高频电子线路笔记

合集下载

高频电子电路复习要点

高频电子电路复习要点

分类:
•按输出波形分
正弦波振荡器 非正弦波振荡器
•按选频回路元件分 R C 振 荡 器
L
C



•按原理、性质分 反 馈 振 荡 器 负 阻 振 荡 器
一、振荡的建立
各信号电压具有如下关系
《高频电子线路》
A(
j
)
Vo Vi
A( )e jA ( )
k
f
(
j
)
Vf Vo
k f ( )e jk
5、噪声系数
2.2 高频小信号调谐放大器
《高频电子线路》
高频小信号调谐放大器的电路组成: 晶体管和LC谐振回路。
晶体管高频等效电路
一是物理模拟(混合 )等效电路。
y 另一是形式等效电路( 参数等效电路)。
2.2
单管单调谐放大器 一、电路组成及工作原理
《高频电子线路》
《高频电子线路》
二、电路性能分析
其中 为由调制电路决定的比例系数。
ka
(2)波形图和频谱图
《高频电子线路》
图4.1.5 单频调制的DSB信号的波形图和频谱图 (a) DSB波形图 (b) DSB频谱图
(3)双边带调幅信号的产生
《高频电子线路》
D SB(t)ka (t)c(t)
带通滤波器的中心频率为 f c ,带宽为 BW AM
试计算回路电感L和 Q e 的值。若电感线圈的
Q 0 =100,问在回路上应并联多大的电阻
才能满足要求?
常见典型滤波器 石英晶体滤波器 陶瓷滤波器 表面声波滤波器
《高频电子线路》
1.3
《高频电子线路》
高频小信号调谐放大器的主要质量指标 1、增益 2.通频带 B W 0.7 3、选择性 4、工作稳定性

高频电子线路(知识点整理).doc

高频电子线路(知识点整理).doc

高频电子线路(知识点整理).doc
高频电子线路是指在射频或超高频范围内工作的电子线路,通常涉及到信号的传输、
处理和放大。

这种电子线路在通信、雷达、卫星通信、无线电等领域中被广泛应用,它有
着复杂的工作原理和设计技术。

下面就是对于高频电子线路的几个知识点整理和介绍。

1.谐振器:谐振器是高频电子线路中经常用到的一个组件,其作用是让电路产生特定
的共振频率,以便信号能够在电路中传输。

谐振器通常由其结构和材料决定,比如管型谐
振器、光纤谐振器、奇异谐振器等。

2.混频器:混频器是将两个输入频率进行混合,产生出一个输出频率的高频电子组件。

混频器主要用于转换信号的频率和增强信号的强度,比如在雷达和无线电通信中,混频器
通常用于将信号从中频转换到基带。

3.射频放大器:射频放大器是一种将低功率信号转化为高功率信号的电子器件,主要
用于放大和传输高频信号。

射频放大器的工作原理是通过对输入信号进行放大使得输出信
号的功率增大,它可以是单通道或多通道的,通常由功率放大器、隔离器等组成。

4.发射机:发射机是将信号转换成无线电波并进行发送的高频电子设备。

发射机通常
包括调制器、调谐器、放大器、射频发生器、天线等组件。

它主要将信号转化成无线电波
传输到接收机,以便实现通信或雷达探测等功能。

以上就是对于高频电子线路的几个知识点简要介绍,高频电子线路在通信、雷达、卫
星通信、无线电等领域中轮廓巨大,其涉及到很多的基础理论和设计技术,需要深入钻
研。

高频电子线路重点知识总结

高频电子线路重点知识总结

1、什么是非线性电子线路。

利用电子器件的非线性来完成振荡,频率变换等功能。

完成这些功能的电路统称为非线性电子线路。

2、简述非线性器件的基本特点。

非线性器件有多种含义不同的参数,而且这些参数都是随激励量的大小而变化的,以非线性电阻器件为例,常用的有直流电导、交流电导、平均电导三种参数。

分析非线性器件的响应特性时,必须注明它的控制变疑,控制变量不同,描写非线性器件特性的函数也不同。

例如,晶体二极管,当控制变量为电压时,流过晶体二极管的电流对电压的关系是指数律的:而当控制变量为电流时,在晶体二极管两端产生的电压对电流的关系则是对数律的。

分析非线性器件对输入信号的响应时,不能采用线性器件中行之有效的叠加原理。

3、简述功率放大器的性能要求。

功率放大器的性能要求是安全、高效率和不失貞.(确切地说,失真在允许范用内)地输出所需信号功率(小到零点几瓦,大到几十千瓦)。

4、简述乙类推挽电路中的交叉失真现象以及如何防止交叉失真。

在乙类推挽电路中,考虑到晶体管发射结导通电压的影响,在零偏宜的情况下,输出合成电压波型将在衔接处岀现严重失真,这种失真叫交叉失真。

为了克服这种失真,必须在输入端为两管加合适的正偏电压,使它们工作在甲乙类状态。

常见的偏苣电路有二极管偏置、倍增偏置。

5、简述谐振功率放大器的准静态分析法。

准静态分析法的二个假设:假设一:谐振回路具有理想的滤波特性,其上只能产生基波电压(在倍频器中,只能产生特左次数的谐波电压),而其它分量的电压均可忽略。

Vsr二\咕+ VtaCOS W t VcFVcc- V…COS W t 假设二:功率管的特性用输入和输岀静态特性曲线表示,其高频效应可忽略。

谐振功率放大器的动态线在上述两个假设下,分析谐振功率放大器性能时,可先设定Vs、Vm Vcc、V=四个电量的数值,并将按等间隔给左不同的数值,则%和Vu便是确定的数值,而后,根据不同间隔上的沧和VU值在以沧为参变虽:的输出特性曲线上找到对应的动态点和由此确左的ic值。

