目前国际各种无功补偿装置优缺点的比较
SVG与SVC比较优势和节能
SVG与SVC比较1.设备的先进性:SVC属于静止无功补偿的早期产品,而SVG是其换代产品,即SVG代表该领域的发展方向。
SVG是目前最为先进的无功补偿装置,基于电压源型逆变器的补偿装置实现了无功补偿方式质的飞跃。
它不再采用大容量的电容、电感器件,而是通过电力电子器件的高频开关实现无功能量的变换。
2.设备的安全可靠性:基于IGBT逆变器,为可控电流源型补偿装置,不会发生谐波放大及谐振,对系统参数不敏感,安全性与稳定性好;SVG属于阻抗型补偿装置,对系统参数很敏感,当参数配置不合理、或者一段时间后,系统参数发生变化,很容易引起系统谐振或谐波电流放大,这也是一些传统补偿设备经常运行不正常的重要原因之一。
谐振或谐波电流放大不仅危害补偿系统自身的设备安全,对系统其他设备的安全也是隐患。
近年来,SVC频繁发生电容器烧毁,熔断器群爆等严重事故,致使无功补偿装置长期不能投运,闲置浪费。
SVG无需大容量的电容器,SVG相当于系统的一个电源,不改变系统的阻抗特性,避免了类似的事故发生,保证了可靠地长期在线运行。
SVC的TCR部分采用可控硅的直接串联,需要解决器件的均压问题,要求很严格,要求可控硅必须是同型号、同批次的产品,如果某一元件损害,需要更换同一桥臂的所有元件,使维护困难,而SVG是链节模块的串联,是多个逆变电源的串联,而不是IGBT的直接串联,所以并不需要模块的一致性,而且每个模块的脉冲是错一定的角度,即IGBT并非同时导通,所以产生过电压的机会并不多。
采用脉冲循环控制机制,直流侧电压波动在5%范围之内。
采用H桥串联的链式结构,直接接入6kV、10kV、35kV系统,成本降低。
而且具备N+1冗余结构,每相一个链节单元损坏后仍可继续满负荷运行,装置自身运行可靠性高。
3.设备的快速性:响应速度更快,SVG响应时间:≤10ms。
SVC响应时间:≥20ms。
SVG可在极短的时间之内完成从额定容性无功功率到额定感性无功功率的相互转换,这种无可比拟的响应速度完全可以胜任对冲击性负荷的补偿。
无功补偿几种补偿方式的优缺点
无功补偿几种补偿方式的优缺点无功补偿几种补偿方式的优缺点无功功率补偿,简称无功补偿,在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
今天就带大家了解13种无功补偿方式,各自有什么优点和缺点。
(1)同步调相机基本原理:同步电动机无负荷运行,在过励时发出感性无功;在欠励时吸收感性无功;主要优点:既能发出感性无功,又能吸收感性无功;主要缺点:损耗大,噪音大响应速度慢,结构维护复杂;适用场合:在发电厂尚有少量应用。
(3)就地补偿基本原理:一般将电容器直接与电动机变压器并联,二者共用1台开关柜;主要优点:末端补偿,能最大限度的降低线损;主要缺点:台数较多,投资量大;适用场合:水厂、水泥厂应用较多;(3)集中补偿基本原理:集中装设在系统母线上,一般设置单独的开关柜;主要优点:可对整个变电所进行补偿,投资相对较小;主要缺点:一般为固定补偿,在负载低时可能出现过补偿;适用场合:适用于负载波动小的系统(4)自动补偿(机械开关投切电容器)基本原理:采用机械开关(接触器、断路器)等根据功率因数控制器的指令投切电容器;主要优点:能自动调节无功出力,使系统无功保持平衡,技术成熟,占地小、造价低;主要缺点:响应时间较慢,受电容器放电时间限制;适用场合:目前主流补偿方式,满足大多数行业用户需求;(5)晶闸管投切电容器基本原理:采用晶闸管阀组根据功率因数控制器的指令过零投切电容器;主要优点:响应速度快,无涌流,无冲击;主要缺点:占地面积大,造价高;适用场合:多用于港口等负荷变化快速的场合;(6)晶闸管控制电抗器基本原理:一般由固定并联电容器和晶闸管控制的并联电抗器并联组成,通过改变晶闸管导通角改变电感电流,从而控制整套装置的无功输出;主要优点:响应速度快,无级调节,既能补偿容性无功,又能补偿感性无功;主要缺点:占地面积大,造价高,同时对大多企业用户而言,不需要感性无功;适用场合:多用于钢铁、电气化铁路和输变电系统;(7)磁控电抗器基本原理:通过可控硅控制励磁电流的大小和铁芯饱和度改变电感电流,从而控制整套装置的无功输出;主要优点:动态响应,无级调节,双向补偿,晶闸管耐压低,无须多级串联,产生谐波小;主要缺点:响应时间较TCR稍慢,噪声大;适用场合:在高压系统中占有优势;(8)串联补偿基本原理:串联电容器组用来补偿输电线路的电感,以提高线路的输电能力和稳定性。
无功补偿技术的优势与不足
无功补偿技术的优势与不足无功补偿技术是电力系统中常用的一种措施,用于改善功率因数、提高电能利用率,增强电力系统的稳定性。
本文将探讨无功补偿技术的优势与不足。
一、优势1.1 提高功率因数无功补偿技术可以通过补偿电网中的无功功率,实现功率因数的调整和提高。
功率因数是衡量电能利用率的重要指标,当功率因数低于1时,会导致电网输电损耗增加,降低电力系统的效率。
通过无功补偿技术,可以有效提高功率因数,减少无效功率损耗,提高电网的供电质量。
1.2 改善电力系统的稳定性在电力系统中,无功补偿技术可以通过调整无功功率平衡,提高电力系统的稳定性。
电力系统中无功功率的不平衡会导致电压波动、电流不均等问题,进而影响电网的稳定性。
通过无功补偿技术的应用,可以平衡电网的无功功率,减小电压波动,提高电力系统的稳定性。
1.3 减少潮流损耗无功补偿技术还可以有效地降低电力系统中的潮流损耗。
电流的传输与无功功率的平衡有关,通过无功补偿技术可以减少无功功率的传输,减小潮流损耗。
这对于电力系统的经济运行和降低能源消耗具有重要意义。
二、不足2.1 技术复杂性无功补偿技术的应用需要综合考虑电力系统的负荷情况、功率因数要求、无功容量等多方面因素,技术上较为复杂。
