OSPF邻居及邻接关系(虚链路)置案例

合集下载

OSPF邻居关系建立过程详解

OSPF邻居关系建立过程详解
3.init
当OSPF接口收到链路上某个邻居发来的第一个HELLO包的时候,它会在接口上将该邻居置为init状态,注意这个hello包中可能并未包含任何的邻居信息。但是这至少证明,我这个OSPF接口在这个链路上,至少有个活的邻居。下面是一个没有发现任何active neighbor的hello包:
4.Two-way
指定路由器DR和一个备份指定路由器BDR。
3.非广播多址网络(NBMA)
NBMA网络,像X.25、帧中继和ATM等,可以连接两台以上的路由器,但是他们没有广播数
据包的能力。在NBMA网络上的OSPF路由器需要选举DR和BDR,并且所有的OSPF报文都是单播的。
4.点到多点网络(Point-to-Multipoint)
下面是一个装载了LSA头部的DBD消息:
7.loading 状态
OSPF router使用LSR去请求LSA的详细信息,对方使用LSU发来更新,因此只有LSU里才有LSA的完整信息。在收到LSU后,一方面本地使用LSAack进行确认,另一方面将LSU中包含的LSA装载进自己的LSDB。
以下是一个LSR消息,非常的简单:
I位 或称为初始位(initial bit)用于ex-start协商主从关系的初始化协商的DBD包,该位置1
M位 或称为后继位(More bit) 如果这不是OSPFrouter发送的最后一个DBD,该位置1
MS位 或称为主/从位(Master/slave bit) 如果始发路由器是Master,则该位置1
在这里我们有个地方需要留意,我们通常说,OSPF路由器A与B进入了xx状态,其实这句话并不严谨,原因之一,是因为OSPF是接口敏感型协议,许多的操作都是以OSPF接口作为立足点去考虑的,譬如邻居关系的建立,再如DR和BDR,我们不能说一台路由器是DR,准确的说,应该是某路由器的某个接口是DR;再者,说两台路由器之间是xx状态,这个也不严谨,所谓的邻居状态,必须是以某台路由器为观察点,在其某个接口上观察到的某个邻居的状态,因此可能出现的一个情况是,在A上,看到的B的状态为Loading,但是在B上,A的状态已经是FULL了。

ospf知识点总结与案例分析

ospf知识点总结与案例分析

Ospf知识点总结与案例分析一、知识点总结1.OSPF报文有哪些?报文的作用?报文hello建立、维护和保持邻居关系DD 数据库摘要描述选举主从LSR 请求所需要的LSA,只携带了LSA的头部信息LSU 更新请求的LSA,携带了完整LSA信息LSACK 对收到的LSA做确认①影响邻居关系建立?OSPF头部:Router ID不冲突、区域ID一致、认证类型、数据一致Hello报文:网络掩码一致(P2P除外)、option选项、hello和dead时间一致、邻居列表有自己的router id②领接关系建立失败?双方开启协商MTU,如果从大主小,从卡在exchange,主卡在exstart,如果从小主大,主从都卡在exstart状态2.OSPF状态机有哪些?状态机的作用?down状态,开启了ospf,未收到对方的hello报文init状态,收到对方的hello报文,不包含自己的router id2-way状态,收到对方hello报文,包含自己的router id,邻居建立成功的标识Exstart状态,双方首包发送DD报文,进行主从关系选举,携带序列号、I、M、MS,进行比较选出主从Exchange,从以主的序列号进行发送DD,进行数据库摘要描述,主收到后,序列号+1,也会给从发送DD数据库摘要,从收到后要给予回复,从永远会比主多发一个回复给予确认Loading状态,进行实际的LSR、LSU、LSACK的交互FUll状态,SPF算法进行路径最优计算状态机作用,标识ospf协商的工作阶段,方便后续排错3.DR BDR 作用?DR作用,避免出现LSA的过度泛洪,减小LSDB数据库大小BDR作用,BDR是DR可靠,当DR出现故障时,BDR能够成为DR的角色DR选举:优先级高的为DR,优先级相同,router id大的优先4.OSPF的网络类型有哪些?broadcast广播P2P点到点NBMA 非广播多路访问P2MP 点到多点这些网络类型的作用是什么?区分二层链路,更好的构建拓扑信息5.OSPF防环原则和LSA头部和分类区域内1/2LSA 通过SPF怎么防环?//说明过程根据spf算法,以自己为根算出最短路径树,不出现环路区域间3/4LSA 通过ABR水平割防环?区域设计防环?3类lsa传递的路由信息,从非骨干区域接收的路由只接收不计算非骨干区域必须和骨干区域相连接3类描述的是区域间的路由信息,而4类描述的是asbr的cost 信息区域外5/7LSA 通过3/4防环。

