重庆市全善学校九年级数学下学期第三次月考试题 人教新课标版
2022-2023学年新人教版九年级下数学月考试卷(含解析)
2022-2023学年初中九年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:130 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 16 小题 ,每题 5 分 ,共计80分 )1. 一个数的立方等于它本身,则这个数是( )A.1B.−1C.±1D.±1和0 2. 下列四个图案中,是轴对称图形的是( ) A. B. C. D.3. −|−12|的相反数的倒数是 ( )A.12B.−12C.2D.−24. 如图是小玲收到妈妈送给她的生日礼盒,则图中礼盒的俯视图是( )A.B. 1−1±1±10−|−|1212−122−2()C. D.5. 下列运算中,错误的是( )A.√8÷√2=2B.√3×√12=6C.√18−√2=4D.√(−3)2=36. 如果式子5x −4的值与10x 互为相反数,则x 的值是( )A.415B.−415C.154D.−1547. 如图,将△ADE 绕D 点旋转得到△CDB ,点A 与点C 是对应点,点C 在DE 上,下列说法错误的是( )A.AD =DCB.AE//BDC.DE 平分∠ADBD.AE =BC8. 钦州港口2018年全年吞吐量突破亿吨,达到102000000吨,其中数据102000000用科学记数法表示为( )A.102×106B.10.2×107C.1.02×107D.1.02×1089.如图,矩形ABCD 中,AC 与BD 交于点O ,BE ⊥AC 于点E ,DF 平分∠ADC ,交EB 的延长线于÷=28–√2–√×=63–√12−−√−=418−−√2–√=3(−3)2−−−−−√5x−410x x415−415154−154点F,BC=6,CD=3,则BEBF为()A.23B.34C.25D.3510. 如图,在△ABC中,∠ADE=∠C,则下列等式成立的是()A.ADAB=AEBCB.AEBC=ADBDC.DEBC=AEABD.ADAB=DEBC11. 两个数2−m和−1在数轴上从左到右排列,那么关于x的不等式(2−m)x+2>m的解集是( )A.x>−1B.x<−1C.x>1D.x<112.小明不慎将一块三角形形状的玻璃摔成如图所示标有1,2,3,4的四块,他要将其中的一块碎片带去玻璃店配原来同样大小的三角形形状的玻璃.请你告诉他应带上( )A.第1块B.第2块C.C、第3块D.第4块13. 如图,⊙O的直径AB与弦CD垂直相交于点E,且AC=2,AE=√3.则^BO的长是( )A.√3π9B.2√3π9C.√3π3D.2√3π314. 小明等五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小明等五位同学年龄的方差为( )A.0.5B.5C.10.5D.5015. 小芳说:“我的矩形面积为6.”小丽说:“我的矩形周长为6.”下面说法不正确的是( )A.小芳:我的矩形一组邻边满足反比例函数关系,你的矩形一组邻边满足一次函数关系B.小丽:你的矩形周长不可能是6,我的矩形面积也不可能是6C.同学小文:你们的矩形都可能是正方形D.同学小华:小丽的矩形面积没有最大值16. 如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD//BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90∘−∠ABD;⑤∠BDC=12∠BAC.其中正确的结论有( )A.1 个B.2个C.3个D.4个卷II(非选择题)二、填空题(本题共计 3 小题,每题 5 分,共计15分)17. 如图,一块四边形绿化园地,四角都做有半径为3的圆形喷水池,则这四个喷水池占去的绿化园地的面积为________.18. 在一个盒子中有红球,黑球,黄球共20个,每个球除颜色外都相同,从中任意摸出一球,得到红球的概率为,得到黑球的概率为,则这20个球中黄球有________个.19. 如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是________.三、解答题(本题共计 7 小题,每题 5 分,共计35分)20. 为鼓励居民节约用电,某市采用价格调控手段达到省电目的.该市电费收费标准如下表(按月结算):解答下列问题:(1)某居民12月份用电量为180度,请问该居民12月应缴电费多少元?(2)设某月的用电量为x度 (0<x≤300) ,试写出不同用电量范围应缴的电费(用x表示).(3)某居民12月份缴电费180元,求该居民12份的用电量.21. 每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有________人;(2)扇形统计图中,扇形E的圆心角度数是________;(3)请补全条形统计图.22. 如图,过四边形ABCD的四个顶点分别作对角线AC,BD的平行线,围成四边形EFGH.(1)求证:四边形EFGH是平行四边形;(2)当四边形ABCD满足________时,四边形EFGH是菱形;(3)当四边形ABCD满足________时,四边形EFCH是矩形,请予以证明.23. 如图,为了测量某条河的宽度,在它的对岸岸边任取一点A,再在河的这边沿河边取两点B、C,使得∠ABC=60∘,∠ACB=45∘,量得BC的长为30m,求这条河的宽度(结果精确到1m).(参考数据:√2≈1.414,√3≈1.732.)24. 某单位急需用车,但又不准备买车,他们准备在一个个体车主和一个出租车公司选择一家签定月租车合同,设汽车每月行驶xkm,应付给个体车主的月费用是y1元,应付给出租车公司的月租费用是y2元,y1,y2分别与x之间的函数关系图象如图,观察图象解答下列问题:(1)分别求y1,y2与x之间的函数关系式;(2)每月行驶的路程为多少时,两家的月租车费用相同?(3)如果这个单位估计每月行驶的路程为2400km,那么这个单位租哪家的车合算,并说明理由?25. 已知二次函数y=−12x2−x+3.(1)求抛物线的顶点坐标和对称轴;(2)画出抛物线的图象;(3)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?当x取何值时,y有最大值还是最小值?是多少?26. 如图1,以正方形ABCD的相邻两边AD,CD为边向外作等边三角形,得到△ADE ,△DCF,点G,H分别是AE,CF的中点,连接AF,GH.(1)问题发现:GHAF=________;(2)猜想论证:如图2,若四边形ABCD是矩形,其他条件不变,则(1)中结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)拓展延伸:如图3,在(2)的条件下,点P,Q分别为AF,GH的中点,连接PQ,DQ,猜想PQ,DQ的位置关系,并加以证明.参考答案与试题解析2022-2023学年初中九年级下数学月考试卷一、 选择题 (本题共计 16 小题 ,每题 5 分 ,共计80分 )1.【答案】D【考点】有理数的乘方【解析】可以考虑是±1以及0,若符合条件,就是所求.【解答】解:由于13=1,(−1)3=−1,03=0,即±1或0符合.故选D .2.【答案】D【考点】轴对称图形【解析】此题暂无解析【解答】解:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,故D 是轴对称图形.故选D.3.【答案】C【考点】倒数相反数绝对值【解析】根据相反数及倒数的求法直接进行求解即可.【解答】解:根据题意, −|−12|=−12,∵−12的相反数是12,∴12的倒数是2.故选C.4.【答案】C【考点】简单组合体的三视图【解析】从上面看到的图叫做俯视图.按照礼盒的位置摆放和左视图的定义判断.【解答】解:从上面看的是四个矩形.故选C.5.【答案】C【考点】二次根式的乘法二次根式的除法二次根式的减法二次根式的化简求值【解析】本题考查二次根式的乘除法与减法运算.【解答】解:A.√8÷√2=√8÷2=√4=2,故正确;B.√3×√12=√3×12=√36=6,故正确;C.√18−√2=3√2−√2=2√2,故错误;D.√(−3)2=√9=3,故正确.故选C.6.【答案】A【考点】解一元一次方程列代数式求值【解析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解答】根据题意得:5x−4+10x=0,移项合并得:15x=4,解得:x=415,7.【答案】B【考点】旋转的性质平行线的性质【解析】由旋转的性质可得AD=CD,AE=BC,∠E=∠B,∠ADE=∠EDB,可得DE平分∠ADB,利用排除法可求解.【解答】解:∵△ADE旋转到△CDB,∴AD=CD,AE=BC,∠ADE=∠EDB,故选项A和D不符合题意,∴DE平分∠ADB,故选项C不符合题意.故选B.8.【答案】D【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】8.解:102000000用科学记数法表示为:1.02×10故选D.9.【答案】C【考点】矩形的性质【解析】此题暂无解析【解答】此题暂无解答10.C【考点】平行线分线段成比例【解析】此题暂无解析【解答】此题暂无解答11.【答案】B【考点】解一元一次不等式数轴【解析】先根据题意判断出2−m<−1 ,即2−m<0 ,再根据不等式的基本性质求解即可.【解答】解:由题意知2−m<−1.∵ (2−m)x+2>m,∴ (2−m)x>m−2,不等式两边同时除以2−m,得x<−1,∴不等式(2−m)x+2>m的解集为x<−1.故选B.12.【答案】B【考点】全等三角形的应用【解析】此题应采用排除法通过逐个分析从而确定最终答案.【解答】解:4只保留了一个角及部分边,不能配成和原来一样的三角形玻璃;1,3则只保留了部分边,不能配成和原来一样的三角形玻璃;而2不但保留了一个完整的边还保留了两个角,所以应该带“2”去,根据全等三角形判定“ASA”可以配出一块和原来一样的三角形玻璃.故选:B.13.【答案】B圆周角定理弧长的计算圆心角、弧、弦的关系【解析】连接OC ,先根据勾股定理判断出△ACE 的形状,再由垂径定理得出CE =DE ,故^BC =^BD ,由锐角三角函数的定义求出∠A 的度数,故可得出∠BOC 的度数,求出OC 的长,再根据弧长公式即可得出结论.【解答】解:连接OC ,∵△ACE 中,AC =2,AE =√3,AE ⊥CD ,∴CE =√22−(√3)2=1,∵sinA =CEAC =12,∴∠A =30∘,∴∠COE =60◦,∴CEOC =sin ∠COE ,即1OC =√32,解得OC =2√33,∵AE ⊥CD 且CE =ED ,∴^BC =^BD ,∴^BD =^BC =60π×2√33180=2√3π9.故选B.14.【答案】A【考点】方差【解析】先分别计算前后的方差,再根据方差的意义即方差是反映数据波动大小的量即可得出答案.【解答】解:由题意知,原来的平均年龄为¯x ,每位同学的年龄10年后都变大了10岁,则平均年龄变为¯x +10,且每个人的年龄增加了10岁,原来的方差S2=11n [(x 1−¯x)2+(x 2−¯x)2+⋯+(x n −¯x)2]=0.5,10年后的方差S 22=1n [(x 1+10−¯x −10)2+(x 2+10−¯x −10)2+⋯+(x n +10−¯x −10)2]=1n [(x 1−¯x)2+(x 2−¯x)2+⋯+(x n −¯x)2]=0.5,所以10年后的方差不变.故选A.15.【答案】D【考点】三角形的面积二次函数的最值矩形的性质反比例函数的应用【解析】【解答】解:如图所示:A ,由题意,可知ab =6,2(x +y)=6,∴b =6a ,y =−x +3,故A 正确;B ,若2(a +6a )=6,则a +6a =3,∴a 2−3a +6=0.∵Δ=9−4×6<0,∴此方程无解,故小芳的矩形周长不可能等于6.∵S =x(3−x),∴x(3−x)=6,∴x 2−3x +6=0,此方程无解,故小丽的矩形面积不可能等于6.故B 正确;C ,a =6a ,∴a 2=6,a =√6(a =−√6不合题意,舍去);x =−x +3,∴2x =3,∴x =32,∴这两个矩形都可能是正方形,故C 正确;D ,S =x(3−x),当x =32时,S 有最大值,故D 错误.故选D .16.【答案】D【考点】三角形的外角性质三角形内角和定理平行线的判定与性质【解析】①由AD 平分△ABC 的外角∠EAC ,求出∠EAD =∠DAC ,由三角形外角得∠EAC =∠ACB +∠ABC ,且∠ABC =∠ACB ,得出∠EAD =∠ABC ,利用同位角相等两直线平行得出结论正确.②由AD//BC ,得出∠ADB =∠DBC ,再由BD 平分∠ABC ,所以∠ABD =∠DBC ,∠ABC =2∠ADB ,得出结论∠ACB =2∠ADB ,③在△ADC 中,∠ADC +∠CAD +∠ACD =180∘,利用角的关系得∠ADC +∠CAD +∠ACD =∠ADC +2∠ABD +∠ADC =2∠ADC +2∠ABD =180∘,得出结论∠ADC =90∘−∠ABD ;④由∠BAC +∠ABC =∠ACF ,得出12∠BAC +12∠ABC =12∠ACF ,再与∠BDC +∠DBC =12∠ACF 相结合,得出12∠BAC =∠BDC ,即∠BDC =12∠BAC .【解答】解:①∵AD 平分△ABC 的外角∠EAC ,∴∠EAD =∠DAC ,∵∠EAC =∠ACB +∠ABC ,且∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD//BC ,故①正确.②由①可知AD//BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠ABC =2∠ADB ,∵∠ABC =∠ACB ,∴∠ACB =2∠ADB ,故②正确.③∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∵∠ADB =∠DBC ,∠ADC =90∘−12∠ABC ,∴∠ADB 不等于∠CDB ,∴③错误;④在△ADC 中,∠ADC +∠CAD +∠ACD =180∘,∵CD 平分△ABC 的外角∠ACF ,∴∠ACD =∠DCF ,∵AD//BC ,∴∠ADC =∠DCF ,∠ADB =∠DBC ,∠CAD =∠ACB∴∠ACD =∠ADC ,∠CAD =∠ACB =∠ABC =2∠ABD ,∴∠ADC +∠CAD +∠ACD =∠ADC +2∠ABD +∠ADC =2∠ADC +2∠ABD =180∘,∴∠ADC +∠ABD =90∘∴∠ADC =90∘−∠ABD ,故④正确;⑤∵∠BAC +∠ABC =∠ACF ,∴12∠BAC +12∠ABC =12∠ACF ,∵∠BDC +∠DBC =12∠ACF ,∴12∠BAC +12∠ABC =∠BDC +∠DBC ,∵∠DBC =12∠ABC ,∴12∠BAC =∠BDC ,即∠BDC =12∠BAC .故⑤正确.故选D.二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )17.【答案】9π【考点】多边形的内角和【解析】因为图中的圆形喷水池形成的内角和度数为360∘,为一个圆,利用圆的面积计算公式求出圆形喷水池的面积即可.【解答】解:四边形的内角和为360∘,阴影部分的面积和为一个圆的面积,故圆形喷水池的面积为π⋅32=9π.故答案为:9π.18.【答案】6【考点】概率公式利用频率估计概率列表法与树状图法【解析】根据题意可先求出红球和黑球的个数,然后进行求解即可.【解答】解:由题意得:黄球的个数为:20−12×20−15×20=6(个);故答案为6.19.【答案】8+8√2【考点】正多边形和圆【解析】根据题意可知形成的四个小的直角三角形全等,并且四个都是等腰直角三角形,从而可以求得四边形ABCD一边的长,从而可以求得四边形ABCD的周长.【解答】由题意可得,AD=2+√222×2=2+2√2,∴四边形ABCD的周长是:4×(2+2√2)=8+8√2,三、解答题(本题共计 7 小题,每题 5 分,共计35分)20.【答案】解:(1)由题意,得 150×0.50+(180−150)×0.65=94.5,即该居民12月应缴交电费94.5元.(2)若某户的用电量为x度,则0<x≤150 时,应付电费0.50x元;150<x≤250时,应付电费[0.65(x−150)+75]元;250<x≤300时,应付电费[0.80(x−250)+140]元.(3)因为 180>140 ,所以该居民12份的用电量超过250度.由(2)得: 0.80(x−250)+140=180,解得 x=300.答:该居民12份的用电量为300度.【考点】一元一次方程的应用——其他问题列代数式求值统计表列代数式【解析】此题暂无解析【解答】解:(1)由题意,得 150×0.50+(180−150)×0.65=94.5,即该居民12月应缴交电费94.5元.(2)若某户的用电量为x 度,则0<x ≤150 时,应付电费0.50x 元;150<x ≤250时,应付电费[0.65(x −150)+75]元;250<x ≤300时,应付电费[0.80(x −250)+140]元.(3)因为 180>140 ,所以该居民12份的用电量超过250度.由(2)得: 0.80(x −250)+140=180,解得 x =300.答:该居民12份的用电量为300度.21.【答案】200028.8∘(3)D 选项的人数为2000×25%=500.补全条形图如下:【考点】扇形统计图条形统计图【解析】(1)将A 选项人数除以总人数即可得;(2)用360◦乘以E 选项人数所占比例可得;(3)用总人数乘以D 选项人数所占百分比求得其人数,据此补全图形即可得;【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人.故答案为:2000.(2)扇形统计图中,扇形E 的圆心角度数是360∘×1602000=28.8∘.故答案为:28.8∘.(3)D 选项的人数为2000×25%=500.补全条形图如下:22.【答案】(1)证明:∵EH//BD,FG//BD,∴EH//FG.同理,EF//HG,∴四边形EFGH是平行四边形.AC=BDAC⊥BD【考点】平行四边形的判定菱形的判定平行四边形的性质与判定矩形的判定【解析】(1)由已知条件得到EH//BD,CF//BD,求得EH//FG,同理,EF//HG,于是得到结论;(2)根据EH//BD,HG//EF,求得四边形BDHE是平行四边形,根据平行四边形的性质得到EH=BD,同理,HG=AC,根据菱形的判定定理即可得到结论;(3)由DG//AC,BD//FG,得到四边形DOCG是平行四边形,推出平行四边形DOCG是矩形,根据矩形的性质得到∠G=90∘,于是得到结论.【解答】(1)证明:∵EH//BD,FG//BD,∴EH//FG.同理,EF//HG,∴四边形EFGH是平行四边形.(2)解:当四边形ABCD满足AC=BD时,四边形EFGH是菱形;证明:∵EH//BD,HG//EF,∴四边形BDHE是平行四边形,∴EH=BD,同理,HG=AC,∵AC=BD,∴EH=GH,∴平行四边形EFGH是菱形.故答案为:AC=BD.(3)解:当四边形ABCD满足AC⊥BD时,四边形EFGH是矩形,证明:如图,∵DG//AC,BD//FG,∴四边形DOCG是平行四边形,∵AC⊥BD,∴∠DOC=90∘,∴平行四边形DOCG是矩形,∴∠G=90∘,∴平行四边形EFGH是矩形.故答案为:AC⊥BD.23.【答案】这条河的宽度约为19m.【考点】解直角三角形的应用【解析】如图,过A作AD⊥BC于D,设AD=x.通过等腰直角三角形的性质推知:DC=AD=x,BD=30−x;然后接Rt△ABD得到:则ADBD=√3,即x30−x=√3.进而求出即可.【解答】如图2,过点A作AD⊥BC于点D,设AD=xm,在Rt△ACD中,∠ACD=45∘,∴DC=AD=x,BD=30−x.在Rt△ABD中,tan∠ABD=tan60∘=ADBD=√3,即x30−x=√3.解得 x=30√3√3+1≈19(m).24.【答案】解:(1)设y1=k1x,根据题意,得 2000=1500k,解得k1=43,∴y1=43x.设y2=k2x+b,根据题意,得b=1000,①2000=1500k2+b ②将①代入②得k2=23,∴y2=23x+1000.(2)由图象得,当每月行驶1500千米时,租两家的费用相同.(3)当x=2400时,y1=43×2400=3200(元)y2=23×2400+1000=2600(元).∵y1>y2,∴当每月行驶的路程为2400千米时,选择出租车公司合算.【考点】待定系数法求一次函数解析式一次函数的图象一次函数的应用【解析】【解答】解:(1)设y1=k1x,根据题意,得 2000=1500k,解得k1=43,∴y1=43x.设y2=k2x+b,根据题意,得b=1000,①2000=1500k2+b ②将①代入②得k2=23,∴y2=23x+1000.(2)由图象得,当每月行驶1500千米时,租两家的费用相同.(3)当x=2400时,y1=43×2400=3200(元)y2=23×2400+1000=2600(元).∵y1>y2,∴当每月行驶的路程为2400千米时,选择出租车公司合算.25.【答案】【考点】二次函数图象上点的坐标特征二次函数y=ax^2+bx+c (a≠0)的图象的画法二次函数y=ax^2+bx+c (a≠0)的图象和性质二次函数的最值【解析】此题暂无解析【解答】此题暂无解答26.【答案】2√33(2)结论成立.理由:如图,连结DG,DH,∵四边形ABCD是矩形,∴∠ADC=90∘.∵△ADE,△DCF都是等边三角形,∴DA=DE,DC=DF,∠ADE=∠CDF=60∘.∵AG=GE,CH=FH,∴∠ADG=∠CDH=30∘,∴∠ADF=∠GDH=150∘.∵ADDG=DFDH=2√33,∴△DGH∽△DAF,∴GHAF=ADDG=2√33.(3)PQ⊥DQ.理由:如图,连结DG,DH,DP,由(2)可知:△DGH∽△DAF,∴∠DGQ=∠DAP.∵DQ,DP分别是△GDH,△ADF的中线,∴DPDQ=DADG=2√33,∴ADDP=DGDQ.∵ADDG=PAQG,∴△DGQ∼△DAP,∴∠GDQ=∠ADP,∴∠ADG=∠PDQ,∴△ADG∼△PDQ,∴∠DQP=∠DGA.∵DA=DE,AG=GE,∴DG⊥AE,∴∠DGA=90∘,∴∠DQP=90∘,∴DQ⊥PQ.【考点】正方形的性质等边三角形的性质特殊角的三角函数值相似三角形的性质与判定【解析】此题暂无解析【解答】解:(1)如图,连结DG,DH,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90∘.∵△ADE,△DCF都是等边三角形,∴DA=DE,DC=DF,∠ADE=∠CDF=60∘.∵点G,H分别是AE,CF的中点,∴∠GDA=∠CDH=30∘,∴∠ADF=∠GDH=150∘.∵ADDG=DFDH=2√33,∴△DGH∼△DAF,∴GHAF=ADDG=2√33.故答案为:2√33.(2)结论成立.理由:如图,连结DG,DH,∵四边形ABCD是矩形,∴∠ADC=90∘.∵△ADE,△DCF都是等边三角形,∴DA=DE,DC=DF,∠ADE=∠CDF=60∘.∵AG=GE,CH=FH,∴∠ADG=∠CDH=30∘,∴∠ADF=∠GDH=150∘.∵ADDG=DFDH=2√33,∴△DGH∽△DAF,∴GHAF=ADDG=2√33.(3)PQ⊥DQ.理由:如图,连结DG,DH,DP,由(2)可知:△DGH∽△DAF,∴∠DGQ=∠DAP.∵DQ,DP分别是△GDH,△ADF的中线,∴DPDQ=DADG=2√33,∴ADDP=DGDQ.∵ADDG=PAQG,∴△DGQ∼△DAP,∴∠GDQ=∠ADP,∴∠ADG=∠PDQ,∴△ADG∼△PDQ,∴∠DQP=∠DGA.∵DA=DE,AG=GE,∴DG⊥AE,∴∠DGA=90∘,∴∠DQP=90∘,∴DQ⊥PQ.。