对于一般的电力工作人员来说,需要具备一定的专业知识和经验才能正确应用无功补偿技术。
此外,无功补偿设备的选择、调试等方面也需要相应的技术支持。
2.2 系统成本高无功补偿技术的应用需要投入相应的设备和材料,从而增加了电力系统的建设成本。
尤其是对于旧有电力系统的改造,无功补偿技术的引入需要进行大量的设备更新和布线等工作。
这些成本对于一些经济条件较为薄弱的地区或企业来说,可能难以承担。
2.3 对系统稳定性影响尽管无功补偿技术可以提高电力系统的稳定性,但过度补偿无功功率也会对电力系统产生不利影响。
过度补偿造成的电压异常和电流过大等问题可能引起设备的过热、损坏,从而对系统的稳定性产生负面影响。
因此,在应用无功补偿技术时需要合理控制补偿容量,避免过度补偿。
国内外无功功率补偿装置发展现状和趋势
国内外无功功率补偿装置发展现状和趋势摘要: 本文介绍了无功功率补偿装置的应用背景,并分析了各种无功功率补偿装置的分类和优缺点,重点介绍了静止同步补偿器SVC和静止同步补偿器STATCOM的特点和工作的原理,并介绍了基于STATCOM的两种控制方法。
关键词: 电能质量优化;无功功率补偿装置;静止同步补偿器;静止同步补偿器Abstract: in this paper, the reactive power compensation device application background of power, and analyzes all kinds of reactive power compensation device and the classification of the advantages and disadvantages, and introduced the static synchronous compensator SVC and static synchronous compensator STATCOM characteristics and working principle, and introduced the two control based on STATCOM method.Keywords: power quality optimization; Reactive power compensation device; Static synchronous compensator; Static synchronous compensator0 引言随着现代工业和电力工业的不断发展,电能传输的距离和容量日益增大,工业用户对电能质量的要求越来越高。
近年来,电弧炉、轧钢机、大型可控硅装置的应用和大功率冲击性负载的存在,使得系统功率因数变低,电网谐波加大。
无功补偿分别有几种补偿方式?各自有哪些优点和缺点?
无功补偿分别有几种补偿方式?各自有哪些优点和缺点?1. 基本概念无功补偿是一种电力调节方式,是在电力系统发生无功电流时,通过增加或减少无功的注入,来达到提高电力系统的功率因数和电力质量的目的。
无功补偿主要采用补偿电容、电感或制动矩等设备,实现在电力系统中合理地消耗或产生无功功率。
2. 无功补偿方式2.1 静态补偿方式静态补偿方式指的是通过静态无功补偿器(SVC)或静态无功发生器(SVG)等设备来实现无功补偿的方式。
静态无功补偿器是一种装有补偿电容、电感器和可控电抗器等设备的电子器件,用于在有功功率不变的情况下实现无功补偿。
静态无功发生器是一种无旋转部件的电气设备,通过控制电路中电容器的电压和电流大小,来产生或吸收无功电力。
2.2 动态补偿方式动态补偿方式指的是通过能够根据控制信号动态调整输出无功功率的设备进行无功补偿。
常见的动态补偿器包括柔性直流输电(FACTS)设备和动态无功补偿器(D-STATCOM)等。
常见的无功补偿方式有:1.SVC:静态无功补偿器常用于负荷变化较大的地方,可以快速响应电网的无功补偿要求,补偿近期的负荷变化,实现电压稳定,但是电容器的使用寿命相对较短,而且电力质量受制于调制器的精度。
2.SVG:静态无功发生器在与静态无功补偿器相比,具有良好的控制性能和适应性。
其优点在于不含有电容器元件,故无需考虑元件的使用寿命。
而缺点在于,与静态无功补偿器相比,相同功率的SVG体积和重量都要大得多,给配电和输电系统的构造带来一定的限制。
3.D-STATCOM:动态无功补偿器是一种可控制的交流电压源,用于消除电力系统中的电力质量问题。
D-STATCOM不需要向电网提供有功功率,可以对负载造成极小的影响。
同时,D-STATCOM十分精确地响应电网电压的变化,有着显著的电力质量改善效果。
其缺点是,需要使用有源元器件,成本相对较高。
4.基于FACTS设备的无功补偿方式:FACTS设备是一种综合型电力调节设备,通过改变输电线路等电参数,可以在电力系统中实现无功补偿的功能。
各种无功补偿装置的比较
目前各国家各种无功补偿装置的性能比较大类名称型号工作原理技术指标优点缺点应用场合旋转式无功补偿同步发电机/调相机欠励磁运行,向系统发出有功吸收无功,系统电压偏低时,过励磁运行提供无功功率将系统电压抬高可双向/连续调节;能独立调节励磁调节无功功率,有较大的过载能力其损耗、噪声都很大,设备投资高,起动/运行/维修复杂,动态响应速度慢,不适应太大或太小的补偿,只用于三相平衡补偿,增加系统短路容量适用于大容量的系统中枢点无功补偿静止式静态无功补偿机械投切电容器MSC用断路器\接触器分级投切电容投切时间10~30s控制器简单,市场普遍供货,价格低,投资成本少,无漏电流不能快速跟踪负载无功功率的变化,而且投切电容器时常会引起较为严重的冲击涌流和操作过电压,这样不但易造成接触点烧焊,而且使补偿电容器内部击穿,所受的应力大,维修量大适用无功量比较稳定,不需频繁投切电容补偿的用户机械投切电抗器MSR并联在线路末端或中间,吸收线路上的充电功率其补偿度60% ~ 