角的计算专项练习60题(有答案)ok
【小学数学】三年级下册角的计算专项练习60题(有答案)
角的计算练习60题(附参考答案)1.如图;已知∠BOC=2∠AOB;OD平分∠AOC;∠BOD=14°;求∠AOB的度数.2.已知∠1=35°;∠2= _________ .3.计算出下列各角的度数.4.算一算;下面是一个直角三角形.∠1= _________∠2= _________∠3= _________ .5.三角形ABC的一条高将∠BAC分成角度为42°和36°的两个角(如图).∠2和∠3分别是多少度?6.求下图中各角的度数.∠1= _________∠2= _________∠3= _________ .7.如图中;已知∠1=30°;∠2= _________ ;∠3= _________ .8.如图;∠1= _________ ;∠2= _________ ;∠3= _________ .9.求下面各个三角形中∠A的度数10.如图中;已知∠1=43°;∠2= _________ ;∠3= _________ .11.计算三角形中角的度数.∠1= _________ ;∠2= _________ ;∠3= _________ .12.算一算:∠1= _________ ;∠2= _________ ;∠3= _________ .13.算一算;这些角各是多少度.已知∠2=40°求得:∠1= _________ °;∠3= _________ °;∠4= _________ °.14.求出如图所示各角的度数.15.如图;已知∠l=20°;∠2=46°;求∠3的度数.16.如图所示;∠BOC=110°;∠AOB=∠DOC;∠AOB是几度?17.如图:∠1=48°;∠2= _________ .18.算一算.已知∠1=65°;求出:∠2、∠3、∠4的度数.19.求下面各角的度数.图1;∠1= _________ ∠2= _________图2;∠1= _________ .20.求下面各角的度数.已知∠1=30°;∠2=90°.∠3= _________ ;∠4= _________ ;∠5= _________ .21.∠1=32゜;∠2=36゜;∠3= _________ .22.如图已知∠1=35°;∠2= _________ ;∠3= _________ ;∠4= _________ .23.如图所示;已知∠1=30°.求:∠2、∠3和∠4的度数.24.已知∠1=25°;∠2= _________ °;∠3= _________ °;∠4= _________ °.25.算一算:∠1= _________ ;∠2= _________ ;∠3= _________ .26.角的计算(1)如图1所示;已知:∠1=72°;∠2=45°;求:∠AOB= _________ ?(2)如图2所示;已知:∠1=35°;求∠2= _________ ?27.用量角器量出图中∠2的度数;再求∠1、∠3和∠4的度数.28.如图;已知∠1=130°;求∠2、∠3的度数.29.如图中;∠AOB=14°;∠COB=∠COD;求∠COD.30.在直角∠AOB内有射线OC、OD.∠AOC=∠BOD=60°;求∠COD的大小.31.求下面各角的度数.∠A= _________ ∠B= _________ ∠B=∠C= _________ ∠C= _________ .32.(1)如图1;已知:∠1=45°;求:∠2(2)如图2;已知:∠1=90°;∠2=30°求:∠3等于多少度?(3)如图3;已知:∠1=135°求:∠2、∠3、∠4各等于多少度?33.如图;已知∠1=70°;∠2=25°;∠3=50°;求∠5=?34.如图是一张长方形纸折起来以后的图形;已知么∠2是 65°;∠1是多少度?35.已知∠1=28°求∠2、∠3、∠4和∠5各是多少度?36.算一算∠1=65°∠2= _________ ∠3= _________ ∠4= _________ ∠1+∠2+∠3+∠4= _________ .37.求角的度数.(1)AB=AC(如图1)∠1= _________∠2= _________(2)三角形ABC是等腰三角形(如图2)∠1= _________∠2= _________ .38.如图中∠1=30°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5= _________ .39.如图所示;∠1=55.;请分别求出∠2、∠3、∠4的度数.40.图中;已知∠1=37°∠2= _________ ;∠3= _________ ;∠4= _________ .41.如图;已知∠1=40°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠3+∠4= _________ 42.图中∠1= _________ ;∠2= _________ ;∠3= _________ ;∠1+∠2= _________ .43.已知∠1=50°;求∠2=?∠3=?44.算一算.已知∠1=36°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5= _________ .45.图中;∠1=55°;∠2是直角;你能求∠3、∠4、∠5各是多少度吗?46.先量一量;再填空.