通信系统实验网络路由协议配置实验报告

通信系统实验网络路由协议配置实验报告

网络路由协议配置实验报告实验目的1.把握RIP动态路由协议的配置和测试方式。

2.把握OSPF路由协议配置和测试方式。

实验原理动态路由协议动态路由是网络中的路由器之间彼此通信,传递路由信息,利用收到的路由信息更新路由器表的进程。

它能实时地适应网络结构的转变。

若是路由更新信息说明发生了网络转变,路由选择软件就会从头计算路由,并发出新的路由更新信息。

这些信息通过各个网络,引发各路由重视新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑转变。

动态路由适用于网络规模大、网络拓扑复杂的网络。

固然,各类动态路由协议会不同程度地占用网络带宽和CPU资源。

依照是不是在一个自治域内部利用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。

那个地址的自治域指一个具有统一治理机构、统一路由策略的网络。

自治域内部采纳的路由选择协议称为内部网关协议,经常使用的有RIP、OSPF;外部网关协议要紧用于多个自治域之间的路由选择,经常使用的是BGP和BGP-4。

RIP1RIP1是一种内部网关协议。

RIP1要紧用在利用同类技术与大小适度的网络。

因此通过速度转变不大的接线连接,RIP1比较适用于简单的校园网和区域网,但并非适用于复杂网络的情形。

RIP1特点:1.仅和相邻的路由器互换信息。

若是两个路由器之间的通信不通过另外一个路由器,那么这两个路由器是相邻的。

RIP1协议规定,不相邻的路由器之间不互换信息。

2.路由器互换的信息是当前本路由器所明白的全数信息。

即自己的路由表。

3.按固按时刻互换路由信息,如,每隔30秒,然后路由器依照收到的路由信息更新路由表。

4. RIP1消息通过广播地址进行发送,利用UDP 协议的520端口。

5. RIP1是一种有类路由协议,不支持不持续子网设计。

RIP1的气宇制度:距离确实是通往目的站点所需通过的链路数,取值为1~15,数值16表示无穷大。

RIP2RIP2由RIP1 而来,属于RIP1 协议的补充协议,具有RIP1协议的大体特性。

OSPF的验证机制

OSPF的验证机制

实验目的:掌握OSPF协议的所有验证的类型和验证强度。

实验步骤:一、按照拓扑,将所有路由器的接口基本配置及ospf完成,使得整个OSPF全互联。

二、在R3和R4 之间进行链路验证。

(1)链路的明文验证首先在R3上查看邻居表,与R4的关系处于FULL状态R3#sh ip os neiNeighbor ID Pri State Dead Time Address Interface2.2.2.2 0 FULL/ - 00:00:38 192.168.23.2 Serial0/14.4.4.4 0 FULL/ - 00:00:35 192.168.34.4 Serial0/0R3(config)#int s0/0R3(config-if)#ip ospf authentication-key jhy //密钥R3(config-if)#ip ospf authentication //声明实验现象:R3(config-if)#*Mar 1 00:14:07.471: %OSPF-5-ADJCHG: Process 1, Nbr 4.4.4.4 on Serial0/0 from FULL to DOWN,Neighbor Down: Dead timer expired //邻居关系DOWN了R3#sh ip os nei//查看邻居表Neighbor ID Pri State Dead Time Address Interface2.2.2.2 0 FULL/ - 00:00:34 192.168.23.2 Serial0/1R4(config)#int s0/0 //在R4的接口做相同的配置R4(config-if)#ip os authentication-key jhyR4(config-if)#ip os authentication实验现象:邻居关系重新建立R4#sh ip os neiNeighbor ID Pri State Dead Time Address Interface3.3.3.3 0 FULL/ - 00:00:34 192.168.34.3 Serial0/0(2)链路的密文验证R3(config-if)#ip os message-digest-key 1 md5 jhy//密钥R3(config-if)#ip os authentication message-digest //声明R4(config-if)#ip os message-digest-key 1 md5 jhyR4(config-if)#ip os authentication message-digest三、Area 0 的区域验证。

路由交换技术与实践项目5-OSPF的配置课件.pptx

路由交换技术与实践项目5-OSPF的配置课件.pptx
重新加载OSPF进程 Router#clear ip ospf process
DR和BDR选举的控制 Router(config-if)#ip ospf priority value
虚链路的配置 Router(config-router)#area area-id virtual-link router-id
THANKS
OSPF Router ID用于唯一标识OSPF路由域内的每台路由器。一个Router ID其实就是一个IP地址。 Router ID通过以下步骤确定。 使用通过OSPF router-id命令配置的Router IDIP地址。 如果路由器未配置router-id,路由器会选择其所有环回口的最高IP地址。 如果路由器未配置router-id和环回口,路由器会选择所有活动物理接口的最高IP地址。
非广播多路访问(Non-Broadcast Multi-Access,NBMA)允许多台设备接入,但是不具备广播功能。当链路层协议是帧中继、ATM和X.25时,OSPF的 默认网络类型是NBMA。在NBMA网络中,也要进行OSPF的DR和BDR选举。 点到多点
没有一种链路层协议会被OSPF默认地认为是点对多点点到多点 (Point-to-Multipoint,P2MP)类型,这种网络类型需要管理员手动配置,这种类型的 网络不进行OSPF的DR和BDR选举。
二、知识梳理
OSPF Router ID
DR和BDR的选举 具有最高OSPF接口优先级的路由器当选为DR。 具有第二高OSPF接口优先级的路由器当选为BDR。 如果OSPF接口优先级相等,则取Router ID最高者作为DR。
DR/BDR选举的时间安排 当多路访问网络中第一台启用了OSPF接口的路由器开始工作时,DR和BDR选举过程随即开始。DR一旦选出,将保持DR