85%防止长线路在空载充电或轻载时末端电压升高不能跟踪补偿,为固定补偿超高压系统(330kV及以上)的线路上静止式动态无功补偿SVC 自饱和电抗器SSR依靠自饱和电抗器自身固有的能力来稳定电压,它利用铁心的饱和特性来控制发出或吸收无功功率的大小调整时间长,动态补偿速度慢动态补偿原材料消耗大,噪声大,震动大,补偿不对称电炉负荷自身产生较多谐波电流,不具备平衡有功负荷的能力,制造复杂,造价高超高压输电线路晶闸管投切电容器TSC分级用可控硅在电压过零时投入电容,在380V低压配电系统中应用较多10~20ms无涌流,无触点,投切速度快,级数分得足够细化,基本上可以实现无级调节晶闸管结构复杂,需散热,损耗大,遇到操作过电压及雷击等电压突变情况下易误导通而被涌流损坏,有漏电流需快速频繁投切电容补偿的用户复合开关投切电容器TSC+MSC分级先由可控硅在电压过零时投入电容,再由磁保持交流接触器触点并联闭合,可控硅退出,电容器在磁保持交流接触器触点闭合下运行0.5s左右无涌流,不发热,节能使用寿命短,故障较多,有漏电流一般工厂/小区和普通设备,无功量变化大于30s晶闸管控制电容器TCC采用同时选择截止角β和导通角α的方式控制电容器电流,实现补偿电流无级、快速跟踪20ms 价格低廉,效率非常高产生谐波低压小容量,非常适合广大终端低压用户第 1 页共2 页静止式动态无功补偿SVC 晶闸管阀控制高阻抗变压器TCT通过调整触发角的大小就可以改变高阻抗变压器所吸收的无功分量,达到调整无功功率的效果阻抗最大做到85%和TCR型差不多高阻抗变压器制造复杂,谐波分量也略大一些,价格较贵,而不能得到广泛应用容量在30Mvar以上时价格较贵,而不能得到广泛应用晶闸管投切电抗器TSR+FC分级用可控硅作为无触点的静止可控开关投切电抗器功率因数0.95不会产生谐波,而且响应速度快,不会产生冲击电流。
无功补偿的多种方式及各自的优缺点有哪些
无功补偿的多种方式及各自的优缺点有哪些无功补偿是指通过投入无功功率来改善电力系统的功率因数和电压质量。
无功补偿的多种方式根据实现的方法和装置的种类,可以分为静态无功补偿和动态无功补偿。
下面将对这两种方式及其各自的优缺点进行详细说明。
静态无功补偿常见的方式有电容补偿、电抗补偿和混合补偿等。
电容补偿主要通过并联接入电容器的方式进行,它能够提高电力系统的功率因数,提高电源的容量利用效率,减小线路功率损耗,并改善电压的稳定性。
电容补偿的优点有:1.无需响应时间,能实现快速无功补偿;2.功率因数改善明显,系统稳定性较好;3.维护成本低,装置体积小;4.可靠性高,寿命长。
但电容补偿也存在一些缺点:1.稳态补偿效果受负荷变化的影响较大;2.补偿效果受谐波干扰的限制;3.对电源电压波动敏感,需配合电压调整设备。
电抗补偿主要通过串联电抗器的方式实现,它能够提高电力系统的电压质量,改善电网稳定性,减小潮流损耗,提高电能质量。
电抗补偿的优点有:1.对电源电压波动不敏感,较适合对电力系统进行长距离补偿;2.补偿稳态性能好,可适用于任意负荷;3.能抵抗系统谐波干扰。
电抗补偿的缺点是:1.响应速度较慢,不能实现快速的动态无功补偿;2.在低频部分容易产生谐振问题;3.需要较大的设备体积和投资成本。
混合补偿通常综合了电容补偿和电抗补偿的优点,通过同时串联接入电容器和并联接入电抗器的方式进行补偿。
混合补偿的优点有:1.能够综合利用电容补偿和电抗补偿的优点,使补偿效果更好;2.适用于各种负荷类型和负荷变化的场合;3.能够抑制谐波,提高电压质量;4.稳态和动态补偿效果均较好。
混合补偿的缺点是:1.需要更大的设备容量,增加了投资成本;2.响应时间相对较长。
动态无功补偿是指通过高速的开关装置来实现无功功率的补偿。
常见的动态无功补偿装置包括静态无功发生器(SVG)、静止补偿装置(SSC)和可变补偿器(VSC)等。
动态无功补偿的优点有:1.响应速度极快,可以实现毫秒级的无功补偿;2.能够实现连续调整补偿功率,适应负荷变化;3.能够抑制谐波,提高电压质量;4.对电源电压波动不敏感。
FC、TSC、SVG对比分析(主要无功补偿方式分析).
几种无功补偿方案的对比分析荣信电力电子股份有限公司二、补偿方案选择1. 固定并联电容补偿①固定无功补偿方案是补偿无功功率的常规方法。
装置具有结构简单、经济方便等优点,其补偿无功的容量是设计根据计算的平均负荷大小而确定的,是一个不可调的固定量,通常由电抗器和电容器串联组成,其功能主要是补偿负荷产生的感性无功,并对三次谐波有一定的抑制作用。
一般采用机械开关控制电容器的投切,投切时的冲击电流和操作过电压大,易发生谐振,因此不能频繁投切。
由于固定补偿装置的补偿容量不能随负荷而变化,“欠补”和“过补”交替发生,计费方式又为“反转正计”,使得变电所平均功率因数达不到0.9的要求,造成力率罚款,并使供电设备的能力不能充分发挥。
目前我国普遍采用的方案是在变电所设置固定电容并联补偿。
该方案主要问题是在无负荷和轻负荷的区段,过补偿十分突出,投入固定并联补偿电容后,功率因数比不投时还低,无法达到经济功率因数的要求,变电所因功率因数大幅下降,而遭受巨额罚款,固定电容器补偿还会导致空载时电压抬升,反而恶化电压质量。
②从以上分析结论可知,变电所采用固定补偿方案解决不了功率因数问题,不能随负荷的无功波动随机的调节补偿的容性无功,所以不具备抑制谐波和电压波动。
要解决功率因数问题,抑制谐波和电压波动,必须放弃固定补偿方案,寻求新的补偿方案。
2 自动投切并联电容器组并联电容器组是最早就出现的静止型无功补偿方式,因其结构简单等特点而得到了广泛的应用,一般的并联电容器组都是应用在负荷较为平稳的场合,由手工进行投切,每天的投切次数不超过10次。
自动投切并联电容器组则根据系统所需无功自动进行投切操作,其投切次数可达每天数十次,甚至数百次。
其工作特点如下:响应速度刚切除后的电容器组,需待放电完全后才能再次投入,至少需要数十秒以上。