高频电子线路重点知识总结3

高频电子线路重点知识总结3

第一章绪论1.1 主要设计内容1. 无线通信系统的组成2. 无线通信系统的类型3. 无线通信系统的要求和指标4. 无线电信号的主要特性1.2 关键名词解释1. 基带信号:未调制的信号2. 调制信号:调制后的信号3. 载波:单一频率的正弦信号或脉冲信号4. 调制:用调制信号去控制高频载波的参数,是载波信号的某一个或者几个参数(振幅、频率或相位)按照调制信号的规律变化。

1.3 知识点1. 无线通信系统的组成(P1框图)详细了解一下无线通信系统的促成部分和每个部分的作用1)高频振荡器(信号源、载波信号、本地振荡信号)2)放大器(高频小信号放大器及高频放大器)3)混频和变频(高频信号变换和处理)4)调制和解调(高频信号变换和处理)2. 无线通信系统的分类1)按照工作频率和传输手段分为:中波信号、短波信号、超短波信号、微波信号、卫星通信2)按照通信方式分:全双工、半双工、单工方式3)按照调制方式分:调幅、调频、调相、混合调制4)按照传输发送信息的类型:模拟通信、数字通信3. 无线信号的特性:时间特性、频率特性、频谱特性、调制特性、传播特性4. 无线通信采用高频信号的原因:1) 频率越高,可利用的频带宽度越宽,可以容纳更多许多互不干扰的信道,实现频分复用或频分多址,方便某些宽频带的消息信号(如图像信号 2) 同时适合于天线辐射和无线传播。

5. 调制的作用:1) 通过调制将信号频谱搬至高频载波频率,使收发天线的尺寸大可缩小 2) 实现信道的复用,提高信道利用率。

第二章 高频电路基础与系统问题2.1 主要设计内容1. 高频电路中的元器件2. 高频率电路中的组件2.2 关键名词解释1. 参数效应:在高频信号中,随着信号的提高,元件(包括导线)产生的分布参数效应和由此产生的寄生参数(如导体间、导体或元件与地之间、元件之间的杂散电容,连接元件的导线的垫高和元件自身的寄生电感)。

2. 趋肤效应:在频率升高时,电流只集中在导体的表面,导致有效导电面积减小,交流电阻可能远大于直流电阻,从而是导体损耗增加,电路性能恶化。

高频电子线路知识点

高频电子线路知识点

1-4接收设备的结构通常采用超外差形式 2超外差结构的接收设备在接收过程中,将射频输入信号与本地振荡器产生的信号混频或差拍,由混频器后的中频滤波器选出射频信号与本振信号频率两者的和频或差频。

3在现代高性能宽带超外差接收机中,通常采用向上变频方式,并至少需要两次频率变换。

4在超外差接收机中,中频频率是固定的,当信号频率改变时,只要相应地改变本地振荡信号频率即可。

5高频电路的基本内容(高频前端)包括:5个 (1)高频振荡器(信号源、载波信号或本地振荡信号) (2)放大器(高频小信号放大器及高频功率放大器) (3)混频或变频(高频信号变换或处理) (4)调制与解调(高频信号变换或处理) (5)自动相位控制(APC)电路(也称锁相环PLL) 6调制特性:3个 (1)便于发射 (2)频分复用 (3)改善信噪比(SNR) 7表面贴装(SMD)电阻比引线电阻的高频特性要好。

SMD 表面贴装器件 8品质因数Q 定义为高频电感器的感抗与其串联损耗电阻之比。

Q 值越高,表明该电感器的储能作用越强,损耗越小。

9晶体谐振器与一般振荡回路比较,有几个明显的特点:4个 (1)晶体的谐振频率fq 和f0(下标)非常稳定。

这是因为Lq 、Cq 、C0(下标)由晶体尺寸决定,由于晶体的物理特性,它们受外界因素(如温度、震动等)影响小。

(2)晶体谐振器有非常高的品质因数。

一般很容易得到数值上万的Q 值,而普通的线圈和回路Q 值只能到一二百。

(3)晶体谐振器的接入系数非常小,一般为10^-3数量级,甚至更小。

(4)晶体在工作频率附近阻抗变化率大,有很高的并联谐振阻抗。

所有这些特点决定了晶体谐振器的频率稳定度比一般振荡回路要高。

10阻抗变换的目标是实现阻抗匹配,阻抗匹配时负载可以得到最大传输功率,滤波器达到最佳性能,接收机的灵敏度得以改善,发射机的效率得以提高。

11S 串R 并,电阻R ,电抗X )11(X )1(R 222222Q X X X R Q R R X R S S S S p S SS S p +=+=+=+=12电阻R 两端噪声电压的均方值kTBR dt e T E T n T N 41022lim ==⎰∞→ 17随着n 的增加,总带宽将减小,矩形系数有所改善。

高频电子线路总结

高频电子线路总结

第一章:载波:高频率的电流发射天线:载有载波电流,使电磁能以电磁波形式向空间发射的导体调制分为:连续波调制(调幅、调频、调相),脉冲调制(数字调制、二次调制)脉冲调制:1用信号调制脉冲。