①∠1= _________ ;是_________ 角;∠2= _________ ;是_________ 角;∠3= _________ ;是_________ 角.②画出∠1;使∠1=75°.47.算一算如图:已知∠1=35°∠3= _________ ∠4= _________∠2= _________ ∠1+∠2+∠3= _________ .48.如图1;已知∠1=40°;∠2= _________ ;∠3= _________ ;∠4= _________ .如图2;已知∠1=30°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5=_________ .49.求各个角的度数.(1)图1中:已知∠1=60°∠2= _________∠3= _________∠4= _________∠5= _________(2)图2中:已知∠1=75°∠2= _________∠3= _________∠4= _________ .50.分别量出图中4个角的度数;再求出这4个角的和.∠1= _________ ;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠1+∠2+∠3+∠4= _________ .51.∠1= _________ ;∠2= _________ ;∠3= _________ .52.∠1= _________ ;∠2= _________ ;∠3= _________ .53.已知∠1=90°;∠2=50°;求∠3、∠4和∠5的度数.54.如图;求∠1和∠2的度数.55.已知:∠1=∠3;∠2=40°求:∠ADE=?56.在下面三角形中;∠1=38°;∠2+∠3=90°;求∠3和∠4各是多少度?57.在三角形ABC中;∠l=60°;∠3=50°;求∠2、∠4的度数.58.如图;已知:∠2=30°;∠3是直角;则∠2+∠3= _________ ;∠1+∠2+∠4= _________ ;∠1+∠2+∠3+∠4= _________ .59.求图中各角的度数.图1:∠2= _________ ∠3= _________ 图2:∠1= _________ ∠2= _________ ∠3= _________ .60.看图填数.①如图一;已知∠1=75°;那么∠2= _________ ∠3= _________ ∠4= _________ .②如图二;∠1= _________ ∠2= _________ ∠3= _________ .角的计算参考答案:1.设∠AOB=x;∠BOC=2x.则∠AOC=3x.又OD平分∠AOC;因为∠AOD=x.所以∠BOD=∠AOD﹣∠AOB=x﹣x=14°因为x=28°即∠AOB=28°.答:∠AOB的度数是28°2.∠2=180°﹣∠1;∠2=180°﹣35°;∠2=145°.故答案为:145°.3.(1)(180°﹣50°)÷2;=130°÷2;=65°.答:角的度数是65°.(2)180°﹣40°=140°.答:角的度数是140°4.∠2=90°﹣60°=30°;∠3=180°﹣50°=130°;∠1=180°﹣∠2﹣∠3=180°﹣30°﹣130°=20°.故答案为:20°;30°;130°5.在直角三角形ABD中;因为∠ADB=90°;所以∠2=180°﹣90°﹣42°;∠2=48°;在直角三角形ADC中;∠ADC=90°;所以∠3=180°﹣90°﹣36°;∠3=54°答:∠2和∠3分别是48°和54°.6.(1)∠1=180°﹣90°﹣25°=65°;(2)180°﹣25°﹣20°=135°;∠2=135°﹣90°=45°;(3)∠3=180°﹣∠1=180°﹣65°=115°.故答案为:65°;45°;115°7.∠1与∠2组成了一个平角;所以∠2=180°﹣30°=150°;∠1与∠3组成一个直角;所以∠3=90°﹣30°=60°; 故答案为:150°;60°8.根据题干分析可得:∠1=180﹣90﹣45=45(度); ∠3=180﹣45=135(度); ∠2=180﹣135=45(度);故答案为:45°;45°;135°9.∠ABC=90°;∠ACB=60°.所以;∠BAC=90°﹣∠BAC=90°﹣60°=30°;∠A=180°﹣∠B﹣∠C=180°﹣135°﹣20°=25°10.(1)∠2=90°﹣∠1=90°﹣43°=47°; (2)∠3=180°﹣∠2=180°﹣47°=133°.故答案为:47°;133°11.(1)根据题干分析可得:∠2=65°;则∠1=180°﹣65°﹣65°=50°;(2)∠3=90°﹣41°=49°;故答案为:50°;65°;49°12.∠1=180°﹣45°﹣90°=45°;∠2=180°﹣45°=135°;∠3=180°﹣135°=45°.故答案为:45°;135°;45°.13.根据题干分析可得:∠1=90°﹣40°=50°;∠3=180°﹣40°=140°;∠4=180°﹣140°=40°;故答案为:50;140;40.14.∠A=180°﹣40°﹣85°=55°;∠B=180°﹣90°﹣35°=55°;∠C=180°﹣20°﹣47°=113°.如图所示:故答案为:55°、55°、113°15.∠4=180°﹣∠1﹣∠2;=180°﹣20°﹣46°;=114°;∠3=180°﹣∠4;=180°﹣114°;=66°.