华为路由器OSPF虚链接的配置

华为路由器OSPF虚链接的配置

华为路由器OSPF 虚链接的配置OSPf 虚链路(虚连接)的配置3.3.3.1ap ∈ai3・3・3・2R3I4.4.4.1GE 0/0/1 area51 I GEOooR44.4.4.2IoopbackO1.1.1.1目的:解决与骨干区域area0非直连区域的路由问题一、配置个端口地址Rl:<Huawei>sy[Huawei]undoinfo-centerenable[Huawei]sysnameRl[Rl]intIO[Rl-LoopBackO]ipaddl.l.l.l24[Rl-LoopBackO]intg0∕0∕0[Rl-GigabitEthernetO∕O∕O]ipadd2.2.2.124[Rl-GigabitEthernetO∕O∕O]quitR2:<Huawei>sy[Huawei]undoinfo-centerenable[Huawei]sysnameR2[R2]intg0∕0∕0[R2-GigabitEthernet0∕0∕0]ipadd2.2.2.224[R2-GigabitEthernetO∕O∕O]intgO/O/1[R2-GigabitEthernetO∕O∕l]ipadd33.3.124[R2-GigabitEthernetO∕O∕l]quitR3:<Huawei><Huawei>system-view[Huawei]undoinfo-centerenable[Huawei]sysnameR3[R3]intgO/O/O[R3-GigabitEthernetO∕O∕O]ipadd3.3.3.2[R3-GigabitEthernet O∕O∕O]intgO/O/1loopback05.5.5.1[R3-GigabitEthernetO∕O∕l]ipadd4.4.4.124[R3-GigabitEthernetO∕O∕l]quitR4:<Huawei>system-view[Huawei]undoinfo-centerenableInfo:Informationcenterisdisabled.[Huawei]sysnameR4[R4]intgO/O/O[R4-GigabitEthernet0∕0∕0]ipadd4.4.4.224[R4-GigabitEthernet0∕0∕0]intIO[R4-LoopBackO]ipadd5.5.5.124[R4-LoopBackO]quit二、配置多区域。

网络实验报告

网络实验报告

实验报告测试环境:本次实验用Dynamips搭建虚拟测试环境。

测试内容:1.路由测试包括IGP和BGP两部分,IGP包括OSPF和ISIS。

2.安全测试包括IP访问控制列表、路由策略、重分布。

3.业务测试包括MPLS测试。

详细请参阅附件测试内容及结果。

目录1.测试概述 (5)1.1 测试项目介绍 (5)1.2 测试环境 (5)2.路由测试 (6)2.1 OSPF测试 (6)2.1.1 建立OSPF邻居 (6)2.1.2 OSPF 虚链路的配置 (7)2.1.3 OSPF 邻居认证 (9)2.1.4 在NBMA网络非广播模型上配置OSPF (10)2.1.5 在NBMA网络广播模型上配置OSPF (11)2.1.6 在NBMA网络点到多点模型上配置OSPF (12)2.2 IS-IS 配置 (13)2.3 BGP 配置 (14)2.3.1 BGP的基本配置 (14)2.3.2 BGP 汇总 (15)2.3.3 BGP的聚合 (16)2.3.4 BGP路由反射器 (17)2.3.5 BGP属性-本地优先级 (18)2.3.6 BGP属性-多出口区分符属性(MED) (19)2.3.7 BGP属性-AS路径操作 (20)3.安全 (21)3.1 控制访问列表 (21)3.1.1 标准IP访问列表 (21)3.1.2 扩展IP访问列表 (23)3.1.3 可控VTY访问 (24)3.2 策略路由 (25)3.2.1 基于源IP地址的策略路由 (25)3.2.2 基于报文大小的策略路由 (27)3.2.3 基于应用的策略路由 (28)3.2.4 通过缺省路由平衡负载 (29)3.3 重分布 (29)3.3.1 Rip、Eigrp和Ospf重分布 (30)3.3.2 IS-IS和OSPF重分布 (32)4. MPLS-VPN (34)1.测试概述在虚拟测试环境搭建完成后,将对设备进行各个方面的测试,整个测试分成软件测试、业务测试两个大部分。

OSPF实验及解析

OSPF实验及解析

OSPF实验及解析:实现OSPF网络实验报告一、实验名称:实现OSPF网络二、实验条件:1、配置路由器运行OSPF协议。

2、拓扑图如(三)所示。

3、要求192.168.1.0/24、192.168.2.0/24为area 1配置为完全末梢区域;192.168.3.0/24为area 0;192.168.4.0/24、192.168.5.0为area 2,配置为NSSA 区域。