2用已调脉冲对载波进行调制检波:与调制的过程相反调制过程:本地高频震荡→缓冲器→倍频器→中间放大→功率放大器→受调放大器话筒→低频电压放大级→低频功率放大级→调制器↑超外差收音机工作原理:通过混频器将不同的高频信号转化为固定的中频信号,使得收音机的工作选择性和灵敏度提高超外差工作过程:高频小信号放大器→自激式变频器→中频放大→检波→低频放大→输出有线通信媒介:双线对电缆、同轴电缆、光纤。

无线通信媒介:自由空间地波:分为地面波和天波,地面波,电磁波沿地面传播。

空间波,要求天线与接受天线离地面较高,接受点的电磁波由直射波与地面反射波合成天波:是经过电离层反射的电磁波第二章(选频网络)选频网路:1是由电感和电容元件组成的震荡回路(但震荡回路、耦合震荡回路)。

2各种滤波器组成的Q值:Q值越高,谐振曲线越尖锐,对外加电压的选频作用越显著,回路的选择性就越好。

串联谐振(电压谐振)回路适用于低内阻电源,内阻越低,则电路的选择性越好。

并联谐振(电流谐振)回路适用于大内阻的电源串联与并联谐振回路的对偶性:串联谐振回路谐振时回路电阻最小,而并联谐振回路谐振时回路电阻最大纯耦合:只有纯电阻或者是纯电抗复合耦合:有两种或两种以上种类的元件构成第三章(高频小信号放大器)高频放大器与低频放大器的主要区别是:1工作频率范围不同;2频带宽度不同高频放大器是由选频网路组成的谐振或非谐振放大器高频小信号放大器的主要质量指标:1增益(电压、功率)2通频带3选择性(矩形系数、抑制比)4工作稳定性(工作状态、晶体管参数、电路元件参数)5噪声系数等效电路参数:yi/yr/yf/yo晶体管的高频参数:1截至频率:β降为原来的β01/√22特征频率:│β│下降为13最高震荡频率:功率的增益为1时的频率谐振放大器稳定性的破坏原因:存在反馈导纳由反馈导纳产生的自激震荡可以通过1中和法:通过引入外部反馈网络来抵消晶体管内部y fe的反馈作用;2失配法:晶体管输出端负载阻抗不与本级晶体管的输出阻抗匹配第四章(非线性电路、时变参量电路和变频器)无线电元件:1线性元件2非线性元件3时变参量元件非线性电路的分析方法:1幂级数分析法(通过泰勒级数展开,【输入小信号】)2折线分析法(输入大信号)3开关函数分析法(控制信号为大信号,输入信号为小信号)非线性元件的特性:1特性曲线不是直线2变频作用3不满足叠加定理变频器(混频器):就是把高频信号经过频率变换,变为一个固定的频率变频器的主要质量指标:1变频增益:变频器中频输出电压振幅与高频输入信号电压振幅之比2失真和干扰:频率失真和非线性失真;组合频率、交叉频率与互相调制、阻塞和倒易混频等干扰3选择性:接受有用信号(中频),排除干扰信号的能力取决于中频输出回路的选择性是否良好4噪声系数使用较多的混频器是:输入信号从基极输入,本振电压从发射极输入。

高频电子线路(知识点整理)

高频电子线路(知识点整理)

欢迎阅读127.02ωωω-=∆高频电子线路重点第二章选频网络一.基本概念所谓选频(滤波),就是选出需要的频率分量和滤除不需要的频率分量。

电抗(X)=容抗()+感抗(wL)阻抗=电阻(R)+j 电抗 阻抗的模把阻抗看成虚数求模 二.串联谐振电路 1.谐振时,(电抗),电容、电感消失了,相角等于0,谐振频率:,此时|Z|最小=R ,电流最大 2.当w<w 0时,电流超前电压,相角小于0,X<0阻抗是容性;当w>w 0时,电压超前电流,相角大于0,X>0阻抗是感性; 3.回路的品质因素数(除R ),增大回路电阻,品质因数下降,谐振时,电感和电容两端的电位差大小等于外加电压的Q 倍,相位相反4.回路电流与谐振时回路电流之比(幅频),品质因数越高,谐振时的电流越大,比值越大,曲线越尖,选频作用越明显,选择性越好5.失谐△w=w (再加电压的频率)-w (回路谐振频率),当w 和w 很相近时,,ξ=X/R=Q ×2△w/w 是广义失谐,回路电流与谐振时回路电流之比6.当外加电压不变,w=w =w 时,其值为1/√2,w-w 为通频带,w ,w 为边界频率/半功率点,广义失谐为±1 7.,品质因数越高,选择性越好,通频带越窄 8.通频带绝对值通频带相对值 9.相位特性Q 越大,相位曲线在w 0处越陡峭 10.能量关系电抗元件电感和电容不消耗外加电动势的能量,消耗能量的只有损耗电阻。

回路总瞬时储能 回路一个周期的损耗 ,表示回路或线圈中的损耗。

就能量关系而言,所谓“谐振”,是指:回路中储存的能量是不变的,只是在电感与电容之间相互转换;外加电动势只提供回路电阻所消耗的能量,以维持回路的等幅振荡,而且谐振回路中电流最大。