重庆市巴南区龙洲湾中学、巴南区实验中学、全善学校2023-2024学年九年级下学期3月月考数学试题
重庆市巴南区龙洲湾中学、巴南区实验中学、全善学校2023-2024学年九年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.3-的相反数是( )A .13B .3-C .3D .13- 2.如图是由大小相同的正方体搭成的几何体,其主视图是( )A .B .C .D .3.已知点()3,4在反比例函数k y x =的图象上,下面的点不在这个图象上的是( ) A .()2,6- B .()2,6 C .()2,6-- D .()4,3-- 4.如图,已知直线12l l ∥,150∠=︒,280∠=︒,那么3∠的大小为( )A .40︒B .50︒C .60︒D .70︒ 5.两个相似三角形的相似比是1:2,则这两个相似三角形的面积比是( ) A .1:2 B .1:3 C .1:4 D .1:8 6.如图,AB 是⊙O 的直径,直线PA 与⊙O 相切于点A ,PO 交⊙O 于点C ,连接BC .若∠P=42º,则∠ABC 的度数是( )A .21ºB .24ºC .42ºD .48º7.估算2的值在( )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 8.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑧个图中黑色正方形纸片的张数为( )A .11B .13C .15D .179.如图,Rt ABC △中,90A ∠=︒,ABC α∠=,将Rt ABC △绕点C 逆时针旋转得到Rt EDC V ,点A 的对应点E 正好落在BC 上,连接BD ,则CBD ∠的度数是( )A .1452α︒+ B .90α︒- C .45α︒+ D .1902α︒- 10.有依次排列的3个整式:x ,6x +,2x -,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x ,6,6x +,8-,2x -,则称它为整式串1;将整式串Ⅰ按上述方式再做一次操作,可以得到整式串2;以此类推.通过实际操作,得出以下结论:①整式串2为:x ,6x -,6,x ,6x +,14x --,8-,6x +,2x -;②整式串3共17个整式;③整式串3的所有整式的和比整式串2的所有整式的和小2;④整式串2024的所有整式的和为34046x -;上述四个结论中正确的个数是( )A .1B .2C .3D .4二、填空题11.我国是世界四大文明古国之一,拥有五千多年的悠久文化与文明史.她位于亚洲东部,太平洋西岸,陆地面积约9600000平方千米,9600000用科学记数法可表示为.12.计算:()012π-=.13.一个小组内组员新年互送贺卡,若全组共送贺卡72张,设这个小组有x 人,列方程得:.14.点P 的坐标是(),a b ,从2-,1-,1,2这四个数中任取一个数作为a 的值,再从余下的三个数中任取一个数作为b 的值,则点(),P a b 在平面直角坐标系中第三象限内的概率是.15.如图,ABC V 和ADE V 都是等腰直角三角形,90BAC DAE ∠=∠=︒,D 是BC 上一点,连接CE.若AB =3CE =,则DE 的长度为.16.如图,正六边形ABCDEF 内接于O e ,O e 半径为2,则图中阴影部分的面积是.(结果用π表示)17.如果关于x 的分式方程2311a x x x --=++有负整数解,且关于y 的不等式组()243512a y y y y ⎧-≥--⎪⎨+<+⎪⎩的解集为3y <-,那么符合条件的所有整数a 的和是. 18.若一个各个数位都不相同的四位正整数,其千位数字与十位数字之和为10,百位数字与个位数字之和为10,则称这样的四位数为“双十数”.请写出最小的“双十数”;若m 是一个“双十数”,将m 的千位数字和十位数字交换位置,百位数字与个位数字交换位置,得到一个新的四位数n .若(),24396m n D m n -=+是一个完全平方数,则m 的最大值是.三、解答题19.计算:(1)()()224x y y x y -+-;(2)22221111x x x x x x --⎛⎫÷-- ⎪-+⎝⎭. 20.如图,在矩形ABCD 中,AC 是对角线.(1)用尺规完成基本作图:作AC 的垂直平分线,交AC 于点O ,交AB 、CD 延长线分别于点E 、F ,连接CE 、AF .(保留作图痕迹,不写作法.)(2)求证:四边形AECF 是菱形,请完成下列证明过程.证明:∵EF 垂直平分AC ,∴AO =______,AC EF ⊥,AOE COF ∠=∠.∵四边形ABCD 为矩形,∴__________________,∴AEO CFO ∠=∠,∵在AOE △和COF V 中,AEO CFO AOE COF AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AOE COF AAS ≌△△.∴__________________,∵AO CO =.∴四边形AECF 是平行四边形.∵__________________,∴四边形AECF 是菱形.21.巴南区某校组织学生参加了“科学素养”知识竞赛,现从该校八、九年级中各随机抽取10名学生的竞赛成绩(单位:分,满分100分),并进行整理、描述和分析(竞赛成绩用x 表示,共分成A ,B ,C ,D 四个等级:A .90100x ≤≤;B .8090x ≤<;C .7080x ≤<;D .070x ≤<),下面给出了部分信息:八年级10名学生的竞赛成绩:94,93,85,83,79,78,78,78,67,65. 九年级10名学生中B 等级所有学生的竞赛成绩:80,81,84,84.根据以上信息,解答下列问题:(1)填空:=a ______,b =______,m =______;(2)根据以上数据,你认为在此次竞赛中,哪个年级的成绩更好?请说明理由(写出一条即可);(3)若竞赛成绩不低于90分的学生获“优秀少年”称号,该校八年级有980名学生,九年级有920名学生,请估计八年级和九年级学生中,获“优秀少年”称号的总人数. 22.小明沿着鱼洞滨江公路散步,从家到A 地需要30分钟,返回时,发现一条小路可以返回家,距离缩短了570米,速度比原来每分钟少走了10米,返回的时间缩短了3分钟.(1)求小明沿滨江公路从家到A 地走过的距离是多少?(2)小明出发5分钟后,爸爸发现小明忘记带手机,然后沿着家到A 地的滨江公路去追小明,到了A 地发现小明不在,沿着原路快步回家,速度是原来的1.2倍,结果比小明早到家2分钟,求爸爸沿滨江公路从家到A 地的速度是多少?23.已知矩形ABCD ,4AB =,6BC =,点Q 在AD 的中点,点P 沿着A B C --运动,到点C 停止,运动速度为每秒一个单位长度,BPQ V 的面积为y ,运动时间为()s t ,()0y ≠.(1)请直接写出y 与t 之间的函数表达式,并写出t 对应的取值范围;(2)在给定的平面直角坐标系中画出y 与t 的函数图像,并写出该函数的一条性质;(3)结合图像,当2y ≥时,直接写出t 的取值范围(保留一位小数,误差不超过0.2) 24.如图,重庆市实验中学校为了丰富同学们的课外实践活动,组织科技爱好者在斜坡A 地进行无人机试飞.张明的无人机放飞到距离地面P 点,测得斜坡A 地的俯角为15°,斜坡B 地的俯角为60°,斜坡AB 的斜面坡度为(1)求斜坡A 地到B 地的距离;(2)下课前,老师要求同学们在A 地集合,张明对无人机P 发出回收指令以后,然后他迅速从山脚的C 地跑回到A 地,已知斜坡AC 与水平地面夹角为53°,张明上坡的跑步速度为6m/s ,无人机的速度为20m/s ,在张明跑到A 地时,无人机是否已经回到A 地?请说明理由.1.414 1.732≈,sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈,结果精确到0.1)25.如图1,已知抛物线211642=--+y x x 与x 轴交于A ,B 两点,A 点在B 点的左侧,与y 轴交于点C .连接AC BC 、,点D 是AO 的中点,连接CD .(1)求直线CD 的解析式;(2)已知P 是直线AC 上方抛物线上的一个动点,连接PC PD 、,求PCD V 面积的最大值及此时P 点的坐标;(3)如图2,将过点D 的直线l 绕点D 旋转,旋转过程中,直线l 分别交y 轴和抛物线于点M 、N ,当BDN DCO ∠=∠的时候,请写出符合条件的点N 的横坐标,并写出其中一个点横坐标的求解过程.26.把ABC V 的BC 边绕点C 逆时针旋转90︒得到线段CD ,连接BD ,过点D 作DE AB ⊥重足为E ,连接CE .(1)如图1,已知90ACB ∠=︒,DB =4AB =.求AC 的长;图1(2)如图2,求证:DE BE +;图2(3)如图3,已知150ACB ∠=︒,45A BCE ∠+∠=︒,将B C E V 沿着直线BC 折叠,得到BCE 'V 、连接EE ',M 是直线AB 上的一个动点,当CM AM 最小时值为6+出BEE 'V 的面积.图3。
重庆初三初中数学月考试卷带答案解析
重庆初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.的相反数是()A.B.C.2D.2.如图,直线a∥b,∠1=65°,则∠2的度数是()A.135°B.145°C.115°D.125°3.下列运算正确的是()A.B.C.D.4.如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.5.某校将举行一场“汉字电脑录入大赛”,要求各班推选一名同学参加比赛.为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是95分,甲的成绩的方差是0.3,乙的成绩的方差是0.7,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定6.《重庆市国民经济和社会发展第十二个五年规划纲要》提出:到2015年,逐步形成西部地区的重要增长极,地区生产总值达到15000亿元.将数据15000亿用科学记数法表示为()亿.A.1.5×1011B.1.5×1012C.1.5×103D.1.5×1047.分式方程的解是()A.x=1B.x=-1C.x=3D.x=-38.若x=1是关于x的一元一次方程()的一个根,则的值等于()A.2B.1C.0D.39.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°10.某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回万州.若该轮船从万州出发后所用的时间为x(小时),轮船距万州的距离为y(千米),则下列各图形中,能够反映y与x之间函数关系的大致图象是()A.B.C.D.11.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是()A.18B.19C.20D.2112.如图,在直角坐标系中,O为坐标原点,函数()和()的图象上,分别有A、B两点,若AB∥x轴且交y轴于点C,且OA⊥OB,,,则线段AB的长度为()A. B. C. D.4二、填空题1.分解因式: =____________.2.使函数有意义的的取值范围是____________.3.如图,在△ABC中,DE是△ABC的中位线,连接BE、CD相交于点O,则=__________.4.如图,是某公园的一角,∠AOB=90°,弧AB所在圆的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是 __________.(保留根号)5.标有1,1,2,3,3, 5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x,朝下一面的数为y,得到平面直角坐标系中的一个点(x,y).已知小华前二次掷得的两个点所确定的直线经过点P(4,7),则他第三次掷得的点也在这条直线上的概率为_______.6.在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒).设△OMN的面积为S,则S与t之间函数关系式为______.(结果化到最简)三、计算题计算:.四、解答题1.全善学校为了解初三学生上学的方式,采用随机抽样的方式进行了问卷调查.分别有:乘公共交通工具(记为A),步行(记为B),乘私家车(记为C),其他方式(记为D).统计后,制成条形统计图和扇形统计图,观察图形的信息,回答下列问题:(1)请补全条形统计图,并计算m=_______乘公共交通工具(记为A)对应的圆心角的度数为_____度;(2)已知被抽查的乘私家车学生中只有一名男生,现从被抽查的乘私家车的同学中随机抽取两名来谈谈节能减排,请你用列表或画树状图的方法求出所选的两名学生刚好是一名男生和一名女生的概率.2.先化简,再求值:,其中a是方程的解.3.服装厂准备生产某种样式的服装40000套,分黑色和彩色两种.(1)若生产黑色服装的套数不多于彩色服装套数的,问最多生产多少套黑色服装.(2)目前工厂有100名工人,平均每人生产400套,由于展品会上此种样式服装大受欢迎,工厂计划增加产量;由于条件发生变化,人均生产套数将减少 1.25a% ,要使生产总量增加10%,则工人需增加 2.4a%,求a的值.4.如图,在等腰直角△ABC中,∠ACB=90°,点D、F为BC边上的两点,CD=BF,连接AD,过点C作AD的垂线角AB于点E,连接EF.(1)若∠DAB=15°,AB=,求线段AD的长度.(2)求证:∠EFB=∠CDA.5.阅读材料:如图1,在平面直角坐标系中,A.B两点的坐标分别为A(,B,AB中点P的坐标为.由,得,同理,所以AB的中点坐标为(,).由勾股定理得,所以A、B两点间的距离公式为AB=.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:与抛物线交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及P、C两点的坐标;(2)连结AB、AC,求证:△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.6.如图(1),抛物线()与x轴交于A、B两点,与y轴交于点C,直线AC的解析式为,抛物线的对称轴与轴交于点E,点D(-2,-3)在对称轴上.(1)求此抛物线的解析式;(2)如图(1),若点M是线段OE上一点(点M不与点O、E重合),过点M作MN⊥x轴,交抛物线于点N,记点N关于抛物线对称轴的对称点为点F,点P是线段MN上一点,且满足MN=4MP,连接FN、FP,作QP⊥PF交x轴于点Q,且满足PF=PQ,求点Q的坐标;(3)如图(2),过点B作BK⊥x轴交直线AC于点K,连接DK、AD,点H是DK的中点,点G是线段AK上任意一点,将△DGH沿GH边翻折得△DGH,求当KG为何值时,△DGH与△KGH重叠部分的面积是△DGK面积的.重庆初三初中数学月考试卷答案及解析一、选择题1.的相反数是()A.B.C.2D.【答案】C.【解析】﹣2的相反数是2.故选C.【考点】相反数.2.如图,直线a∥b,∠1=65°,则∠2的度数是()A.135°B.145°C.115°D.125°【答案】C.【解析】∵a∥b,∴∠3=∠1=65°,又∠2+∠3=180°,∴∠2=180°﹣65°=115°,故答案为:115°.【考点】平行线的性质.3.下列运算正确的是()A.B.C.D.【答案】B.【解析】A.,故本选项错误;B.,故本选项正确;C.,故本选项错误;D.和不是同类项,不能合并,故本选项错误.故选B.【考点】1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.4.如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.【答案】C.【解析】这个几何体的俯视图从左到右小正方形的个数是:1,1,1,故选C.【考点】简单组合体的三视图.5.某校将举行一场“汉字电脑录入大赛”,要求各班推选一名同学参加比赛.为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是95分,甲的成绩的方差是0.3,乙的成绩的方差是0.7,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【答案】A.【解析】∵甲的成绩的方差是0.3,乙的成绩的方差是0.7,0.3<0.7,∴甲的成绩比乙的成绩稳定,故选A.【考点】方差.6.《重庆市国民经济和社会发展第十二个五年规划纲要》提出:到2015年,逐步形成西部地区的重要增长极,地区生产总值达到15000亿元.将数据15000亿用科学记数法表示为()亿.A.1.5×1011B.1.5×1012C.1.5×103D.1.5×104【答案】D.【解析】将15000亿用科学记数法表示为:1.5×104亿,故选D.【考点】科学记数法—表示较大的数.7.分式方程的解是()A.x=1B.x=-1C.x=3D.x=-3【答案】C.【解析】去分母得:4x=3x+3,移项合并得:x=3,经检验x=3是分式方程的解.故选C.【考点】解分式方程.8.若x=1是关于x的一元一次方程()的一个根,则的值等于()A.2B.1C.0D.3【答案】A.【解析】∵x=1是一元一次方程的一个根,∴,∴.故选A.【考点】一元一次方程的解.9.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°【答案】C.【解析】如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选C.【考点】1.切线的性质;2.圆心角、弧、弦的关系.10.某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回万州.若该轮船从万州出发后所用的时间为x(小时),轮船距万州的距离为y(千米),则下列各图形中,能够反映y与x之间函数关系的大致图象是()A.B.C.D.【答案】C.【解析】分三段考虑,①逆水行驶,y随x的增大而缓慢增大;②静止不动,y随x的增加,不变;③顺水行驶,y随x的增减快速减小.结合图象,可得C选项正确.故选C.【考点】函数的图象.11.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是()A.18B.19C.20D.21【答案】C.【解析】由图可知:第一个图案有三角形1个.第二图案有三角形1+3=4个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12个,第五个图案有三角形1+3+4+4+4=16个,第六个图案有三角形1+3+4+4+4+4=20个,故选C.【考点】规律型.12.如图,在直角坐标系中,O为坐标原点,函数()和()的图象上,分别有A、B两点,若AB∥x轴且交y轴于点C,且OA⊥OB,,,则线段AB的长度为()A. B. C. D.4【答案】B.【解析】∵,,∴,,∴,,∴两反比例解析式为,,设B点坐标为(,)(>0),∵AB∥x轴,∴A点的纵坐标为,把y=t代入得:,∴A点坐标为(,),∵OA⊥OB,∴∠AOC=∠OBC,∴Rt△AOC∽Rt△OBC,∴OC:BC=AC:OC,即,∴,∴A点坐标为(,),B点坐标为(,),∴线段AB的长度=﹣()=.故选B.【考点】反比例函数系数k的几何意义.二、填空题1.分解因式: =____________.【答案】.【解析】==.故答案为:.【考点】提公因式法与公式法的综合运用.2.使函数有意义的的取值范围是____________.【答案】.【解析】根据题意得:,解得.故答案为:.【考点】二次根式有意义的条件.3.如图,在△ABC中,DE是△ABC的中位线,连接BE、CD相交于点O,则=__________.【答案】1:4.【解析】∵DE 是△ABC 的中位线,∴DE=BC ,DE ∥BC ,∴△ODE ∽△OCB ,∴S △DOE :S △BOC =1:4,故答案为:1:4.【考点】1.三角形中位线定理;2.相似三角形的判定与性质.4.如图,是某公园的一角,∠AOB=90°,弧AB 所在圆的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是 __________.(保留根号)【答案】.【解析】如图,连接OD .∵弧AB 的半径OA 长是6米,C 是OA 的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD ∥OB ,∴CD ⊥OA ,在Rt △OCD 中,∵OD=6,OC=3,∴CD===米,∵sin ∠DOC===,∴∠DOC=60°,∴S 阴影=S 扇形AOD ﹣S △DOC ==(平方米).故答案为:.【考点】扇形面积的计算.5.