路由器D的F0/1端口的辅助IP地址和路由器E运行RIP-V2。

实现OSPF区域的路由器可以和RIP路由器互相学习到网络路径。

三、实验拓扑实现OSPF网络.jpg四、实验步骤及操作:1、路由器A的配置:RouterA(config)#int loopback 0RouterA(config-if)#ip add 172.16.0.1 255.255.255.255 RouterA(config-if)#exitRouterA(config)#int f0/0RouterA(config-if)#ip add 192.168.1.1 255.255.255.0 RouterA(config-if)#no shutRouterA(config-if)#exitRouterA(config)#int f0/1RouterA(config-if)#ip add 192.168.2.1 255.255.255.0 RouterA(config-if)#no shutRouterA(config-if)#exitRouterA(config)#router ospf 10RouterA(config-router)#network 192.168.1.0 0.0.0.255 area 1 RouterA(config-router)#network 192.168.2.0 0.0.0.255 area 1 RouterA(config-router)#area 1 stubRouterA#show ip ospf databaseRouterA#show ip ospf border-router2、路由器B的配置:RouterB(config)#int loopback 0RouterB(config-if)#ip add 172.16.0.2 255.255.255.255 RouterB(config-if)#exitRouterB(config)#int f0/0RouterB(config-if)#ip add 192.168.2.2 255.255.255.0 RouterB(config-if)#no shutRouterB(config-if)#exitRouterB(config)#int f0/1RouterB(config-if)#ip add 192.168.3.1 255.255.255.0 RouterB(config-if)#no shutRouterB(config-if)#exitRouterB(config)#router ospf 10RouterB(config-router)#network 192.168.2.0 0.0.0.255 area 1 RouterB(config-router)#network 192.168.3.0 0.0.0.255 area 0 RouterB(config-router)#area 1 stub no-summary注:设置某区域为完全末梢区域的条件:1、设置内部路由器的区域为末梢区域2、在区域边界路有器上设置该区域为末梢区域且不进行路由汇总3、路由器C的配置:RouterC(config)#int loopback 0RouterC(config-if)#ip add 172.16.0.3 255.255.255.255 RouterC(config-if)#exitRouterC(config)#int f0/0RouterC(config-if)#ip add 192.168.3.2 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#exitRouterC(config)#int f0/1RouterC(config-if)#ip add 192.168.4.1 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#exitRouterC(config)#router ospf 10RouterC(config-router)#network 192.168.3.0 0.0.0.255 area 0 RouterC(config-router)#network 192.168.4.0 0.0.0.255 area 2 RouterC(config-router)#area 2 nssa no-summary4、路由器D的配置:RouterD(config)#int loopback 0RouterD(config-if)#ip add 172.16.0.4 255.255.255.255 RouterD(config-if)#exitRouterD(config)#int f0/0RouterD(config-if)#ip add 192.168.4.2 255.255.255.0RouterD(config-if)#no shutRouterD(config-if)#exitRouterD(config)#int f0/1RouterD(config-if)#ip add 192.168.5.1 255.255.255.0RouterD(config-if)#ip add 192.168.6.1 255.255.255.0 secondary RouterD(config-if)#no shutRouterD(config-if)#exitRouterD(config)#router ospf 10RouterD(config-router)#network 192.168.4.0 0.0.0.255 area 2 RouterD(config-router)#network 192.168.5.0 0.0.0.255 area 2 RouterD(config-router)#area 2 nssaRouterD(config-router)#redistribute rip metric 2 metric-type 1 RouterD(config-if)#exitRouterD(config)#router ripRouterD(config-router)#version 2RouterD(config-router)#network 192.168.6.0RouterD(config-router)#redistribute ospf 10 metric 25、路由器E的配置:RouterE(config)#int f0/0RouterE(config-if)#ip add 192.168.6.2 255.255.255.0RouterE(config-if)#no shutRouterE(config-if)#exitRouterE(config)#int f0/1RouterE(config-if)#ip add 192.168.7.1 255.255.255.0RouterE(config-if)#exitRouterE(config)#router ripRouterE(config-router)#version 2RouterE(config-router)#network 192.168.6.0RouterE(config-router)#network 192.168.7.0注:设置某区域为非完全末梢区域的条件:1、设置内部路由器的区域为非完全末梢区域2、在区域边界路有器上设置该区域为非完全末梢区域且不进行路由汇总6、PC工作站的设置:Pc1的设置:IP=192.168.1.10 Netmask=255.255.255.0Pc2的设置:IP=192.168.7.10 Netmask=255.255.255.0五、实验结果及分析在pc1上:Ping+192.168.7.10(通讯正常)在pc2上:Ping+192.168.1.10(通讯正常)由此证明配置成功注一:各Lsa的查看命令1、查看数据库中的所有路由器的Lsa的命令:show ip ospf database router2、查看数据库中的网络Lsa的命令:show ip ospf database network3、查看数据库中的网络汇总Lsa的命令:show ip ospf database summary4、查看数据库中的ASBR汇总Lsa的命令:show ip ospf database asbr-summary5、查看数据库中的自主系统外部Lsa的命令:show ip ospf database external6、查看数据库中的Nssa外部Lsa的命令:show ip ospf database nssa-external【实验环境】BENET公司总部位于北京,在上海和广州拥有分公司,现希望把三个地方的办公网络用OSPF连接起来,希望你为他们实现这个办公网络的搭建!【实验目的】按照现有拓扑图的规划,配置多区域的OSPF在他的上面配置末梢区域(Stub Area)和完全末梢区域(Totally Stublly Area)以及知道为什么要换分多区域的原因?【实验拓扑】【实验步骤】网络拓扑图的具体布线:Router1 S0/0 <----> Router2 S0/0Router2 S1/0 <----> Router3 S0/0Router3 E1/0 <----> Router4 E0/0第一步:配置路由器的回环地址和接口的IP地址;(1) 、配置Router1的回环地址和接口的IP地址;(2)、配置Router2的回环地址和接口的IP地址;(注意:在Router2上配置回环地址是根据情况而定的;Router2是属于Area2是属于骨干区域,但同时它也是一个ABR路由器;所以要配置两个接口的IP地址;因为R2是区域边界系统路由器(ABR)所以在它上面要配置两个接口的IP地址)!(3)、配置Router3的回环地址和接口的IP地址(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了;因为R3是区域边界路由器(ABR)所以在它上面要配置两个接口的IP地址)(4)、配置Router4的回环地址和接口的IP地址;(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了)第二步:启动OSPF的进程,并配置他们的区域末梢区域(Stub Area)和完全末梢区域(Totally Stubby Area)(1)、在Router1上配置OSPF进程以及宣告他所在的末梢区域(Stub Area)(注意:宣告OSPF的进程和宣告RIP的进程的配置是不一样的,在配置OSPF时他的进程号时本地路由器的进程号,他是来标识一台路由器的多个OSPF的进程的;)末梢区域(Stub Area )他是一个不允许自治系统外部LSA通告在其内进行泛洪的区域。

OSPF邻居、邻接关系

OSPF邻居、邻接关系

邻居关系和邻接关系。

如果两台路由器之间共享一条公共数据链路(两台路由器中间没有其它路由器,或者两台路由器之间存在虚连接),并且成功协商了hello包中所指定的参数,那么它们就成为邻居。