损耗只有并补电容器和串联电抗器产生损耗,因此损耗非常小。
约在0.1%左右。
谐波电流不产生也不滤除谐波电流。
三相不平衡并联补偿电容器组是三相完全平衡的,因此不能改善不平衡度。
无功补偿技术的比较研究
无功补偿技术的比较研究无功补偿技术是电力系统中常用的一种技术手段,广泛应用于电力传输和分配过程中。
本文将对当前常见的三种无功补偿技术进行比较研究,包括静态无功补偿、动态无功补偿和混合无功补偿技术。
一、静态无功补偿技术静态无功补偿技术是通过静止性电子器件实现的无功补偿。
常见的静态无功补偿技术包括静态无功补偿装置(SVC)和静态同步补偿装置(STATCOM)。
SVC通过可控硅器件来实现电容和电感的不同接入方式,并通过控制这些器件的导通使无功功率补偿装置进行补偿。
STATCOM则通过采集电网电压的信息,在电源侧通过控制逆变器输出的电流来补偿无功功率。
静态无功补偿技术具有调节速度快、无功补偿效果好的特点,尤其适合对系统电压稳定性要求较高的场合。
然而,静态无功补偿技术的造价较高、容量限制较大,因此在大型电力系统中应用较多。
二、动态无功补偿技术动态无功补偿技术是通过旋转机械设备实现的无功补偿。
常见的动态无功补偿技术包括同步电动机无功补偿装置(SVC)和风力发电机组无功补偿装置。
同步电动机无功补偿装置通过调节同步电动机的励磁电流来实现无功功率的补偿。
它具有快速响应、无功补偿效果好等特点,但是同步电动机的容量相对较大,造价较高。
风力发电机组无功补偿装置则通过调节风力发电机组的功率特性,实现无功功率的补偿。
它具有无需外部电源、容量可调节等优点,但在风电系统中的应用场景有限。
三、混合无功补偿技术混合无功补偿技术是将静态和动态无功补偿技术相结合的一种补偿方式。
常见的混合无功补偿技术包括STATCOM与风力发电机组的组合、SVC与同步电动机无功补偿装置的组合等。
混合无功补偿技术通过充分发挥静态和动态无功补偿技术的优势,提高了无功补偿的效果和灵活性。
它既能提供快速响应的能力,又能在容量限制方面更加灵活。
然而,混合无功补偿技术的内部机构复杂,控制难度较大。
总结:静态无功补偿技术、动态无功补偿技术和混合无功补偿技术各有其优缺点。
几种补偿技术的比较
几种动态补偿技术性能比较一、 MSVC 型动态补偿:1、MSVC 装置的工作原理:MSVC 动态补偿装置由电容器补偿支路和磁控电抗器支路组成。
通过调节磁控电抗器的感性输出容量,实现无功功率的连续可调。
2、磁控电抗器工作原理:原理:磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,实现无功功率的柔性补偿。
其内部为全静态结构,无运动部件,工作可靠性高。
可控电抗器原理接线如图1所示。
在可控电抗器的工作铁心柱上分别对称地绕有匝数为/2N 的两个线圈,其上有抽头比为2/N N δ=的抽头,它们之间接有可控硅1T 、2T ,不同铁心的上下两个主绕组交叉连接后并联至电源,续流二极管接在两个线圈的中间。
K N 2N2N2图1 磁控电抗器原理接线图当电抗器绕组接至电源电压时, 在可控硅1T 、2T 两端感应出1%左右电源电压的电压。
电源电压正半周触发导通可控硅1T ,形成图2(a)所示的等效电路,其中12N N N =-,在回路中产生直流控制电流k i '和k i '';电源电压负半周期触发导通可控硅2T ,形成图2(b)所示的等效电路,在回路中形成直流控制电流k i '和k i ''。
一个工频周期轮流导通1T 和2T ,产生的直流控制电流k i '和k i '',使电抗器工作铁心饱和,输出电流增加。
可控电抗器输出电流大小取决于晶闸管控制角α,α越小,产生的控制电流越强,从而电抗器工作铁心磁饱和程度越高,输出电流越大。
因此,改变晶闸管控制角,可平滑调节电抗器容量。
N 2N 2N 2N 2(a )1T 导通 (b )2T 导通附图2晶闸管导通等效3、 技术优势:3.1、 能够实现快速平滑调节,响应时间为100—300ms ,补偿效果好。
3.2、磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。
无功补偿几种补偿方式的优缺点
无功补偿几种补偿方式的优缺点无功功率补偿,简称无功补偿,在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
今天就带大家了解13 种无功补偿方式,各自有什么优点和缺点。
(1 )同步调相机基本原理:同步电动机无负荷运行,在过励时发出感性无功;在欠励时吸收感性无功;主要优点:既能发出感性无功,又能吸收感性无功;主要缺点:损耗大,噪音大响应速度慢,结构维护复杂;适用场合:在发电厂尚有少量应用。
(3 )就地补偿基本原理:一般将电容器直接与电动机变压器并联,二者共用台开关柜;主要优点:末端补偿,能最大限度的降低线损;主要缺点:台数较多,投资量大;适用场合:水厂、水泥厂应用较多;3 )集中补偿基本原理:集中装设在系统母线上,一般设置单独的开关柜;主要优点:可对整个变电所进行补偿,投资相对较小;主要缺点:一般为固定补偿,在负载低时可能出现过补偿;适用场合:适用于负载波动小的系统4 )自动补偿(机械开关投切电容器)基本原理:采用机械开关(接触器、断路器)等根据功率因数控制器的指令投切电容器;主要优点:能自动调节无功出力,使系统无功保持平衡,技术成熟,占地小、造价低;主要缺点:响应时间较慢,受电容器放电时间限制;适用场合:目前主流补偿方式,满足大多数行业用户需求;5 )晶闸管投切电容器基本原理:采用晶闸管阀组根据功率因数控制器的指令过零投切电容器;主要优点:响应速度快,无涌流,无冲击;主要缺点:占地面积大,造价高;适用场合:多用于港口等负荷变化快速的场合;(6 )晶闸管控制电抗器基本原理:一般由固定并联电容器和晶闸管控制的并联电抗器并联组成,通过改变晶闸管导通角改变电感电流,从而控制整套装置的无功输出;主要优点:响应速度快,无级调节,既能补偿容性无功,又能补偿感性无功;主要缺点:占地面积大,造价高,同时对大多企业用户而言,不需要感性无功;适用场合:多用于钢铁、电气化铁路和输变电系统;(7 )磁控电抗器基本原理:通过可控硅控制励磁电流的大小和铁芯饱和度改变电感电流,从而控制整套装置的无功输出;主要优点:动态响应,无级调节,双向补偿,晶闸管耐压低,无须多级串联,产生谐波小;主要缺点:响应时间较TCR 稍慢,噪声大;适用场合:在高压系统中占有优势;8 )串联补偿基本原理:串联电容器组用来补偿输电线路的电感,以提高线路的输电能力和稳定性。
