长度为:20.0 20. 0 20.1 20.0 20.2 20.3 19.8 20.2 问用新材料做的零件的平均长度是否起了变化05.0=α解答:1因为样本数据在20.0上下波动,所以x 甲˙¯¯¯¯¯¯=0.210+20.0=20.02,x 乙˙¯¯¯¯¯¯=0.210+20.0=20.02, S 2甲=1100.34−10×0.2102=0.0336mm 2 S 2乙=1100.52−10×0.2102=0.0516mm 2八、10分设总体X 服从正态分布),(2σμN ,1X ,2X ,…,n X 是从X 中抽取的简单随机样本,其中μ,2σ未知,选择常数c ,使统计量∑-=+-=1121)(n i ii X XcT 是2σ的无偏估计量.。

概率统计第八章作业解答

概率统计第八章作业解答

2 2 2 2 H0: 1 2 ; H 1 : 1 2
S1 统计量 F 2 , H 0 成立时, F ~ F n1 1, n2 1 S2
拒绝域: F F n1 1, n2 1
2

要检验假设
2 2 H0: 1 2 ; H 1 : 1 2
2
H1 : 0 ;
( 0 2.64)
x 2.62, 0 2.64, 0.06, n 100, 0.01, z 2.57
2
x 0 z 3.33 2.57 拒绝 H 0 。 n

认为新工艺对此零件电阻有显著影响。
第一次作业选做题
S1 F 2 0.686 4.82 接受H 0 , S2
即认为甲机床加工精度不比乙机床高。
2
2. 某 种 零 件 长 度 服 从 正 态 分 布 , 按 规 定 其 方 差 不 得 超 过
2 0 0.016 。现从一批零件中抽取 25 件测量其长度,计算得样
本方差为 0.025。问能否由此判断这批零件合格(=0.05)?
1.解
H 0 :1 2 ;H1 :1 2
2
2
2
2
2
S1 统计量 F 2 , S2
H 0 成立时, F ~ F n1 1, n2 1
拒绝域: F F n1 1, n2 1 , n1 6, n2 9
5%, F n1 1, n2 1 F0.05 5,8 4.82

2 S 2 又 n 1 2 24.86 0 而 9.886 24 .86 45 .559 接受H 0 ,

即认为熔化时间分散度与通常无显著差异。

经济概率统计作业参考答案(第三章)

经济概率统计作业参考答案(第三章)

p{X
k} a , p{Y k} b , (k 1,2 ,3), 且
k
k2
X
与Y
相互独立,则
( D )。
( A) a 1, b 1;
(B) 11a 49 b 1 ; 6 36
(C) a, b 为任意实数 ;
(D) a 6 , b 36 。 11 49
三、计算
1、一盒子中装有 3 个黑球、2 个白球、2 个红球。在其中任意取四球,以 X 表示取到黑球 的个数,以Y 表示取到红球的个数,求( X , Y )的联合分布列。
1 0 x 1
f
X
(x)
0
其他
fY ( y)
f (x, y)dx
当0
y
2
时,
f Y
( y)
11
0 2
dx
1 2
当 y 0 或 y 2 时, fY ( y) 0
1 / 2
f Y
( y)
0
0 y2 其他
5、已知随机变量 X 和 Y 的联合分布为:
(x , y) (0,0) (0,1) (1,0) (1,1) (2,0) (2,1)
答案: F(b, c) F(a, c) , F(, a) F(,0) , F(,b) F(a,b)
2、设二维随机变量的密度函数为
p(x)
4xy
0
,0 x 1, 0 y 1
,
其他

则 p(0 X 0.5)

答案: 1 4
3、随机变量 (X ,Y ) 的分布率如下表,则, 应满足的条件是
1/ 6
3
1/12 1/ 6
0
2. 二维随机变量( X ,Y )的联合密度函数为:

西南大学《概率统计初步》网上作业及参考答案

西南大学《概率统计初步》网上作业及参考答案

第一套作业题一.单项选择题1.设A 、B 是二事件,9.0)(=⋃B A P ,P(A)=0.5 , P(B)=0.8,则P(B-A) = ( ).A 0.4B 0.3C 0.2D 0.12.一部四卷的文集随意摆放到书架上,则恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率为( )。

A241 B 121 C 61 D 313.服从( )分布的随机变量为连续型随机变量。

A 二项B 均匀C 几何D 两点4.设随机变量为X 与Y ,已知DX=25,DY=36,相关系数ρ=0.4,则D(X-Y)=( ). A. 85 B. 61 C. 11 D .37. 二.判断题1. 设A 、B 、C 表示三事件,则事件“A 、B 、C 三事件中至多有一个发生”表为A ∪B ∪C 。

【 】2.从1,2,3,4,5,6这六个数中随机的、有放回的连续抽取4个,则“取到的4个数字完全不同”的概率为5/18. 【 】3.X ~N(3,4),则P(X<3)= P(X>3). 【 】4.随机变量X 、Y 独立,则X 与Y 必不相关。

【 】5.某工厂用自动包装机包装葡萄糖,规定标准重量为每袋500克。

某天从生产的产品中随机抽取9袋,测得平均重量501.3克,样本标准差5.62,假设每袋重量服从正态分布N (a,σ2),检验该天包装机工作是否正常,应用t 检验。

【 】三.填空题1.有10个产品其中3个次品,从中任取2个,则取出的2个中恰有1个次品的概率为 。

2.设A 与B 为两个随机事件,且P (A )= 0.3,P (B )= 0.5,若A 与B 相互独立,则P (A ∪B )= .3.某城市50%住户订日报,65%订晚报,85%住户至少订有这两种报纸的一种,现随意抽取一住户,则该住户同时订有这两种报纸的概率为 .4.设=≥==)1(,9/4)0(),,3(~),,2(~Y P X P p B Y p B X 则若.5. 假设X ,Y 为二随机变量,且D (X +Y )=7,D (X )=4,D (Y )=1, 则Cov(X,Y)= .四.解答题1.假设某地区位于甲、乙两河流交汇处,当任一河流泛滥时,该地区即遭受水灾,设某时期内甲河流泛滥的概率为0.1,乙河流泛滥的概率为0.2,当乙河流泛滥时,甲河流泛滥的概率为0.3,求:(1)该时期内这个地区遭受水灾的概率;(2)当甲河流泛滥时,乙河流泛滥的概率。