11.电源内阻与负载电阻的影响Q L 三.并联谐振回路 1.一般无特殊说明都考虑wL>>R ,Z )1(CL ωω-0100=-=C L X ωωLC10=ωCR R L Q 001ωω==)(j 0)()(j 11ωψωωωωωe N Q =-+=Q 0702ωω=∆⋅2111)(2=+=ξξN Q f f 0702=∆⋅Q f f 1207.0=∆ξωωωωψ arctan arctan 00-=⎪⎪⎭⎫⎝⎛-⋅-=Q ⎪⎭⎫ ⎝⎛-+≈C L R CL ωω1j ⎪⎭⎫⎝⎛-+=L C L CR ωω1j 1C ω1- +–CV sL RI sCLR22222221cos 21sin 21sm sm sm V CQ t V CQ t V CQ w w w C L 22=+=+=ωω2sm 02sm 21π2121π2CQV R V w R ⋅=⋅⋅=ωQCQV V CQ w w w R C L ⋅=⋅=+π2121π2212sm 2sm2每周期耗能回路储能π2 =Q 所以R RR R Q LS 01++=反之w=√[1/LC-(R/L)2]=1/√RC ·√1-Q 22.Y(导纳)=电导(G)=电纳(B)=.与串联不同3.谐振时,回路谐振电阻R==QwL=Q/wC 4.品质因数(乘R p ) 5.当w<w 时,B>0导纳是感性;当w>w 时,B<0导纳是容性(看电纳) 电感和电容支路的电流等于外加电流的Q 倍,相位相反 并联电阻减小品质因数下降通频带加宽,选择性变坏 6.信号源内阻和负载电阻的影响由此看出,考虑信号源内阻及负载电阻后,品质因数下降,并联谐振回路的选择性变坏,通频带加宽。

高频电子线路复习提纲

高频电子线路复习提纲

《高频电子线路》复习提纲第一章绪论1、了解无线电信号的产生与发射过程(基本术语:载波、调制、解调等);2、有线通信的传输媒质:双线对电缆、同轴电缆、光纤。

第三章选频网络1、串、并联谐振回路的参数计算:谐振频率f0、品质因数Q、谐振电阻R P、通频带2△f0.7等的计算;2、串、并联谐振曲线的理解:通频带与回路的Q值成反比,Q越高,谐振曲线越尖锐,回路的选择性越好,但通频带越窄;3、抽头式并联电路的阻抗变换理解及计算:阻抗转换ZL'=ZL/p2;电压源的转换US'=US/p;电流源的转换:I S'=pI S4、理解耦合振荡回路的特性,熟悉滤波器的其他形式。

参考习题:3.1、3.5、3.7、3.9第四章高频小信号放大器1、高频小信号放大器的工作特性及主要质量指标理解;2、理解晶体管高频等效电路形式(y参数等效电路和混合π等效电路)、晶体管的高频参数(大到小的顺序是fmax;fT;fβ);3、单调谐回路谐振放大器的计算:电压增益、功率增益、通频带等;4、了解多级单调谐回路谐振放大器和双调谐回路谐振放大器;5、理解谐振放大器的不稳定性原因(存在反向传输导纳y re)及消除方法(中和法和失配法);6、理解噪声系数、信噪比的概念及减小噪声系数的措施。

参考习题:4.6、4.9、4.13第五章变频器1、理解非线性元件的工作特性(工作特性的非线性、不满足叠加原理、具有频率变换能力);2、理解变频器的工作原理、变频电路组成(混频器和本振电路)、变频器的主要质量指标;3、理解二级管平衡混频器工作原理及其特点;4、熟悉混频器中的干扰(组合频率干扰和副波道干扰、交调、互调、相互混频等)及简要分析计算、克服干扰措施等。

参考习题:5.17、5.21、5.35第六章高频功率放大器1、理解高频功率放大器的工作特性;2、谐振功放的工作原理及计算(P=、P0、Pc、ηc、Rp等)(重点);3、高频功率放大器的动态特性与负载特性(Rp变大时,工作状态的变化:欠压→临界→过压);4、传输线变压器原理:传输线与变压器原理的结合。

(完整版)高频电子线路(知识点整理)

(完整版)高频电子线路(知识点整理)

127.02ωωω-=∆高频电子线路重点第二章 选频网络一. 基本概念所谓选频(滤波),就是选出需要的频率分量和滤除不需要的频率分量。

电抗(X)=容抗( )+感抗(wL) 阻抗=电阻(R)+j 电抗 阻抗的模把阻抗看成虚数求模 二.串联谐振电路 1.谐振时,(电抗) ,电容、电感消失了,相角等于0,谐振频率: ,此时|Z|最小=R ,电流最大2.当w<w 0时,电流超前电压,相角小于0,X<0阻抗是容性;当w>w 0时,电压超前电流,相角大于0,X>0阻抗是感性;3.回路的品质因素数 (除R ),增大回路电阻,品质因数下降,谐振时,电感和电容两端的电位差大小等于外加电压的Q 倍,相位相反4.回路电流与谐振时回路电流之比 (幅频),品质因数越高,谐振时的电流越大,比值越大,曲线越尖,选频作用越明显,选择性越好5.失谐△w=w (再加电压的频率)-w 0(回路谐振频率),当w 和w 0很相近时, ,ξ=X/R=Q ×2△w/w 0是广义失谐,回路电流与谐振时回路电流之比6.当外加电压不变,w=w 1=w 2时,其值为1/√2,w 2-w 1为通频带,w 2,w 1为边界频率/半功率点,广义失谐为±17. ,品质因数越高,选择性越好,通频带越窄 8.通频带绝对值 通频带相对值 9.相位特性Q 越大,相位曲线在w 0处越陡峭10.能量关系电抗元件电感和电容不消耗外加电动势的能量,消耗能量的只有损耗电阻。