SVC,SVG,TSC区别
无功补偿装置是电力系统中是必不可少的,它的主要作用是提高供配电系统的功率因数,从而提高输电设备和变电设备的利用率,提高用电效率,降低用电成本;另外,在长距离输电线路中,在合适的地点加装动态无功补偿装置,还可以改善输电系统的稳定性,提高输电能力,稳定受电端及电网的电压。
无功补偿设备经历几个发展阶段。
早期的典型代表为同步调相机,体积庞大造价高,已渐渐淘汰;第二种是并联电容器的方法,最大的优点是成本低,易于安装使用,但是需要根据系统可能存在谐波等电能质量问题,纯电容已经趋于少见。
目前串联电抗器的电容器补偿装置是提高功率因数最广泛的一种方式,当用户系统负荷为连续性生产,负载变化率不高时,一般建议采用FC的固定补偿方式,也可以采用由接触器控制的分步投切的自动补偿方式,这个对于中压、低压供配电系统都适用。
当负荷变化较快,或者为冲击性负荷时,需要快速补偿,例如橡胶行业的密炼机,系统对于无功功率的需求同样变化快速。
但是由于一般的无功自动补偿系统所采用的电容器,从运行状态断开,退出电网后,在电容器的两极之间存有残压,残压的大小无法预知,需要1-3分钟的放电时间,所以再次投入电网的间隔至少要等到残压通过电容器内部的放电电阻消耗至50V以下时才能进行第二次投入使用,所以无法做到快速响应;另外,由于系统存在大量谐波,由电容器串联电抗器组成的LC调谐式滤波补偿装置需要大容量的投入来保证电容器的安全,但是同时也有可能造成系统过度补偿,令系统呈容性。
于是,静止无功补偿装置:(SVC---StaticVar Compensator)诞生了,其典型的SVC代表是由TCR(Thyristor Controlled Reactor)+FC(Fixed Capacitor)组成的,即晶闸管控制电抗器+固定电容器组(通常需要串联一定比例的电抗器),静止无功补偿装置的重要性是它能够通过调节TCR中晶闸管的触发延迟角来连续调节补偿装置的无功功率;SVC这种补偿形式目前主要在中高压配电系统中应用,对于负载容量大、谐波问题严重、冲击性负荷、负载变化率高的场合特别适用,例如钢厂、橡胶、有色冶金、金属加工、高铁等。
高压无功补偿方案的优缺点对比
1几种常见高压无功补偿方案的性能比较产品 TBBZ 分组投切 DWZT 型无功补偿 TCR-SVC 型无功补偿 MCR-SVC 型无功补偿 SVG 无功补偿装置原 理 通过控制器检测系统功率因数和无功,发出命令投切电容器组,满足系统无功。
通过控制器检测系统功率因数和无功,发出命令调节调压器,输出不同的电压,从而输出不同的无功容量,调节较平滑。
电容器固定补偿,使用相控电抗器输出感性无功,抵消多余的容性无功。
电容器固定补偿,使用磁控电抗器输出感性无功,抵消多余的容性无功。
使用大容量电力电子器件,通过一系列整流逆变,输出感性无功和容性无功。
本身谐波含量无 无 大 小 大 占 地 装置分3组以上大(投切器件+FC 电容组) 小(调压器+FC 电容组) 大(水冷系统+相控电抗器+FC 电容器组) 小(磁控电抗器+FC 电容器组) 大(变压器++电力电子模块+FC 电容器组)单套分级(组)3组左右 9级 多级 多级 多级 稳 定 会产生涌流和过电压 稳定 使用半导体器件,容易损坏 使用半导体器件,容易损坏 使用半导体器件,容易损坏维护情况 简单,维护投切开关和电容器 简单,维护调压器和电容器 困难,维护水冷系统,相控电抗器,电力电子器件可控硅,电容器组 困难,磁控电抗器,电力电子器件可控硅组成的励磁部分,电容器组困难,电力电子器件可控硅和IGBT,充电电容 响应时间 ≥5min (分钟级响应) ≤5S (秒级响应) ≥20ms (毫秒级响应) ≥300ms (毫秒级响应) ≥20ms (毫秒级响应)对电网和电容影响 在负荷变化场所,过补偿或欠补偿常见,并且常有操作过电压,及合闸涌流,对电网及电容产生冲击,涌流和过电压叠加会对变压器造成严重危害在负荷变化场所,过补偿或欠补偿很少,无操作过电压和合闸涌流,对电网无冲击,对电容有保护作用,使用寿命长。
在负荷变化场所,过补偿或欠补偿很少,无操作过电压和合闸涌流,但是自身产生大量的谐波,对电网有污染,对变压器有很大冲击。
无功补偿装置国内外研究现状
无功补偿装置国内外研究现状
随着科学技术的发展,如今的无功补偿技术越来越先进,无功补偿装置也越来越多。
早期的无功补偿装置主要有同步调相机、固定电容器等。
固定电容是最简单的无功补偿设备。
由于电容器不消耗有功功率,在电路中,电容器的电流在相位上超前于电压,因此电容器会不断的向电网发送无功功率,这样,在需要消耗无功的电气设备附近安装电容器组便可以补偿所需的无功功率。
同步调相机是一种特别的同步电动机,它作为无功电源使用时,转轴上不带负载,并且处于过励磁运行状态,发出无功功率。
这种无功补偿装置能够平滑的调节无功功率的输出。
但由于这类装置是旋转设备,是一种运动的补偿设备,因此它有较大的有功功率损耗。
加之其维护复杂,响应速度也比较慢,因此,如今也不太适用。
上述的这些无功补偿装置在早期的工业环境中是满足实际需要的。