(完整版)概率统计章节作业答案

(完整版)概率统计章节作业答案

第一章 随机事件与概率一、单项选择题1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是( B ).A. AB ={出现奇数点}B. AB ={出现5点}C. B ={出现5点}D. A B =ΩU2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ).A. ()A B B A +-=B. ()A B B A B A AB +-=-=-C. ()A B B A B -+=+D.AB AB A +=3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为( D ).A.1212A A A A UB.12A AC.12A AD.12A A U4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为( A ).A.123A A AB.123A A A ++C.123A A AD.123A A A5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是( A).A.(|)0P A B =B. (|)0P B A =C. ()0P AB =D. ()1P A B =U6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B =( D ).A. 0.2B. 0.4C. 0.6D. 0.87.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则( C ).A.()1P A B =UB.()()()P AB P A P B =C. ()0P AB =D.()0P AB >8.设P (A )=0, B 为任一事件, 则 ( C ).A.A =ΦB.A B ⊂C.A 与B 相互独立D. A 与B 互不相容9.已知P (A )=0.4, P (B )=0.5, 且A B ⊂,则P (A |B )= ( C ).A. 0B. 0.4C. 0.8D. 110.设A 与B 为两事件, 则AB = ( B ).A.A BB. A B UC. A B ID. A B I11.设事件A B ⊂, P (A )=0.2, P (B )=0.3,则()P A B =U ( A ).A. 0.3B. 0.2C. 0.5D. 0.4412.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )=( D ).A. 0.08B. 0.4C. 0.2D. 013.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ).A.()()P A B P A =UB.A B ⊂C. P (A )=P (B )D. P (AB )=P (A )14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ).A. 0.4B. 0.2C. 0.25D. 0.7515.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为( A ).A.37B.0.4C. 0.25D.16 16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ).A. 0.48B. 0.75C. 0.6D. 0.817.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为( A ).A. 0.125B. 0.25C. 0.5D. 0.418.一批产品的合格品率为96%,而合格品中有75%是优质品,从该批产品中任取一件恰好是优质品的概率为( A ).A. 0.72B. 0.75C. 0.96D. 0.7819.设有10个产品,其中7个正品,3个次品,现从中任取4个产品,则这4个都是正品的概率为( C ).A. 710B. 44710C. 47410C C D. 4710⨯ 20.设有10个产品,其中8个正品,2个次品,现从中抽取3次,每次任取1个,取后放回,则取到的3个产品都是正品的概率为( C ).A. 810B. 38310C C C. 33810 D. 38310C 21.某人打靶的命中率为0.4,现独立地射击5次,则5次中恰有2次命中的概率为( C ).A. 20.4B. 30.6C. 22350.40.6CD. 23250.40.6C22.随机地抛掷质地匀称的6枚骰子,则至少有一枚骰子出现6点的概率为( D ).A.15615()66CB.156151()66C - C.15651()66C D.651()6- 23.把3个不同的球分别放在3个不同的盒子中,则出现2个空盒的概率为(A ).A. 19B. 12C. 23D. 13 24.从1,2,3,4,5,6六个数字中,等可能地、有放回地连续抽取4个数字,则取到的4个数字完全不同的概率为( A ).A.518B.4!6!C.4446AAD.44!625.某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为( D ).A. p2B. (1-p)2C. 1-2pD. p(1-p)二、填空题1.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为18/35 .2.甲乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为1/16 .3.设袋中有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为0.25 .4.从数字1,2,…,10中有放回地任取4个数字,则数字10恰好出现两次的概率为0.0486 .5.甲乙丙三人各自独立地向一目标射击一次,三人的命中率分别是0.5,0.6,0.7,则目标被击中的概率为0.94 .6.甲袋中装有两白一黑共3个球,乙袋中装有一白两黑共3个球,从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,则取到白球的概率为5/12 .7.设事件A与B互不相容,P(A)=0.2, P(B)=0.3, 则()P A BU= 0.5 .8.设事件A与B相互独立,且P(A+B)=0.6, P(A)=0.2, 则P(B)= 0.5 .9.设()0.3,(|)0.6P A P B A==,则P(AB)= 0.42 .10.设11()()(),()(),()046P A P B P C P AB P AC P BC======,则P(A+B+C)=5/12 .11.已知P (A )=0.7, P (A -B )=0.3, 则()P AB = 0.6 .12.某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为 0.25 .13.已知P (A )=0.4, P (B )=0.8, P (B|A )=0.25, 则P (A|B )= 0.125 .14.设111(),(|),(|)432P A P B A P A B ===,则()P A B U = 1/3 . 15.一批产品的废品率为4%,而正品中的一等品率为60%,从这批产品中任取一件是一等品的概率为 0.576 .16.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为 0.7 .三、计算题1.设P (A )=0.4, P (B )=0.2, (|)0.3P B A =, 求P (AB )以及P (A |B ).解:由(|)0.3P B A =得:()0.3,()P AB P A =即()()0.31()P B P AB P A -=-, 解得:P (AB )=0.02. 从而, ()0.02(|)0.1()0.2P AB P A B P B ===.2.已知,()0.2,()0.3,A B P A P B ⊂==求:(1)(),()P A P B ;(2)P (AB );(3)()P AB ;(4) ()P A B U ;(5)P (B -A ).