如果两个邻居之间需要同步LSDB,那么它们之间需要建立邻接关系。

如果两个路由器之间建立了邻接关系,那么它们的LSDB一定是同步的。

LSA只在存在邻接关系的路由器之间传递。

那么邻居关系和邻接关系怎么建立呢?邻居关系通过hello报文来建立。

Hello报文中包含如下一些内容:1、始发路由器的router-id2、始发路由器接口的area-id3、始发路由器接口的地址掩码4、始发路由器接口的authentication type和authentication message5、始发路由器接口的hello-interval6、始发路由器接口的router dead-interval7、路由器优先级8、指定DR和BDR9、标识可选性能的5个标志位10、始发路由器的所有有效neighbor router-id(始发路由器接收到了它们的hello报文)以两台路由器之间建立邻居关系为例:1、R1发送hello报文(组播或者单播,链路层类型来定),neighbor字段为空2、R2收到hello报文,为R1建立一个邻居数据结构,并把R1的邻居状态臵为init,然后向R1发送hello报文,neighbor字段中包含R1的rougerID,表示自己收到了R1的hello报文。

3、R1收到R2的hello报文之后,为R2建立一个邻居数据结构,并把邻居状态臵为2way,然后向R2发送hello报文,报文的neighbor字段中包含R2的routerID。

4、R2收到R1的hello报文后,把R1的邻居状态臵为2way至此,邻居关系就建立起来了,邻居路由器之间会按时发送hello报文进行保活,如果hello 报文超时,那么该路由器就会宣告这里邻居失效。

计算机网络ospf

计算机网络ospf

© 2002, Cisco Systems, Inc. All rights reserved.
ICND v2.0—5-6
使用链路状态路由协议的警告
• 对路由设备有较高的要求: – 内存(能容纳三张表: 邻居表,链路状态数据库,路由表) – CPU (SPF算法比较消耗CPU,尤其当网络不稳定时)
© 2002, Cisco Systems, Inc. All rights reserved. ICND v2.0—5-5
链路状态路由的好处
• 快速收敛: 当发生拓扑改变时,受影响的路由器通过发送改变的 LSA(链路状态通告)迅速通知区域内所有路由器,而其他路由器 通过对LSA的学习,重新进行SPF计算,然后在路由表中正确的 反映出变化的路由信息. • 完全避免路由环路: – 路由器通过对其他路由器发出的LSA的学习,使得本身知道 网络的拓扑.因此,就像生成树一样,完全构造出一个无环路的 拓扑生成树出来. – 链路状态路由协议本身有强大的可靠性机制:每个LSA都有 源的标识和携带的序列号,通过序列号确保LSA的新旧;而发 送的LSA也必须有确认,确保LSA信息准确无误. • 对网络设计有严格的要求,因为分层,地址分派和汇总是链路状 态路由协议的命脉,要求工程师具有丰富的知识和专业经验.
2. 管理这个多址网络
上的flooding过程. 3. 同时为了冗余性, 还会选取一个BDR,作为 双备份之用.
© 2002, Cisco Systems, Inc. All rights reserved.
ICND v2.0—5-8
扩展专题:ospf lsa类别
路由器类型 1. Internal Router:内部路由器 2. ABR(Area Border Router):区域边界路由器 3. Backbone Router(BR):骨干路由器 ,即区域0中的IR 4. ASBR(Autonomous System Boundary Router):自治系统边界路由器. 虚链路(Virtual Link)

OSPF邻居-邻接关系建立

OSPF邻居-邻接关系建立

OSPF邻接关系建立过程:分两大步骤七种状态:1、建立邻居关系:建立双向通信:DOWN:没有检测到活动邻居INIT:路由器(R2)收到对方(R1)的hello包,并将R1加入到R2的邻居表中,R2成为INIT状态Two-way:收到hello的R2将单播回复R1一个hello,其中包含R2的所有邻居路由器,包括路由器R1。

R1收到来自R2的hello后,发现其中包含有自己的信息,则R1将R2加入到自己的邻居列表中。

R1,R2都处于Two-way状态。

第一步完成后,R1,R2形成邻居关系!2、建立邻接关系:R1,R2成为邻居后,如果在多路访问的广播网络中,R1,R2便选举DR,BDR。

注:新网络的DR,BDR的选举是在two-way状态后完成的,并且DR,BDR是非抢占的,并且DRother只能与DR或BDR建立邻接关系,DRother之间只能建立邻居关系(Two-way状态)。

建立邻接关系的机制是为了减少路由形成的冗余度,成为邻接关系最终是为了能够形成路由,能够转发数据包,所以就要进行发现网络路由和添加链路状态条目1)、发现网络路由:Exstart:确立主从关系,在DR和BDR,DR和DRother,BDR 和DRother之间确立主从关系,Router ID大的为主路由器。

Exchange:发送DBD(LSDB摘要),发现需要更新的LSA的条目2)、添加链路状态条目:Load:交换LSR,LSU以填充LSDB,完成链路状态条目更新。

Full:完全邻接状态。

LSA:链路状态通告DR:制定路由器,只作用于接口,因为邻接关系是基于接口的,而DR是为邻接关系服务的。

也就是说,DR是链路级的,每个网段(MA网络)都有自己DR和BDR。

BDR:备用DR。

OSPF虚拟链路技术分析与应用

OSPF虚拟链路技术分析与应用

基本原理OSPF协议简介及特点OSPF是Open Shortest Path First(即“开放最短路由优先协议”)的缩写。

它是IETF (Internet Engineering Task Force)组织开发的一个基于链路状态的自治系统内部路由协议(IGP),用于在单一自治系统(Autonomous system,AS)内决策路由。