答:∠3是66°16.根据题干分析可得:(180﹣110)÷2;=70÷2;=35(度);答:∠AOB的度数是35度.17.∠2=90°﹣48°=42°;故答案为:42°18.∠1与∠3是对顶角;所以∠3也是65°;因为∠1与∠2组成了一个平角;∠2与∠4又是对顶角; 所以∠2=∠4=180°﹣65°=115°;答:∠2=115°;∠3=65°;∠4=115°.19.(1)∠1=∠2=(180°﹣120°)÷2=30°;(2)90°﹣40°=50°;所以∠1=50°;故答案为:30°;30°;50°20.∠1和∠5组成了一个直角;所以∠5=90﹣30=60(度);∠5与∠4组成了一个平角;所以∠4=180﹣60=120(度); 因为∠5与∠3是一组对顶角;所以∠3=∠5=60(度); 故答案为:60°;120°;60°21.180°﹣32°﹣36°=112°;故答案为:112°22.∠2=90°﹣∠1=90°﹣35°=55°;∠3=180°﹣∠2=180°﹣55°=125°;∠4=180°﹣∠3=180°﹣125°=55°;故答案为:55°;125°;55°.23.∠2=90°﹣30°=60°;∠3=180°﹣60°=120°;∠4=180°﹣120°=60°.答:∠2的度数是60°;∠3的度数是120°;∠4的度数是60°24.∠2=180°﹣∠1=155°;∠3=180°﹣∠2=25°;∠4=180°﹣∠1=155°.故答案为:155;25;155.25.∠1=180°﹣35°=145°;∠2=180°﹣90°=90°;∠3=180°﹣125°=55°.故答案为:145°;90°;55°26.(1)∠AOB=∠1+∠2=72°+45°=117°;(2)∠2=180°﹣90°﹣∠1=55°.故答案为:117°;55°.27.经测量可得∠2=35°;则∠1=90°﹣35°=55°;∠3=180°﹣35°=145°;∠4=180°﹣145°=35°.答:∠1的度数是55°;∠3的度数是145°;∠4的度数是35°28.∠2=180°﹣∠1=180°﹣130°=50°;∠3=90°﹣∠2=90°﹣50°=40°;答:∠2是50度;∠3是40度.29.(90°﹣14°)÷2;=76°÷2;=38°;答:∠COD=38°30.∠COD=∠AOC+∠BOD﹣∠AOB;=60°+60°﹣90°; =30°.答:∠COD的大小是30°.31.(1)∠A=90°﹣34°=56°;(2)∠C=180°﹣90°﹣18°=72°;∠B=180°﹣60°﹣72°=48°;(3)∠B=∠C=(180°﹣48°)÷2=66°;(4)∠A=180°﹣119°=61°;∠C=90°﹣61°=29°.故答案为:56°;48°;66°;29°32.(1)∠2=180°﹣∠1=180°﹣45°=135°.(2)∠3=180°﹣∠1﹣∠2=180﹣90°﹣30°=60°.(3)∠3=180°﹣∠1=180°﹣135°=45°;∠4=180°﹣∠1=180°﹣135°=45°;∠2=180°﹣∠3=180°﹣45°=135°33.在小三角形里最大的角=180°﹣∠2﹣∠3=105°; ∠4=180°﹣105°=75°;∠5=180°﹣∠1﹣∠4;=180°﹣70°﹣75°;=35°.答:∠5是35°34.180°﹣65°×2=180°﹣130°=50°.答:∠1是50度.35.∠4=90°;∠5=90°﹣∠1=90°﹣28°=62°;∠2=180°﹣∠1=180°﹣28°=152°;∠3=180°﹣∠2=180°﹣152°=28°;答:∠2=152°;∠3=28°;∠4=90°;∠5=62°.36.(1))∠2=90°﹣∠1;=90°﹣65°;=25°;(2))∠3=180°﹣∠2;=180°﹣25°;=155°;(3))∠4=180°﹣∠3;=180°﹣155°;=25°;(4))∠1+∠2+∠3+∠4=360°﹣90°;=270°.或∠1+∠2+∠3+∠4=65°+25°+155°+25°=270°.故答案为:25°;155°;25°;270°37.(1)∠C=180°﹣120°=60°;∠1=90°﹣∠C=90°﹣60°=30°;∠2=180°﹣60°×2=60°;(2)∠1=90°﹣60°=30°;∠2=180°﹣∠1×2﹣90°;=180°﹣30°×2﹣90°;=30°.故答案为:(1)30°;60°;(2)30°;30°38.根据题干分析可得:∠3=90°;∠2=90°﹣30°=60°;∠4=∠1=30°;∠5=180°﹣30°=150°;故答案为:60°;90°;30°;15039.如图:∠4=90°﹣∠1;=90°﹣55°;=35°;∠3=180°﹣∠4﹣∠5;=180°﹣35°﹣90°;=55°;∠2=180°﹣∠3;=180°﹣55°;=125°;答:∠2是125°、∠3是55°、∠4是35°40.∠2=90°﹣∠1=90°﹣37°=53°;∠3=180°﹣∠2=180°﹣53°=127°;∠4=180°﹣∠3=180°﹣127°=53°故答案为:53°;127°;53°41.∠2=∠4=180°﹣40°=140°;∠3=180°﹣∠2=40°;∠3+∠4=180°.故答案为:140°;40°;140°;180°42.