(1)由概率的性质,知()1()0.8,P A P A =-=()1()0.7P B P B =-=;(2)因为A B ⊂,所以AB A =,P (AB )=P (A )=0.2; (3)()P AB =P (A -AB )=P (A )-P (AB )=P (A )-P (A )=0;(4) 因为A B ⊂,所以A B B =U , ()P A B U =P (B )=0.3;或者,()P A B U =P (A )+P (B )-P (AB )=0.2+0.3-0.2=0.3;3.若事件A 与B 互不相容,P (A )=0.6, P (A+B )=0.9, 求:(1)()P AB ;(2)(|)P A B ;(3)()P AB .解:(1) 因A 与B 互不相容,故AB =Φ,P (AB )=0,所以()P AB =1-P (AB )=1;(2) 因A 与B 互不相容,由加法公式:P (A+B )=P (A )+P (B ),得P (B )=0.3,从而 (|)P A B =()()()0.661()0.77()P AB P A P AB P B P B -===-; (3) ()P AB =1()1()10.90.1P AB P A B -=-+=-=.4.已知事件A 与B 相互独立,且P (A )=0.4, P (A+B )=0.6, 求(1)P (B );(2) ()P AB ;(3)P (A|B ).解:(1)因为事件A 与B 相互独立,所以P (AB )=P (A )P (B ),()()()()()()()()P A B P A P B P AB P A P B P A P B +=+-=+-0.6=0.4+P (B )-0.4P (B ),解得:P (B )=13; (2) 因为事件A 与B 相互独立,所以A 与B 也相互独立,故()P AB =4()()15P A P B =; (3) 因为事件A 与B 相互独立,所以P (A|B )=P (A )=0.4.四、应用题 1.一批产品共有50个,其中40个一等品、6个二等品、4个三等品,现从中任取3个产品,求3个产品中至少有2个产品等级相同的概率.解:设A “3个产品中至少有2个产品等级相同”,A “3个产品等级都不同”,由古典概率定义,得111406435012()0.049245C C C P A C ==≈,从而 ()10.0490.951P A =-=.2.10把钥匙中有3把能打开门,现从中任取2把,求能打开门的概率.解:A “取出2把钥匙能打开门”,由古典概率知:1123732108()15C C C P A C +==.3.将5双不同的鞋子混放在一起,从中任取4只,求这4只鞋子至少能配成一双的概率.解:A “4只鞋子中至少能配成一双”,则A “4只鞋子都不同”.由古典概率得:41111522224108()21C C C C C P A C ==,故13()1()21P A P A =-=. 4.从0,1,2,3这4个数中任取3个进行排列,求取得的三个数字排成的数是三位数且是偶数的概率.解:A “排成的数是三位数且是偶数”,A 0“排成的三位数末位是0”,A 2“排成的三位数末位是2”,则A =A 0+A 2,且A 0与A 2互不相容,因为230342!1(),3!4C P A C ==11222341(),3!6C C P A C == 所以,015()()()12P A P A P A =+=. 5.一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求下列事件的概率:(1)第三次才取得合格品;(2)如果取得一个合格品后就不再取零件,在三次内取得合格品.解:设A i “第i 次取到合格品”(i =1,2,3),则(1)第三次才取到合格品的概率为:12312131210990()()(|)(|)0.00831009998P A A A P A P A A P A A A ==⨯⨯≈. (2)A “三次内取得合格品”,则112123A A A A A A A =++,所求概率为: 112123()()()()P A P A P A A P A A A =++1121121312()()(|)()(|)(|)P A P A P A A P A P A A P A A A =++90109010990100100991009998=+⨯+⨯⨯0.9993.≈ 6.盒子中有8个红球和4个白球,每次从盒子中任取一球,不放回地抽取两次,试求:(1) 两次取出的都是红球的概率;(2)在第一次取出白球的条件下,第二次取出红球的概率;(3)第二次取到红球的概率.解:A 1“第一次取出的是红球”,A 2“第二次取出的是红球”,则(1)由乘法公式得,两次取出的都是红球的概率为:121218714()()(|)121133P A A P A P A A ==⨯=; (2)在第一次取出白球的条件下,第二次取出红球的概率为:218(|)11P A A =; (3)由全概率公式得,第二次取到红球的概率为:2121121()()(|)()(|)P A P A P A A P A P A A =+7.某工厂有三台设备生产同一型号零件,每台设备的产量分别占总产量的25%,35%,40%,而各台设备的废品率分别是0.05,0.04,0.02,今从全厂生产的这种零件中任取一件,求此件产品是废品的概率.解:设A i “第i 台设备生产的零件”(i =1,2),B “产品是废品”,由题意知:P (A 1)=25%,P (A 2)=35%,P (A 3)=40%,P (B |A 1)=0.05, P (B |A 2)=0.04, P (B |A 3)=0.02,由全概率公式得,产品是废品的概率为:112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++25%0.0535%0.0440%0.020.0345=⨯+⨯+⨯=.8.两台车床加工同一种零件,加工出来的零件放在一起,已知第一台出现废品的概率是0.03,第二台出现废品的概率是0.02,且第一台加工的零件比第二台加工的零件多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的是废品,求它是由第二台车床加工的概率.解:设B “零件是合格品”,A “第一台车床加工的零件”,则A “第二台车床加工的零件”,由题意知:21(),()33P A P A ==. (1)由全概率公式得:()()(|)()(|)P B P A P B A P A P B A =+21(10.03)(10.02)0.97333=⨯-+⨯-≈; (2)由贝叶斯公式得,如果取出的是废品,求它是由第二台车床加工的概率为:10.02()()(|)3(|)0.252.921()()13P A B P A P B A P A B P B P B ⨯====--9.已知5%的男人和0.25%的女人是色盲,假设男人女人各占一半.现随机地挑选一人,求:(1)此人恰是色盲的概率是多少?(2)若随机挑选一人,此人是色盲,问他是男人的概率多大?(3)若随机挑选一人,此人不是色盲,问他是男人的概率多大?解:设B “色盲患者”,A “随机挑选一人是男人”,由题设知:11(),(),(|)5%,(|)0.25%22P A P A P B A P B A ====,则 (1)由全概率公式得,随机挑选一人是色盲的概率为:()()(|)()(|)P B P A P B A P A P B A =+115%0.25%0.0262522=⨯+⨯=; (2)由贝叶斯公式得,随机选一人是色盲,他是男人的概率为:15%()()(|)2(|)0.952()()0.02625P AB P A P B A P A B P B P B ⨯===≈; (3)由贝叶斯公式得,随机选一人不是色盲,他是男人的概率为:195%()()(|)2(|)0.48781()0.97375()P AB P A P B A P A B P B P B ⨯===≈-. 10.现有10张考签,其中4张是难签,甲、乙、丙三人抽签考试(取后不放回),甲先乙次丙最后,求下列事件的概率:(1)甲乙都抽到难签;(2)甲没有抽到难签,而乙抽到难签;(3)甲乙丙都抽到难签;(4)证明:甲乙丙抽到难签的机会均等.