回路总瞬时储能 回路一个周期的损耗 , 表示回路或线圈中的损耗。

就能量关系而言,所谓“谐振”,是指:回路中储存的能量是不变的,只是在电感与电容之间相互转换;外加电动势只提供回路电阻所消耗的能量,以维持回路的等幅振荡,而且谐振回路中电流最大。

11. 电源内阻与负载电阻的影响Q L 三. 并联谐振回路 1.一般无特殊说明都考虑wL>>R ,Z 反之w p =√[1/LC-(R/L)2]=1/√RC ·√1-Q2 2.Y(导纳)= 电导(G)= 电纳(B)= . 与串联不同 )1(CL ωω-010=-=C L X ωωLC 10=ωCR R L Q 001ωω==)(j 0)()(j 11ωψωωωωωe N Q =-+=Q702ωω=∆⋅21)(2=+=ξξN Q f f 0702=∆⋅Qf f 1207.0=∆ξωωωωψ arctan arctan 00-=⎪⎪⎭⎫⎝⎛-⋅-=Q ⎪⎭⎫ ⎝⎛-+≈C L R C L ωω1j ⎪⎭⎫ ⎝⎛-+=C CR ω1j ⎪⎭⎫ ⎝⎛-+L C LCRωω1j LCR ⎪⎭⎫ ⎝⎛-L C ωω1C ω1-+ –CV sLRI s C L R22222221cos 21sin 21sm sm sm V CQ t V CQ t V CQ w w w C L 22=+=+=ωω2sm 02sm 21π2121π2CQV R V w R⋅=⋅⋅=ωQCQV V CQ w w w R C L ⋅=⋅=+π2121π2212sm sm每周期耗能回路储能π2 =Q 所以RR R R Q LS 0=3.谐振时,回路谐振电阻R p= =Q p w p L=Q p/w p C4.品质因数(乘R p)5.当w<w p时,B>0导纳是感性;当w>w p时,B<0导纳是容性(看电纳)电感和电容支路的电流等于外加电流的Q倍,相位相反并联电阻减小品质因数下降通频带加宽,选择性变坏6.信号源内阻和负载电阻的影响由此看出,考虑信号源内阻及负载电阻后,品质因数下降,并联谐振回路的选择性变坏,通频带加宽。

高频电子线路重点

高频电子线路重点

高频电子线路重点内容第一章1.1通信与通信系统1. 信息技术两大重要组成部分——信息传输和信息处理信息传输的要求主要是提高可靠性和有效性。

信息处理的目的就是为了更有效、更可靠地传递信息。

2. 高频的概念所谓“高频”,广义上讲就是适于无线电传播的无线电频率,通常又称为“射频”。

一、基本概念1. 通信:将信息从发送者传到接收者的过程2. 通信系统:实现传送过程的系统3. 通信系统基本组成框图信息源是指需要传送的原始信息,如语言、音乐、图像、文字等,一般是非电物理量。

原始信息经换能器转换成电信号(称为基带信号)后,送入发送设备,将其变成适合于信道传输的信号,然后送入信道。

信道是信号传输的通道,也就是传输媒介。

有线信道,如:架空明线,电缆,波导,光纤等。

无线信道,如:海水,地球表面,自由空间等。

不同信道有不同的传输特性,同一信道对不同频率信号的传输特性也是不同的。

接收设备把有用信号从众多信号和噪声中选取出来,经换能器恢复出原始信息。

4.通信系统的分类按传输的信息的物理特征,可以分为电话、电报、传真通信系统,广播电视通信系统,数据通信系统等;按信道传输的信号传送类型,可以分为模拟和数字通信系统;而按传输媒介(信道)的物理特征,可以分为有线通信系统和无线通信系统。

二、无线电发送与接收设备1. 无线通信系统的发射设备(1)振荡器:产生f osc 的高频振荡信号,几十 kHz 以上。

(2)高频放大器:一或多级小信号谐振放大器,放大振荡信号,使频率倍增至f c,并提供足够大的载波功率。

(3)调制信号放大器:多级放大器组成,前几级为小信号放大器,用于放大微音器的电信号;后几级为功放,提供功率足够的调制信号。

(4)振幅调制器:实现调幅功能,将输入的载波信号和调制信号变换为所需的调幅波信号,并加到天线上。

2. 无线通信系统的接收设备(1)高频放大器:由一级或多级小信号谐振放大器组成,放大天线上感生的有用信号;并利用放大器中的谐振系统抑制天线上感生的其它频率的干扰信号。

高频电子线路笔记

高频电子线路笔记

绪论一、通信系统模型二、发送设备组成框图三、接收设备组成框图无线电波段(频段)的划分频段名称频率范围波段名称波长范围符号主要用途传输媒介极低频3~30Hz 极长波100~10Mm ELF超低频30~300Hz 超长波10~1Mm SLF特低频0.3~3kHz 特长波1~0.1Mm ULF 音频架空明线(长波)甚低频3~30kHz甚长波100~10km VLF音频电话、长距离导航、时标架空明线,对称电缆、地球表层(长波)低频30~300kHz长波10~1km LF船舶通信、信标、导航对称电缆、架空明线、地球表层(长波)第1章 高频小信号放大器§1.1 分散选频一、高频电压放大器的作用:放大+选频 二、选频电路分类三、分散选频电路 1、LC 串联选频电路主要参数:谐振频率 LCf π210= CL R CR RL Q 1100===ωω Q f f BW 02=∆=2、LC 并联选频电路主要参数:谐振频率 LCf π210=LC R C R LRQ ===00ωω Q f f BW 02=∆=3、耦合选频(了解)§1.2 集中选频1.石英晶体滤波器石英晶体滤波原理:逆压电效应压电效应:当晶片两面加机械力时,晶片两面将产生电荷,电荷的多少与机械力所引起的变形成正比,电荷的正负将取决于所加机械力是张力还是压力。