标有1,1,2,3,3, 5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x ,朝下一面的数为y ,得到平面直角坐标系中的一个点(x ,y ).已知小华前二次掷得的两个点所确定的直线经过点P (4,7),则他第三次掷得的点也在这条直线上的概率为_______.【答案】.【解析】每掷一次可能得到6个点的坐标分别是(其中有两个点是重合的):(1,1),(1,1),(2,3),(3,2),(3,5),(5,3),通过描点和计算可以发现,经过(1,1),(2,3),(3,5),三点中的任意两点所确定的直线都经过点P (4,7),所以小明第三次掷得的点也在直线l 上的概率是.故答案为:.【考点】1.概率公式;2.正方体相对两个面上的文字.6.在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边分别交于点M ,N ,直线m 运动的时间为t (秒).设△OMN 的面积为S ,则S 与t 之间函数关系式为______.(结果化到最简)【答案】.【解析】当0<t≤4时,OM=t,∵由△OMN∽△OAC,得,∴ON=,S=,当4<t<8时,如图,∵OD=t,∴AD=t﹣4,由△DAM∽△AOC,可得AM=,∴BM=,由△BMN∽△BAC,可得BN=BM=8﹣t,∴CN=t﹣4,S=矩形OABC的面积﹣Rt△OAM的面积﹣Rt△MBN的面积﹣Rt△NCO的面积=.∴.故答案为:.【考点】二次函数综合题.三、计算题计算:.【答案】.【解析】根据算术平方根、零指数幂、特殊角的三角函数值、乘方、绝对值的定义解答即可.试题解析:原式=.【考点】实数的运算.四、解答题1.全善学校为了解初三学生上学的方式,采用随机抽样的方式进行了问卷调查.分别有:乘公共交通工具(记为A),步行(记为B),乘私家车(记为C),其他方式(记为D).统计后,制成条形统计图和扇形统计图,观察图形的信息,回答下列问题:(1)请补全条形统计图,并计算m=_______乘公共交通工具(记为A)对应的圆心角的度数为_____度;(2)已知被抽查的乘私家车学生中只有一名男生,现从被抽查的乘私家车的同学中随机抽取两名来谈谈节能减排,请你用列表或画树状图的方法求出所选的两名学生刚好是一名男生和一名女生的概率.【答案】(1)4,144,补全图形见试题解析;(2).【解析】(1)先利用D的人数和所占的百分比计算出样本容量,再计算出B的人数,于是用样本容量分别减去A、B、D的人数即可得到C的人数,然后计算m的值;用A所占的百分比乘以360°即可得到A对应的圆心角的度数,再补全折线统计图;(2)利用树状图展示所有12种等可能的结果数,再找出一名男生和一名女生所占的结果数,然后根据概率公式计算.试题解析:(1)样本容量=6÷6%=100,则B的人数=100×50%=50,所以C的人数=100﹣40﹣50﹣6=4,C所占的百分比==4%,则m=4,所以A所对应的圆心角的度数=×360°=144°;补全条形统计图为:故答案为:4,144;(2)被抽查的步行学生共有4名,一名男生3名女生,画树状图为:共有12种等可能的结果数,其中一名男生和一名女生占6种,所以所选的两名学生刚好是一名男生和一名女生的概率==.【考点】1.列表法与树状图法;2.扇形统计图;3.条形统计图.2.先化简,再求值:,其中a是方程的解.【答案】,.【解析】先根据分式混合运算的法则把原式进行化简,再根据a是方程的解得出,再代入原式进行计算即可.试题解析:原式===,∵a是方程的解,∴,即,∴原式=.【考点】1.分式的化简求值;2.一元二次方程的解.3.服装厂准备生产某种样式的服装40000套,分黑色和彩色两种.(1)若生产黑色服装的套数不多于彩色服装套数的,问最多生产多少套黑色服装.(2)目前工厂有100名工人,平均每人生产400套,由于展品会上此种样式服装大受欢迎,工厂计划增加产量;由于条件发生变化,人均生产套数将减少 1.25a% ,要使生产总量增加10%,则工人需增加 2.4a%,求a的值.【答案】(1)8000;(2)25.【解析】(1)设生产黑色服装x套,则彩色服装为(40000-x)套,由题意得到,解不等式即可;(2)根据生产总量增加10%,则工人需增加2.4a%,列出方程解答即可.试题解析:(1)设生产黑色服装x套,则彩色服装为(40000-x)套,由题意得:,解得:,∴最多生产黑色服装8000套;(2)40000(1+10%)=400(1-1.25a%)100(1+2.4a%),设t=a%,化简得:,解得:(舍),,∴a%=,∴a=25.【考点】1.一元一次不等式的应用;2.一元二次方程的应用.4.如图,在等腰直角△ABC中,∠ACB=90°,点D、F为BC边上的两点,CD=BF,连接AD,过点C作AD的垂线角AB于点E,连接EF.(1)若∠DAB=15°,AB=,求线段AD的长度.(2)求证:∠EFB=∠CDA.【答案】(1)8;(2)证明见试题解析.【解析】(1)由△ABC为等腰直角三角形且AB=,得到∠CAB=45°,AC=,由∠DAB=15°,得到∠CAD=30°,得到cos∠CAD=,从而得到AD的长;(2)过点B作BG垂直BC,交CE的延长线于G,设AD与CE交于点O,由∠CBG=90°,∠ABC=45°,得到∠ABG=∠ABC=45°.在Rt△ABG中由∠G+∠BCG=90°.∠COD=90°,得到∠BCG+∠ADC=90°,从而可以得到△ACD≌△CBG,故CD=BG,再由△BEF≌△BEG,得到∠BFE=∠G,故有∠AFB=∠GFC.试题解析:(1)∵△ABC为等腰直角三角形,AB=,∴∠CAB=45°,AC=AB=,∵∠DAB=15°,∠CAD=∠CAB-∠DAB=30°,cos∠CAD=,∴AD=8;(2)证明:过点B作BG垂直BC,交CE的延长线于G,设AD与CE交于点O,∵∠CBG=90°,∠ABC=45°,∴∠ABG=∠ABC=45°.在Rt△ABG中,∠G+∠BCG=90°.∠COD=90°,∴∠BCG+∠ADC=90°,∵∠ADC=∠G,又∠ACB=∠CBG=90°,AC=BC,△ACD≌△CBG,∴CD=BG,又CD=BF,∴BG=BF,又∵∠ABG=∠ABC,BE=BE,∴△BEF≌△BEG,∴∠BFE=∠G,又∠ADC=∠G,∴∠AFB=∠GFC.【考点】1.等腰直角三角形的性质;2.解直角三角形;3.全等三角形的判定与性质.5.阅读材料:如图1,在平面直角坐标系中,A.B两点的坐标分别为A(,B,AB中点P的坐标为.由,得,同理,所以AB的中点坐标为(,).由勾股定理得,所以A、B两点间的距离公式为AB=.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:与抛物线交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及P、C两点的坐标;(2)连结AB、AC,求证:△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.【答案】(1)A(,),B(,),P(,3),C(,);(2)证明见试题解析;(3).【解析】(1)由与抛物线交于A、B两点,直接联立求出交点坐标,进而得出C点坐标;(2)利用两点间距离公式得出AB的长,进而得出PC=PA=PB,求出∠PAC+∠PCB=90°,即∠ACB=90°即可得出答案;(3)点C作CG⊥AB于G,过点A作AH⊥PC于H,利用A,C点坐标得出H点坐标,进而得出CG=AH,求出即可.试题解析:(1)由,解得:,,则A,B两点的坐标分别为:A(,),B(,),∵P是A,B的中点,由中点坐标公式得P点坐标为(,),即(,3),又∵PC⊥x轴交抛物线于C点,将代入中得,∴C点坐标为(,);(2)由两点间距离公式得:AB==5,PC=,∴PC=PA=PB,∴∠PAC=∠PCA,∠PBC=∠PCB,∴∠PAC+∠PCB=90°,即∠ACB=90°,∴△ABC为直角三角形;=(3)过点C作CG⊥AB于G,过点A作AH⊥PC于H,则H点的坐标为(,),∴S△PACAP•CG=PC•AH,∴CG=AH=.又∵直线l与l′之间的距离等于点C到l的距离CG,∴直线l与l′之间的距离为.【考点】1.二次函数综合题;2.压轴题.6.如图(1),抛物线()与x轴交于A、B两点,与y轴交于点C,直线AC的解析式为,抛物线的对称轴与轴交于点E,点D(-2,-3)在对称轴上.(1)求此抛物线的解析式;(2)如图(1),若点M是线段OE上一点(点M不与点O、E重合),过点M作MN⊥x轴,交抛物线于点N,记点N关于抛物线对称轴的对称点为点F,点P是线段MN上一点,且满足MN=4MP,连接FN、FP,作QP⊥PF交x轴于点Q,且满足PF=PQ,求点Q的坐标;(3)如图(2),过点B作BK⊥x轴交直线AC于点K,连接DK、AD,点H是DK的中点,点G是线段AK上任意一点,将△DGH沿GH边翻折得△DGH,求当KG为何值时,△DGH与△KGH重叠部分的面积是△DGK面积的.【答案】(1);(2)Q(-7,0);(3)或.【解析】(1)在中,令y=0,得到A的坐标,由D(-2,-3)在对称轴上,得到抛物线的对称轴为直线,从而求得抛物线的解析式;(2)先证△QMP≌△PNF,得到MQ=NP,MP=NF,设M(m,0)(),则N(,),MN=,得到F(,),FN=,从而有,解出m的值,即可得到Q的坐标;(3)令,得或,进而得到B和K的坐标,得到DK=,然后分三种情况讨论:①若翻折后,点D′在直线GK上方,记D′H与GK交于点L,连接D′K,得到,即,得到GL=LK,HL=D′L,故四边形D′GHK是平行四边形,得到DG= ,再由△ABK和△AED都是等腰直角三角形,AD=,得到∠DAG=45°+45°=90°,由勾股定理得到AG的长,从而求得KG的长;②若翻折后,点D′在直线DK下方,记D′G与KH交于点L,连接D′K,∴,即,得到HL=KL,GL=D′L,故四边形D′KGH是平行四边形,从而得到KG的长;③若翻折后,点D′与点K重合,则重叠部分的面积等于,不合题意.试题解析:(1)在中,令y=0,得,∴A(-5,0),∵D(-2,-3)在对称轴上,∴抛物线的对称轴为直线,∴,解得:,∴抛物线的解析式为:;(2)∵MN⊥QM,MN⊥FN,QP⊥PF,∴∠2=∠6=90°,∠1+∠3=90°,∠3+∠5=90°,∴∠1=∠5,又∵PF=PQ,∴△QMP≌△PNF,∴MQ=NP,MP=NF,设M(m,0)(),则N(,),MN=,∴F(,),FN=,∴,解得:或(舍),∴MN=8,M(-1,0),∴MQ=NP=MN=6,∴Q(-7,0);(3)令,得或,∴B(1,0),∴K(1,6),∵DK==,①若翻折后,点D′在直线GK上方,记D′H与GK交于点L,连接D′K,∴,即,∴GL=LK,HL=D′L,∴四边形D′GHK是平行四边形,∴DG=D′G=KH=KD=,又∵BK=BA=6,DE=AE=3,∴△ABK和△AED都是等腰直角三角形,AD=,∴∠DAG=45°+45°=90°,由勾股定理得:AG=,∴KG=KA-AG=;②若翻折后,点D′在直线DK下方,记D′G与KH交于点L,连接D′K,∴,即,∴HL=KL,GL=D′L,∴四边形D′KGH是平行四边形,∴KG=D′H=DH=KD=;③若翻折后,点D′与点K重合,则重叠部分的面积等于,不合题意.综上所述:KG=或.【考点】二次函数综合题.。
重庆市九年级下学期数学3月月考试卷
重庆市九年级下学期数学3月月考试卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分)下列各组数中互为相反数是()A . 与B . 与C . 与D . 与2. (2分) 2x-x等于()A . xB . -xC . 3xD . -3x3. (2分) (2019七下·宁化期中) 英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯的理论厚度仅0.00000000034米,将这个数用科学记数法表示为()米A .B .C .D .4. (2分)一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是()A . 15个B . 13个C . 11个D . 5个5. (2分)如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3=()A . 180°B . 360°C . 540°D . 无法确定6. (2分)如图,AB是⊙O的弦,OC是⊙O的半径,OC⊥AB于点D,若AB=8,CD=2,则⊙O的半径等于()A . 5B . 6C . 8D . 107. (2分)给出下面四个命题:(1) 全等三角形是相似三角形(2) 顶角相等的两个等腰三角形是相似三角形(3) 所有的等腰直角三角形都相似(4) 所有定理的逆命题都是真命题其中真命题的个数有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2018七上·江门期中) 已知有理数、在数轴上的位置如图所示,那么在①a>0,②-b<0,③a-b>0,④a+b>0四个关系式中,正确的有()A . 4个B . 3个C . 2个D . 1个9. (2分)(2012·本溪) 有三张正面分别标有数字﹣2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A .B .C .D .10. (2分)既是轴对称,又是中心对称图形的是()A . 矩形B . 平行四边形C . 正三角形D . 等腰梯形11. (2分) (2019九上·杭州月考) 抛物线与轴的交点坐标是()A . (0, 1)B . (1, 0)C . (0, -1)D . (0, 0)12. (2分)观察下列各式:1×2=(1×2×3-0×1×2);2×3=(2×3×4-1×2×3);3×4=(3×4×5-2×3×4);计算:3×(1×2+2×3+3×4+…+99×100+100×101)=()A . 97×98×99B . 98×99×100C . 99×100×101D . 100×101×102二、填空题. (共4题;共4分)13. (1分) (2020八上·天桥期末) 现有甲乙两个合唱队,他们的平均身高都是170cm,方差分别是S2甲、S2乙,且S2甲>S2乙,则两个队队员的身高较整齐的是________队(填甲或乙)。
〖人教版〗九年级数学下册第二学期3月月考
〖人教版〗九年级数学下册第二学期3月月考创作人:百里灵明 创作日期:2021.04.01审核人: 北堂正中 创作单位: 北京市智语学校一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填在答题卷相应位置.......上) 1.在实数π、132、sin30°,无理数的个数为( ▲ ) A.1 B.2 C.3 D.4 2.下列计算正确的是( ▲ ) A.020= B.331-=-93=235=3.本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,由此可知( ▲ ) A .甲比乙的成绩稳定 B .乙比甲的成绩稳定C .甲乙两人的成绩一样稳定 D .无法确定谁的成绩更稳定4.二次函数的顶点坐标是( ▲ )A .(-3,-2)B .(-3,2)C .(3,-2)D .(3,2)5.如图1,将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( ▲ ) A .15 B .28 C .29D .346.如图2,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ▲ )C 10D 25A .21B 5 二、填空题(本大题共10小题,每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答.题卷相应位置......上) 7.在函数y =x -2中,自变量x 的取值范围是▲. 8.方程x x=2的解是▲。
9.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是▲. 10.若两圆半径分别为3和5,且圆心距为8,则两圆的位置关系为▲.()2322---=x y C BA图2图1F E A B C D11.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=__▲____. 12.若α∠是锐角,且03sin 2=-α,则α∠ =___▲___度. 13.若扇形的圆心角为60°,弧长为π2,则扇形的半径为 ▲ . 14.如图3,△ABC 是⊙O 的内接三角形,sinA=52,BC=4,则⊙O 的半径 为 ▲ .15.如图4,为二次函数y=ax 2+bx +c 的图象,在下列说法中:①ac >0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2= 3 ③a +b +c >0 ④当x >1时,y 随x 的增大而增大。
重庆市巴南区全善学校2012届九年级数学第三次月考试题人教新课标版
23、( 10 分)某批发商以每件 50 元的价格购进 800 件 T 恤,第一个月以单价 80 元销售,售出 200 件;第
二个月如果单价不变,预计仍可售出 200 件,批发商为增加销售量,决定降价销售,根据市场调查,单价
每降低 1 元,可多售 出 10 件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的
8 AMN
其中正确的有 (
)。
A, ①②③
B, ①③④
用心 爱心 专心
2
C , ②③④ D , ②④
二、填空题 ( 本大题共 6 个小题,每小题 4 分,共 24 分 )
11、将点 A( 3,1) 绕坐标原点顺时针旋转 180 得到点 B 的坐标为 ___________。 12、如图: DE ∥ BC ,DC 与 BE 相交于点 O ,若 DO 1,OC 2 ,DE 3 ,则 BC _______________ 。
3
先华中学 2011—2012 学年初三年级上期
第三学月考试数学答题卷
一、选择题 ( 每小题 4 分,共 40 分 ) (将正确答案做在机读卡上)
二、填空题 ( 每小题 4 分,共 24 分 ) (将正确答案做在横线上)
11、 __________ 12 、 __________
13 、 ________
10 已知正方形 ABCD 边长为 4,M , N 分别是 BC ,CD 上的两个动点, 当 M 点在 BC 上运动时, 保持 AM
和 MN 垂直,设 BM x ,梯形 ABCN 的面积为 y ,下列结论
① 1 2 90
② ABM ∽ MCN
③ y 与 x 的函数关系式为: y
1 x2 2x 2
④当 M 点运 动到 BC 的中点时, ABM ∽
2022年重庆市九年级数学下册3月月考试题(附答案)
G DA 重庆市九年级数学下册3月月考试题(本试题共26小题,满分150分,考试时间120分钟) 注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答.2.作答前认真阅读答题卡上的注意事项.一.选择题(本大题12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.在3-, 21-,0,2四个数中,最小的数是 ( ) A .0 B .21- C .3- D .22.计算()23b a 的结果是( ).A .b a 6B .25b a C .26b a D .23b a 3.若式子1x -有意义,则x 的取值范围是 ( )A .x ≥1B .x ≤1C .x >0D .x >1 4. 已知∠A = 65°,则∠A 的余角等于=( ) A .115° B .55° C .35° D .25°5.如图,AB ∥CD ,AD 平分∠BAC ,∠C = 80°,则∠D 的度数为( ) A .40° B .50° C .55° D .80°6.已知关于x 的方程2x – m - 5 =0的解是x =﹣2,则m 的值为( ) A .9 B .﹣9 C .1 D .﹣17.已知甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是30岁,这三个团游客年龄的方差分别是2甲S=1.4,2乙S=18.8.2丙S=25,导游小芳喜欢带游客年龄相近的团队,若要在这三个团中选择一个,则她应选( )。
A .甲B .乙C .丙D .哪一个都可以8.如图,⊙O 是△ACD 的外接圆,AB 是⊙O 的直径,︒=∠50BAD , 则C ∠的度数是( )A . 30°B . 40°C . 50°D . 60°(5题图) (8题图) 9.如图,已知菱形ABCD 的边长为2,060,DAB ∠=则对角线BD 的长是( ) A .1 B .2 C .3 D . 2310.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,……则第8个图形中花盆的个数为( )A .56B .64C .72D .9011.如图,一艘旅游船从码头A 驶向景点,C 途经景点.B D 、它先从码头A 沿以D 为圆心的弧AB 行驶到景点,B 然后从B 沿直径BC 行驶到D 上的景点.C 假如旅游船在整个行驶过程中保持匀速,则下面各图中能反映旅游船与景点D 的距离随时间变化的图象大致是( )12. 如图,反比例函数y =(x <0)的图象经过点A (﹣1,1), 过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点 P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点 B 经轴对称变换得到的点B ′在此反比例函数的图象上,则t 的值是( ) (12题图)A .B .C .D .二、填空题(本大题共6小题,每小题4分,共24分,在每小题中,请将你认为正确的答案填在 答题卡相应位置的横线上) 13. 2-的倒数是__________. 14 .在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为___________.15.已知一组数据3,1,x ,7,6的平均数是4,则这组数据的中位数是________ 16.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是O D C B A D CB A(9题图) 时时时距距距距时O A C B D O O O 300E C D A BGE DC BA _________(用含π的式子表示 )(第16题图) ( 第18题图) 17.现有6张正面分别标有数字—1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根,且关于x 的分式方程11222ax x x-+=--有解的概率为 .18.如图,O 为正方形ABCD 对角线的交点,E 是线段OC 的中点,DE 的延长线交BC 边于 点F ,连接并延长FO 交AD 于点G ,若AB =2,则GF =_________.三.解答题(本大题共8小题,共78分.解答题应写出必要的文字说明、证明过程或演算步骤)19.(7分) 计算: 0231482cos603π--+-+--+(2)(-)20. (7分)(•东营)如图某天上午9时,向阳号轮船位于A 处,观测到某港口城市P 位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市P 位于该船的南偏西36.9°方向,求此时轮船所处位置B 与城市P 的距离?(参考数据:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈)21. (10分)先化简,再求值:222141121424a a a a a a ⎛⎫+⎛⎫-÷-⎪ ⎪++⎝⎭⎝⎭,其中a 是不等式4113x x -->的最大整数解。