在IP 网络上,它通过收集和传递自治系统的链路状态来动态地发现并传播路由。

当前OSPF 协议使用的是第二版,最新的RFC 是2328。

为了弥补距离矢量协议的局限性和缺点从而发展出链路状态协议,OSPF 链路状态协议有以下优点:适应范围—— OSPF支持各种规模的网络,最多可支持几百台路由器。

最佳路径——OSPF是基于带宽来选择路径。

快速收敛——如果网络的拓扑结构发生变化,OSPF立即发送更新报文,使这一变化在自治系统中同步。

无自环——由于OSPF 通过收集到的链路状态用最短路径树算法计算路由,故从算法本身保证了不会生成自环路由。

子网掩码——由于OSPF 在描述路由时携带网段的掩码信息,所以OSPF 协议不受自然掩码的限制,对VLSM 和CIDR 提供很好的支持。

区域划分——OSPF 协议允许自治系统的网络被划分成区域来管理,区域间传送的路由信息被进一步抽象,从而减少了占用网络的带宽。

等值路由——OSPF 支持到同一目的地址的多条等值路由。

路由分级——OSPF 使用4 类不同的路由,按优先顺序来说分别是:区域内路由、区域间路由、第一类外部路由、第二类外部路由。

支持验证——它支持基于接口的报文验证以保证路由计算的安全性。

组播发送——OSPF在有组播发送能力的链路层上以组播地址发送协议报文,即达到了广播的作用,又最大程度的减少了对其他网络设备的干扰。

虚连接由于网络的拓扑结构复杂,有时无法满足每个区域必须和骨干区域直接相连的要求,如图1所示。

为解决此问题,OSPF 提出了虚连接的概念。

华为OSPF总结

华为OSPF总结

华为OSPF总结1 OSPF基本概念1.1 拓扑和路由器类型OSPF整体拓扑●OSPF把自治系统划分成逻辑意义上的一个或多个区域,所有其他区域必须与区域0相连。

路由器类型●区域内路由器(Internal Router):该类设备的所有接口都属于同一个OSPF区域。

●区域边界路由器ABR(Area Border Router):该类路由器可以同时属于两个以上的区域,但其中一个接口必须在骨干区域。

ABR用来连接骨干区域和非骨干区域,它与骨干区域之间既可以是物理连接,也可以是逻辑上的连接。

●骨干路由器(Backbone Router):该类路由器至少有一个接口属于骨干区域。

所有的ABR和位于Area0的内部路由器都是骨干路由器.●自治系统边界路由器ASBR(AS Boundary Router):与其他AS交换路由信息的路由器称为ASBR。

ASBR并不一定位于AS的边界,它可能是区域内路由器,也可能是ABR。

只要一台OSPF路由器引入了外部路由的信息,它就成为ASBR.拓扑所体现的IS—IS与OSPF不同点●在OSPF中,每个链路只属于一个区域;而在IS-IS中,每个链路可以属于不同的区域;●在IS—IS中,单个区域没有骨干与非骨干区域的概念;而在OSPF中,Area0被定义为骨干区域;●在IS-IS中,Level—1和Level—2级别的路由都采用SPF算法,分别生成最短路径树SPT而在OSPF中,只有在同一个区域内才使用SPF算法,区域之间的路由发布还是距离矢量算法,区域之间的路由需要通过骨干区域来转发。

1。

2 OSPF网络类型,DR,BDR介绍OSPF支持的网络类型●点到点P2P类型:当链路层协议是PPP、HDLC时,缺省情况下,OSPF认为网络类型是P2P。

在该类型的网络中,以组播形式(224。

0。

0.5)发送协议报文(Hello报文、DD报文、LSR报文、LSU报文、LSAck报文)。

●点到多点P2MP 类型(Point—to-Multipoint):没有一种链路层协议会被缺省的认为是Point—to—Multipoint 类型。

思科路由器OSPF协议实验

思科路由器OSPF协议实验

实验需求如上图,本实验结合真实案例,用来检验学员对OSPF协议的掌握情况R5为A公司总部网关,R2和R4分别是一号楼和二号楼的核心交换机,这里用路由器模拟,R1和R3分别为一号楼和二号楼的分发层交换机,这里也是用路由器模拟,每一栋楼是一个ospf区域,包含着诺干个vlan,核心交换机和网关之间是骨干区域。

R6是A公司分公司网关,和总部通过帧中继互联,R7是分部核心交换机,分部的ospf是区域3,因为分部业务扩展,合并了B公司(R8,R9),B公司原来是ospf区域4。

1.根据上图,搭建好拓扑,ISP用一台路由器模拟,服务器和PC机全部采用回环口模拟2.配置好帧中继环境,要求帧中继不能动态获取映射,也不能静态配置映射,配置好IP地址,测试直连PING通3.依据上图,配置好OSPF协议,验证邻居建立4.确保整个内网全网可达5.确保骨干区域邻居建立高安全性6.尽量减小网关的路由表条目7.R1,R3,R9性能不足,尽量减少其路由表条目实验步骤1、对各路由器配置IP地址2、将R10模拟为帧中继R10#conf tR10(config)#frame-relay swiR10(config)#frame-relay switchingR10(config)#int s0/0R10(config-if)#no shutR10(config-if)#encapsulation frame-relayR10(config-if)#frame-relay intf-type dceR10(config-if)#clock rate 64000R10(config-if)#frame-relay route 506 int s0/1 605R10(config-if)#int s0/1R10(config-if)#encapsulation frame-relayR10(config-if)#frame-relay intf-type dceR10(config-if)#clock rate 64000R10(config-if)#frame-relay route 605 int s0/0 506R10(config-if)#exit在R5的s2/0,及R6的s1/0做相应的帧中继封装R5(config)#int s2/0R5(config-if)#encapsulation frame-relayR5(config-if)#frame-relay intf-type dteR5(config-if)#exitR6(config)#int s1/0R6(config-if)#encapsulation frame-relayR6(config-if)#frame-relay intf-type dteR6(config-if)#exit3、配置OSPF协议,并验证邻居建立R1(config)#router ospf 1R1(config-router)#router-idR1(config-router)#router-id 1.1.1.1R1(config-router)#net 172.16.3.1 0.0.0.0 a 1R1(config-router)#exit其他路由器的配置命令类似在R10帧中继线路上,R5的接口s2/0与R6接口s1/0的OSPF类型为非广播因此不能产生Hello包以建立OSPF邻居。