∠1=90﹣50=40(度);∠2=90﹣40=50(度);∠3=180﹣50=130(度);∠1+∠2=90(度);故答案为:40°;50°;130°;90°43.∠2=180°﹣50°=130°;∠3=180°﹣90°=90°.答:∠2=130°;∠3=90°.44.根据题干分析可得:∠3是直角;是90°;∠2=90°﹣36°=54°;∠4=90°﹣54°=36°;∠5=180°﹣36°=144°;故答案为:54°;90°;36°;144°45.∠3=90°﹣55°=35°;∠5=180°﹣55°=125°;∠4=180°﹣125°=55°.答:∠3=35°、∠4=55°、∠5=125°46.(1)经过测量可知∠1=50°;是锐角;∠2=40°;是锐角;∠3=120°;是钝角;(2)根据分析画图如下:故答案为:50°;锐;4°;锐;120°;钝47.∠2=180°﹣∠1=180°﹣35°=145°;∠3=180°﹣∠2=180°﹣145°=35°;∠4=90°;∠1+∠2+∠3=35°+145°+35°=215°.故答案为:35°;90°;145°;215°48.图一:因为;∠1=40°.所以;∠2=180°﹣40°=140°;∠3=180°﹣140°=40°;∠4=180°﹣40°=140°;图二:因为;∠1=30°.所以;∠2=90°﹣30°=60°;∠3=90°;∠4=180°﹣60°﹣90°=30°;∠5=180°﹣30°=150°;故答案为:140°;40°;140°;60°;90°;30°;150°49.(1)因为∠2=90°;平角=180°;所以;∠3=180°﹣∠1﹣∠2=180°﹣90°﹣60°=30°;∠5=180°﹣∠1=180°﹣60°=120°;∠4=180°﹣∠5=180°﹣120°=60°;(2)因为∠1=75°;平角=180°;所以;∠2=180°﹣∠1=180°﹣75°=105°;∠4=180°﹣∠1=180°﹣75°=105°;∠3=180°﹣∠4=180°﹣105°=75°;故答案为:90°;30°;60°;120°;105°;75°;105°50.测量可得图中∠1=90°;∠2=45°;∠3=90°;∠4=135°.∠1+∠2+∠3+∠4=90°+45°+90°+135°=360°.故答案为:90°;45°;90°;135°.360°51.观察图形可知:∠3=90°;∠1=180﹣35=145(度);∠2=90﹣30=60(度);故答案为:145°;60°;90°52.因为∠1是等腰直角三角形底角;所以∠1=90°÷2=45°;因为正方形的两条对角线互相垂直;所以∠2=∠3=90°.故答案为:45°;90°;90°53.(1)∠3=180°﹣∠2=180°﹣50°=130°; (2)∠4=180°﹣∠3=180°﹣130°=50°;(3)∠5=180°﹣∠1﹣∠2=180°﹣90°﹣50°=40°.故答案为:∠3=130°;∠4=50°;∠5=40°54.∠1=180°﹣90°﹣65°=25°;∠2=180°﹣120°=60°.答:∠1的度数是25°;∠2的度数是60°.55.∠ADE=(180°﹣40°)÷2+40°;=140°÷2+40°;=70°+40°;=110°.答:∠ADE是110°.56.∠4=180°﹣∠1﹣(∠2+∠3);∠4=180°﹣38°﹣90°;∠4=52°;∠3=180°﹣90°﹣∠4;∠3=180°﹣90°﹣52°;∠3=38°.答:∠3是38°;∠4是52°57.因为∠1+∠3+∠4=180°;∠l=60°;∠3=50°;所以∠4=180°﹣60°﹣50°=70°;因为∠6=90°;所以∠2=90°﹣∠3;=90°﹣50°;=40°58.∠2+∠3=30°+90°=120°;∠1+∠2+∠3+∠4=360°;∠1+∠2+∠4=360°﹣90°=270°.故答案为:120°;270°;360°.59.(1)∠2=90°=50°=40°;∠3=180°﹣(40°+30°)=110°; (2)∠1=180°﹣120°=60°;∠2=180°﹣(60°+45°);=180°﹣105°;=75°;∠3=180°﹣75°=105°.故答案为:40°、110°;60°、75°、60.因为∠1+∠2=180°;∠1=75°;所以75°+∠2=180°;75°﹣75°+∠2=180°﹣75°;∠2=105°;因为∠1与∠3;∠2与∠4;分别是对顶角; 所以∠1=∠3=75°;∠2=∠4=105°; (2)因为∠1+35°=180°;∠1+35°﹣35°=180°﹣35°;∠1=145°;因为∠2+30°=90°;∠2+30°﹣30°=90°﹣30°;∠2=60°;因为∠3是一个直角;所以∠3=90°;故答案为:(1)105°;75°;105°.(2)145°;60°;90°.。
新人教版七年级数学上册专题训练:角的计算(含答案)