九年级月考(三)数学(人教新课标版).doc
九年级月考(三)数学(人教新课标版)一、填空题(每小题2分,共20分)1.如果22021y x y x +=++-,则=2.观察下列各式:6415,5314,4213222⨯=-⨯=-⨯=-……试猜想120072-=3.如图所示,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 个平方单位。
4.若一元二次方程)0(02≠=++a c bx ax 有一根是1,则a+b+c= 5.已知代数式)9(-x x 与代数式9x -9的值相等,则x =6.如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm 。
如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm 。
7.一副三角板按如图所示叠放在一起,若固定△AOB ,将△ACD 绕着公共顶点A ,按顺时针方向旋转α度(0<α<180),当△ACD 的边CD 与△AOB 的边AB 平行时,相应的旋转角α的值是8.已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径长 cm .9.如图,已知BC 的等腰三角形纸片ABC 的底边,AD ⊥BC ,∠BAC ≠90°,将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出中心对称图形 个。
10.如图,半径为30cm 的转轮转120°角时,传送带上的物体A 平移的距离为 cm 。
(结果保留π)二、选择题(选择题(每小题3分,共18分) 11.下列计算正确的是( )A .416±=B .12223=-C .41624=÷D .2632=⨯ 12.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A .2cmB .3cmC .23cmD .52cm13.等腰△ABC 的腰AB=AC=4cm ,若以A 的圆心,2cm 为半径的圆与BC 相切,∠BAC的度数为( )A .30°B .60°C .90°D .120°14.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC//QR ,则∠AOQ= ( )A .60°B .65°C .72°D .75°15.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( )A .π23B .π34C .4D .2+π2316.某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x ,根据题意得方程为 ( ) A .50175)1(2=+xB .50+502)1(x +=175C .50(1+x )+502)1(x +=175D .50+50(1+x )+502)1(x +=175三、解答题(每小题5分,共20分)17.计算:.344)311272(--18.如图,某建筑工地上一钢管的横截面是圆环形。
2022-2023学年初中九年级下数学新人教版月考试卷(含解析)
2022-2023学年初中九年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 10 小题,每题 5 分,共计50分)1. −13的相反数是( )A.3B.−3C.13D.−132. 南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是( )A.278×108B.27.8×109C.2.78×1010D.2.78×1083. 由若干块相同的小立方体堆成一个几何体,它的俯视图如图所示,小正方形内的数字表示该位置上小立方体的个数,则这个几何体的左视图是( )A.C.D.4. 下列运算正确的是( )A.(a−b)2=a2−b2B.a3⋅a2=a6C.a2+a=a3D.a3÷a=a25. 如图,AB//CD,∠B=85∘,∠E=27∘,则∠D的度数为( )A.45∘B.48∘C.50∘D.58∘6.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数¯x与方差s 2:甲乙丙丁平均数¯x(cm) 561 560 561560方差s2(cm2) 3.5 3.5 15.5 16.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( ) A.甲C.丙D.丁7. 下列方程中,有两个不等实数根的是( )A.x 2=3x −8B.x 2+5x =−10C.7x 2−14x +7=0D.x 2−7x =−5x +38. 某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A.60x −60(1+25%)x =30B.60(1+25%)x −60x =30C.60×(1+25%)x −60x =30D.60x −60×(1+25%)x =309. 心理学家发现:课堂上,学生对概念的接受能力s 与提出概念的时间t (单位:min )之间近似满足函数关系s =at 2+bt +c(a ≠0),s 值越大,表示接受能力越强.如图记录了学生学习某概念时t 与s 的三组数据,根据上述函数模型和数据,可推断出当学生接受能力最强时,提出概念的时间为( )A.8minB.13minC.20minD.25min10. 如图是小玲在九月初九“重阳节”送给外婆的礼盒,图中所示礼盒的主视图是( )A.B.C.D.卷II(非选择题)二、填空题(本题共计 5 小题,每题 5 分,共计25分)11. 已知一次函数y=2x−1的图象经过A(x1,1),B(x2,3)两点,则x1________x2.(填“>”“<”或“=”).12. 关于a的不等式组{−3a−6≤0,2a−4<0的解集为________.13. 从1、−2两个数中随机选取一个数记为a,再从−1、0、3三个数中随机选取一个数记为b,则a、b的取值使得直线y=ax+b不经过第二象限的概率是________.14. 如图,在△OAC中,OA=4,AC=2,把△OAC绕点A按顺时针方向转到△O′AC′,已知点O′的(2,2√3),则在旋转过程中线段OC扫过的阴影部分面积为________.坐标是15. 如图,在扇形AOB中,∠AOB=90∘,AO=4,C为AB的中点,过点C作CD//OB交弧AB于点D,则阴影部分的面积为________.三、解答题(本题共计 8 小题,每题 5 分,共计40分)16. 先化简,再求值:(1x+1−1)÷xx2−1,其中x=√2+1.17. 某校对八、九年级学生进行了一次体质健康测试,现从两个年级各随机抽取了40名学生的成绩(百分制,且分数均为整数)进行整理、描述和分析.部分信息如下:a.八年级学生成绩频数分布直方图:b.八年级学生在80≤x<90这一组的成绩是:8082848586868888888889c.八、九年级学生成绩的平均数、中位数如下:年级平均数中位数八87.1m九89.285.5根据以上信息,回答下列问题:(1)在这次测试中,八年级在80分以上(含80分)的有________人;表中m的值为________.(2)在这次测试中,八年级学生甲与九年级学生乙的成绩都是85分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(3)该校八年级学生有1600人,假设全部参加此次测试,请估计八年级学生成绩超过平均数87.1分的人数.山高BC为285米,组员从山脚D处沿山坡向着雕像方向前进540米后到达E点,在点E处测得雕像顶端A的仰角为60∘,求雕像AB的高度.19. 如图,一次函数y=kx+b与反比例函数y=mx的图象交于A(2,3),B(−3,n)两点.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx+b<mx的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.20. 某校组织八年级师生共420人参观纪念馆,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A种车3辆,B种车5辆,则空余15个座位;如果租用A种车5辆,B种车3辆,则有15个人没座位.(1)求该公司A,B两种车型各有多少个座位?(2)若A种车型的日租金为260元辆,B种车型的日租金为350元辆,怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?21. 已知二次函数y=2(x−1)(x−m−3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?22.如图,在△ABC中,AB=AC,以AB为直径的半圆分别交AC,BC边于点D,E,连接BD,(1)求证:点E是^BD的中点;(2)当BC=12,且AD:CD=1:2时,求⊙O的半径.23. 解决问题.(1)(问题发现)点E与点A重合,易知△ACF∼△BCE,则线段BE与AF的数量关系为________;(2)(拓展研究)在(1)的条件下,将正方形CDEF绕点C旋转至如图2所示的位置,连接BE,CE,AF,请猜想线段BE和AF的数量关系,并证明你的结论;(3)(结论运用)在(1)(2)的条件下,若{\triangle ABC}的面积为{2}时,当正方形{CDEF}旋转到{B},{E},{F}点共线时,直接写出线段{AF}的长.参考答案与试题解析2022-2023学年初中九年级下数学月考试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】C【考点】相反数【解析】根据相反数的性质分析:只有符号不同的两个数互为相反数.【解答】解:互为相反数的两个数相加等于{0},{-\dfrac{1}{3}}的相反数是{\dfrac{1}{3}}.故选{\rm C}.2.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为{a\times 10^{n}}的形式,其中{1\leq \mathrel{|} a\mathrel{|} \lt 10},{n}为整数.确定{n}的值时,要看把原数变成{a}时,小数点移动了多少位,{n}的绝对值与小数点移动的位数相同.当原数绝对值{\gt 1}时,{n}是正数;当原数的绝对值{\lt 1}时,{n}是负数.【解答】{278}亿用科学记数法表示应为{2.78\times 10^{10}},3.【答案】C简单组合体的三视图由三视图判断几何体【解析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图从左到右分别是{2}、{1}个正方形.【解答】解:由左视图的形状和其中的数字可得:左视图从左到右分别是{2}、{1}、{2}个正方形.故选{\rm C}.4.【答案】D【考点】同底数幂的乘法完全平方公式合并同类项同底数幂的除法【解析】根据完全平方公式、同底数幂的乘法、同底数幂的除法,合并同类项逐项分析即可.【解答】解:{\mathrm A},{(a-b)^2=a^2-2ab+b^2},故该选项错误;{\mathrm B},{a^3\cdot a^2=a^{3+2}=a^5},故该选项错误;{\mathrm C},{a^2}与{a}不是同类项,不能合并,故该选项错误;{\mathrm D},{a^3\div a=a^{3-1}=a^2},故该选项正确.故选{\mathrm D}.5.【答案】D【考点】平行线的性质三角形的外角性质【解析】此题暂无解析【解答】解:如图,∵{AB//CD},∴{\angle B= \angle 1=85^{\circ}}.∵{\angle 1= \angle D+ \angle E},∴{\angle D= \angle 1- \angle E= 85^{\circ }- 27^{\circ}= 58^{\circ }}.故选{\rm D}.6.【答案】A【考点】方差算术平均数【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵{\overline{x_{甲}}= \overline{x_{丙}}\gt \overline{x_{乙}}= \overline{x_{丁}}},∴从甲和丙中选择一人参加比赛,∵{s^{2}_{甲}\lt s^{2}_{丙}},∴根据方差越小成绩越稳定,应选择甲参赛,故选{\rm A.}7.【答案】D【考点】根的判别式【解析】整理每个方程后,利用{\triangle }与{0}的关系来判断每个方程的根的情况.有两个不等实数根即{\triangle \gt 0}.【解答】解:{\rm A,\Delta = 9-32= -23\lt 0},方程无根;{\rm B,\Delta = 25-40= -15\lt 0},方程无根;{\rm C,\Delta= 196-196= 0},方程有两个相等的实数根;{\rm D,\Delta = 4+ 12= 16\gt 0},方程有两个不相等的实数根.故选{\rm D}.8.【答案】A【考点】由实际问题抽象为分式方程【解析】设实际工作时每天绿化的面积为{x}万平方米,根据工作时间{= }工作总量{\div }工作效率结合提前 {30} 天完成任务,即可得出关于{x}的分式方程.【解答】解:设原计划每天绿化的面积为{x}万平方米,则实际工作每天绿化的面积为{( 1 + 25 \% ) x}万平方米,依题意得:{\dfrac{60}{x} - \dfrac{60}{(1+25 \%)x}=30}.故选{\rm A}.9.【答案】B【考点】二次函数的应用二次函数的最值【解析】此题暂无解析【解答】解:由题意得:函数过点{\left(0,43\right)}、{\left(20,55\right)}、{\left(30,31\right)},把以上三点坐标代入{s=at^{2}+bt+c(a\neq 0)}得:{\begin{cases}43=c,\\55=20^{2}a+20b+c ,\\31=30^{2}a+30b+c ,\end{cases}},解得{\begin{cases} a=-\dfrac{1}{10},\\b=\dfrac{13}{5},\\c=43 ;\end{cases}},则函数的表达式为:{s=-\dfrac{1}{10}t^{2}+\dfrac{13}{5}t+43},{\because a=-\dfrac{1}{10}\lt 0},则函数有最大值,当{t=-\dfrac{b}{2a}=13}时,{s}有最大值,即学生接受能力最强.故选{\rm B}.10.【答案】A【考点】由三视图判断几何体简单几何体的三视图等边三角形的性质【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 5 小题,每题 5 分,共计25分)11.【答案】{\lt }【考点】一次函数的性质【解析】由{k= 2\gt 0},可得出{y}随{x}的增大而增大,结合{1\lt 3},即可得出{x_{1}\lt x_{2}}【解答】解:由题可得{k= 2\gt 0},则{y}随{x}的增大而增大,{\because}{1\lt 3},即{A}点的纵坐标小于{B}点的纵坐标,{\therefore}{x_{1}\lt x_{2}}.故答案为:{\lt }.12.【答案】{-2\leq a \lt 2}【考点】解一元一次不等式组【解析】根据一元一次不等式组的解法解答即可.【解答】解: {\left\{\begin{array}{l}-3a-6\leq0①, \\2a-4 \lt 0②, \end{array}\right.}由{①},得{a\geq-2},由{②},得{a \lt 2},所以不等式组的解集为: {-2\leq a \lt 2}.故答案为:{-2\leq a \lt 2}.13.【答案】{\dfrac{1}{3}}【考点】列表法与树状图法概率公式【解析】画树状图,由树状图知,共有{6}种等可能的结果,其中若使得直线{y=}{ax+b}不经过第二象限的结果数为{2},利用概率公式求解即可.【解答】解:画树状图如下:由树状图知,共有{6}种等可能的结果,其中若使得直线{y=}{ax+b}不经过第二象限,则{a\gt 0},{b\le 0}结果数为{2},∴使得直线{y=ax+b}不经过第二象限的概率为{\dfrac{2}{6}=\dfrac{1}{3}}.故答案为:{\dfrac{1}{3}}.14.【答案】{2\pi }【考点】扇形面积的计算坐标与图形变化-旋转【解析】过{O^{\prime }}作{O^{\prime }M\perp OA}于{M},解直角三角形求出旋转角的度数,根据图形得出阴影部分的面积{S=S_{扇形OAO^{\prime }}+S_{\triangle O^\prime AC^\prime}-S_{\triangle OAC}-S_{扇形CAC^{\prime }}=S_{扇形OAO^{\prime }}-S_{扇形CAC^{\prime }}},分别求出即可.【解答】解:过{O^{\prime }}作{O^{\prime }M\perp OA}于{M},则{\angle O^{\prime }MA=90^\circ},{\because }点{O^{\prime }}的坐标是 {\left( 2, 2\sqrt{3}\right)},{\therefore O^{\prime }M=2\sqrt{3}},{OM=2},{\because AO=4},{\therefore AM=4-2=2},{\therefore \tan \angle O^{\prime }AM=\dfrac{2\sqrt{3}}{2}=\sqrt{3}},∴{\angle O^{\prime }AM=60^{\circ }},即旋转角为{60^{\circ }},{\therefore \angle CAC^{\prime }=\angle OAO^{\prime }=60^{\circ }},把{\triangle OAC}绕点{A}按顺时针方向旋转到{\triangle O^{\prime }AC^{\prime }},{\therefore S_{\triangle OAC}=S_{\triangle O^{\prime }AC^{\prime }}},∴阴影部分的面积为:{S=S_{扇形OAO^{\prime }}+S_{\triangle O^\prime AC^\prime}-}{S_{\triangle OAC}-S_{扇形CAC^{\prime }}}{=S_{扇形OAO^{\prime }}-S_{扇形CAC^{\prime }}}{=\dfrac{60\pi \times 4^{2}}{360}-\dfrac{60\pi \times 2^{2}}{360}=2\pi }.故答案为:{2\pi }.15.【答案】{\dfrac{8}{3}\pi -2\sqrt{3}-2}【考点】扇形面积的计算含30度角的直角三角形三角形中位线定理勾股定理三角形的面积无【解答】解:如图,延长{DC}交{OA}于点{E},连接{OD}.∵{C}为{AB}的中点,{CD//OB},∴{CE//OB},{ CE=\dfrac{1}{2}OB=2}.∵{\angle AOB=90^{\circ }},∴{\angle AEC=\angle AOB=90^{\circ }}.在{{\rm Rt} \triangle OED}中,{OD=2OE=4},∴{\angle ODE=30^{\circ }},{ ED=2\sqrt{3}},∴{S_{阴影}=S_{扇形AOD}-S_{\triangle AEC}-S_{\triangle DEO}}{=\dfrac{60\pi \times 4^{2}}{360}-\dfrac{1}{2}\times 2\times 2-\dfrac{1}{2}\times 2\times 2\sqrt{3}} {=\dfrac{8}{3}\pi -2\sqrt{3}-2}.故答案为:{\dfrac{8}{3}\pi -2\sqrt{3}-2}.三、解答题(本题共计 8 小题,每题 5 分,共计40分)16.【答案】解:原式{=\left({\dfrac1{x+1}}-{\dfrac{x+1}{x+1}}\right)\cdot{\dfrac{\left(x+1\right)\left(x-1\right)}x}}{={\dfrac{-x}{x+1}}\cdot{\dfrac{\left(x+1\right)\left(x-1\right)}x}}{=-\left(x-1\right)}{=1-x},当{x=\sqrt2+1}时,原式{=1-x}{=1-\left(\sqrt2+1\right)}{=1-\sqrt2-1}{=-\sqrt2}.【考点】分式的化简求值实数的运算【解析】根据分式混合运算法则先化简后代入{x=\sqrt2+1}计算即可.解:原式{=\left({\dfrac1{x+1}}-{\dfrac{x+1}{x+1}}\right)\cdot{\dfrac{\left(x+1\right)\left(x-1\right)}x}}{={\dfrac{-x}{x+1}}\cdot{\dfrac{\left(x+1\right)\left(x-1\right)}x}}{=-\left(x-1\right)}{=1-x},当{x=\sqrt2+1}时,原式{=1-x}{=1-\left(\sqrt2+1\right)}{=1-\sqrt2-1}{=-\sqrt2}.17.