解:设A ,B ,C 分别表示“甲、乙、丙抽到难签”,则(1)甲乙都抽到难签的概率为:432()()(|)10915P AB P A P B A ==⨯=; (2)甲没有抽到难签,而乙抽到难签的概率为:644()()(|)10915P AB P A P B A ==⨯=; (3)甲乙丙都抽到难签的概率为:4321()()(|)(|)109830P ABC P A P B A P C AB ==⨯⨯=; (4)由古典概率知,甲抽到难签的概率为:4()0.410P A ==. 由全概率公式得,乙抽到难签的概率为:()()(|)()(|)P B P A P B A P A P B A =+43640.4109109=⨯+⨯=. 丙抽到难签的概率为:()()(|)()(|)()(|)()(|)P C P AB P C AB P AB P C AB P AB P C AB P AB P C AB =+++ 4326434636541098109810981098=⨯⨯+⨯⨯+⨯⨯+⨯⨯=0.4. 得,P (A )=P (B )=P (C )=0.4,所以,甲乙丙抽到难签的机会均等,各占40%.11.三个人向同一敌机射击,设三人命中飞机的概率分别为0.4,0.5和0.7.若三人中只有一人击中,飞机被击落的概率为0.2;若有两人击中,飞机被击落的概率为0.6;若三人都击中,则飞机必被击落.求飞机被击落的概率.解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且0()(10.4)(10.5)(10.7)0.09P A =-⨯--=,1()0.4(10.5)(10.7)(10.4)0.5(10.7)(10.4)(10.5)0.70.36P A =⨯-⨯-+-⨯⨯-+-⨯-⨯=, 2()0.40.5(10.7)0.4(10.5)0.7(10.4)0.50.70.41P A =⨯⨯-+⨯-⨯+-⨯⨯=, 3()0.40.50.70.14P A =⨯⨯=.由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====.故,由全概率公式得,飞机被击落的概率为:00112233()()(|)()(|)()(|)()(|)P B P A P B A P A P B A P A P B A P A P B A =+++ 0.0900.360.20.410.60.1410.458=⨯+⨯+⨯+⨯=.12.在上题中,假设三人的射击水平相当,命中率都是0.6,其他条件不变,再求飞机被击落的概率.解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且由贝努里公式得:00303()0.60.40.064P A C =⨯⨯=,1213()0.60.40.288P A C =⨯⨯=, 2223()0.60.40.432P A C =⨯⨯=,3333()0.60.216P A C =⨯=.由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====. 故由全概率公式得,飞机被击落的概率为:30()()(|)i i i P B P A P B A ==∑0.06400.2880.20.4320.60.21610.5328=⨯+⨯+⨯+⨯=13.已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率为0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品,它确实是合格品的概率.解:设A “产品是合格品”,B “经检查产品被判为合格品”,且由题意知:P (A )=95%, ()195%5%,(|)10.020.98,(|)0.03P A P B A P B A =-==-==.则(1)由全概率公式得,任意抽查一个产品,它被判为合格品的概率为: ()()(|)()(|)P B P A P B A P A P B A =+ 95%0.985%0.030.9325=⨯+⨯=;(2)由贝叶斯公式得,一个经检查被判为合格的产品,它确实是合格品的概率为:()0.950.98(|)0.9984()0.9325P AB P A B P B ⨯==≈. 14.一个工人看管三台机床,在一小时内机床不需要工人看管的概率第一台为0.9,第二台为0.8,第三台为0.7,且三台机床是否需要看管彼此独立.求在一小时内三台机床中最多有一台需要工人看管的概率.解:设A i “第i 台机床需要看管”,i =1,2,3. “三台机床中最多有一台需要工人看管”表示为123123123123A A A A A A A A A A A A +++,且这4个事件两两互不相容,由加法与独立性知,所求的概率为: 123123123123()P A A A A A A A A A A A A +++ 123123123123()()()()P A A A P A A A P A A A P A A A =+++123123123123()()()()()()()()()()()()P A P A P A P A P A P A P A P A P A P A P A P A =+++0.10.80.70.90.20.70.90.80.30.90.80.70.902=⨯⨯+⨯⨯+⨯⨯+⨯⨯=15.加工某一零件共需经过三道工序,设第一、第二、第三道工序的次品率分别是2%,3%,5%.假定各道工序是互不影响的,问加工出来的零件的次品率是多少?解:设A i “第i 道工序加工出次品”,i =1,2,3.则加工出来的零件是次品表示为A 1+A 2+A 3,且A 1,A 2,A 3相互独立,从而123,,A A A 也相互独立. 所求概率为:123123123(++)1()1()()()P A A A P A A A P A P A P A =-=- 1(12%)(13%)(15%)0.09693=----=.16.甲、乙、丙三人独立地破译一密码,他们各自能破译出的概率分别是0.4,0.6,0.7,求此密码被破译的概率.解:设A ,B ,C 分别表示“甲、乙、丙破译出密码”,则A+B+C 表示“密码被破译”,且A ,B ,C 相互独立,从而,,A B C 也相互独立,故所求概率为:(++)1()1()()()P A B C P A B C P A P B P C =-=- 1(10.4)(10.6)(10.7)0.928=----=.17.有甲、乙两批种子,发芽率分别为0.8和0.7,各在两批中随机取一粒,求: (1)两粒种子都能发芽的概率; (2)至多有一粒种子能发芽的概率; (3)至少有一粒种子能发芽的概率.解:设A ,B 分别表示“甲、乙种子发芽”,由题设知:()0.8,()0.7,()10.80.2,()10.70.3P A P B P A P B ===-==-=. (1)两粒种子都能发芽的概率为:()()()0.80.70.56P AB P A P B ==⨯=; (2)至多有一粒种子能发芽的概率为:()()()()P AB AB A B P AB P AB P A B ++=++ ()()()()()()P A P B P A P B P A P B =++ 0.80.30.20.70.20.30.44=⨯+⨯+⨯=; (3)至少有一粒种子能发芽的概率为:()()()()()()()()P A B P A P B P AB P A P B P A P B =+-=+-U0.80.70.80.70.94=+-⨯=.18.一批产品有70%的一级品,进行重复抽样检查,共抽取5件样品,求: (1)取出5件样品中恰有2件一级品的概率p 1; (2)取出5件样品中至少有2件一级品的概率p 2; (3)取出5件样品中至少有一件一级品的概率p 3.解:该问题是参数p =0.7的5重贝努里试验,由贝努里公式得: (1)取出5件样品中恰有2件一级品的概率p 1=22350.70.30.1323C ⨯⨯=; (2)取出5件样品中至少有2件一级品的概率为:p 2=55520.70.3k k k k C -=⨯⨯∑=005145510.70.30.70.30.96922C C -⨯⨯-⨯⨯=; (3)取出5件样品中至少有一件一级品的概率为: p 3=55510.70.3k k k k C -=⨯⨯∑=005510.70.30.99757C -⨯⨯=.19.