早期的工业环境相对简单,负载也相对固定,这些设备能够补偿电网所需要的无功功率。
显然,面对工业环境的巨大变化,这种原始的无功补偿装置对于如今的工业控制要求及工业环境,其性能已经落后。
但是在一些要求相对低的环境中,这些传统的无功补偿装置还是适用的,而且这些设备相对经济。
随着电力电子技术及控制技术的发展,为了克服传统的无功补偿装置的诸多缺点,出现了现在普遍适用的现代无功补偿装置。
现代的无功补偿装置主要分为三大类,相对成熟的静止无功补偿器(SVC),通过控制吸收和发出无功电流来控制无功功率的静止无功发生器(SVG),以及先进的静止同步补偿器(STATCOM)和统一潮流控制器(UPFC)。
对比TCR-SVC、MCR-SVC与SVG等无功补偿设备优缺点。
静止无功发生器(SVG)又称静止同步补偿器(STATCOM).●主要器件:断路器、变压器、逆变器、电容器。
●核心器件:IGBT●功能:维持系统电压恒定、谐波治理、抑制电压闪变。
●优点:可对频率和大小都变化的谐波以及变化的无功功率进行补偿,对补偿对象的变化有极快的响应,补偿无功功率时不需要储能元件,补偿谐波时所需储能元件的容量不大,且补偿无功功率的大小可以做到连续调节;不会引起谐振短路;可以吸纳无功;精准电压控制(该装置除了可以按照功率因数或者无功功率控制之外,还可以按照电压幅值来控制,确保用户获得的电压的平稳性,降低电压纹波);受电网阻抗的影响不大,不容易和电网阻抗发生谐振;且可以跟踪电网频率的变化,故补偿性能不受电网频率变化的影响。
●缺点:目前仅在大容量区域变电所使用,造价高昂。
●适用场合:适用于大容量无功补偿的枢纽变电站。
SVC-MCR●主要器件:FC+MCR●FC+MCR投切方式:FC固定投切,通过控制晶闸管的导通角来控制流过铁芯的磁通,磁通的强弱直接决定了铁芯的饱和程度,从而最终实现对电感值大小的控制。
●优点:MCR型可调电抗器的容量调节不需要大功率晶闸管阀组,占地面积小,结构简单。
采用磁控式,使整个SVC系统可靠性极高,20年免维护。
●缺点:MCR本体为油浸电抗器:这样容易造成MCR的维修不方便,并且维护成本高;MCR运行噪声大,对变电站的运行环境产生噪声污染;MCR 能耗大:MCR采用饱和电抗器技术,铁芯损耗非常大。
虽然现在的MCR 改良以后采用部分铁芯饱和技术,但是其能耗依然很大。
就依靠目前先进的制造技术,MCR的能耗依然不低于2%.SVC-TCR主要器件:FC+TCR●FC+TCR投切方式:FC固定投切,可控硅调节相控电抗器投入比例。
●冷却方式:水冷、风冷。
●功能:补偿电网感性无功,FC吸收电网中特定频段谐波电流,部分减小无功冲击造成的电压波动与闪变。
●优点:动态跟踪无功变化,跟踪速度可达20ms,不发生过补偿、无投切振荡和无冲击投切。
风电场无功补偿装置介绍
一、风电场无功补偿装置介绍风力发电系统的特点决定风电场必须需要加装无功补偿装置,目前常用的无功补偿装置主要有磁控式电抗器MCR、静止无功补偿器SVC、静止同步补偿器STATCOM。
三种补偿装置的基本功能相似,但其在技术原理、性能指标、实施效果上有较大区别。
MCR属于第二代无功补偿装置,其基本原理是调节磁控电抗器的磁通来调节其输出无功电流,仅采用少量的晶闸管器件。
其优点是:由于仅采用少量的晶闸管,其成本相对较低;关键器件为磁控电抗器,可直挂35kV电网。
其缺点是:响应速度较慢(通常为秒级),输出谐波含量较大且波动范围较大,实际损耗较大(一般大于2%)。
MCR产品在国内出现于上世纪90年代,由于其电抗器制造难度较大、损耗大等缺点,在国内没有得到大规模的推广。
SVC也属于第二代无功补偿装置,其基本原理是调节晶闸管的触发角度来调节串联电抗器的输出感性无功电流,其输出的容性无功电流需要通过并联电容器来解决。
其优点是:技术稍先进,因采用晶闸管器件(半控型器件),响应速度较快,能够迅速连续调节系统无功功率,具有较强的动态无功补偿的能力。
其缺点是:需要采用大量的晶闸管元件,成本较高;谐波含量大且波动范围大,因此需要加装不同次的滤波装置,易与系统发生谐振造成电容器爆炸或电抗器烧毁事件,大量应用易造成系统不稳定;占地面积大,施工周期较长。
STATCOM属于国际上最新的第三代无功补偿装置,其基本原理是以电压型逆变器为核心的一个电压、相位和幅值均可调的三相交流电源,可发出感性或容性无功功率。
其优点是:技术先进,因采用IGBT件(全控型器件)响应速度较快,能够迅速连续调节系统无功功率,能够抑制电压波动和闪变;对系统电压跌落不敏感,可在低电压下稳定运行,具有较强定的低电压穿越能力;谐波含量很小,且不与系统发生谐振,不需要加装滤波装置;占地面积小且施工周期短;运行损耗小(1%左右)。
其缺点是:需要采用大量的IGBT元件(其价格高于晶闸管),成本较高。
MCR、TCR、SVG比较
现在主要的动态补偿方式为TCR型SVC、MCR型SVC和SVG三种方式,以下分别介绍这三种动态无功补偿方式的原理,并且通过占地面积、响应速度、损耗、噪音等性能指标来论述这三种补偿方式的特点。
一、 MCR型动态无功补偿装置MCR+FC型动态无功补偿装置上世纪60年代由英国GEC公司制成第一台自饱和电抗器型SVC,后期俄罗斯人演变为可控饱和电抗器(CSR)型,也可称为MCR型动态无功补偿装置。
其原理是三相饱和电抗器的工作绕组并联在电网上,通过改变饱和电抗器的直流控制绕组的励磁电流,借以改变铁心的饱和特性,从而改变工作绕组的感抗,达到改变其所吸收的无功功率的目的。
图九 MCR无功补偿原理磁阀式可控电抗器的主铁心分裂为两半(即铁心1和铁心2),截面积为A,每一半铁心截面积具有减小的一段,四个匝数为N/2的线圈分别对称地绕在两个半铁心柱上(半铁心柱上的线圈总匝数为N),每一半铁心柱的上下两绕组各有一抽头比为δ= N2 / N 的抽头,它们之间接有晶闸管KP1 ( KP2 ),不同铁心上的上下两个绕组交叉连接后,并联至电网电源,续流二极管则横跨在交叉端点上。