【答案】{23},{84.5}{(2)}由于八年级中位数为{84.5},九年级中位数为{85.5},而{84.5\lt 85\lt 85.5},故{85}分在八年级排名更高.{(3)}八年级选取{40}个样本中,超过平均分{87.1}的共有{17}人,故估计{1600}人中超过{87.1}的有{1600\times \dfrac{17}{40}=680}(人).【考点】频数(率)分布直方图中位数用样本估计总体【解析】暂无暂无暂无【解答】解:{(1)}八年级{80}分以上共有{11+12=23}人;八年级共选了{40}人,按照从小到大第{20}和第{21}人成绩的均分为中位数,故{m=\dfrac{84+85}{2}=84.5} .故答案为:{23};{84.5}.{(2)}由于八年级中位数为{84.5},九年级中位数为{85.5},而{84.5\lt 85\lt 85.5},故{85}分在八年级排名更高.{(3)}八年级选取{40}个样本中,超过平均分{87.1}的共有{17}人,故估计{1600}人中超过{87.1}的有{1600\times \dfrac{17}{40}=680}(人).18.【答案】雕像{AB}的高度为{30}米【考点】解直角三角形的应用-仰角俯角问题【解析】作{EF\perp AC}于{F},{EG\perp DC}于{G},根据直角三角形的性质求出{EG},根据题意求出{BF},根据正切的定义求出{AF},计算即可.【解答】作{EF\perp AC}于{F},{EG\perp DC}于{G},在{ \rm{Rt} \triangle DEG}中,{EG= \dfrac{1}{2}DE= 270},∴{BF= BC-CF= 285-270= 15},{EF= \dfrac{BF}{\tan \angle BEF}= 15\sqrt{3}},∵{\angle AEF= 60^{{\circ} }},∴{\angle A= 30^{{\circ} }},∴{AF= \dfrac{EF}{\tan A}= 45},∴{AB= AF-BF= 30}(米),19.【答案】解:{(1)}把点{A(2,\, 3)}代入{y= \dfrac{m}{x}}得:{m=2\times 3= 6},∴反比例函数表达式为{y= \dfrac{6}{x}},把{B(-3,\, n)}代入{y= \dfrac{6}{x}}得:{n= -2},即{B(-3,\, -2)},把{A(2,\, 3)},{B(-3,\, -2)}代入{y= kx+ b}得:{\left\{ \begin{matrix}2k + b = 3, \\ - 3k + b = - 2 ,\\\end{matrix} \right.\ }解得:{\begin{cases} k=1,\\ b=1, \end{cases}}∴一次函数表达式为{y= x+ 1};{(2)}由图象知:当{x\lt - 3}或{0\lt x\lt 2}时, {kx+ b\lt \dfrac{m}{x}};{(3)}根据题意得:{S_{\triangle ABC}= \dfrac{1}{2}\times 2 \times (2+3)= 5}.【考点】反比例函数与一次函数的综合待定系数法求一次函数解析式三角形的面积待定系数法求反比例函数解析式【解析】(1)把{A}坐标代入反比例解析式求出{m}的值,确定出反比例解析式,将{B}坐标代入求出{n}的值,确定出{B}坐标,将{A}与{B}坐标代入一次函数解析式求出{k}与{b}的值即可;(2)利用图象找出所求不等式的解集即可;(3)以{BC}为底,{A}与{B}横坐标相减为高求出三角形面积即可.【解答】解:{(1)}把点{A(2,\, 3)}代入{y= \dfrac{m}{x}}得:{m=2\times 3= 6},∴反比例函数表达式为{y= \dfrac{6}{x}},把{B(-3,\, n)}代入{y= \dfrac{6}{x}}得:{n= -2},即{B(-3,\, -2)},把{A(2,\, 3)},{B(-3,\, -2)}代入{y= kx+ b}得:{\left\{ \begin{matrix}2k + b = 3, \\ - 3k + b = - 2 ,\\\end{matrix} \right.\ }解得:{\begin{cases} k=1,\\ b=1, \end{cases}}∴一次函数表达式为{y= x+ 1};{(2)}由图象知:当{x\lt - 3}或{0\lt x\lt 2}时, {kx+ b\lt \dfrac{m}{x}};{(3)}根据题意得:{S_{\triangle ABC}= \dfrac{1}{2}\times 2 \times (2+3)= 5}.20.【答案】解:{(1)}设公司{A}、{B}两种车型各有{x}个座位和{y}个座位,根据题意得:{\left\{ \begin{array} {l}{3x+ 5y= 420+ 15} \\ {5x+ 3y= 420- 15}\end{array} \right.},解得 {\left\{ \begin{array} {l}{x= 45} \\ {y= 60}\end{array} \right.}.答:公司{A}、{B}两种车型各有{45}个座位和{60}个座位.{(2)}设公司{A}、{B}两种车型各有{a}辆和{b}辆,租金为{w}元,根据题意得:{\left\{ \begin{array} {l}{45a+ 60b= 420} \\ {w= 260a+ 350b}\end{array} \right.},{\therefore w= - \dfrac{5}{2}a+ 2450},{\because 45a+ 60b= 420},{\therefore a= \dfrac{28- 4b}{3}},{b=7-\dfrac {3}{4}a},{\therefore w= - \dfrac{5}{2}a+ 2450},{\because a,b}为正整数{\therefore b= 1, a= 8},{b= 4, \quad a= 4}∴当{a= 8} 时,{w}的值最小,即{w= - 20+ 2450= 2430},∴租该公司{A}、{B}两种车型各有{8}辆和{1}辆租金最少,最少租金为{2430}元.【考点】二元一次方程的应用【解析】此题暂无解析【解答】解:{(1)}设公司{A}、{B}两种车型各有{x}个座位和{y}个座位,根据题意得:{\left\{ \begin{array} {l}{3x+ 5y= 420+ 15} \\ {5x+ 3y= 420- 15}\end{array} \right.},解得 {\left\{ \begin{array} {l}{x= 45} \\ {y= 60}\end{array} \right.}.答:公司{A}、{B}两种车型各有{45}个座位和{60}个座位.{(2)}设公司{A}、{B}两种车型各有{a}辆和{b}辆,租金为{w}元,根据题意得:{\left\{ \begin{array} {l}{45a+ 60b= 420} \\ {w= 260a+ 350b}\end{array} \right.},{\therefore w= - \dfrac{5}{2}a+ 2450},{\because 45a+ 60b= 420},{\therefore a= \dfrac{28- 4b}{3}},{b=7-\dfrac {3}{4}a},{\therefore w= - \dfrac{5}{2}a+ 2450},{\because a,b}为正整数{\therefore b= 1, a= 8},{b= 4, \quad a= 4}∴当{a= 8} 时,{w}的值最小,即{w= - 20+ 2450= 2430},∴租该公司{A}、{B}两种车型各有{8}辆和{1}辆租金最少,最少租金为{2430}元.21.【答案】{(1)}证明:当{y= 0}时,{2(x-1)(x-m-3)= 0},解得:{x_{1}= 1},{x_{2}= m+ 3}.当{m+ 3= 1},即{m= -2}时,方程有两个相等的实数根;当{m+ 3\neq 1},即{m\neq -2}时,方程有两个不相等的实数根,∴不论{m}为何值,该函数的图象与{x}轴总有公共点.{(2)}解:当{x= 0}时,{y= 2 {m} + 6},∴该函数的图象与{y}轴交点的纵坐标是{2{m} + 6},∴当{2{m} + 6\gt 0},即{m\gt -3}时,该函数的图象与{y}轴的交点在{x}轴的上方.【考点】抛物线与x轴的交点二次函数图象上点的坐标特征【解析】此题暂无解析【解答】{(1)}证明:当{y= 0}时,{2(x-1)(x-m-3)= 0},解得:{x_{1}= 1},{x_{2}= m+ 3}.当{m+ 3= 1},即{m= -2}时,方程有两个相等的实数根;当{m+ 3\neq 1},即{m\neq -2}时,方程有两个不相等的实数根,∴不论{m}为何值,该函数的图象与{x}轴总有公共点.{(2)}解:当{x= 0}时,{y= 2 {m} + 6},∴该函数的图象与{y}轴交点的纵坐标是{2{m} + 6},∴当{2{m} + 6\gt 0},即{m\gt -3}时,该函数的图象与{y}轴的交点在{x}轴的上方.22.【答案】(1)证明:连接{AE},{DE}∵{AB}是直径,∴{AE\perp BC},∵{AB= AC},∴{BE= EC},∵{\angle CDB= 90^{{\circ} }},{DE}是斜边{BC}的中线,∴{DE= EB},∴{\widehat{ED}= \widehat{EB}},即点{E}是{\widehat{BD}}的中点;(2)设{AD= x},则{CD= 2x},∴{AB= AC= 3x},∵{AB}为直径,∴{\angle ADB= 90^{{\circ} }},∴{BD^{2}= (3x)^{2}-x^{2}= 8x^{2}},在{ \rm{Rt} \triangle CDB}中,{(2x)^{2}+ 8x^{2}= 12^{2}},∴{x= 2\sqrt{3}},∴{OA= \dfrac{3}{2}x= 3\sqrt{3}},即{\odot O}的半径是{3\sqrt{3}}.【考点】圆心角、弧、弦的关系等腰三角形的判定与性质【解析】(1)要证明点{E}是{\widehat{BD}}的中点只要证明{BE= DE}即可,根据题意可以求得{BE= DE};(2)根据题意可以求得{AC}和{AB}的长,从而可以求得{\odot O}的半径.【解答】(1)证明:连接{AE},{DE}∵{AB}是直径,∴{AE\perp BC},∵{AB= AC},∴{BE= EC},∵{\angle CDB= 90^{{\circ} }},{DE}是斜边{BC}的中线,∴{DE= EB},∴{\widehat{ED}= \widehat{EB}},即点{E}是{\widehat{BD}}的中点;(2)设{AD= x},则{CD= 2x},∴{AB= AC= 3x},∵{AB}为直径,∴{\angle ADB= 90^{{\circ} }},∴{BD^{2}= (3x)^{2}-x^{2}= 8x^{2}},在{ \rm{Rt} \triangle CDB}中,{(2x)^{2}+ 8x^{2}= 12^{2}},∴{x= 2\sqrt{3}},∴{OA= \dfrac{3}{2}x= 3\sqrt{3}},即{\odot O}的半径是{3\sqrt{3}}.23.【答案】{AB=\sqrt2AF}{\left(2\right)}{BE=\sqrt2AF}.理由如下:在{\mathrm{Rt}\triangle ABC}中,{\angle BAC=90^\circ},{AB=AC},∴{\angle ACB=45^\circ},∴{\dfrac{BC}{AC}=\sqrt2},∵四边形{CDEF}为正方形,∴{\angle FCE=45^\circ},∴{{\dfrac{EC}{FC}}=\sqrt2},∴{{\dfrac{BC}{AC}}={\dfrac{EC}{FC}}=\sqrt2},∵{\angle ECB+\angle ECA}{=\angle ECA+\angle ACF}{=45^\circ},∴{\angle BCE=\angle ACF},∴{\triangle BEC\sim\triangle AFC},∴{{\dfrac{EB}{AF}}={\dfrac{BC}{AC}}=\sqrt2},∴{BE=\sqrt2AF}.{\left(3\right)}①如图{2-1},{B},{E},{F}共线时,∵{\triangle ABC}的面积为{2}时,{\therefore{\dfrac12}AB\cdot AC=2}∴{AB=AC=2},{BC=2\sqrt2},∵{AB=AC},{\angle BAC=90^\circ},点{D}为{BC}的中点,∴{CF=EF=CD=\sqrt2},在{{\mathrm R\mathrm t}\mathrm\triangle BC F}中,{BF=\sqrt6},∴{BE=BF-EF=\sqrt6-\sqrt2},∵{BE=\sqrt2AF},∴{AF=\sqrt3-1};②如图{2-2},{B},{E},{F}共线时,在{\mathrm R\mathrm t\triangle{ABC}}中,{AB=AC=2},∴{\angle ABC=\angle ACB=45^\circ},∴{\sin\angle ABC={\dfrac{CA}{CB}}={\dfrac{\sqrt2}2}},在正方形{CDEF}中,{\angle FEC=45^\circ},在{\mathrm R\mathrm t\triangle C E F}中,{\sin\angle FEC={\dfrac{\mathrm{CF}}{\mathrm{CE}}}= {\dfrac{\sqrt2}2}},∴{{\dfrac{CF}{CE}}={\dfrac{CA}{CB}}},∵{\angle ACB=\angle ECF},∴{\angle FCA=\angle ECB},∴{\triangle FCA\sim\triangle\angle ECB},∴{{\dfrac{BE}{AF}}={\dfrac{CB}{CA}}=\sqrt2},在{\mathrm R\mathrm t\triangle BCF}中,{CF=\sqrt2},{BC=2\sqrt2},∴{BF=\sqrt6},∴{BE=BF+EF=\sqrt6+\sqrt2},又{BE=\sqrt2AF},∴{AF=\sqrt3+1},综上,线段{AF}的长为{\sqrt3+1}或{\sqrt3-1}.【考点】等腰直角三角形正方形的性质相似三角形的性质与判定锐角三角函数的定义【解析】{\left(1\right)}根据锐角三角函数的知识求出{AB}与{DE}的关系,再根据正方形的性质可得{BE}与{AF}的数量关系;{\left(2\right)}先根据锐角三角函数的知识{\dfrac{BC}{AC}=\dfrac{EC}{FC}=\sqrt2},再根据旋转的性质证明么{\angle BCE=\angle ACF},可证{\triangle BEC\sim\triangle AFC},根据相似三角形的性质可求{BE=\sqrt2AF};{\left(3\right)}分两种情况求解即可.【解答】解:{\left(1\right)}∵{AB=AC},{\angle BAC=90^\circ},∴{\angle ABC=\angle ACB=45^\circ},∴{\sin\angle ABC={\dfrac{DE}{AB}}},∴{AB=\sqrt2DE},∵四边形{CDEF}是正方形,∴{DE=EF},∴{AB=\sqrt2AF}.{\left(2\right)}{BE=\sqrt2AF}.理由如下:在{\mathrm{Rt}\triangle ABC}中,{\angle BAC=90^\circ},{AB=AC},∴{\angle ACB=45^\circ},∴{\dfrac{BC}{AC}=\sqrt2},∵四边形{CDEF}为正方形,∴{\angle FCE=45^\circ},∴{{\dfrac{EC}{FC}}=\sqrt2},∴{{\dfrac{BC}{AC}}={\dfrac{EC}{FC}}=\sqrt2},∵{\angle ECB+\angle ECA}{=\angle ECA+\angle ACF}{=45^\circ},∴{\angle BCE=\angle ACF},∴{\triangle BEC\sim\triangle AFC},∴{{\dfrac{EB}{AF}}={\dfrac{BC}{AC}}=\sqrt2},∴{BE=\sqrt2AF}.{\left(3\right)}①如图{2-1},{B},{E},{F}共线时,∵{\triangle ABC}的面积为{2}时,{\therefore{\dfrac12}AB\cdot AC=2}∴{AB=AC=2},{BC=2\sqrt2},∵{AB=AC},{\angle BAC=90^\circ},点{D}为{BC}的中点,∴{CF=EF=CD=\sqrt2},在{{\mathrm R\mathrm t}\mathrm\triangle BC F}中,{BF=\sqrt6},∴{BE=BF-EF=\sqrt6-\sqrt2},∵{BE=\sqrt2AF},∴{AF=\sqrt3-1};②如图{2-2},{B},{E},{F}共线时,在{\mathrm R\mathrm t\triangle{ABC}}中,{AB=AC=2},∴{\angle ABC=\angle ACB=45^\circ},∴{\sin\angle ABC={\dfrac{CA}{CB}}={\dfrac{\sqrt2}2}},在正方形{CDEF}中,{\angle FEC=45^\circ},在{\mathrm R\mathrm t\triangle C E F}中,{\sin\angle FEC={\dfrac{\mathrm{CF}}{\mathrm{CE}}}= {\dfrac{\sqrt2}2}},∴{{\dfrac{CF}{CE}}={\dfrac{CA}{CB}}},∵{\angle ACB=\angle ECF},∴{\angle FCA=\angle ECB},∴{\triangle FCA\sim\triangle\angle ECB},∴{{\dfrac{BE}{AF}}={\dfrac{CB}{CA}}=\sqrt2},在{\mathrm R\mathrm t\triangle BCF}中,{CF=\sqrt2},{BC=2\sqrt2},∴{BF=\sqrt6},∴{BE=BF+EF=\sqrt6+\sqrt2},又{BE=\sqrt2AF},∴{AF=\sqrt3+1},综上,线段{AF}的长为{\sqrt3+1}或{\sqrt3-1}.。
2022年重庆市九年级下学期第三次月考数学试题(附答案)
(1)(2) ……(3) (4)重庆市九年级下学期第三次月考数学试题(总分150分 120分钟完卷)一.选择题(本大题12小题,每小题4分,共48分)1、下列各数中,比-1小的是( )A.-2B.0C.2D.32.计算422x x ÷的结果正确的是( ) A .2xB .22xC .62xD .82x3.如图,AB //CD ,∠B =40°,则∠ECD 的度数为A .160°B .140°C .50°D .40°4. 下列图形中,既是轴对称图形,又是中心对称图形的是( )5.已知2x =是方程31x a -=的解,则a 的值是( )A .7B .7-C .5D .5-6、下列说法正确的是( )A 、在一个装有白球和红球的袋中摸球,摸出红球是必然事件B 、了解湖南卫视《爸爸去哪儿》的收视率情况适合用抽样调查C 、今年1月份某周,我市每天的最高气温(单位:℃)分别是10,9,10,6,11,12,13,则这组数据的极差是5℃D 、如果甲组数据的方差22S =甲,乙组数据的方差21.6S =乙,那么甲组数据比乙组数据稳定7、如图,AB 为⊙O 的直径,C 、D 为⊙O 上两点,60ABC ∠=,则D ∠的度数为( ) A 、75 B 、60 C 、45 D 、308、方程12013x x -=-+的解是( ) A 、5x = B 、1x = C 、12x = D 、原方程无解9、已知一个多边形的内角和等于900°,则这个多边形的边数是( )A.6B.7C.8D.910、五一节,小明一家开车前往缙云山竹海,车离开住处时,由于车流量大,行进非常缓慢,十几分钟后,终于行驶在高速公路上,大约五十分钟后,汽车顺利达到缙云山收费站,经停车缴费后,进入通畅的道路,很快就顺利到达了缙云山竹海.在以上描述中,汽车行驶的路程s (千米)与所经历时间的t (小时)之间的大致图像是( )A .B .C .D .11.下列图形都是由同样大小的正方形按一定的规律组成,其中第(1)个图形中正方形的个数是1,第(2)个图形中正方形的个数是5,第(3)个图形中正方形的个数是14,第(4)个图形中正方形的个数是30,……,则第(7)个图形中正方形的个数是( ) A .136 B .140 C .148 D .15612、如图,双曲线y=x3与矩形OABC 的对角线OB 相交于点D ,且DB :OD=2:3,则矩形OABC 的ABC D E3题图xBy OCDA12题面积为( ) A 、325 B 、322 C 、323 D 、8 二、填空题(本大题共6小题,每小题4分,共24分)13、函数32y x =-的自变量x 的取值范围是。
人教版九年级数学第三次月考试题