专题训练角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD 平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数;(2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数.解:(1)因为∠AOB 与∠BOC 互补,所以∠AOB+∠BOC =180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=70°. (2)因为∠AOB 与∠BOC 互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数. 解:设这个角的度数为x °,根据题意,得90-x =23(180-x)-40. 解得x =30.所以这个角的度数是30°.6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC,所以∠AOB=3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °.因为∠AOB=12∠BOC, 所以∠BOC=2x °.所以3x +3x +2x +x =360.解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小. 解:因为∠AOB=75°,∠AOC =23∠AOB, 所以∠AOC=23×75°=50°.所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°;如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AO E 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线,所以∠AOC=12∠AOB. 因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°.(3)90°+α2 或90°-α2.专题训练 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3;解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12); 解:原式=2x 2-12+3x -4x +4x 2-2 =6x 2-x -52.(6)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(7)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab. 解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.。
新人教版七年级数学上册专题训练:角的计算(含答案)
新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。
1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。
解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。
又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。
2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。
1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。
2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。
解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。
所以 $\angle DAC=4\times18°=72°$。
因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。
2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。
【数学】三年级下册角的计算专项练习60题(有答案)
角的计算练习60题(附参考答案)1.如图;已知∠BOC=2∠AOB;OD平分∠AOC;∠BOD=14°;求∠AOB的度数.2.已知∠1=35°;∠2= _________ .3.计算出下列各角的度数.4.算一算;下面是一个直角三角形.∠1= _________∠2= _________∠3= _________ .5.三角形ABC的一条高将∠BAC分成角度为42°和36°的两个角(如图).∠2和∠3分别是多少度?6.求下图中各角的度数.∠1= _________∠2= _________∠3= _________ .7.如图中;已知∠1=30°;∠2= _________ ;∠3= _________ .8.如图;∠1= _________ ;∠2= _________ ;∠3= _________ .9.求下面各个三角形中∠A的度数10.如图中;已知∠1=43°;∠2= _________ ;∠3= _________ .11.计算三角形中角的度数.∠1= _________ ;∠2= _________ ;∠3= _________ .12.算一算:∠1= _________ ;∠2= _________ ;∠3= _________ .13.算一算;这些角各是多少度.已知∠2=40°求得:∠1= _________ °;∠3= _________ °;∠4= _________ °.14.