逆压电效应:当在晶片两面加不同极性的电压时,晶片会产生机械形变,其形变大小正比于所加的电压强度;形变是压缩还是伸张,则决定于所加电压的极性。

Lq 为石英晶片的动态等效电感 Cq 为石英晶片的动态等效电容 Rq 为石英晶片的动态等效电阻 C 0为石英谐振器的静态电容品质因数: qq qC L R Q 1= fs :串联谐振频率,即石英晶片本身的自然频率: qq 21C L f s π=fp :和石英谐振器的并联谐振频率:q S q0q 0qp 121C C f C C C C L f +==+π 2. 陶瓷滤波器原理与参数同石英晶体滤波器 3. 声表面波滤波器原理:电声效应 4.螺旋滤波器§1.3 高频小信号放大器(一)单级单调谐放大器(1)谐振频率 LCf π210=(2)通频带 Q f B 07.0= G C L G L C R C R L R Q 00001ωωωω=====(3)选择性 K 0.1 = BW 0.1 / BW 0.7 = 9.96 ≈ 10(4)电压增益 GYp p Gu u Y p p u u p u u A fe 12S S fe 12S L 2S L 0V '====(5)增益带宽乘积 CY p p B A GB π2fe 127.00V ==(二)单级双调谐放大器(1)电压增益 ()()22224fe12V 112ηηξξη++-+GY p p A = GY p p A 2fe120V =(2)通频带 Qf BW 07.02= (3)选择性 K 0.1 =3.16(三)多级调谐放大器 1.多级单调谐(1)总电压增益 ()N G Y p p A ⎥⎦⎤⎢⎣⎡=ξj 1fe 12VN + NG Y p p A ⎥⎦⎤⎢⎣⎡=fe 12V0N(2)总谐振曲线方程22022V0N VN 21111N Nf fQ A A⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛∆+=⎥⎥⎦⎤⎢⎢⎣⎡+=ξα=(3)总通频带 12107.0-=N Qf BW(4)总的选择性121100111.0--=NNK 2.多级双调谐(1)谐振曲线方程 N⎪⎪⎭⎫⎝⎛+=442ξα (2)总通频带 4107.0122-=NQf BW(3)总的选择性 4111.0121100--=N NK3.多级参差调谐(1)双参差调谐放大器:两个放大器分别调谐在f1、f2上(2)三参差调谐放大器。

高频电子线路张肃文第五版一二章总结

高频电子线路张肃文第五版一二章总结
复习思考题:
l.为什么在无线电通信中要便用“载波”发射,其作用是什么?
答:由于需要传送的信息转变成电信号后,其占有的频率成分基本上是低频范围。将这些低频范围的电信号直接发肘出去,有两个下可克服的缺点,一是选择性,相互干扰,下能实现多路通信。二是电信号频率低,天线发射无线尺寸太大。为此采用对载波进行调制的发送方式就能较好地解决这两个缺点,选用高频载频作为运载信息的信号,由于频率高,天线尺寸小。另外,不同的电台采用不同的载频,就很容易实现多路通信。
2 a图只要L1C1或L2C2之一为并联则为并联,二者为容性则为串联;
B图L1C1与L2C2只能呈现感性才能谐振,为并联谐振;
C图L1C1与L2C2只能呈现感性才能谐振,为串联谐振。
3注意利用 但不要使用
4根据 的比值选取合适的电容器。
2画出无线通信收发信机的原理框图,并说出各部分的功用。
答:
上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。
低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。
1.接入系数
电感抽头接入法、电容抽头部分接入法
2.电压源、电流源、电阻、电容、电感的折合
四、耦合回路
1.耦合系数
2.反射阻抗与等效阻抗
3.耦合回路的频率特性

高频电子线路读书笔记

高频电子线路读书笔记

高频电子线路读书笔记【篇一:晶体管放大电路设计读书笔记】一、放大电路的工作1、功率开关mos管结构:在内部将大量fet并联连接起来的,每一个单元中流过的电流很小,防止局部的电流集中,同时改善高频特性。

2、耦合电容:使输入信号与电路或电路与者电路与电路的耦合。

3、电源的去耦电容:降低电源对gnd的交流阻抗的电容(旁路电容),当没有这个电容时,电路的交流特性变的很奇特,严重时电路产生震荡。

4、在低频电路中,去耦电容的安装位置不是问题;但在高频电路中,安装位置比什么都重要,引线也要短。

5、 npn型的ttl三极管可以理解为:由集电极进行输出的电流源。

6、在共射电路中,发射极接个电阻re,可以认为在改电路中加了负反馈,由于负反馈,re有抑制hfe(电流放大系数)的分散性和vbe的温度变化而产生的发射极电流变化的作用。