人教版九年级数学第三次月考试题姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,在平面直角坐标系中,若反比例函数过点,则的值为()A.B.C.D.2 . 在中,,则().A.B.C.D.3 . 如图,在平面直角坐标系中,已知是线段上的一个动点,连接,过点作交轴于点,若点在直线上,则的最大值是()C.D.A.B.4 . 在平面直角坐标系中有两点,,以原点为位似中心,相似比为1∶3.把线段缩小,则过点对应点的反比例函数的解析式为()A.B.C.D.5 . 如图,在△ABC中,点D是AB边上一点(不与A,B两点重合),下列条件:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=AD•AB;④,能使△ABC∽△ACD的条件的个数为()A.1B.2C.3D.46 . 已知二次函数y=x2+(2k+1)x+k2-1的最小值是0,则k的值是()A.B.-C.D.-7 . 南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A和C之间的距离为()A.10海里B.20海里C.20海里D.10海里8 . 已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( ▲ )A.a>0B.b>0C.c<0D.3不是方程ax2+bx+c=0的一个根9 . 如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为()A.B.C.D.10 . tan60°的值为()A.2B.3C.D.二、填空题11 . 以、两数为根的一元二次方程可以是________.12 . 如图,已知∽,,则的长为________.13 . 数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是_______.14 . 如图,在中,、分别是、上一点,且,若,且,则________.三、解答题15 . 如图,四边形中,,,,,,动点从点出发以的速度沿的方向运动,动点从点出发以的速度沿方向运动,,两点同时出发,当到达点时停止运动,点也随之停止,设运动的时间为.(1)求线段的长;(2)为何值时,线段将四边形的面积分为两部分.16 . 某科技馆坐落在山坡处,从山脚处到科技馆的路线如图所示,已知处在水平面上,斜坡的坡角为,,斜坡的坡角为,,那么科技馆处的海拔高度是多少?(精确到)(参考数据:,,)17 . 即墨素有“中国针织名城”的美誉,2016年,又被中国服装协会授予“中国童装名称”的称号,该区一网店销售某款童装,当每件售价80元时,每周可卖200件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖20件.已知该款童装每件成本价60元,设该款童装每件售价x(60≤x≤80)元,每周的销售量为y件.(1)求y与x之间的函数关系式;(2)设每周的销售利润为W元,当每件售价定为多少元时,每周的销售利润最大,最大利润多少元?18 . 已知抛物线y=ax2﹣4x+c经过点A(0,﹣6)和B(3,﹣9).(1)求出抛物线的解析式;(2)通过配方,写出抛物线的对称轴方程及顶点坐标.19 . 如图,在边长为1个单位长度的小正方形组成的网格中,按要求完成下面的问题:(1)以图中的O为位似中心,将△ABC作位似变换且缩小到原来的一半,得到△A'B'C',再把△A'B'C'绕点B'逆时针旋转90°得到△A″B'C″;(2)求点A→A'→A″所经过的路线长.20 . (1)计算:sin30°﹣cos245°;(2)已知抛物线y=﹣x2+bx+3经过点(1,4),求b的值和顶点坐标.在直角坐标系中,抛物线y=x2+bx+c经过点(0,10)和点(4,2).(1)求这条抛物线的函数关系式.(2)如图,在边长一定的矩形ABCD中,CD=1,点C在y轴右侧沿抛物线y=x2+bx+c滑动,在滑动过程中CD∥x 轴,AB在CD的下方.当点D在y轴上时,AB正好落在x轴上.①求边BC的长.②当矩形ABCD在滑动过程中被x轴分成两部分的面积比为1:4时,求点C的坐标.21 . 如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF 重叠部分的面积是△BDP的面积的.22 . 如图,双曲线y=(x>0)的图象经过点A(,4),直线y=x与双曲线交于B点,过A,B分别作y轴、x轴的垂线,两线交于P点,垂足分别为C,D.(1)求双曲线的解析式;(2)求证:△ABP∽△BOD.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、三、解答题1、2、3、4、5、6、7、8、9、。
九年级下第三次月考数学试卷(有答案)
九年级(下)第三次月考数学试卷一、选择题(共10小题,每小题3分,共30分)1.如果m=,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<42.式子有意义,x的取值范围()A.x<1 B.x>1 C.x≠1 D.全体实数3.下面运算正确的是()A.=﹣B.(2a)2=2a2C.x2+x2=x4D.|a|=|﹣a|4.下列词语所描述的事件是随机事件的是()A.守株待兔B.拔苗助长C.刻舟求剑D.竹篮打水5.如果等式x3•x m=x6成立,那么m=()A.2 B.3 C.4 D.56.如图,在平面直角坐标系中,A(2,4)、B(2,0),将△OAB以O为中心缩小一半,则A 对应的点的坐标()A.(1,2) B.(﹣1,﹣2)C.(1,2)或(﹣1,﹣2) D.(2,1)或(﹣2,﹣1)7.下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④8.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是()A.被调查的学生有200人B.被调查的学生中喜欢教师职业的有40人C.被调查的学生中喜欢其他职业的占40%D.扇形图中,公务员部分所对应的圆心角为72°9.已知直线l:y=x,过A(0,1)作y轴的垂线交l于B,过B作l的垂线交y轴于A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…;按此作法继续下去,则点A2016的纵坐标为()A.42016B.42015C.42014 D.4201310.如图,在△ABC中,∠ACB=90°,BC=AC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,点D在运动过程中ME的最小值为()A.2 B.2 C.4 D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2﹣2×(﹣3)=.12.2015年武汉市机动车的保有量达到229万辆,用科学记数法表示:.13.如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张汉字“自”的概率是.14.含30°的直角三角形板如图放置,直线l1∥l2,若∠1=55°,则∠2=.15.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.16.如图,⊙O的半径为5,P为⊙O上一点,P(4,3),PC、PD为⊙O的弦,分别交y轴正半轴于E、F,且PE=PF,连CD,设直线CD为y=kx+b,则k=.三、解答题(共8题,共72分)17.(x+1)﹣2(x﹣1)=1﹣3x.18.如图,AB=BC,BD=EC,AB⊥BC,EC⊥BC,求证:AD⊥BE.19.某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了如图尚未完成的表格和频数分布直方图(注:无50.5以下成绩)分组频数频数50.5~60.520.0460.5~70.580.1670.5~80.510CA~90.5B0.3290.5~100.5140.28合计(1)频数分布表中,A=,B=,C=.(2)补全频数分布直方图.(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?20.如图1,在平面直角坐标系中,A点的坐标为(6,y),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)如图2,若函数y=3x与y=的图象的另一支交于丁点M,求三角形OMB与四边形OCDB 的面积的比.21.如图,以AB为直径的⊙O交△ABC的边AC于D、BC于E,过D作⊙O的切线交BC于F,交BA延长线于G,且DF⊥BC.(1)求证:BA=BC;(2)若AG=2,cosB=,求DE的长.22.如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12m,宽OB为4m,隧道顶端D到路面的距离为10m,建立如图所示的直角坐标系(1)求该抛物线的解析式.(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面高度相等,如果灯离地面的高度不超过8.5m,那么两排灯的水平距离最小是多少米?23.如图,等腰直角△ABC中,∠C=90°,CA=CB,AD平分∠BAC交BC于D,过D作DE⊥AD 交AB于E,垂足为D,过B作BF⊥AB交AD的延长线于F,垂足为B,连EF交BD于M.(1)求证:AE=2BD;(2)求证:MF2=DM•BF;=.(3)若CD=,则S△BEF24.如图,抛物线y=ax2﹣3ax﹣2与x轴交于A、B,与y轴交于C,连AC、BC,∠ABC=∠ACO.(1)求抛物线的解析式.(2)设P为线段OB上一点,过P作PN∥BC交OC于N,设线PN为y=kx+m,将△PON沿PN 折叠,得△PNM,点M恰好落在第四象限的抛物线上,求m的值.(3)CE平分∠ACB交抛物线的对称轴于E,连AE,在抛物线上是否存在点P,使∠APC>∠AEC,若存在,求出点P的横坐标x p的取值范围,若不存在,请说明理由.九年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.如果m=,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4【考点】估算无理数的大小.【分析】先估算出在2与3之间,再根据m=,即可得出m的取值范围.【解答】解:∵2<3,m=,∴m的取值范围是1<m<2;故选B.2.式子有意义,x的取值范围()A.x<1 B.x>1 C.x≠1 D.全体实数【考点】分式有意义的条件.【分析】要使分式有意义,分式的分母不能为0,依此即可求解.【解答】解:∵式子有意义,∴1﹣x≠0,即x≠1.故选:C.3.下面运算正确的是()A.=﹣B.(2a)2=2a2C.x2+x2=x4D.|a|=|﹣a|【考点】幂的乘方与积的乘方;绝对值;合并同类项;负整数指数幂.【分析】分别利用负整数指数幂的性质以及合并同类项以及积的乘方运算、绝对值的性质分别化简求出答案.【解答】解:A、()﹣1=2,故此选项错误;B、(2a)2=4a2,故此选项错误;C、x2+x2=2x2,故此选项错误;D、|a|=|﹣a|,正确.故选:D.4.下列词语所描述的事件是随机事件的是()A.守株待兔B.拔苗助长C.刻舟求剑D.竹篮打水【考点】随机事件.【分析】随机事件是可能发生也可能不发生的事件.【解答】解:B,C,D都是不可能事件.所以是随机事件的是守株待兔.故选A.5.如果等式x3•x m=x6成立,那么m=()A.2 B.3 C.4 D.5【考点】同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则得出m的值即可.【解答】解:∵等式x3•x m=x6成立,∴3+m=6,解得:m=3.故选:B.6.如图,在平面直角坐标系中,A(2,4)、B(2,0),将△OAB以O为中心缩小一半,则A 对应的点的坐标()A.(1,2) B.(﹣1,﹣2)C.(1,2)或(﹣1,﹣2) D.(2,1)或(﹣2,﹣1)【考点】位似变换;坐标与图形性质.【分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行解答.【解答】解:∵以原点O为位似中心,相似比为2:1,将△OAB以O为中心缩小一半,A(2,4),则顶点A的对应点A′的坐标为(﹣1,﹣2)或(1,2),故选:C.7.下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④【考点】简单几何体的三视图.【分析】根据简单和几何体的三视图判断方法,判断圆柱、圆锥、圆柱与圆锥组合体、圆台的俯视图,得出满足题意的几何体即可.【解答】解:①的三视图中俯视图是圆,但无圆心;②的俯视图是圆,有圆心;③的俯视图也都是圆,有圆心;④的俯视图都是圆环.故②③的俯视图是相同的;故选:C.8.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是()A.被调查的学生有200人B.被调查的学生中喜欢教师职业的有40人C.被调查的学生中喜欢其他职业的占40%D.扇形图中,公务员部分所对应的圆心角为72°【考点】条形统计图;扇形统计图.【分析】通过对比条形统计图和扇形统计图可知:喜欢的职业是公务员的有40人,占样本的20%,所以被调查的学生数即可求解;各个扇形的圆心角的度数=360°×该部分占总体的百分比,乘以360度即可得到“公务员”所在扇形的圆心角的度数,结合扇形图与条形图得出即可.【解答】解:A.被调查的学生数为=200(人),故此选项正确,不符合题意;B.根据扇形图可知喜欢医生职业的人数为:200×15%=30(人),则被调查的学生中喜欢教师职业的有:200﹣30﹣40﹣20﹣70=40(人),故此选项正确,不符合题意;C.被调查的学生中喜欢其他职业的占:×100%=35%,故此选项错误,符合题意.D.“公务员”所在扇形的圆心角的度数为:(1﹣15%﹣20%﹣10%﹣×100%)×360°=72°,故此选项正确,不符合题意;故选:C.9.已知直线l:y=x,过A(0,1)作y轴的垂线交l于B,过B作l的垂线交y轴于A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…;按此作法继续下去,则点A2016的纵坐标为()A.42016B.42015C.42014 D.42013【考点】一次函数图象上点的坐标特征;规律型:点的坐标.【分析】由A点坐标可求得B点坐标,从而可求得AB长,在Rt△ABA1中,可求得AA1,可求得A1的坐标,同理可求得A2的坐标,可找到规律,则可得出答案.【解答】解:∵A(0,1),AB⊥y轴,∴B点纵坐标为1,又B在直线l上,代入可得1=x,解得x=∴B点坐标为(,1),∴AB=,∵OA=1,∴∠AOB=60°,∵A1B⊥l,∴∠A1BO=90°,∴∠AA1B=30°,∴AA1===3,∴OA1=4,则可求得B1坐标为(4,4),∴A1B1=4,同理A1A2==12,∴OA2=16=42,∴OA2016=42016,∴A2016的纵坐标为42016,故选A.10.如图,在△ABC中,∠ACB=90°,BC=AC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,点D在运动过程中ME的最小值为()A.2 B.2 C.4 D.4【考点】旋转的性质;等腰直角三角形.【分析】连接EB,过点M作MG⊥EB于点G,过点A作AK⊥AB交BD的延长线于点K,则△AKB是等腰直角三角形.推出△ADK≌△ABE,根据全等三角形的性质得到∠ABE=∠K=45°,证得△BMG是等腰直角三角,求出BC=4,AB=4,MB=2,由ME≥MG,于是得到当ME=MG 时,ME的值最小.【解答】解:连接EB,过点M作MG⊥EB于点G,过点A作AK⊥AB交BD的延长线于点K,则△AKB是等腰直角三角形.在△ADK与△ABE中,∴△ADK≌△ABE,∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵BC=4,∴AB=4,BM=2,∴MG=2,∠G=90°∴BM≥MG,∴当ME=MG时,ME的值最小,∴ME=BE=2故选:A二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2﹣2×(﹣3)=8.【考点】有理数的乘法;有理数的减法.【分析】先算乘法,再算加法即可,【解答】解:2﹣2×(﹣3)=2+6=8,故答案为:8.12.2015年武汉市机动车的保有量达到229万辆,用科学记数法表示: 2.29×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将229万用科学记数法表示为:2.29×106.故答案为:2.29×106.13.如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张汉字“自”的概率是.【考点】概率公式.【分析】让“自”的个数除以字的总个数即可.【解答】解:由于所有机会均等的结果为6种,而出现“自”的机会有3种,所以出现“自”的概率为=.故答案为.14.含30°的直角三角形板如图放置,直线l1∥l2,若∠1=55°,则∠2=115°.【考点】平行线的性质.【分析】先根据对顶角相等求出∠3的度数,再由三角形外角的性质求出∠4的度数,根据平行线的性质即可得出结论.【解答】解:∵∠1=55°,∠1与∠3是对顶角,∴∠3=∠1=55°.∵∠A=60°,∴∠4=∠3+∠A=55°+60°=115°.∵直线l1∥l2,∴∠2=∠4=115°.故答案为:115°.15.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2.【考点】勾股定理;含30度角的直角三角形;直角三角形斜边上的中线.【分析】利用分类讨论,当∠ABP=90°时,如图2,由对顶角的性质可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP的长,利用勾股定理可得AP的长;当∠APB=90°时,分两种情况讨论,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO,易得△BOP为等边三角形,利用锐角三角函数可得AP的长;易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半可得结论.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB•sin60°=4×=2;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.16.如图,⊙O的半径为5,P为⊙O上一点,P(4,3),PC、PD为⊙O的弦,分别交y轴正半轴于E、F,且PE=PF,连CD,设直线CD为y=kx+b,则k=.【考点】一次函数综合题.【分析】取点P关于y轴的对称点Q,由条件可证得Q为的中点,连接OQ,则可知OQ⊥CD,可求得直线OQ的解析式,由互相垂直的两条直线的关系可求得CD的解析式的k.【解答】解:如图,取点P关于y轴的对称点Q,∵P(4,3),∴Q(﹣4,3),连接PQ,∴PQ⊥y轴,∵PE=PF,∴∠CPE=∠DPE,∴点Q为的中点,连接OQ,则OQ⊥DC,设直线OQ解析式为y=mx,把Q点坐标代入可得3=﹣4m,解得m=﹣,∴直线OQ解析式为y=﹣x,∴直线CD解析式为y=x+b,∴k=,故答案为:.三、解答题(共8题,共72分)17.(x+1)﹣2(x﹣1)=1﹣3x.【考点】解一元一次方程.【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:x+1﹣2x+2=1﹣3x,移项合并得:2x=﹣2,解得:x=﹣1.18.如图,AB=BC,BD=EC,AB⊥BC,EC⊥BC,求证:AD⊥BE.【考点】全等三角形的判定与性质.【分析】根据垂直的定义得到∠ABD=∠BCE=90°,根据全等三角形的性质得到∠A=∠CBE,根据余角的性质即可得到结论.【解答】证明:∵AB⊥BC,EC⊥BC,∴∠ABD=∠BCE=90°,在△ABD与△BCE中,,∴△ABD≌△BCE,∴∠A=∠CBE,∵∠CBE+∠ABE=90°,∴∠A+∠ABE=90°,∴AD⊥BE.19.某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了如图尚未完成的表格和频数分布直方图(注:无50.5以下成绩)分组频数频数50.5~60.520.0460.5~70.580.1670.5~80.510CA~90.5B0.3290.5~100.5140.28合计(1)频数分布表中,A=80.5,B=16,C=0.2.(2)补全频数分布直方图.(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)利用组距为10cm可得到A的值,用第1组的频数除以它的频率得到样本容量,再用第4组的频率乘以样本容量可得B的值,然后用第3组的频数除以样本容量可得C的值;(2)频数分布表得到第2组的频数为8,第5组的频数为14,则可补全频数分布直方图;(3)用600乘以第5组的频率可估计该校成绩优秀人数.【解答】解:(1)A=80.5,2÷0.04=50,B=50×0.32=16,C=10÷50=0.2;故答案为80.5,16,0.2;(2)如图,(3)600×0.28=168,所以估计该校成绩优秀的有168人.20.如图1,在平面直角坐标系中,A点的坐标为(6,y),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)如图2,若函数y=3x与y=的图象的另一支交于丁点M,求三角形OMB与四边形OCDB 的面积的比.【考点】反比例函数与一次函数的交点问题.【分析】(1)在RT△AOB中,根据sin∠OAB=求出OA,再求出点C坐标即可解决问题.(2)利用方程组求出点M坐标,分别求出三角形OMB与四边形OCDB的面积即可解决问题.【解答】解:(1)在RT△AOB中,∵0B=6,∠AB0=90°,∴sin∠OAB==,∴OA=10,AB==8,∴点A 再把(6,8), ∵点C 是OA 中点, ∴点C 坐标(3,4),∵反比例函数y=的图象的一支经过点C , ∴k=12,∴反比例函数解析式为y=.(2)由解得或,∵点M 在第三象限, ∴点M 坐标(﹣2,﹣6), ∵点D 坐标(6,2),∴S △OBM =×6×6=18,S 四边形OBDC =S △AOB ﹣S △ACD =×6×8﹣×6×3=15, ∴三角形OMB 与四边形OCDB 的面积的比=18:15=6:5.21.如图,以AB 为直径的⊙O 交△ABC 的边AC 于D 、BC 于E ,过D 作⊙O 的切线交BC 于F ,交BA 延长线于G ,且DF ⊥BC . (1)求证:BA=BC ;(2)若AG=2,cosB=,求DE 的长.【考点】切线的性质.【分析】(1)连结OD ,如图,根据切线的性质得OD ⊥DF ,而DF ⊥BC ,根据平行线的判定得到OD ∥BC ,然后利用平行线的性质和等量代换可得∠OAD=∠C ,则根据等腰三角形的判定定理即可得到结论;(2)作DH ⊥AB 于H ,如图,设⊙O 的半径为r ,由平行线的性质得cos ∠DOG=cosB=,则在Rt △ODG 中利用余弦可计算出r=3,再在Rt △ODH 中利用余弦可求出OH=,则AH=,利用勾股定理可计算出AD,然后证明DE=AD即可.