在整个容量调节范围内,只有小面积段的磁路饱和,其余段均处于未饱和的线性状态,通过改变小截面段磁路的饱和程度来改变电抗器的容量。
在电源的一个工频周期内,晶闸管KP1 、KP2 的轮流导通起了全波整流的作用,二极管起着续流作用。
改变KP1 、KP2 的触发角便可改变控制电流的大小,从而改变电抗器铁心的饱和度,以平滑连续地调节电抗器的容量。
占地面积由于MCR没有像TCR一样采用晶闸管阀组以及空心相控电抗器,而是采用晶闸管控制部分饱和式电抗器,因此,比TCR面积要小。
响应速度MCR型SVC的响应速度一般在100 ~ 300ms之内。
可控式饱和电抗器铁芯内的磁通有惯性,从空载到额定的变化,一般在秒级以上。
虽然现在也可采取一些措施提高MCR型SVC的响应速度,但一般也很难低于150ms。
SVC、SVG、VQC、TCR比较
敞开式结构的VQC与MCR混合型动态平滑补偿装置对于无功负荷小范围波动频繁且对补偿精度要求较高的场合,可以使用VQC+MCR混合型动态无功补偿装置。
原理:VQC电容器组按小容量多分组减少投切冲击,作为有级差慢速粗调, MCR的容量很小,只相当于极差容量,当无功、电压在小范围频繁波动时,MCR快速响应,精细调节无功输出,精确贴合无功负荷曲线,使系统功率因数恒定在0.95以上,大幅提高设备使用寿命和工作质量。
1、市场上常见的几种无功补偿模式的优缺点及适用场合市场上常见的无功补偿技术主要有:VQC、动态补偿、固定补偿。
固定补偿:曾因其结构简单,造价低的优点在早期的系统内变电站大量运用,适用于无功负荷稳定的场合,但由于其固有的缺点:容量调整需人工干预、易过补或欠补、无法隔离故障正逐步被VQC所替代。
动态补偿:SVG、SVC,其特点是响应迅速,主要用于电弧炉、轧钢设备、矿井提升机、电力机车牵引等特殊的冲击性负荷设备,以维持设备正常运行为目的。
设备造价极高,运行可靠性差,后期维护困难,运行成本高。
就节能降损投资回报率而言其效果远不如VQC和固定补偿。
VQC(电压无功综合控制):在用户以节能降损、提高输变电设备的输送能力为目的的应用场合,VQC以其节能效果明显、跟踪补偿效果好、免维护、自动化程度高、造价合理等特点广泛应用于电力系统变电站、开闭所和其他工矿企业。
2、当前市场常规VQC存在的问题常规VQC产品作为无功补偿设备中二代产品,因其按需自动补偿,维护简单,成本适中的优点得到了广大客户的欢迎,但受当时经济技术条件的限制,使用中发现存在以下问题:2.1分组不细,投切冲击大传统的VQC因为受成本的限制一般分为2-4级,最多不会超过5级,电容级差大,投切电容器组对系统的冲击大,无法实现精细补偿。
2.2装置运行不可靠,故障率较高受当时经济技术条件的限制,VQC二代产品的结构设计和元件选型上存在安全隐患,造成运行不可靠,故障率较高。
新式、老式无功补偿设备比较
对变化负荷,冲击负荷及闪变负荷无能力
对变化负荷,冲击负荷及闪变负荷能完全补偿
投切
方式
手动、半自动或自动(最新型)需人职守
全自动,无需职守
循环投切速度慢,控制系统复杂,易出故障
一次性选择投切,速度快,控制简单,故障率极低
谐波危害
谐波放大或谐振,导致电容器鼓包,爆炸,或燃烧,上一级跳闸
新式、老式无功补偿设备性能效果对比表
项目
老式补偿设备
新式可控硅动态无功补偿设备
电
容
器
切
换
装
置
机械触点
无触点(可控硅固体开关)
有火花
无火花
有过电流,过电压,污染电源
无过电流,无过电压,无污染电源
触点易烧蚀、寿命短
元触点,不存在触点烧蚀、寿命长
动作时间长(10秒以上)
动作时间短(20毫秒)Leabharlann 不能补偿变动负荷、冲击性负荷
特别适合变动负荷、冲击负荷
不能实时跟踪负载变化进行补偿,不能分相补偿
能实时跟踪负载变化进行补偿,能分相补偿,消除三相不平衡
补
偿
效
果
补偿后仍有较大波动因此电压仍不稳,一般不能补偿到接近1
补偿后无功波动很小,功率因数接近1,电压稳定在国际范围内
电容器切除后再次投入时需放电几分钟,这期间补偿不起作用,无功失控
吸收谐波,滤波在国标范围内。在有谐波的状态下安全,稳定可靠运行。
控制方式
继电器或微机控制(最新型)、不便于全系统自动化
微机控制,便于将补偿信息远传,便于与上位计算机交换信息,便于整个供电系统计算机管理
环境要求
对环境要求较高,怕灰尘、潮湿、高原适应性差
矿用隔爆型动态无功补偿装置(SVG、TSC)的原理介绍及优缺点比较-1
矿用隔爆型动态无功补偿装置(SVG、TSC)原理介绍及优缺点比较一、原理简介1、静止无功发生器SVG(Static Var Generator)SVG的基本原理是,将电压源型逆变器,经过电抗器并联在电网上。
电压源型逆变器包含直流电容和逆变桥两个部分,其中逆变桥由全控型可关断的半导体器件IGBT组成。
BJS-500/1140型SVG原理简图工作中,通过调节逆变桥中IGBT器件的开关,可以控制直流逆变到交流的电压的幅值和相位,因此,整个装置相当于一个调相电源。
通过检测系统中所需的无功,可以快速发出大小相等、相位相反的无功,实现无功的就地平衡,保持系统实时高功率因数运行。
上图为SVG原理图,将系统看作一个电压源,SVG可以看作一个可控电压源,连接电抗器或者可以等效成一个线形阻抗元件。
表1给出了SVG三种运行模式的原理说明。
表1 SVG的三种运行模式运行模式波形和相量图说明容性运行模式UI> U s,I L为超前的电流,其幅值可以通过调节U I来连续控制,从而连续调节SVG发出的无功。
感性运行模式UI< U s,I L为滞后的电流。
此时SVG吸收的无功可以连续控制。