7、 ttl三极管共射电路中:发电极电位设定在vcc与ve的中点。

二、增强输出电路1、ttl三极管工集电路中:集电极电位设定在vcc与gnd的中点。

2、射机跟随器大多数用在电路的输出极,因为需要经常处理大电流,所以必须注意晶体管和电阻的发热问题。

3、将射极跟随器组合在共发射极放大电路上来降低输出阻抗的放大电路。

4、由于集电极电容接地,故不会发生密勒效应,因此频率特性变好。

5、在晶体管电路中,通常越提高放大率,噪音就越增加,这是由于进行放大的同时,电路内部产生的噪音也被放大的缘故。

6、当op放大器需要驱动大的负载时,需要将op放大器与射极跟随器相互结合。

三、功率放大器的制作与设计1、功率放大器的一般规律:首先电压放大得到必要的输出;之后放置能驱动低阻抗负载的电流缓冲放大器。

2、解决发热问题是制作功率放大器的重点。

3、用一个晶体管进行工作的集电极电流的适当值为最大电流的1/3左右。

四、拓宽频带特性1、由于共基极放大电路的输出阻抗比较高,所以在输出信号长距离传输时,输出阻抗与布线杂散电容形成低通滤波器,就不能够显示出共基极放大电路本来的频率特性有点,为了改进这一点,在共基极放大电路的后级接上射极跟随器。

高频电子线路知识点总结

高频电子线路知识点总结
2
互感耦合LC振荡电路
3
三点式LC振荡电路 频率稳定度 晶体振荡器
第三章 正弦波振荡器
非线性器件的基本特性
01
非线性器件的工程分析 幂级数分析法 线性时变电路分析法 开关函数分析法
02
模拟相乘器
03
第四章 频率变换电路基础
AM信号的表达式、波形、频谱、功率分配
01
DSB的表达式、波形、频谱

第一章 高频小信号谐振放大器
信号源内阻及负载对LC回路的影响
LC阻抗变换网络 串并阻抗等效互换 变压器阻抗变换电路 部分接入回路的阻抗变换
第一章 高频小信号谐振放大器
高频小信号调谐放大器 特点、电路结构、晶体管等效模型、高频参数、性能参数分析(输入输出导纳、电压增益、功率增益)
谐振放大器的稳定性(定义、方法)
02
振幅调制电路
03
解调(性能指标计算)
04
混频(原理、与调制和检波的关系)
05
第五章 振幅调制、解调及混频
解调频(鉴频特性曲线)
3
调角信号的表达式、波形、频谱、带宽
1
调频电路
2
第六章 角度调制与解调
电噪声(电阻热噪声的计算)
第一章 高频小信号谐振放大器
工作原理(电路结构、iC的傅立叶分析、电压与电流波形图、功率和效率)
1
动态分析(动态特性曲线、负载特性、调制特性、放大特性)
2
实用电路(直流馈电电路、滤波匹配网络)
3
第二章 高频功率放大器
1
工作原理(方框图、振荡条件、判断) LC正弦波振荡电路
高频电子线路的定义、高频的范围 现代通信系统由哪些部分组成?各组成部分的作用是什么? 发送设备的任务? 无线通信为什么要进行调制? 接收设备的任务? 超外差接收机结构有什么特点?

高频电子线路知识点

高频电子线路知识点

高频电子线路知识点高频电子线路在现代通信和无线电技术中起着至关重要的作用。

它们被广泛应用于手机、无线电、卫星通信、雷达等设备中。

理解高频电子线路的基本原理和常见知识点是从事相关领域工作的基础。

本文将介绍一些高频电子线路的重要知识点。

1. 传输线理论传输线是高频电子线路中常用的元件,它用于将信号从发射端传输到接收端。

了解传输线的特性对于设计和分析高频电子线路至关重要。

传输线理论涉及电缆、微带线和同轴电缆等不同类型的传输线。

了解它们的特性阻抗、传播常数和损耗等等是必要的。

2. 双端口网络理论双端口网络是高频电子线路中用于表示电路、分析和设计的重要工具。

双端口网络表示复杂电路的传输特性,如滤波器、功率放大器等。

对双端口网络的理解包括参数矩阵、S参数和Y参数等。

这些参数描述了双端口网络的敏感度和功率传输性能。

3. 高频电源和信号分布在高频电子线路中,电源和信号分布是必不可少的。

了解高频电源的供电要求和电容、电感元件的选择是保证电路功能稳定和性能优异的关键。

同时,信号分布的设计和布线决定了电路中信号的准确传输和最小损耗。

4. 高频放大器设计高频放大器是用于增强电路中信号的电子设备。

设计高频放大器需要考虑信号输入输出的匹配性、增益、稳定性和线性度等因素。

传统的放大器电路设计方法需要和高频电路设计结合起来,通过使用适当的元件和电路结构来提高线路的性能。

5. 射频阻抗匹配在高频电子线路中,阻抗匹配非常重要,以确保信号的能量传输和最小损耗。

对于恒定驻波比的高频线路,正确的阻抗匹配可以使传输更有效。

阻抗匹配的方法包括L型匹配和T型匹配电路等。

6. 射频滤波器设计射频滤波器用于对特定频率范围的信号进行选择性的通过或衰减。

设计和分析射频滤波器需要考虑频率响应、带宽、阻带衰减等参数。

滤波器的类型包括带通滤波器、低通滤波器和高通滤波器等。

7. 射频混频器设计射频混频器是用于将不同频率的信号混合产生新频率的装置。

混频器广泛应用于信号调制和解调、频率合成等领域。

高频电路笔记

高频电路笔记
模拟:连续波(AM、FM、PM)、脉冲波(PAM、PWM)
调幅AM调角FM/PM:瞬时频率 、瞬时相位
无线电发射机:
信号
无线电接收机:
信号
直接放大式:无混频+本振(变频),不同接收频率灵敏度、选择性不同。
超外差式:中频放大器选择性、增益与接收频率无关。
零中频式(直接变换式):正交变换。
1.3
双绞线:低频、低速
陶瓷片两面用银作为电极,经过直流高压极化,具有和石英晶体相类似的压电效应,等效电路与晶体相同。
优点:容易焙烧,可制成各种形状;适于小型化;且耐热耐湿性好。
等效品质因数为几百,比石英晶体低但比LC滤波高
四端陶瓷滤波器:由多个谐振子组成四端滤波器。谐振子数目愈多,滤波器的带外衰减性能愈强。
电路组成原则:中心频率是串臂的串联谐振频率和并臂的并联谐振频率,
设 ,
回路中储存的能量不变,只在电感与电容间转换,外加电源提供回路电阻所消耗的能量。
回路一个周期的损耗:

电源内阻与负载电阻的影响:
有载Q值
考虑信号源内阻及负载电阻后,串联谐振回路的选择性变坏,通频带加宽。
1.4
高频电子线路中,信号源多为工作于放大区的有源器件(晶体管、场效应管),可看做恒流源,一般采用并联谐振回路。
反射电抗的性质与原回路总电抗的性质相反
反射电阻和反射电抗的值与耦合阻抗的平方值成正比。
初、次级回路同时调谐到与激励频率谐振(即 )时,反射阻抗为纯阻。
1.7.2
设回路参数相同, , , ,
则 ,
广义失谐量
耦合因数:耦合振荡回路的耦合系数与临界耦合系数之比。
各种耦合电路都可定义耦合系数,但只能对双谐振回路定义耦合因数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪论
一、通信系统模型
二、发送设备组成框图
三、接收设备组成框图
无线电波段(频段)的划分
频段名称频率范围波段名称波长范围符号主要用途传输媒介极低频3~30Hz 极长波100~10Mm ELF
超低频30~300Hz 超长波10~1Mm SLF
特低频0.3~3kHz 特长波1~0.1Mm ULF 音频架空明线(长波)
甚低频3~30kHz甚长波100~10km VLF
音频电话、长距离
导航、时标架空明线,对称电缆、地球表层(长波)
低频30~300kHz长波10~1km LF
船舶通信、信标、
导航对称电缆、架空明线、地球表层(长波)
第1章 高频小信号放大器
§1.1 分散选频
一、高频电压放大器的作用:放大+选频 二、选频电路分类
三、分散选频电路 1、LC 串联选频电路
主要参数:谐振频率 LC
f π210= C
L R C
R R
L Q 1100=
=
=ωω Q f f BW 02=∆=
2、LC 并联选频电路
主要参数:谐振频率 LC
f π210=
L
C R C R L
R
Q ===
00ωω Q f f BW 0
2=∆=
3、耦合选频(了解)
§1.2 集中选频
1.石英晶体滤波器
石英晶体滤波原理:逆压电效应
压电效应:当晶片两面加机械力时,晶片两面将产生电荷,电荷的多少与机械力所引起的变形成正比,电荷的正负将取决于所加机械力是张力还是压力。

逆压电效应:当在晶片两面加不同极性的电压时,晶片会产生机械形变,其形变大小正比于所加的电压强度;形变是压缩还是伸张,则决定于所加电压的极性。

Lq 为石英晶片的动态等效电感 Cq 为石英晶片的动态等效电容 Rq 为石英晶片的动态等效电阻 C 0为石英谐振器的静态电容
品质因数: q
q q
C L R Q 1
= fs :串联谐振频率,即石英晶片本身的自然频率: q
q 21C L f s π=
fp :和石英谐振器的并联谐振频率:
q S q
0q 0q
p 121C C f C C C C L f +
=
=+π 2. 陶瓷滤波器
原理与参数同石英晶体滤波器 3. 声表面波滤波器
原理:电声效应 4.螺旋滤波器
§1.3 高频小信号放大器
(一)单级单调谐放大器
(1)谐振频率 LC
f π210=
(2)通频带 Q f B 07.0= G C L G L C R C R L R Q 000
01ωωωω=====
(3)选择性 K 0.1 = BW 0.1 / BW 0.7 = 9.96 ≈ 10
(4)电压增益 G
Y
p p Gu u Y p p u u p u u A fe 12S S fe 12S L 2S L 0V '====
(5)增益带宽乘积 C
Y p p B A GB π2fe 127.00V ==
(二)单级双调谐放大器
(1)电压增益 ()()
2
2224fe
12V 112ηηξξη
++-+G
Y p p A = G
Y p p A 2fe
120V =
(2)通频带 Q
f BW 0
7.02= (3)选择性 K 0.1 =3.16
(三)多级调谐放大器 1.多级单调谐
(1)总电压增益 ()N G Y p p A ⎥⎦

⎢⎣⎡=ξj 1fe 12VN + N
G Y p p A ⎥⎦⎤⎢⎣⎡=fe 12V0N
(2)总谐振曲线方程
2
2
022V0N VN 211
11N N
f f
Q A A
⎥⎥⎦
⎤⎢⎢⎣
⎡⎪⎪⎭

⎝⎛∆+=
⎥⎥⎦
⎤⎢⎢
⎣⎡+=ξα=
(3)总通频带 121
07
.0-=N Q
f BW
(4)总的选择性
1
21100111.0--=
N
N
K 2.多级双调谐
(1)谐振曲线方程 N
⎪⎪⎭


⎛+=442ξα (2)总通频带 4
10
7
.0122-=N
Q
f BW
(3)总的选择性 41
11.01
21100--=N N
K
3.多级参差调谐
(1)双参差调谐放大器:两个放大器分别调谐在f1、f2上(2)三参差调谐放大器。

相关文档
最新文档