OSPF详解

OSPF详解

OSPF详解这篇⽂章将会让你对OSPF有⼀个⼤概的认识,仅仅是个认识,下⾯进⼊正题。

OSPF它是⼀个链路状态路由协议,运⾏OSPF的路由器它是知道知晓整个⽹络拓扑结构,这就使得它不易发⽣路由环路,它本⾝也⽀持VLSM,路由汇总,它还引⼊了Area(区域)的概念使得OSPF能够⽀持更⼤规模的⽹络。

OSPF它只要分为两个版本⼀个是针对IPV4的OSPFv2,⼀个是针对IPV6的OSPFv3。

OSPF的⼀些重要概念Router-ID:它是⼀个长度为32bit数值,⽤于OSPF域中唯⼀标识⼀台OSPF路由器。

MA(多路访问)⽹络:指在同⼀个共享介质中连接着多个设备的⽹络,任意两台设备之间都可以实现⼆次通信。

DR与BDR:OSPF会在每个MA⽹络中选举⼀个DR(指定路由器)和⼀个BDR(备⽤指定路由器),DR主要是负责监听⽹络拓扑中变更信息并通知给其他路由器,BDR主要监视DR状态并在DR发⽣故障后接替它的⼯作。

邻居表:当⼀个接⼝激活OSPF后,该接⼝将会周期性地发送hello报⽂从⽽发现直连路由上的邻居,当发现邻居后邻居信息(它包括Router-ID,address,DR,BDM,MTU,等)就会写⼊OSPF邻居表。

LSDB(链路状态数据库):运⾏在链路状态协议的路由器在⽹络中泛洪的状态信息即LSA(路由状态通告)路由器将所有收集到的LSA装载到⾃⼰的LSDB,所有你可以把它看做成⼀个集合,⽽他的⼦集就是LSA。

你也可以把它看做⼀个对OSPF⽹络的⼀个完整的认知。

OSPF路由表:它是根据LSDB的数据运⾏SPF算法得到⼀颗以⾃⼰为根,⽆环的最短路径树。

基于这棵树能够到达⽹络的最佳路径,从⽽得到的路由信息就组成了OSPF路由表。

度量值:OSPF使⽤Cost(开销)作为它的度量值。

值越⼩路径越优。

报⽂类型:报⽂类型分为五种主要有hello报⽂,DD报⽂,LSR报⽂,LSU报⽂,LSAck报⽂。

邻居关系:在通过Hello报⽂发现彼此并确定双⽅通讯后,边形成了邻居关系。

H3C-S5600系列交换机典型配置举例

H3C-S5600系列交换机典型配置举例

H3C-S5600系列交换机典型配置举例S5600系列交换机典型配置举例2.1.1 静态路由典型配置1. 组网需求(1)需求分析某小型公司办公网络需要任意两个节点之间能够互通,网络结构简单、稳定,用户希望最大限度利用现有设备。

用户现在拥有的设备不支持动态路由协议。

根据用户需求及用户网络环境,选择静态路由实现用户网络之间互通。

(2)网络规划根据用户需求,设计如图2-1所示网络拓扑图。

图2-1 静态路由配置举例组网图2. 配置步骤交换机上的配置步骤:# 设置以太网交换机Switch A的静态路由。

<SwitchA> system-view[SwitchA] ip route-static 1.1.3.0 255.255.255.0 1.1.2.2[SwitchA] ip route-static 1.1.4.0 255.255.255.0 1.1.2.2[SwitchA] ip route-static 1.1.5.0 255.255.255.0 1.1.2.2# 设置以太网交换机Switch B的静态路由。

<SwitchB> system-view[SwitchB] ip route-static 1.1.2.0 255.255.255.0 1.1.3.1[SwitchB] ip route-static 1.1.5.0 255.255.255.0 1.1.3.1[SwitchB] ip route-static 1.1.1.0 255.255.255.0 1.1.3.1# 设置以太网交换机Switch C的静态路由。

<SwitchC> system-view[SwitchC] ip route-static 1.1.1.0 255.255.255.0 1.1.2.1[SwitchC] ip route-static 1.1.4.0 255.255.255.0 1.1.3.2主机上的配置步骤:# 在主机A上配缺省网关为1.1.5.1,具体配置略。

ospf协议详解ppt课件

ospf协议详解ppt课件
– 最短路径优先算法用于点到点的网络连接,为 了在目前多样的网络中实现OSPF协议,OSPF 必须知道它所运行的网络类型。
– 在交换OSPF链路状态信息前,OSPF协议会在 路由器之间建立邻居关系。
– 大型的OSPF网络使用分级设计原则。多个区域 连接到一个分配区,区域0,也称为骨干。
最新编辑ppt
– Intra-Area Traffic:域内间通信量 – Inter-Area Traffic:域间通信量 – External Traffic:外部通信量
最新编辑ppt
7
路由器类型
• Internal Router:内部路由器
• ABR(Area Border Router):区域边界路由器
• Backbone Router(BR):骨干路由器
– OSPF的协议管理距离(AD)是110。
– OSPF由IETF在20世纪80年代末期开发,OSPF 是SPF类路由协议中的开放式版本。
– 链路是路由器接口的另一种说法,因此OSPF也
称为接口状态路由协议。
最新编辑ppt
3
单区域OSPF
• 链路状态协议泛洪链路状态信息,使每台 路由器有一个完整的网络拓扑视图。
• Full: 完全邻接状态,邻接间的链路状态数据
库同步完成,通过邻居链路状态请求列表 为空且邻居状态为Loading判断。
最新编辑ppt
20
hello协议的目的
1. 用于发现邻居
2. 成为邻居前 ,对Hello包的
参数进行协商
3. 在邻居间扮 演keepalive的 角色
最新编辑ppt
4. 允许邻 居之间的双 向通信
OSPF的度量方法
• COST= 108/BW
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、技术概述
OSPF网络中,所有路由信息都在邻居或邻接中传递、交换。