【解答】(1)证明:连结OD,如图,∵DF为切线,∴OD⊥DF,∵DF⊥BC,∴OD∥BC,∴∠ODA=∠C,而OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠C,∴BA=BC;(2)作DH⊥AB于H,如图,设⊙O的半径为r,∵OD∥BC,∴∠B=∠DOG,∴cos∠DOG=cosB=,在Rt△ODG中,∵cos∠DOG=,即=,∴r=3,在Rt△ODH中,∵cos∠DOH==,∴OH=,∴AH=3﹣=,在Rt△ADH中,AD==,∵∠DEC=∠C,∴DE=DC,而OA=OB,OD∥BC,∴AD=CD,∴DE=AD=.22.如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12m,宽OB为4m,隧道顶端D到路面的距离为10m,建立如图所示的直角坐标系(1)求该抛物线的解析式.(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面高度相等,如果灯离地面的高度不超过8.5m,那么两排灯的水平距离最小是多少米?【考点】二次函数的应用.【分析】(1)设出抛物线的解析式,根据抛物线顶点坐标,代入解析式;(2)令x=10,求出y与6作比较;(3)求出y=8.5时x的值即可得.【解答】解:(1)根据题意,该抛物线的顶点坐标为(6,10),设抛物线解析式为:y=a(x﹣6)2+10,将点B(0,4)代入,得:36a+10=4,解得:a=﹣,故该抛物线解析式为y=﹣(x﹣6)2+10;(2)根据题意,当x=6+4=10时,y=﹣×16+10=>6,∴这辆货车能安全通过.(3)当y=8.5时,有:﹣(x﹣6)2+10=8.5,解得:x1=3,x2=9,∴x2﹣x1=6,答:两排灯的水平距离最小是6米.23.如图,等腰直角△ABC中,∠C=90°,CA=CB,AD平分∠BAC交BC于D,过D作DE⊥AD 交AB于E,垂足为D,过B作BF⊥AB交AD的延长线于F,垂足为B,连EF交BD于M.(1)求证:AE=2BD;(2)求证:MF2=DM•BF;=2﹣2.(3)若CD=,则S△BEF【考点】相似三角形的判定与性质;四点共圆;等腰直角三角形.【分析】(1)如图1中,取AE的中点F,连接DF,只要证明DF=DB,AE=2DF即可.(2)先证明B、E、D、F四点共圆,再证明FD=FM,BD=BF,利用△DFM∽△DBF即可解决问题.(3)如图2中,作DG∥AB交AC于G,先求出AG、GD、BD、BF,利用△ACD∽△FBE求出EB即可解决问题.【解答】(1)证明:如图1中,取AE的中点F,连接DF,∵∠C=90°,CA=CB,∴∠CAB=∠B=45°,∵AD平分∠CAB,∴∠DAB=∠CAB=22.5°,∵DE⊥AD,∴AF=DF,∴∠FAD=∠FDA=22.5°,∴∠DFB=45°=∠B,∴BD=DF=AE,∴AE=2BD;(2)证明:如图2中,∵BF⊥AB,AD⊥DE,∴∠EBF=∠EDF=90°,∴∠EBF+∠EDF=180°,∴B、E、D、F四点共圆,∴∠AFE=∠DBE=45°,∵∠BDF=∠ADC=67.5°,∴∠DMF=180°﹣∠BDF﹣∠DFM=67.5°,∴∠FDM=∠FMD,∴FD=FM,∵∠DFM=∠FBD=45°,∠FDM=∠BDF,∴△DFM∽△DBF,∴,∠DMF=∠BFD=67.5°,∴DF2=DB•DM,∠BDF=∠BFD,∴BD=BF,∴FM2=DM•BF.(3)解:如图2中,作DG∥AB交AC于G.∵∠CGD=∠A=∠CDG=∠CBA=45°,CD=,∴DG=CD=2,AAC=BC=2+,BD=BF=2,∵∠FEB=∠BDF=∠ADC,∠C=∠EBF=90°,∴△ACD∽△FBE,∴=,∴EB=2﹣2,=•BE•BF=(2﹣2)•2=2﹣2,∴S△EBF故答案为2﹣2.24.如图,抛物线y=ax2﹣3ax﹣2与x轴交于A、B,与y轴交于C,连AC、BC,∠ABC=∠ACO.(1)求抛物线的解析式.(2)设P为线段OB上一点,过P作PN∥BC交OC于N,设线PN为y=kx+m,将△PON沿PN 折叠,得△PNM,点M恰好落在第四象限的抛物线上,求m的值.(3)CE平分∠ACB交抛物线的对称轴于E,连AE,在抛物线上是否存在点P,使∠APC>∠AEC,若存在,求出点P的横坐标x p的取值范围,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)如图1中,由△AOC∽△COB,得=,得OA•OB=OC2=4,结合根与系数关系即可解决问题.(2)如图2中,首先证明OM⊥BC,求出直线OM的解析式,利用方程组求出点M坐标,再求出PN的解析式即可解决问题.(3)如图3中,CE交AB于M,作MG⊥AC于G,MH⊥BC于H,连接EB.对称轴与x轴交于点K.首先证明E、A、C、B四点共圆,圆心为K,⊙K与抛物线在第四象限的交点为F.观察图象即可解决问题.【解答】解:(1)如图1中,设A(m,0),B(n,0),∵∠ACO=∠CBO,∠AOC=∠BOC=90°,∴△AOC∽△COB,∴=,∴OA•OB=OC2=4,∴=﹣4,∴a=,∴抛物线解析式为y=x2﹣x﹣2.(2)如图2中,PN与OM交于点G,由题意OM⊥PN,∵PN∥BC,∴OM⊥BC,∵直线BC的解析式为y=x﹣2,∴直线OM的解析式为y=﹣2x,由解得,或,∴点M坐标(,1﹣),∵OG=GM,∴点G坐标(,),∴直线PN的解析式为y=x+,∴m=.(3)如图3中,CE交AB于M,作MG⊥AC于G,MH⊥BC于H,连接EB.对称轴与x轴交于点K.∵CE平分∠ACB,∴MG=MH,∵A(﹣1,0),B(4,0),C(0,﹣2)∴AC=,BC=2,AB=5,∴====∴AM=,OM=,∴直线CE解析式为y=3x﹣2,∴点E坐标(,),∴EK=AK=KB,∴△EAB是等腰直角三角形,∴∠EBA=∠ACE=45°,∴E、A、C、B四点共圆,圆心为K,⊙K与抛物线在第四象限的交点为F.根据对称性,点F坐标(3,﹣2),由图象可知,当点P在抛物线A→C段或B→F段时,∠APC>∠AEC,此时点P的横坐标x p的取值范围﹣1<x P<0或3<x P<4.。
重庆市九年级下学期数学3月月考试卷
重庆市九年级下学期数学3月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·永定月考) 若与互为相反数,则m的值为A .B .C .D .2. (2分) (2020八下·漯河期中) 下列二次根式是最简二次根式的是()A .B .C .D .3. (2分) (2019七下·南京月考) 已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=35°,则∠2的度数是()A . 35°B . 30°C . 25°D . 55°4. (2分) (2019九上·武威期末) 下列说法正确的是()A . 为了解苏州市中学生的睡眠情况,应该采用普查的方式B . 某种彩票的中奖机会是,则买张这种彩票一定会中奖C . 一组数据,,,,,,的众数和中位数都是D . 若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定5. (2分) (2019八上·莎车期末) 若A(-3,2)关于原点对称的点是B,B关于y轴对称的点是C,则点C 的坐标是()A . (3,2)B . (-3,-2)C . (3,-2)D . (-2,3)6. (2分)小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”.如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出的方程组是()A .B .C .D .7. (2分)反比例函数y=(a是常数)的图象分布在()A . 第一、二象限B . 第一、三象限C . 第二、四象限D . 第三、四象限8. (2分)(2019·台湾) 如图,有一三角形ABC的顶点B,C皆在直线L上,且其内心为I.今固定C点,将此三角形依顺时针方向旋转,使得新三角形A'B'C的顶点A′落在L上,且其内心为I′.若∠A<∠B<∠C,则下列叙述何者正确?()A . IC和平行,和L平行B . IC和平行,和L不平行C . IC和不平行,和L平行D . IC和不平行,和L不平行9. (2分) (2019八下·湖北期末) 如图,已知数轴上点表示的数为,点表示的数为1,过点作直线垂直于,在上取点,使,以点为圆心,以为半径作弧,弧与数轴的交点所表示的数为()A .B .C .D .10. (2分)菱形的两条对角线长分别为6与8,则此菱形的面积是()A . 20B . 24C . 48D . 36二、填空题 (共6题;共7分)11. (1分)(2019·临海模拟) 计算:=________.12. (1分) (2019七下·漳州期末) 写出一个不可能事件________.13. (1分) (2018七上·金华期中) 已知单项式与是同类项,那么 ________.14. (1分) (2017八下·东台开学考) 如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE 于点F,若BC=6,则DF的长是________15. (2分)如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC 的长为________ cm.16. (1分)(2017·陕西模拟) 如图,△ABC中,AB=AC,∠BAC=45°,BC=2,D是线段BC上的一个动点,点D是关于直线AB、AC的对称点分别为M、N,则线段MN长的最小值是________.三、解答题 (共7题;共46分)17. (5分) (2018八上·柘城期末) 先化简,再求值:(3a﹣2)2﹣9a(a﹣5b)+12a5b2÷(﹣a2b)2 ,其中ab=﹣.18. (2分) (2019九上·郑州期末) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为________;开私家车的人数m=________;扇形统计图中“骑自行车”所在扇形的圆心角为________度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?19. (5分) (2020八下·张掖期中) 甲、乙两地相距360千米.新修的高速公路开通后,在甲乙两地之间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2小时.试确定原来的平均车速.20. (2分) (2016九上·西城期中) 在平面直角坐标系xOy中,定义点P(x,y)的变换点为P′(x+y,x ﹣y).(1)如图1,如果⊙O的半径为2 ,①请你判断M(2,0),N(﹣2,﹣1)两个点的变换点与⊙O的位置关系;②若点P在直线y=x+2上,点P的变换点P′在⊙O的内,求点P横坐标的取值范围.(2)如图2,如果⊙O的半径为1,且P的变换点P′在直线y=﹣2x+6上,求点P与⊙O上任意一点距离的最小值.21. (15分) (2016九上·蕲春期中) 某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克.(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.22. (15分) (2018七下·浦东期中) 如图所示,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为公共边的全等三角形.请你参考这个作全等三角形的方法,解答下列问题.(1)如图(2)所示,在∠ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,AD,CE 相交于点F,请你写出FE与FD之间的数量关系;(不要求写证明)(2)如图(3)所示,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,那么(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.23. (2分) (2020九上·德清期末) 如图,直线与轴交于点,与轴交于点,抛物线经过点, .(1)求点B的坐标和抛物线的解析式;(2) M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共46分)17-1、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、第11 页共13 页第12 页共13 页23-2、第13 页共13 页。
九年级下月考数学试卷(3月份)含解析新人教版
九年级下月考数学试卷(3月份)含解析新人教版一.选择题(四选一,每题4分,共40分)1.(4分)若一个数的相反数是3,则这个数是()A.﹣ B.C.﹣3 D.32.(4分)已知(1﹣m)2+|n+2|=0,则m+n的值为()A.﹣1 B.﹣3 C.3 D.不能确定3.(4分)若方程x2+2x+m=0和方程x2+mx+2=0有一个相等的实数根,则m的值为()A.﹣3 B.﹣2 C.﹣1 D.无法确定4.(4分)梯形ABCD中,上底AD=8,下底BC=16,∠B=30°,∠C=60°,则腰长AB等于()A.4 B.3 C.5 D.5.(4分)两圆的半径分别是R和r(R>r),圆心距为d,若关于x的方程x2﹣2rx+(R﹣d)2=0有两个相等的实数根,则两圆的位置关系是()A.一定内切B.一定外切C.相交D.内切或外切6.(4分)一根蜡烛经凸透镜成一实像,物距u,像距v.和凸透镜的焦距f满足关系式: +=,若u=12cm,f=3cm,则v的值为()A.8cm B.6cm C.4cm D.2cm7.(4分)已知样本a,4,2,3,5的平均数为b,且a,b是方程x2﹣4x+3=0的两个根,则这个样本的方差是()A.B.2 C.3 D.48.(4分)在△ABC中,∠C=90°,AB=4cm,BC=3cm,若把△ABC绕直线AC旋转一周得到一个几何体,那么此几何体的侧面积为()A.24πcm2B.18πcm2C.12πcm2D.6πcm29.(4分)如果只用一种正多边形进行镶嵌,那么在下面的正多边形中,不能镶嵌成一个平面的是()A.正三角形B.正方形C.正五边形D.正六边形10.(4分)甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程的接棒顺序有()A.3种 B.4种 C.6种 D.12种二.填空题(每空4分,共20分)11.(4分)抛物线y=x2﹣2x﹣3的顶点坐标是.12.(4分)有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是.13.(4分)下列是三种化合物的结构式及分子式,请按其规律,写出第n个化合物的分子式.14.(4分)一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为.15.(4分)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是.三.化简与计算(每小题8分,共16分)16.(8分)解不等式组:17.(8分)先化简,再求值:,其中x=2sin45°t an45°.四.证明与计算(每小题8分,共16分)18.(8分)如图所示,在△ABC中,∠ACB=90°,点D,E分别为AC,AB的中点,点F在BC 的延长线上,且∠CDF=∠A.求证:四边形DECF为平行四边形.19.(8分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.五.知识应用20.(10分)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.(1)求证:DE是⊙O的切线;(2)若AB=6,AE=,求BD和BC的长.21.(10分)在黄州服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售.(1)试建立销售价y与周次x之间的函数关系式;(2)若这种时装每件进价Z与周次x次之间的关系为Z=﹣0.125(x﹣8)2+12.1≤x≤16,且x 为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?22.(12分)下表是某初三班20名学生某次数学测验的成绩统计表:x和y的值.(2)在(1)的条件下,设这20名学生成绩的众数为a,中位数为b,求a﹣b的值.23.(12分)小刚家去年种植芒果收入扣除各项支出后结余5000元,今年又喜获丰收,比去年增收20%,而今年支出比去年减少5%,因此今年结余比去年多1750元,求小刚家今年种植芒果的收入和支出各是多少元?24.(14分)二次函数y=ax2+bx+c(a≠0)的图象经过点A(3,0),B(2,﹣3),并且以x=1为对称轴.(1)求此函数的解析式;(2)作出二次函数的大致图象;(3)在对称轴x=1上是否存在一点P,使△PAB中PA=PB?若存在,求出P点的坐标;若不存在,说明理由.参考答案与试题解析一.选择题(四选一,每题4分,共40分)1.(4分)若一个数的相反数是3,则这个数是()C.﹣3 D.3A.﹣ B.【解答】解:设3的相反数为x.则x+3=0,x=﹣3.故选:C.2.(4分)已知(1﹣m)2+|n+2|=0,则m+n的值为()A.﹣1 B.﹣3 C.3 D.不能确定【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.3.(4分)若方程x2+2x+m=0和方程x2+mx+2=0有一个相等的实数根,则m的值为()A.﹣3 B.﹣2 C.﹣1 D.无法确定【解答】解:由方程x2+2x+m=0得x2=﹣2x﹣m,由方程x2+mx+2=0得x2=﹣mx﹣2.则有﹣2x﹣m=﹣mx﹣2,即(m﹣2)x=m﹣2,∵方程x2+2x+m=0和方程x2+mx+2=0有一个相等的实数根,∴m≠2,∴x=1.把x=1代入方程x2+mx+2=0,得方程1+m+2=0,从而解得m=﹣3.故选:A.4.(4分)梯形ABCD 中,上底AD=8,下底BC=16,∠B=30°,∠C=60°,则腰长AB 等于( )A .4B .3C .5D .【解答】解:如图所示:过点A 作AE ⊥BC 于点E ,作DF ⊥BC 于点F , ∵AD=8,BC=16, ∴BE +FC=8,∵∠B=30°,∠C=60°,设FC=x , ∴BE=8﹣x ,则DF=AE=x ,故tan30°==,解得:x=2,则BE=6,AE=2,故A B=4.故选:A .5.(4分)两圆的半径分别是R 和r (R >r ),圆心距为d ,若关于x 的方程x 2﹣2rx +(R ﹣d )2=0有两个相等的实数根,则两圆的位置关系是( )A .一定内切B .一定外切C .相交D .内切或外切【解答】解:因为方程有两个相等的实数根,所以判别式等于0. 则:△=(2r )2﹣4(R ﹣d )2=0, [2r ﹣2(R ﹣d )][2r +2(R ﹣d )]=0 得到:d=R +r 或d=R ﹣r . 因此两圆外切或者内切. 故选D .6.(4分)一根蜡烛经凸透镜成一实像,物距u ,像距v .和凸透镜的焦距f 满足关系式: +=,若u=12cm ,f=3cm ,则v 的值为( )A.8cm B.6cm C.4cm D.2cm【解答】解:∵+=,u=12cm,f=3cm,∴=+,解得v=4cm.故选C.7.(4分)已知样本a,4,2,3,5的平均数为b,且a,b是方程x2﹣4x+3=0的两个根,则这个样本的方差是()A.B.2 C.3 D.4【解答】解:∵方程x2﹣4x+3=0的两个根是x1=1,x2=3,a、b是方程x2﹣4x+3=0的两个根,样本中其他数据都大于1,∴a=1,b=3.则S2= [(1﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2+(3﹣3)2]=2.故选B.8.(4分)在△ABC中,∠C=90°,AB=4cm,BC=3cm,若把△ABC绕直线AC旋转一周得到一个几何体,那么此几何体的侧面积为()A.24πcm2B.18πcm2C.12πcm2D.6πcm2【解答】解:几何体的侧面积=•2π•3•4=12π(cm2).故选C.9.(4分)如果只用一种正多边形进行镶嵌,那么在下面的正多边形中,不能镶嵌成一个平面的是()A.正三角形B.正方形C.正五边形D.正六边形【解答】解:正三角形的每个内角是60°,能整除360°,能密铺;正方形的每个内角是90°,4个能密铺;正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;正六边形的每个内角是120°,3个能密铺.故选C.10.(4分)甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程的接棒顺序有()A.3种 B.4种 C.6种 D.12种【解答】解:当甲作第一棒时,接棒顺序有:①甲、乙、丙、丁;②甲、乙、丁、丙;③甲、丙、乙、丁;③甲、丙、丁、乙;⑤甲、丁、乙、丙;⑥甲、丁、丙、乙.因此共有6种接棒顺序.同理当甲做第四棒时,也有6种接棒顺序.因此共有6+6=12种接棒顺序.故选D.二.填空题(每空4分,共20分)11.(4分)抛物线y=x2﹣2x﹣3的顶点坐标是(1,﹣4).【解答】解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为:(1,﹣4).12.(4分)有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是11.【解答】解:有6个数,它们的平均数是12,那么这6个数的和为6×12=72.再添加一个数5,则这7个数的平均数是=11.故答案为:11.13.(4分)下列是三种化合物的结构式及分子式,请按其规律,写出第n个化合物的分子式C n H2n.+2【解答】解:第1个化合物的分子式CH4,以后每增加一个C,需增加两个H,故第n个化合物即有n个C的化合物的分子式为C n H2n+2.故第n个化合物的分子式为C n H2n+2.14.(4分)一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为或.