一射手对一目标独立地射击4次,若至少命中一次的概率为8081, 求射手射击一次命中目标的概率..解:设射手射击一次命中目标的概率为p ,由贝努里定理知,4次射击中至少有一次命中目标的概率为:41(1)p --,由题设知:4801(1)81p --=,解得:23p =.20.一射手对一目标独立地射击, 每次射击命中率为p , 求射击到第4次时恰好两次命中的概率.解:射手射击到第4次恰好有两次命中目标,即第四次命中,而前三次中恰有一次命中,由贝努里定理知,所求概率为:12223(1)3(1)P pC p p p p =-=-. 五、证明题1.设0<P (B )<1,证明事件A 与B 相互独立的充分必要条件是(|)(|)P A B P A B =. 证:必要性 设事件A 与B 相互独立,则P (AB )=P (A )P (B ),P (A|B )=P (A ), 又()()()()()(|)()1()1()()P AB P A AB P A P A P B P A B P A P B P B P B --====--, 所以,(|)(|)P A B P A B =.充分性 若(|)(|)P A B P A B =,则()()()()()()1()1()()P AB P AB P A AB P A P AB P B P B P B P B --===--, 对上式两端化简,得:()()()P AB P A P B =,所以A 与B 相互独立2.证明条件概率的下列性质:(1)若P (B )>0,则0(|)1,(|)1,(|)0P A B P B P B ≤≤Ω=Φ=;(2)若A 与B 互不相容,()0P C >,则(|)(|)(|)P A B C P A C P B C =+U ; (3)(|)1(|)P A B P A B =-. 证:(1)因为()(|)()P AB P A B P B =,而0()()P AB P B ≤≤,所以,0(|)1P A B ≤≤,且()()(|)1()()P B P B P B P B P B ΩΩ===,()()(|)0()()P B P P B P B P B ΦΦΦ===; (2)若A 与B 互不相容,则AC 与BC 也互不相容,从而 ()()()(|)(|)(|)()()P AC BC P AC P BC P A B C P A C P B C P C P C +===+U U ;(3)由性质(2)得:(|)(|)(|)P A A B P A B P A B =+U ,又A A =ΩU ,由性质(1)知,(|)1P B Ω=,所以,(|)(|)1P A B P A B +=,即(|)1(|)P A B P A B =-第二章 随机变量及其概率分布 一、单项选择题1.设随机变量X 的分布律为则P {X <1}=( C ).A. 0B. 0.2C. 0.3D. 0.5 2.设随机变量X 的概率分布为 则a =( D ).A. 0.2B. 0.3C. 0.1D. 0.43.设随机变量X 的概率密度为2,1(),0,1cx f x x x ⎧>⎪=⎨⎪≤⎩则常数c =( D ).A. 1-B.12 C. -12D. 1 4.设随机变量X 的概率密度为3,01(),0,ax x f x ⎧≤≤⎪=⎨⎪⎩其它则常数a =( D ).A.14 B. 12C. 3D. 4 5.下列函数中可作为某随机变量的概率密度函数的是 (A ).A.2100,1000,100x x x ⎧>⎪⎨⎪≤⎩ B.10,00,0x xx ⎧>⎪⎨⎪≤⎩ C. 1,020,x -≤≤⎧⎨⎩其它D.113,2220,x ⎧≤≤⎪⎨⎪⎩其它6.设函数()f x 在区间[,]a b 上等于sin x ,而在此区间外等于0;若()f x 可以作为某连续型随机变量的概率密度函数,则区间[,]a b 为 ( A ).A. [0,]2πB. [0,]πC. [,0]2π-D. 3[0,]2π7.下列函数中,可以作为某随机变量X 的分布函数的是 ( C ).A. 0,00.3,01()0.2,121,2x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩B. 0.5,0()0.8,011,1x x F x x x <⎧⎪=≤<⎨⎪≥⎩C. 0,00.1,05()0.6,561,6x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩ D. 0,2()sin ,021,0x F x x x x ππ⎧<-⎪⎪⎪=-≤<⎨⎪≥⎪⎪⎩8.设()F x 是随机变量X 的分布函数,则 ( B ). A. ()F x 一定连续 B. ()F x 一定右连续 C. ()F x 是不增的 D. ()F x 一定左连续9.设()()F x P X x =≤是随机变量X 的分布函数,则下列结论错误的是(D ).A.()F x 是定义在(,)-∞+∞上的函数B.lim ()lim ()1x x F x F x →+∞→-∞-=C.()()()P a X b F b F a <≤=-D.对一切实数x ,都有0<()F x <110.设随机变量的概率分布为2()(),(1,2,3...)3k P X k a k ===,则常数a =( B ).A. 1B. 12C. 2D. 12-11.已知随机变量X 的分布律为()F x 是X 的分布函数,则F (2.5)=( B ). A. 0.7 B. 0.8 C. 0.1 D. 112.随机变量X 的概率密度2,01()0,x x f x <<⎧=⎨⎩其它,则11{}22P X -≤≤=( A ).A.14B.13C.12D.3413.已知随机变量X 的分布律为 若随机变量Y =X 2,则P {Y =1}=( C ).A. 0.1B. 0.3C. 0.4D. 0.2 14.设随机变量X ~B (4, 0.2),则P {X >3}=( A ).A. 0.0016B. 0.0272C. 0.4096D. 0.819215.设随机变量X ~N (1,4),Y =2X +1,Y ~ ( C). A. N (1, 4) B. N (0, 1) C. N (3, 16) D. N (3, 9) 16.设2~(,)X N μσ,()x Φ是N (0, 1)的分布函数,则()P a X b ≤≤= ( D ). A.()()b a Φ-Φ B.()()b a Φ+ΦC.22()()b a μμσσ--Φ-Φ D.()()b a μμσσ--Φ-Φ17.设X ~N (-1,4),()x Φ是N (0, 1)的分布函数,则P (-2<X <0)= ( A ).A.12()12Φ- B.(0)(2)Φ-Φ- C.1(2)2Φ- D.(2)(0)Φ-Φ18.设X ~N (0,1),()x ϕ是X 的概率密度函数,则(0)ϕ= (C ). A. 0 B. 0.5C.D. 1 19.设X 服从均匀分布U[0,5],Y =3X +2,则Y 服从 ( B ). A. U[0, 5] B. U[2, 17] C. U[2, 15] D. U[0, 17] 20.某种商品进行有奖销售,每购买一件有0.1的中奖率.现某人购买了20件该商品,用随机变量X 表示中奖的件数,则X 的分布为 ( D ).A.正态分布B.指数分布C.泊松分布D.二项分布 21.设X 服从参数2λ=的泊松分布,()F x 是X 的分布函数,则下列正确的选项是 ( B ).A.2(1)F e -=B.2(0)F e -=C.P (X =0)=P (X =1)D.2(1)2P X e -≤= 22.设X 服从参数λ的泊松分布,且2(1)(3)3P X P X ===,则λ= ( C ). A. 1 B. 2 C. 3 D. 4二、填空题1.若2()1P X x β≤=-,1()1P X x α≥=-,其中x 1<x 2, 则12()P x X x ≤≤= 1 .2.设随机变量X 的概率分布为记Y =X 2, 则P (Y =4)= 0.5 .3.若X 是连续型随机变量, 则P (X =1)= 0 .4.设随机变量X 的分布函数为F (x ), 已知F (2)=0.5, F (-3)=0.1, 则(32)P X -<≤= 0.4 .5.设随机变量X的分布函数为212()xt F x edt --∞=⎰,则其密度函数为 .6.