求出如图所示各角的度数.15.如图;已知∠l=20°;∠2=46°;求∠3的度数.16.如图所示;∠BOC=110°;∠AOB=∠DOC;∠AOB是几度?17.如图:∠1=48°;∠2= _________ .18.算一算.已知∠1=65°;求出:∠2、∠3、∠4的度数.19.求下面各角的度数.图1;∠1= _________ ∠2= _________图2;∠1= _________ .20.求下面各角的度数.已知∠1=30°;∠2=90°.∠3= _________ ;∠4= _________ ;∠5= _________ .21.∠1=32゜;∠2=36゜;∠3= _________ .22.如图已知∠1=35°;∠2= _________ ;∠3= _________ ;∠4= _________ .23.如图所示;已知∠1=30°.求:∠2、∠3和∠4的度数.24.已知∠1=25°;∠2= _________ °;∠3= _________ °;∠4= _________ °.25.算一算:∠1= _________ ;∠2= _________ ;∠3= _________ .26.角的计算(1)如图1所示;已知:∠1=72°;∠2=45°;求:∠AOB= _________ ?(2)如图2所示;已知:∠1=35°;求∠2= _________ ?27.用量角器量出图中∠2的度数;再求∠1、∠3和∠4的度数.28.如图;已知∠1=130°;求∠2、∠3的度数.29.如图中;∠AOB=14°;∠COB=∠COD;求∠COD.30.在直角∠AOB内有射线OC、OD.∠AOC=∠BOD=60°;求∠COD的大小.31.求下面各角的度数.∠A= _________ ∠B= _________ ∠B=∠C= _________ ∠C= _________ .32.(1)如图1;已知:∠1=45°;求:∠2(2)如图2;已知:∠1=90°;∠2=30°求:∠3等于多少度?(3)如图3;已知:∠1=135°求:∠2、∠3、∠4各等于多少度?33.如图;已知∠1=70°;∠2=25°;∠3=50°;求∠5=?34.如图是一张长方形纸折起来以后的图形;已知么∠2是 65°;∠1是多少度?35.已知∠1=28°求∠2、∠3、∠4和∠5各是多少度?36.算一算∠1=65°∠2= _________ ∠3= _________ ∠4= _________ ∠1+∠2+∠3+∠4= _________ .37.求角的度数.(1)AB=AC(如图1)∠1= _________∠2= _________(2)三角形ABC是等腰三角形(如图2)∠1= _________∠2= _________ .38.如图中∠1=30°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5= _________ .39.如图所示;∠1=55.;请分别求出∠2、∠3、∠4的度数.40.图中;已知∠1=37°∠2= _________ ;∠3= _________ ;∠4= _________ .41.如图;已知∠1=40°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠3+∠4= _________42.图中∠1= _________ ;∠2= _________ ;∠3= _________ ;∠1+∠2= _________ .43.已知∠1=50°;求∠2=?∠3=?44.算一算.已知∠1=36°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5= _________ .45.图中;∠1=55°;∠2是直角;你能求∠3、∠4、∠5各是多少度吗?46.先量一量;再填空.①∠1= _________ ;是_________ 角;∠2= _________ ;是_________ 角;∠3= _________ ;是_________ 角.②画出∠1;使∠1=75°.47.算一算如图:已知∠1=35°∠3= _________ ∠4= _________∠2= _________ ∠1+∠2+∠3= _________ .48.如图1;已知∠1=40°;∠2= _________ ;∠3= _________ ;∠4= _________ .如图2;已知∠1=30°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5=_________ .49.求各个角的度数.(1)图1中:已知∠1=60°∠2= _________∠3= _________∠4= _________∠5= _________(2)图2中:已知∠1=75°∠2= _________∠3= _________∠4= _________ .50.分别量出图中4个角的度数;再求出这4个角的和.∠1= _________ ;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠1+∠2+∠3+∠4= _________ .51.∠1= _________ ;∠2= _________ ;∠3= _________ .52.∠1= _________ ;∠2= _________ ;∠3= _________ .53.