通过维持邻居或邻接关系,对整网的稳定性起着重要作用。

本节将重点研究ospf的网络类型及邻居邻接关系。

二、网络拓扑:
三、相关知识点总结:
1. 邻居关系和邻接关系有什么区别?
邻居关系和邻接关系是不同的概念。

邻居关系是指,当双方收到对方的hello报文的时候,报文里面的参数(hello time.dead interval , area id.authentication ,mask 等)一致的时候,并且邻居关系为2-way的时候,这个就可以成为是建立了邻居关系,但是还不是邻接关系。

邻接关系是指在建立的邻居关系之后继续发送DD,LSR,LSU等报文,最终双方的LSDB达到同步之后,邻居状态为FULL时,才成为邻接关系。

希望对你希望对你有用。

2. OSPF支持的网络类型有哪些?
ospf的网络类型:根据链路层协议判断网络类型
1)、point to point----ppp
2)、广播-----以太网Ethernet
3)、NBMA FR (frame-relay)帧中继物理结构与广播很像,但是该网络默认不传递广播
4)、点到多点,从NBMA修改过来的。

(可看作点到点类型网络)
3. 什么是DR和BDR?
选举DR和BDR:DR为指定路由器,BDR为备份路由器。

4. 哪些网络需要进行选举DR、BDR ?为什么要进行DR/BDR选举?
广播和BMA类型的网络都会选举DR和BDR,NBMA为人为指定。

判断该链路上是否有DR(先启动的)
根据接口优先级和route-ID选举。

优先级默认为1,范围1---255,先判断优先级,若一致,选route-ID大的,最优的为DR,次之为BDR。

每次评选选BDR。

如果网络中路由器很多时,那么需要维护的建立的邻接关系就很多,需要发送的报文也很多。

而且每台路由器之间都相互发送lsa,这样就造成好多重复的lsa在网络中传递,浪费了太多带宽资源,所以选取dr 和bdr用来节省带宽资源。

5. Router Priority最大的一定是DR吗?
不一定,选择完成后的特性:
终身制:
世袭制:
民主制:优先级培认为置为0,则没有选举权。

所有的路由器包括DR、BDR、DR-other之间的关系:所偶的DR-other和BDR时
及drDR之间会形成full,DR-other之间只能为tow-way。

6. 配置虚连接的时候如何表示对端路由器?
四、项目需求:
1. 如图所示,配置OSPF多区域后,由于area 2 和area 0 没有直接相连,故所以,在area 1里配置虚电路,使得R4可以收到R1的路由信息。

2. 区域零中使r3永远为DR,区域1和区域2中,不进行DR/BDR选举,以加快收敛
3. 所有的互联地址以192.168.255.0/24主类地址进行以/30规划,且在R3上看到去往r4直连网络的路由开销为100,r4到R3的直连网络路由为50.
R1:
sysname llb-R1
interface GigabitEthernet0/0/0
ip address 192.168.255.1 255.255.255.252
ospf network-type p2p
interface LoopBack0
ip address 1.1.1.1 255.255.255.255
#
ospf 1 router-id 1.1.1.1
area 0.0.0.0
network 1.1.1.1 0.0.0.0
network 192.168.255.1 0.0.0.0
#
R2:
sysname llb-R2
interface GigabitEthernet0/0/0
ip address 192.168.255.5 255.255.255.252 ospfdr-priority 0
#
interface GigabitEthernet0/0/1
ip address 192.168.255.2 255.255.255.252 ospf network-type p2p
interface LoopBack0
ip address 2.2.2.2 255.255.255.255
#
ospf 1 router-id 2.2.2.2
area 0.0.0.0
network 192.168.255.2 0.0.0.0
network 2.2.2.2 0.0.0.0
area 0.0.0.1
network 192.168.255.5 0.0.0.0
vlink-peer 3.3.3.3
#
R3:
sysname llb-R3
interface GigabitEthernet0/0/0
ip address 192.168.255.9 255.255.255.252 ospf cost 50
ospf network-type p2p
ospfdr-priority 50
#
interface GigabitEthernet0/0/1
ip address 192.168.255.6 255.255.255.252
interface LoopBack0
ip address 3.3.3.3 255.255.255.255
#
ospf 1 router-id 3.3.3.3
area 0.0.0.1
network 3.3.3.3 0.0.0.0
network 192.168.255.6 0.0.0.0
vlink-peer 2.2.2.2
area 0.0.0.2
network 192.168.255.9 0.0.0.0
#
R4:
sysname llb-R4
interface GigabitEthernet0/0/1
ip address 192.168.255.10 255.255.255.252
ospf cost 100
ospf network-type p2p
ospfdr-priority 100
interface LoopBack0
ip address 4.4.4.4 255.255.255.255
#
ospf 1 router-id 4.4.4.4
area 0.0.0.2
network 4.4.4.4 0.0.0.0
network 192.168.255.10 0.0.0.0
#
五、任务完成要求:
1. 将设备的基本配置命令贴出,且描述关键命令作用
每个设备的命名为操作者姓名的简写,如张三,设备名称问zs-RT1。

相关文档
最新文档