SVG在中低压动态无功补偿与谐波治理领域得到越来越广泛的应用,其具有以下重要功用:SVG可以补偿基波无功电流,补偿后功率因数可达到0.95以上,使被补偿网络的线电流下降30%以上,大大减小线路损耗,提升移动变压器带载能力,节能效果明显。
●SVG通过补偿基波无功电流,有效降低被补偿网络的无功突变,减小网络电压波动,抑制闪变,使供电电压更加平稳。
●SVG同时也具有有源滤波功能(APF),可对谐波电流进行补偿,能有效抑制被补偿网络中的5、7、11次谐波。
2、晶闸管投切电容器TSC(Thyristor Switched Capacitor)TSC的基本原理是按照一定的寻优模式,设计多组某次或某几次滤波器,基波下各支路呈容性,分级改变补偿装置的无功出力;滤波器某次谐波下调谐,滤该次谐波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率因数0.95
不会产生谐波,而且响应速度快,不会产生冲击电流。
分级多成本高,制造复杂,维护繁琐
与TSC配合使用在牵引变电所
晶闸管控制空芯电抗器
TCR
通过调整触发角的大小就可以改变电抗器所吸收的无功分量,达到调整无功功率的效果
40ms
可以实现较快、连续的无功功率调节,具有反应时间快、运行可靠、无级补偿、可分相调节、能平衡有功、适用范围广
高级动态无功
补偿
SVG
新型静止无功发生器
SVG
动态补偿装置SVG是基于大功率逆变器的动态无功补偿装置,它以大功率三相电压型逆变器为核心,其输出电压通过连接电抗接入系统,与系统侧电压保持同频、同相,通过调节其输出电压幅值与系统电压幅值的关系来确定输出功率的性质,当其幅值大于系统侧电压幅值时输出容性无功,小于时输出感性无功。
适用于大容量的系统中枢点无功补偿
静止式静态无功补偿
机械投切电容器
MSC
用断路器\接触器分级投切电容
投切时间10~30s
控制器简单,市场普遍供货,价格低,投资成本少,无漏电流
不能快速跟踪负载无功功率的变化,而且投切电容器时常会引起较为严重的冲击涌流和操作过电压,这样不但易造成接触点烧焊,而且使补偿电容器内部击穿,所受的应力大,维修量大
使用寿命短,故障较多,有漏电流
一般工厂/小区和普通设备,无功量变化大于30s
晶闸管控制电容器
TCC
采用同时选择截止角β和导通角α的方式控制电容器电流,实现补偿电流无级、快速跟踪
20ms
价格低廉,效率非常高
产生谐波
低压小容量,非常适合广大终端低压用户
静止式动态无功补偿SVC
晶闸管阀控制高阻抗变压器
TCT
响应时间10ms,从容性无功到感性无功连续平滑调节
除较低次的谐波,并使较高的谐波限制在一定范围内;使用直流电容来维持稳定的直流电源电压,和SVC使用的交流电容相比,直流电容量相对较小,成本较低;另外,在系统电压很低的情况下,仍能输出额定无功电流,而SVC补偿的无功电流随系统电压的降低而降低
控制复杂,成本高,35kV以上系统没有产品
目前国际各种无功补偿装置优缺点的比较
大类
名称
型号
工作原理
技术指标
优点
缺点
应用场合
旋转式无功补偿
同步发电机/调相机
欠励磁运行,向系统发出有功吸收无功,系统电压偏低时,过励磁运行提供无功功率将系统电压抬高
可双向/连续调节;能独立调节励磁调节无功功率,有较大的过载能力
其损耗、噪声都很大,设备投资高,起动/运行/维修复杂,动态响应速度慢,不适应太大或太小的补偿,只用于三相平衡补偿,增加系统短路容量
适用无功量比较稳定,不需频繁投切电容补偿的用户
机械投切电抗器
MSR
并联在线路末端或中间,吸收线路上的充电功率
其补偿度60% ~ 85%
防止长线路在空载充电或轻载时末端电压升高
不能跟踪补偿,为固定补偿
超高压系统(330kV及以上)的线路上
静止式动态无功补偿SVC
自饱和电抗器
SSR
依靠自饱和电抗器自身固有的能力来稳定电压,它利用铁心的饱和特性来控制发出或吸收无功功率的大小
调整时间长,动态补偿速度慢
动态补偿
原材料消耗大,噪声大,震动大,补偿不对称电炉负荷自身产生较多谐波电流,不具备平衡有功负荷的能力,制造复杂,造价高
超高压输电线路
晶闸管投切电容器
TSC
分级用可控硅在电压过零时投入电容,在380V低压配电系统中应用较多
10~20ms
无涌流,无触点,投切速度快,级数分得足够细化,基本上可以实现无级调节
晶闸管结构复杂,需散热,损耗大,遇到操作过电压及雷击等电压突变情况下易误导通而被涌流损坏,有漏电流
需快速频繁投切电容补偿的用户
复合开关投切电容器
TSC+
MSC
分级先由可控硅在电压过零时投入电容,再由磁保持交流接触器触点并联闭合,可控硅退出,电容器在磁保持交流接触器触点闭合下运行
0.5s左右
无涌流,不发热,节能
通过调整触发角的大小就可以改变高阻抗变压器所吸收的无功分量,达到调整无功功率的效果
阻抗最大做到85%
和TCR型差不多
高阻抗变压器制造复杂,谐波分量也略大一些,价格较贵,而不能得到广泛应用
容量在30Mvar以上时价格较贵,而不能得到广泛应用
晶闸管投切电抗器
TSR+
FC
分级用可控硅作为无触点的静止可控开关投切电抗器
300ms
功率因数达到0.90~0.99的要求,无功补偿容量自动无级调节,不产生谐波,可靠性高、维护简单,使用寿命长,应用电压等级广泛
相对于TCR型SVC,其谐波水平、有功损耗、占地面积都要小,但调节时间长,成本高,温升和噪音是需要控制的
0.4~500kV系统,适用于冲击性负荷:牵引变电站,电弧炉,轧钢机,造船厂
结构复杂,损耗大,任何一只SCR击穿,都会使晶闸管整体损坏;对冷却要求严格,设备造价、建设施工及运行维护费用很高,对维护人员要专门培训以提高维护水平;占地面积大,产生谐波等
35kV及以下系统,与FC/MSC/TSC配合
磁控可调电抗器
MCR
采用直流励磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,改变电抗器感抗电流,以投入的电抗器感性无功容量变化来补偿系统容性无功