已知∠1=90°;∠2=50°;求∠3、∠4和∠5的度数.54.如图;求∠1和∠2的度数.55.已知:∠1=∠3;∠2=40°求:∠ADE=?56.在下面三角形中;∠1=38°;∠2+∠3=90°;求∠3和∠4各是多少度?57.在三角形ABC中;∠l=60°;∠3=50°;求∠2、∠4的度数.58.如图;已知:∠2=30°;∠3是直角;则∠2+∠3= _________ ;∠1+∠2+∠4= _________ ;∠1+∠2+∠3+∠4= _________ .59.求图中各角的度数.图1:∠2= _________ ∠3= _________ 图2:∠1= _________ ∠2= _________ ∠3= _________ .60.看图填数.①如图一;已知∠1=75°;那么∠2= _________ ∠3= _________ ∠4= _________ .②如图二;∠1= _________ ∠2= _________ ∠3= _________ .角的计算参考答案:1.设∠AOB=x;∠BOC=2x.则∠AOC=3x.又OD平分∠AOC;因为∠AOD=x.所以∠BOD=∠AOD﹣∠AOB=x﹣x=14°因为x=28°即∠AOB=28°.答:∠AOB的度数是28°2.∠2=180°﹣∠1;∠2=180°﹣35°;∠2=145°.故答案为:145°.3.(1)(180°﹣50°)÷2;=130°÷2;=65°.答:角的度数是65°.(2)180°﹣40°=140°.答:角的度数是140°4.∠2=90°﹣60°=30°;∠3=180°﹣50°=130°;∠1=180°﹣∠2﹣∠3=180°﹣30°﹣130°=20°.故答案为:20°;30°;130°5.在直角三角形ABD中;因为∠ADB=90°;所以∠2=180°﹣90°﹣42°;∠2=48°;在直角三角形ADC中;∠ADC=90°;所以∠3=180°﹣90°﹣36°;∠3=54°答:∠2和∠3分别是48°和54°.6.(1)∠1=180°﹣90°﹣25°=65°;(2)180°﹣25°﹣20°=135°;∠2=135°﹣90°=45°;(3)∠3=180°﹣∠1=180°﹣65°=115°.故答案为:65°;45°;115°7.∠1与∠2组成了一个平角;所以∠2=180°﹣30°=150°;∠1与∠3组成一个直角;所以∠3=90°﹣30°=60°;故答案为:150°;60°8.根据题干分析可得:∠1=180﹣90﹣45=45(度);∠3=180﹣45=135(度);∠2=180﹣135=45(度);故答案为:45°;45°;135°9.∠ABC=90°;∠ACB=60°.所以;∠BAC=90°﹣∠BAC=90°﹣60°=30°;∠A=180°﹣∠B﹣∠C=180°﹣135°﹣20°=25°10.(1)∠2=90°﹣∠1=90°﹣43°=47°;(2)∠3=180°﹣∠2=180°﹣47°=133°.故答案为:47°;133°11.(1)根据题干分析可得:∠2=65°;则∠1=180°﹣65°﹣65°=50°;(2)∠3=90°﹣41°=49°;故答案为:50°;65°;49°12.∠1=180°﹣45°﹣90°=45°;∠2=180°﹣45°=135°;∠3=180°﹣135°=45°.故答案为:45°;135°;45°.13.根据题干分析可得:∠1=90°﹣40°=50°;∠3=180°﹣40°=140°;∠4=180°﹣140°=40°;故答案为:50;140;40.14.∠A=180°﹣40°﹣85°=55°;∠B=180°﹣90°﹣35°=55°;∠C=180°﹣20°﹣47°=113°.如图所示:故答案为:55°、55°、113°15.∠4=180°﹣∠1﹣∠2;=180°﹣20°﹣46°;=114°;∠3=180°﹣∠4;=180°﹣114°;=66°.答:∠3是66°16.根据题干分析可得:(180﹣110)÷2;=70÷2;=35(度);答:∠AOB的度数是35度.17.∠2=90°﹣48°=42°;故答案为:42°18.∠1与∠3是对顶角;所以∠3也是65°;因为∠1与∠2组成了一个平角;∠2与∠4又是对顶角;所以∠2=∠4=180°﹣65°=115°;答:∠2=115°;∠3=65°;∠4=115°.19.(1)∠1=∠2=(180°﹣120°)÷2=30°;(2)90°﹣40°=50°;所以∠1=50°;故答案为:30°;30°;50°20.∠1和∠5组成了一个直角;所以∠5=90﹣30=60(度);∠5与∠4组成了一个平角;所以∠4=180﹣60=120(度);因为∠5与∠3是一组对顶角;所以∠3=∠5=60(度);故答案为:60°;120°;60°21.180°﹣32°﹣36°=112°;故答案为:112°22.∠2=90°﹣∠1=90°﹣35°=55°;∠3=180°﹣∠2=180°﹣55°=125°;∠4=180°﹣∠3=180°﹣125°=55°;故答案为:55°;125°;55°.23.∠2=90°﹣30°=60°;∠3=180°﹣60°=120°;∠4=180°﹣120°=60°.答:∠2的度数是60°;∠3的度数是120°;∠4的度数是60°24.∠2=180°﹣∠1=155°;∠3=180°﹣∠2=25°;∠4=180°﹣∠1=155°.故答案为:155;25;155.25.