设连续型随机变量X 的分布函数为0,0()sin ,021,2x F x x x x ππ⎧⎪<⎪⎪=≤<⎨⎪⎪≥⎪⎩, 其密度函数为()f x ,则()6f π= 1/2 .7.设随机变量X 的分布函数为1,0()0,x e x F x x -⎧-≥=⎨<⎩, 则当x >0时, X 的概率密度()f x = 1 . .8.设随机变量X 的分布律为则(01)P X ≤≤= 0.6 .9.设随机变量X ~N (3, 4), 则(45)P X <<= 0.148 . (其中(1)0.8413,(0.5)0.6915Φ=Φ=)10.设随机变量X 服从参数为6的泊松分布, 写出其概率分布律 P(X=K)=6K/K! K=0,1,2,3 .11.若随机变量X ~B (4, 0.5), 则(1)P X ≥= 15/16 .12.若随机变量X ~U (0, 5),且Y =2X ,则当010y ≤≤时, Y 的概率密度()Y f y = 1/10 .13.设随机变量X ~N (0, 4),则(0)P X ≥= 0.5 .14.设随机变量X ~U (-1, 1),则1(||)2P X ≤= 0.5 .15.设随机变量X 在[2, 4]上服从均匀分布,则(23)P X <<= 0.5 .16.设随机变量X ~N (-1, 4),则1~2X Y +=N(0,1) . 17.设随机变量X 的分布律为(),0,1,2, (3)k aP X k k ===,则a = 2/3 .18.设连续型随机变量X 的概率密度为1,02()0,kx x f x +<<⎧=⎨⎩其它,则k =-1/2 .19.若随机变量X ~N (1, 16),Y =2X -1,则Y ~ N(1,64) . 20.若随机变量X ~U (1, 6),Y =3X +2,则Y ~ U(5,20) . 三、计算题1.设连续型随机变量X 的分布函数为20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩,求X 的概率密度函数.解:由分布函数与概率密度函数之间的关系()()F x f x '=知,当0<x <1时, 2()()2f x x x '==,当1x ≥或0x ≤时,()f x =0,所以,X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩其它.2.设X 服从参数p =0.2的0-1分布,求X 的分布函数及P (X <0.5). 解:X 的分布律为当0x <时,()()F x P X x =≤=0;当01x ≤<时,()()F x P X x =≤=(0)0.8P X ==;当1x ≥时,()()F x P X x =≤=(0)(1)0.80.21P X P X =+==+=.所以,X 的分布函数为0,0()0.8,011,1x F x x x <⎧⎪=≤<⎨⎪≥⎩;而P (X <0.5)= P (X =0)=0.8.3.设随机变量X ~U (a , b ),求X 的密度函数与分布函数.解:X 的密度函数为1,()0,a xb f x b a ⎧<<⎪=-⎨⎪⎩其它;分布函数()()x F x f t dt -∞=⎰,当x a <时,()()xF x f t dt -∞=⎰00xdt -∞==⎰;当a x b ≤<时,()()x F x f t dt -∞=⎰10a xax adt dt b a b a-∞-=+=--⎰⎰; 当x b ≥时,()()x F x f t dt -∞=⎰1001abx ab dt dt dt b a-∞=++=-⎰⎰⎰.所以,X 的分布函数为0,(),1,x a x a F x a x b b ax b <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩.4.设随机变量X ~N (3, 4),求:(1)P (2<X <3);(2) P (-4<X <10);(3) P (|X|>2);(4)P (X >3).解:(1)P (2<X <3)=3323(3)(2)()()22F F ---=Φ-Φ(0)(0.5)=Φ-Φ- (0)[1(0.5)]=Φ--Φ=0.1915;(2) P (-4<X <10)=10343(10)(4)()()22F F -----=Φ-Φ=(3.5)( 3.5)2(3.5)1Φ-Φ-=Φ-=0.9996; (3) P (|X|>2)=1(||2)P X -≤=1(22)1[(2)(2)]P X F F --≤≤=---=23231[()()]22----Φ-Φ=(0.5)(2.5)1Φ-Φ+=0.6977; (4)P (X >3)=1(3)P X -≤=331(3)1()1(0)2F --=-Φ=-Φ=0.5.5.已知随机变量X 的密度函数为2,01()0,kx x f x ⎧<<=⎨⎩其它,求:(1)常数k ;(2)分布函数;(3)(10.5)P X -<<..解:(1)因为()1f x dx +∞-∞=⎰,所以123100|133k kkx dx x ===⎰,故k =3. 即随机变量X 的概率密度为23,01()0,x x f x ⎧<<=⎨⎩其它;(2)当0x <时,()()xF x f t dt -∞=⎰=0,当01x ≤<时,()()xF x f t dt -∞=⎰=023003xdt t dt x -∞+=⎰⎰,当1x ≥时,()()x F x f t dt -∞=⎰=012010301xdt t dt dt -∞++=⎰⎰⎰所以,随机变量X 的分布函数为30,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩;(3)(10.5)P X -<<3(0.5)(1)0.500.125F F =--=-=;6.设随机变量X 的概率密度为,011(),1220,x x f x x <<⎧⎪⎪=≤<⎨⎪⎪⎩其它,求X 的分布函数.解:当0x <时,()()xF x f t dt -∞=⎰=0;当01x ≤<时,()()xF x f t dt -∞=⎰=020102xdt tdt x -∞+=⎰⎰;当12x ≤<时,()()x F x f t dt -∞=⎰=010111022x dt tdt dt x -∞++=⎰⎰⎰;当2x ≥时,()()x F x f t dt -∞=⎰=01201210012xdt tdt dt dt -∞+++=⎰⎰⎰⎰.所以,随机变量X 的分布函数为20,01,012()1,1221,2x x x F x x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.7.设随机变量X~,01()2,120,x x f x x x ≤<⎧⎪=-≤<⎨⎪⎩其它,求:(1)1()2P X ≥;(2)13()22P X <<.解:(1)1()2P X ≥=+1211122()(2)f x dx xdx x dx ∞=+-⎰⎰⎰=2122112117|(2)|228x x x +-=; (2)13()22P X <<=3312211122()(2)f x dx xdx x dx =+-⎰⎰⎰=32122112113|(2)|224x x x +-=.8.设随机变量X 在[0,5]上服从均匀分布,求方程24420x Xx X +++=有实根的概率.解:X ~1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其它,而方程24420x Xx X +++=有实根的充分必要条件是21616(2)0X X ∆=-+≥,即220X X --≥,故所求概率为:2{20}(1)(2)P X X P X P X --≥=≤-+≥=0+5215dx ⎰=0.6.9.设随机变量X 的分布律为求:(1)Y =2X 的分布律;(2)Z =|X |的概率分布;(3)X 2的分布律.解:(1)由X 的分布律知,Y 的取值为-2,0,2,4.且(2)(1)0.1P Y P X =-==-=,(0)(0)0.2P Y P X ====, (2)(1)0.3P Y P X ====,(4)(2)0.4P Y P X ====. 所以,Y 的分布律为(2)Z =|X |的取值为0,1,2.2(0)(0)0.2P X P X ====,2(1)(1)(1)0.4P X P X P X ===-+==,2(4)(2)0.4P X P X ====.