【解答】解:在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=±4;当a=4时,把(4,0)代入y=kx+3,得k=﹣;当a=﹣4时,把(﹣4,0)代入y=kx+3,得k=.故k的值为或.15.(4分)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是10:21.【解答】解:电子表的实际时刻是10:21,可以把给定的读数写在纸上,然后把纸翻过来看到的读数就是实际读数.故答案为10:21.三.化简与计算(每小题8分,共16分)16.(8分)解不等式组:【解答】解:(1)移项合并同类项得:4x>4解得:x>1(2)去括号得:2x+2﹣<x解得:x<4所以1<x<4.17.(8分)先化简,再求值:,其中x=2sin45°tan45°.【解答】解:原式==.当x=2××1=2时,原式=﹣=4.四.证明与计算(每小题8分,共16分)18.(8分)如图所示,在△ABC中,∠ACB=90°,点D,E分别为AC,AB的中点,点F在BC 的延长线上,且∠CDF=∠A.求证:四边形DECF为平行四边形.【解答】证明:∵D,E分别为AC,AB的中点,∴DE为△ACB的中位线.∴DE∥BC.∵CE为Rt△ACB的斜边上的中线,∴CE=AB=AE.∴∠A=∠ACE.又∵∠CDF=∠A,∴∠CDF=∠ACE.∴DF∥CE.又∵DE∥BC,∴四边形DECF为平行四边形.19.(8分)已知抛物线y=x 2+x ﹣. (1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.【解答】解:(1)∵y=x 2+x ﹣=(x +1)2﹣3, ∴抛物线的顶点坐标为(﹣1,﹣3), 对称轴是直线x=﹣1;(2)当y=0时, x 2+x ﹣=0,解得:x 1=﹣1+,x 2=﹣1﹣,AB=|x 1﹣x 2|=.五.知识应用20.(10分)如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线上一点,AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB . (1)求证:DE 是⊙O 的切线;(2)若AB=6,AE=,求BD 和BC 的长.【解答】(1)证明:连接OC ; ∵AC 平分∠EAB , ∴∠EAC=∠BAC ; 又在圆中OA=OC , ∴∠AC0=∠BAC , ∴∠EAC=∠ACO ,∴OC ∥AE (内错角相等,两直线平行); 则由AE ⊥DC 知OC ⊥DC ,即DC是⊙O的切线.(2)解:∵∠D=∠D,∠E=∠OCD=90°,∴△DCO∽△DEA,∴=,∴=,∴=,∴BD=2;∵Rt△EAC∽Rt△CAB,∴,∴∴AC2=,由勾股定理得:BC=.21.(10分)在黄州服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售.(1)试建立销售价y与周次x之间的函数关系式;(2)若这种时装每件进价Z与周次x次之间的关系为Z=﹣0.125(x﹣8)2+12.1≤x≤16,且x 为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?【解答】解:(1)依题意得,可建立的函数关系式为:∴y=;即y=.4分(2)设利润为W,则W=售价﹣进价故W=,化简得W=①当W=时,∵当x≥0,函数W随着x增大而增大,∵1≤x<6∴当x=5时,W有最大值,最大值=17.125②当W=时,∵W=,当x≥8时,函数W随x增大而增大,∴在x=11时,函数有最大值为19③当W=时,∵W=,∵12≤x≤16,当x≤16时,函数W随x增大而减小,∴在x=12时,函数有最大值为18综上所述,当x=11时,函数有最大值为19.22.(12分)下表是某初三班20名学生某次数学测验的成绩统计表:x和y的值.(2)在(1)的条件下,设这20名学生成绩的众数为a,中位数为b,求a﹣b的值.【解答】解:(1)由题意得,,解得:,即x的值为5,y的值为7;(2)由(1)得,90分的人数最多,故众数为90,中位数为:80,即a=90,b=80,则a﹣b=90﹣80=10.23.(12分)小刚家去年种植芒果收入扣除各项支出后结余5000元,今年又喜获丰收,比去年增收20%,而今年支出比去年减少5%,因此今年结余比去年多1750元,求小刚家今年种植芒果的收入和支出各是多少元?【解答】解:设去年收入x元,支出y元.由题意得:,解得:,则今年种植芒果的收入为9600元,支出是2850元,答:今年收入9600元,支出2850元.24.(14分)二次函数y=ax2+bx+c(a≠0)的图象经过点A(3,0),B(2,﹣3),并且以x=1为对称轴.(1)求此函数的解析式;(2)作出二次函数的大致图象;(3)在对称轴x=1上是否存在一点P,使△PAB中PA=PB?若存在,求出P点的坐标;若不存在,说明理由.【解答】解:(1)把点A(3,0),B(2,﹣3)代入y=ax2+bx+c依题意,整理得,解得,∴解析式为y=x2﹣2x﹣3;(2)二次函数图象如右;(3)存在.作AB的垂直平分线交对称轴x=1于点P,连接PA、PB,则PA=PB,设P点坐标为(1,m),则22+m2=(﹣3﹣m)2+1解得m=﹣1,∴点P的坐标为(1,﹣1).。
〖人教版〗九年级数学下学期第三次月考模拟试题
〖人教版〗九年级数学下学期第三次月考模拟试题创作人:百里灵明创作日期:2021.04.01审核人:北堂正中创作单位:北京市智语学校一、选择题(共10个小题,每小题3分,共30分)1.﹣3的绝对值是()A.3 B.﹣3 C.﹣D.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.函数y=中,自变量x的取值范围是()A. x>﹣2 B.x≥﹣2 C.x≠2 D.x≤﹣24.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A. 3.5×107B.3.5×108C.3.5×109D.3.5×10105.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映处的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()A.B.C.D.7.已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断8.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A. y=﹣2(x+1)2+2 B. y=﹣2(x+1)2﹣2C. y=﹣2(x﹣1)2+2 D. y=﹣2(x﹣1)2﹣29.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形10.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是()A.B.C.D.二、填空题(每题3分,共24分)11.分解因式:2a3﹣4a2+2a=12.如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于.13.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=.14.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列出方程为.(14题) (15题) (16题) (18题)15.如图,在△ABC 中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ′,则点B 转过的路径长为______16.如图,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上,∠ADC=54°,则∠BAC 的度数等于.17.如图:已知⊙P 的半径为2,圆心P 在抛物线1212-=x y 上运动,当⊙P 与x 轴相切时,圆心P 的坐标为___.18.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+3的值是.三、 解答题(共29分),要求写出解答过程.如果运算结果含有根号,请保留根号.19.(本小题7分)(1)(3分)计算:(﹣2)2﹣|﹣|—2cos30°++(﹣)0; (2)(4分).先化简,再求值:2a 22a 1a 1a 1a 2a 1--⎛⎫÷-- ⎪+++⎝⎭,其中a 是方程2x x 30+-=的解 .20.(本小题4分)如图,在△ABC 中,先作∠BAC 的角平分线AD 交BC 于点D ,再以AC 边上的一点O 为圆心,过A 、D 两点作⊙O (用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)21.(本小题6分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB 的顶点均在格点上,点O为原点,点A B 、的的坐标分别为()(),,A 32B 13、.⑴. 请画出将△AOB 向左平移3个单位后得到的图形△11A OB ,点1B 的坐标为 ;⑵. 请画出将△AOB 关于原点O 成对称的图形△22A OB ,点2A 的坐标为 ;⑶.在x 轴上找一点P ,使PA+PB 的值最小,,则P 点的坐标为.22.(本小题6分)如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).23.(本小题6分)如图12,在□ABCD 中,E 、F 分别是AB 、DC 边上的点,且AE=CF ,(1)求证:ADE ∆≌CBF ∆.(2)若∠DEB=90o ,求证四边形DEBF 是矩形.四.解答题(共37分),要求写出解答过程.如果运算结果含有根号,请保留根号.24.(本小题7分)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:(1)求全班学生人数和m 的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分(60分)共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.25.(本小题7分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?26.(本小题7分)如图,AB 是⊙O 的直径,点E 是上的一点,∠DBC=∠BED .(1)求证:BC 是⊙O 的切线;(2)已知AD=3,CD=2,求BC 的长.27.(本小题6分)如图,在直角坐标系xOy 中,直线y=mx 与双曲线相交于A (﹣1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1(1)求m 、n 的值;(2)求直线 创作人:百里灵明创作日期:2021.04.01 审核人: 北堂正中创作单位: 北京市智语学校。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全善学校2011-2012学年下期第三次月考数学试题(总分︰150分 120分钟完卷)一.选择题(每小题4分,共40分)1.2-,0,1,3这几个数中绝对值最小的数是()A、2-B、0 C、1 D、32. 计算329(3)x x÷-的结果为 ( )A、3x-B、3x C、6x-D、53x3.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有()A、1个B、2个C、3个D、4个4.如图:已知0//,,140AB CD BE ABC CDE∠∠=平分;则C∠为 ( )A、080B、0105C、0100D、01105.下列说法中正确的是()A.“打开电视,正在播放《自然传奇》”是必然事件B.想了解某种饮料中含色素的情况,应进行全面调查C.数据1,1,2,2,3的众数是3D.对报考空飞班的每个学生的身体情况必须进行全面调查6. 已知如图: 点A、B、C、D在⊙O上,AB为直径,072ABC∠=,则D∠为 ( )A、018B、030C、036D、0727. 已知2(0)y ax bx c a=++≠在平面直角坐标系中的图象如图所示,则下列结论正确的是 ( )A、0a<B、0c> C、20a b+= D、420a b c++>A BCDO6题图xyOx=17题图A BCDE4题图8.今年2月份巴滨路顺利开通.沿江景色秀丽,风光如画.小刚和小川在紧张的复习之余,决定利用周日放松一下.上午他们一同骑自行车出发沿江而行,中午在南滨路停留了一段时间,由于要上晚自习,他们返回出发地时加快了速度.设出发时间为t,离出发地的距离为s ,能正确反映s 与t 的函数关系的图象大致是 ( )9. 观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有( )个A 、78个B 、99个 C105、个 D 、121个10. 若二次函数23y mx x =+x 轴有交点,则m 的取值范围是 ( ) A 、m>4B 、m≤4且m ≠0 C 、m >4 D 、m ≤4且m ≠0 二.填空题(每小题4分,共24分)11.我市园博园于2011年11月19日正式向市民开放,据不完全统计:首日开放共接待游客52000人,用科学记数法表示52000为 . 12.如图://DE BC , AD:BD=2:1,则ADE ABC ∆∆与的周长比为 .13.某校2012级学生在今年的初中升高中的保送生中6个班各班的保送人数分别为5、4、3、3、5、9,则这组数据的极差为 .14.已知一扇形圆心角为060,半径为2,则扇形的面积为 .15.甲、乙、丙三种扑克牌背面分别相同,三张甲牌正面标有数字1,2,3;三张乙牌正面标有数字2,3,5;二张丙牌正面标有数字3,4 .现将它们背面朝上,洗匀后从中分别各抽一张,以正面上的数字作为线段长度.则能构成等腰三角形的概率为 . 16.江堤边一洼池发生了管漏,江水不断地漏出.假定每分钟漏出的水量相等,如果用2第1个第2个第3个ABCDABCD E 12题图台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完,现有紧急情况必须在10分钟内抽完,那么至少需要抽水机 台. 三.解答题(本大题共10小题,共86分)17. (本题6分)计算:0120121)3()(1)2π---+-18. (本题6分)解不等式组,并把解集表示在数轴上;253(2)3302x x x +≤+⎧⎪⎨-<⎪⎩19. (本题6分)已知如图:0,90,//,;ABC BED ABC BDE AC DE BC DE ∆∆∠=∠==和中求证:AC=BE20. (本题6分) 已知如图:在ABC ∆中,AD BC ⊥于D ,0030,45,B CBD ∠=∠=求AC 的长.21.(10分)先化简,后求值:2124(2)22x x x x x---÷++其中x 满足方程220x x -=.22.(10分) 如图,一次函数的图象与反比例函数的图象在第一象限只有—个交点A ,一次函数的图象与x 轴、y 轴分别交于B 、C 两点,AD 垂直平分OB ,垂足为D ,OA=13,cos ∠ABO=13132.ABCDA DCBEMF(1)求点A 的坐标及反比例函数解析式; (2)求一次函数的的解析式.23.(10分)2012年4月重庆市首届中小学生科技节在我校隆重举行,我校的一个数学兴趣小组在本校学生中开展主题为“科技知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,分别记作A 、B 、C 、D ;并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题: (1)本次被调查的学生共有________人;在被调查者中“基本了解”的有 人. (2)将条形统计图补充完整,求出扇形统计图中基本了解的圆心角度数为 度。
(3)在“非常了解”的调查结果里,初三年级学生共有5人,其中2位是双胞胎,现打算随机选出2位进行采访,请你用列表法或树状图的方法求出所选两位同学恰好是双胞胎的概率。
24.(10分)如图,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EM ⊥CD ,垂足分别是F ,M . (1)求证:AE FM .(2)若tan ∠DAE=31,MF=210,求正方形的面积。
25.(10分)重庆巴南区某一蔬菜种植基地种植的一种蔬菜,它的成本是每千克3元,售价是每千克4元,年销量为10(万千克).多吃绿色蔬菜有利于身体健康,因而绿色蔬菜倍受A 30% BCD 10%人数欢迎,十分畅销.为了获得更好的销量,保证人民的身体健康,基地准备拿出一定的资金作绿色开发,根据经验,若每年投入绿色开发的资金X(万元),该种蔬菜的年销量将是原年销量的m 倍,它们的关系如下表: x(万元) 0 1 2 3 4 …… m11.51.81.91.8……(1)用所学过的一次函数,反比例函数或二次函数的有关知识估计并验证m 与x 之间的函数关系式。
(2)若把利润看着是销售总额减去成本费和绿色开发的投入资金,试求年利润W(万元)与绿色开发投入的资金x(万元)的函数关系式;并求投入的资金不低于3万元,又不超过5万元时,x 取多少时,年利润最大,求出最大利润。
(3)基地经调查:若增加种植人员的奖金,从而提高种植积极性,又可使销量增加,且增加的销量y(万千克)与增加种植人员的奖金z(万元)之间满足24y z z =-+,若基地将投入5万元用于绿色开发和提高种植人员的奖金,应怎样分配这笔资金才能使年利润达到17万元且绿色开发投入大于奖金?( 2 1.4= ,3 1.7=)26.(12分)在0,2,90,ABC AB AC A ∆==∠=中取一块含045角的直角三角尺,将直角顶点放在斜边BC 边的中点O 处(如图1),绕O 点顺时针方向旋转,使090角的两边与Rt ABC ∆的两边AB ,AC 分别相交于点E ,F(如图2).设,.BE x CF y ==⑴ 探究:在图2中,线段AE 与CF 之间有怎样的大小关系?试证明你的结论; ⑵ 若将直角三角尺045角的顶点放在斜边BC 边的中点O 处(如图3),绕O 点顺时针方向旋转,其它条件不变.① 试写出y 与x 的函数解析式,以及x 的取值范围;② 将三角尺绕O 点旋转(如图4)的过程中,OEF ∆是否能成为等腰三角形?若能,直接写出OEF ∆为等腰三角形时x 的值;若不能,请说明理由.图2ABCO EF全善学校2011-2012学年下期第三次月考数学答卷(总分150分 120分钟完卷) 命题人 兰小红一. 选择题(每小题4分,共40分)AB C图4E FA C图1二.填空题(每小题4分,共24分) 11.45.210⨯. 12.22:33或. 13. 6. 14.23π. 15.718.16. 6. 三.解答题(本大题共10小题,共86分) 17.解:156----=-------原式分分18.解:253(2)(1)330(2)2x x x +≤+⎧⎪⎨-<⎪⎩由(1)得12x ≥-----分由(2)得24x <-----分1 2.5x ∴-≤<---原不等式组的解集为分图对1分共6分19.证明://290()46AC DE ACB DEB ABC BDE BC DE ABC BDE ASA AC BE∴∠=∠----∠=∠==∴∆≅∆---∴=----分分分20.解:,901AD BC ADB ⊥∴∠=---分30,23ABD B BD AD ∆∠==∴=---在Rt 中分4526Rt ADC CCD AD AC ∆∠=∴==∴=----又在中分21.解:246x x=+---原式分212200(),28x x x x -=∴==---舍去分2,x ∴=当时22.解:(1)A(2,3) ------ 4分 66y x=----分(2)36102y x =-+---分 ACDA DCBEMF23.解:(1)50;10. -----2分 (2) 072. -----5分 (3) 11010P =---分24.(1)证明:连接EC 可证四边形EFCM 为矩形,则EC=FM.(2分)()(2.5ADE CDE SAS AE EC AE FM ∆≅∆∴=∴=---分)分(2)由(1)得DAE DCE ∠=∠1tan ,3DAE MF ∠==设EM=k,MC=3k 222(3)2k k k ∴+=∴=2, 6.EM MC ∴==易证DM=EM=2.864.10DC S ∴=∴=---正方形分25.解:22(0)(0,1) 1.(1,1.5),(2,1.8)0.1,0.6.0.10.6 1..3m ax bx c a c a b m x x =++≠=⎧∴=-=⎨⎩∴=-++---(1)设把代入得把代入1.5=a+b+1得 1.8=4a+2b+1经检验其他点坐标均适合解析式分222(2)1010(0.10.61)51010,52.5().2(1)353531016()6W m x x x xx x x x W =-=-++-=-++-<∴=-=⨯-≤≤∴=-+⨯+=---最大最大开口向下当万元时,W 但此时随x 的增大而减小.当x=3时W 万元分222(3)610(5)4(5)17660632x x x x x x x -++--+-=-+=∴==124.7(), 1.3()x x ∴==∴万元万元由题意1.3万元舍去;绿色投入资金为4.7万元,用于奖金为0.3万元.-----10分26.解:(1)答:线段AE 与CF 之间有相等关系.-----1分 证明:连接AO.如图200,.90.90,45,.AB AC O BC BAC AOC EAO C AO OC =∠=∴∠=∠=∠==点为的中点00090,90,90,,.3EOF EOA AOF COF AOF EOA FOCEOA FOC AE CF ∠=∠+∠=∠+∠=∴∠=∠∴∆≅∆∴=----分(2)解:①连接AO.如图400000,90,45,135.45,135.,,.AB AC BAC C B BEO EOB EOF FOC EOB BE OBFOC BEO BEO COF OC CF=∠=∴∠=∠=∴∠+∠=∠=∴∠+∠=∴∠=∠∴∆∆∴=相似于,,Rt ABC BC O BC BO OC ∆==∴==在中点为的中点 ,,.BE x CF y y ===∴≤≤2xy=2,y=x 取值范围是:1x 2.-----8分 ②OEF ∆∆能构成等腰三角形.当x=1时,OE=EA(或OE=EF);x=2时,OA=OF(或EF=OF);,OE=OF,OEF 能构成等腰三角形.----12分图3 图1 图2 ABCO 图4E F。