所以,X 2的分布律为:10.设X ~U [0,4], Y =3X +1,求Y 的概率密度.解:X ~1,04()40,x f x ⎧≤≤⎪=⎨⎪⎩其它,Y =3X +1的取值范围是[1,13].Y 的分布函数131()()(31)()()3y Y y F y P Y y P X y P X f x dx --∞-=≤=+≤=≤=⎰ 当1y <时,有103y -<,13()00y Y F y dx --∞==⎰;当113y ≤<时,有1043y -≤<,103011()0412y Y y F y dx dx --∞-=+=⎰⎰; 当13y ≥时,有143y -≥,1043041()0014y Y F y dx dx dx --∞=++=⎰⎰⎰.11.已知随机变量X ~N (1,4),Y =2X +3,求Y 的概率密度..解:X~2(1)8(),()x f x x --=-∞<<+∞,建立Y 的分布函数与X 的分布函数之间的关系.因为:33()()(23)()()22Y X y y F y P Y y P X y P X F --=≤=+≤=≤=, 两边对y 求导:3313()()()()2222Y X X y y y f y F f ---''=⋅=223(1)(5)2832y y -----==,即Y ~N (5,16).12.已知X 服从参数1λ=的指数分布,Y =2X -1,求Y 的概率密度.解:由题设知,X ~,0()0,0x e x f x x -⎧>=⎨≤⎩,方法1 11()()(21)()()22Y X y y F y P Y y P X y P X F ++=≤=-≤=≤=, 两边对y 求导:1111()()()()2222Y X X y y y f y F f +++''=⋅=, 又因为12121,012,1()210,10,02y y X y e y e y f y y +-+-⎧+>⎧⎪+⎪⎪>-==⎨⎨+⎪⎪≤-⎩≤⎪⎩,所以,Y 的概率密度为:121,1()20,1y Y e y f y y +-⎧>-⎪=⎨⎪≤-⎩.四、应用题1.一批零件中有10个合格品和2个废品,安装机器时,从这批零件中任取一个,如果每次取出废品后不再放回,用X 表示在取得合格品以前已取出的废品的个数,求:(1)随机变量X 的分布律;(2)随机变量X 的分布函数.解:(1)随机变量X 的可能取值为0,1,2,且105(0)126P X ===,2105(1)121133P X ==⨯=,21101(2)12111066P X ==⨯⨯=, 得到X 的分布律为:(2)X 的可能取值0,1,2将分布函数F (x )的定义域(,)-∞+∞分为四部分: 当0x <时,()()0F x P X x =≤=,当01x ≤<时,()()F x P X x =≤5(0)6P X ===,当12x ≤<时,()()F x P X x =≤65(0)(1)66P X P X ==+==, 当2x ≤时,()()F x P X x =≤(0)(1)(2)1P X P X P X ==+=+==. 从而得到X 的分布函数为:0,05,016()65,12661,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.2.袋中有标号为1,2,2,3,3,3的六个球,从中任取一个球,求所取出的球的号码X 的概率分布及分布函数..解:X 的可能取值为1,2,3.且1(1)6P X ==,21(2)63P X ===,31(3)62P X ===, 所以,X 的概率分布为:当1x <时,()()0F x P X x =≤=,当12x ≤<时,()()F x P X x =≤1(1)6P X ===,当23x ≤<时,()()F x P X x =≤1(1)(2)2P X P X ==+==, 当3x ≥时,()()F x P X x =≤(1)(2)(3)1P X P X P X ==+=+==. 从而得到X 的分布函数为:0,11,126()1,2321,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩3. 袋中有标号为1,2,2,3,3,3的六个球,从中任取两个球,X 表示取出的两个球的最大号码,求X 的概率分布..解:X 的所有可能的取值为2,3.且112122261(2)5C C C P X C +===,112333264(3)5C C C P X C +===, 从而得到X 的概率分布为:4.设一批产品共1000个,其中40个是次品,随机抽取100个样品,按下列两种方式抽样,分别求样品中次品数X 的概率分布.(1)不放回抽样; (2)有放回抽样.解:(1)不放回抽样,X 的可能取值为0,1,2,…,40.{X =k }表示100个样品中恰好有k 个次品,则100401000401001000()k kC C P X k C --==,得到X 的概率分布为: 100409601001000(),0,1,2,...,40.k kC C P X k k C -=== (2)有放回抽样,X 的可能取值为0,1,2,…,100.由于有放回抽样,抽取100个样品可看作进行了100重贝努里试验,且每次抽到次品的概率都是0.04,抽到正品的概率为0.96,X ~B (100,0.04).则X 的概率分布为:100100()0.040.96,0,1,2,...,100.kk k P X k C k -===5.抛掷一枚质地不均匀的硬币,每次正面出现的概率为13,连续抛掷10次,以X 表示正面出现的次数,求X 的分布律.由题设知,X ~B (10,13). 则X 的分布律为:101012()()(),0,1,2,...,10.33k k kP X k C k -===6.有一繁忙的交通路口,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率.解:设X 表示1000辆汽车通过路口时出事故的次数,由题意知,X ~B (1000,0.0001).由于n =1000很大,p =0.0001很小,故利用泊松分布近似代替二项分布计算.其中,10000.00010.1np λ==⨯=,0.10.1(),0,1,2,...!k P X k e k k -=≈=, 查泊松分布表可得,所求概率为:7.以电话交换台每分钟收到的呼唤次数服从参数为4的泊松分布,求: (1)每分钟恰有4次呼唤的概率; (2)每分钟的呼唤次数至少有4次的概率.解:设X 表示电话交换台每分钟收到的呼唤次数,由题意知,X ~P (4),其分布律为:44(),0,1,2...!k P X k e k k -===,则(1)每分钟恰有4次呼唤的概率444(4)0.1953674!P X e -===;(2)每分钟的呼唤次数至少有4次的概率444(4)0.56653!k k P X e k ∞-=≥==∑8.袋中装有8个球,其中3个红球、5个白球,现从袋中任取3个球,求取出红球数的概率分布.解:X 表示取出3个球中含有红球的个数,则X 的可能取值为0,1,2,3. 且35385(0)28C P X C ===,12353815(1)28C C P X C ===,21353815(2)56C C P X C ===,33381(3)56C P X C ===,于是,X 的概率分布为:9.已知某类电子元件的寿命X (单位:小时)服从指数分布,其概率密度为110001,0()10000,0x e x f x x -⎧>⎪=⎨⎪≤⎩, 一台仪器装有3个此种类型的电子元件,其中任意一个损坏时仪器便不能正常工作,假设3个电子元件损坏与否相互独立.试求:(1)一个此类电子元件能工作1000小时以上的概率p 1; (2)一台仪器能正常工作到1000小时以上的概率p 2. 解:(1)一个此类电子元件能工作1000小时以上的概率为:p 1=11110001000100010001(1000)|1000x x P X e dx e e --+∞+∞-≥==-=⎰; (2)一台仪器能正常工作到1000小时以上,需要这3个电子元件的寿命都在1000小时以上,由独立性知,所求概率为:p 2=33[(1000)]P X e -≥=.10.公共汽车车门的高度是按男子与车门顶碰头的机会在0.01以下来设计的.设男子身高X 服从170μ=(厘米),6σ=(厘米)的正态分布,即2~(170,6)X N .问车门高度应如何确定?解:设车门高度为h 厘米,由题意知,()0.01P X h >≤,即()0.99P X h ≤≥. 因为X ~N (170,36),所以170()()()0.996h P X h F h -≤==Φ≥, 查表得:(2.33)0.99010.99Φ=>,所以1702.336h -=,解得h =183.98. 设计车门的高度为183.98厘米时,可使男子与车门碰头的机会不超过0.01.五、综合题1.设10件产品中有2件次品,现进行连续无放回抽样,直至取到正品为止,求:(1)抽样次数X 的概率分布; (2)X 的分布函数F (x ); (3)(2),(13)P X P X >-<<. .解:(1)X 的可能取值为1,2,3.且84(1)105P X ===,288(2)10945P X ==⨯=,2181(3)109845P X ==⨯⨯=. 所以,X 的概率分布为:(2)当1x <时,()()0F x P X x =≤=, 当12x ≤<时,4()()(1)5F x P X x P X =≤===, 当23x ≤<时,44()()(1)(2)45F x P X x P X P X =≤==+==, 当3x ≥时,()()(1)(2)(3)1F x P X x P X P X P X =≤==+=+==. 所以,X 的分布函数为:0,14,125()44,23451,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩;(3)(2)(1)(2)(3)1P X P X P X P X >-==+=+==; 或(2)1(2)1(2)101P X P X F >-=-≤=-=-=.8(13)(2)45P X P X <<===.2.司机通过某高速路收费站等候的时间X (单位:分钟)服从参数15λ=的指数分布.(1)求某司机在此收费站等候时间超过10分钟的概率p ;(2)若该司机一个月要经过此收费站两次,用Y 表示等候时间超过10分钟的次数,写出Y 的分布律,并求(1)P Y ≥.解:(1)由题设知,151,0~()50,0x e x X f x x -⎧>⎪=⎨⎪≤⎩,则司机在此收费站等候时间超过10分钟的概率为:125101(10)5x p P X e dx e -+∞-=>==⎰; (2)由题意知,2~(2,)Y B e -,Y 的分布律为:22222222()()(1)(1),0,1,2.k k k k k k P Y k C e e C e e k ------==-=-= 2224(1)1(0)1(1)2P Y P Y e e e ---≥=-==--=-.3.甲乙丙三人独立地等1,2,3路公共汽车,他们等车的时间(单位:分钟)都服从[0,5]上的均匀分布,求三人中至少有两人等车不超过2分钟的概率.解:设一个人等车的时间为X ,由题设知,X ~U [0,5],其密度函数:1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其它. 则一个人等车不超过2分钟的概率为:221(2)()0.45p P X f x dx dx -∞=≤===⎰⎰. 设Y 表示三人中等车时间不超过2分钟的人数,则Y ~B (3,0.4),则三人中至少有两人等车不超过2分钟的概率为:223333(2)(2)(3)0.40.60.4P Y P Y P Y C C ≥==+==+=0.352.4.设测量距离时产生的随机误差X ~N (0,102)(单位:米),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知(1.96)0.975.Φ=(1)求每次测量中误差绝对值大于19.6的概率p ; (2)问Y 服从何种分布,并写出其分布律;(3)求三次测量中至少有一次误差绝对值大于19.6的概率. 解:(1) p =(||19.6)1(||19.6)P X P X >=-≤019.601(||)1[2(1.96)1]1010X P --=-≤=-Φ-=0.05. (2)由题意知,Y ~B (3, 0.05),Y 的分布律为:33()0.050.95,0,1,2,3.k k k P X k C k -===(3)三次测量中至少有一次误差绝对值大于19.6的概率为: 3(1)1(0)10.95P Y P Y ≥=-==-=0.142625.5.设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从参数110λ=的指数分布.某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.(1)写出Y 的分布律;(2)求该顾客一个月至少有一次未等到服务而离开窗口的概率.解:(1)由题设知,等待服务的时间X ~1101,0()100,0x e x f x x -⎧>⎪=⎨⎪≤⎩,顾客离开银行的概率为:1110101(10)10x p P X e dx e -+∞-=>==⎰.由题意知,Y ~B (5,e -1),其分布律为:1155()()(1),0,1,...,5.k k k P Y k C e e k ---==-=(2)所求概率为(1)P Y ≥=151(0)1(1)P Y e --==--0.899≈.6.设连续型随机变量X 的分布函数为:20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩,求:(1)系数A ; (2)X 的概率密度; (3)(0.30.7)P X <≤; (4)Y =X 2的概率密度.解:(1)由F (x )的连续性知,11lim ()lim ()(1)x x F x F x F -+→→==,有21lim 1x Ax -→=,得1A =; (2)X 的概率密度2,01()()0,x x f x F x <<⎧'==⎨⎩其它;(3)(0.30.7)P X <≤22(0.7)(0.3)0.70.30.4F F =-=-=,或(0.30.7)P X <≤=0.720.70.30.32|0.4xdx x ==⎰; (4)因为20Y X =≥,所以,当0y <时,()()0Y F y P Y y =≤=, 当01y ≤<时,2()()()(Y F y P Y y P X y P X =≤=≤=≤≤()f x dx xdx y ===,当1y ≥时,101()(()21Y F y P X f x dx xdx dx =≤≤==+=⎰所以,X 的分布函数为:0,0(),011,1Y y F y y y y <⎧⎪=≤<⎨⎪≥⎩,X 的概率密度为:1,01()0,Y y f y <<⎧=⎨⎩其它.7.连续型随机变量X 的分布函数为()arctan ,()F x A B x x =+-∞<<+∞,求:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率与统计作业(3) 班级 学号 姓名
1.已知,5.0)(,4.0)(,3.0)(===B A P B P A P 求)|(B A B P
2.设A ,B 是两个事件,6
1)|(,31)()(===B A P B P A P ,求)|(B A P 3. 掷3颗骰子,若已知出现的点数没有两个相同,求至少有一颗骰子是一点的概率。

4.袋中有3个白球和一个红球,逐次从袋中摸球,每次摸出一球,如是红球则把它放回,并再放入一只红球,如是白球,则不放回,求第3次摸球时摸到红球的概率?
5.设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球。


从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?6.袋中装有5枚正品硬币、3枚次品硬币(次品硬币两面均印有国徽)。

从袋中任取一枚硬币,将它投掷3次,已知每次均出现国徽,问这枚硬币是正品硬币的概率是多少?
7.有甲、乙、丙三门火炮同时独立地向某目标射击,命中率分别为0.2,0.3,0.5,求(1)至少有一门火炮命中目标的概率;(2)恰有一门火炮命中目标的概率。

相关文档
最新文档