∠1=180°﹣35°=145°;∠2=180°﹣90°=90°;∠3=180°﹣125°=55°.故答案为:145°;90°;55°26.(1)∠AOB=∠1+∠2=72°+45°=117°;(2)∠2=180°﹣90°﹣∠1=55°.故答案为:117°;55°.27.经测量可得∠2=35°;则∠1=90°﹣35°=55°;∠3=180°﹣35°=145°;∠4=180°﹣145°=35°.答:∠1的度数是55°;∠3的度数是145°;∠4的度数是35°28.∠2=180°﹣∠1=180°﹣130°=50°;∠3=90°﹣∠2=90°﹣50°=40°;答:∠2是50度;∠3是40度.29.(90°﹣14°)÷2;=76°÷2;=38°;答:∠COD=38°30.∠COD=∠AOC+∠BOD﹣∠AOB;=60°+60°﹣90°;=30°.答:∠COD的大小是30°.31.(1)∠A=90°﹣34°=56°;(2)∠C=180°﹣90°﹣18°=72°;∠B=180°﹣60°﹣72°=48°;(3)∠B=∠C=(180°﹣48°)÷2=66°;(4)∠A=180°﹣119°=61°;∠C=90°﹣61°=29°.故答案为:56°;48°;66°;29°32.(1)∠2=180°﹣∠1=180°﹣45°=135°.(2)∠3=180°﹣∠1﹣∠2=180﹣90°﹣30°=60°.(3)∠3=180°﹣∠1=180°﹣135°=45°;∠4=180°﹣∠1=180°﹣135°=45°;∠2=180°﹣∠3=180°﹣45°=135°33.在小三角形里最大的角=180°﹣∠2﹣∠3=105°;∠4=180°﹣105°=75°;∠5=180°﹣∠1﹣∠4;=180°﹣70°﹣75°;=35°.答:∠5是35°34.180°﹣65°×2=180°﹣130°=50°.答:∠1是50度.35.∠4=90°;∠5=90°﹣∠1=90°﹣28°=62°;∠2=180°﹣∠1=180°﹣28°=152°;∠3=180°﹣∠2=180°﹣152°=28°;答:∠2=152°;∠3=28°;∠4=90°;∠5=62°.36.(1))∠2=90°﹣∠1;=90°﹣65°;=25°;(2))∠3=180°﹣∠2;=180°﹣25°;=155°;(3))∠4=180°﹣∠3;=180°﹣155°;=25°;(4))∠1+∠2+∠3+∠4=360°﹣90°;=270°.或∠1+∠2+∠3+∠4=65°+25°+155°+25°=270°.故答案为:25°;155°;25°;270°37.(1)∠C=180°﹣120°=60°;∠1=90°﹣∠C=90°﹣60°=30°;∠2=180°﹣60°×2=60°;(2)∠1=90°﹣60°=30°;∠2=180°﹣∠1×2﹣90°;=180°﹣30°×2﹣90°;=30°.故答案为:(1)30°;60°;(2)30°;30°38.根据题干分析可得:∠3=90°;∠2=90°﹣30°=60°;∠4=∠1=30°;∠5=180°﹣30°=150°;故答案为:60°;90°;30°;15039.如图:∠4=90°﹣∠1;=90°﹣55°;=35°;∠3=180°﹣∠4﹣∠5;=180°﹣35°﹣90°;=55°;∠2=180°﹣∠3;=180°﹣55°;=125°;答:∠2是125°、∠3是55°、∠4是35°40.∠2=90°﹣∠1=90°﹣37°=53°;∠3=180°﹣∠2=180°﹣53°=127°;∠4=180°﹣∠3=180°﹣127°=53°故答案为:53°;127°;53°41.∠2=∠4=180°﹣40°=140°;∠3=180°﹣∠2=40°;∠3+∠4=180°.故答案为:140°;40°;140°;180°42.∠1=90﹣50=40(度);∠2=90﹣40=50(度);∠3=180﹣50=130(度);∠1+∠2=90(度);故答案为:40°;50°;130°;90°43.∠2=180°﹣50°=130°;∠3=180°﹣90°=90°.答:∠2=130°;∠3=90°.44.根据题干分析可得:∠3是直角;是90°;∠2=90°﹣36°=54°;∠4=90°﹣54°=36°;∠5=180°﹣36°=144°;故答案为:54°;90°;36°;144°45.∠3=90°﹣55°=35°;∠5=180°﹣55°=125°;∠4=180°﹣125°=55°.答:∠3=35°、∠4=55°、∠5=125°46.(1)经过测量可知∠1=50°;是锐角;∠2=40°;是锐角;∠3=120°;是钝角;(2)根据分析画图如下:故答案为:50°;锐;4°;锐;120°;钝47.∠2=180°﹣∠1=180°﹣35°=145°;∠3=180°﹣∠2=180°﹣145°=35°;∠4=90°;∠1+∠2+∠3=35°+145°+35°=215°.故答案为:35°;90°;145°;215°48.图一:因为;∠1=40°.所以;∠2=180°﹣40°=140°;∠3=180°﹣140°=40°;∠4=180°﹣40°=140°;图二:因为;∠1=30°.所以;∠2=90°﹣30°=60°;∠3=90°;∠4=180°﹣60°﹣90°=30°;∠5=180°﹣30°=150°;故答案为:140°;40°;140°;60°;90°;30°;150°49.(1)因为∠2=90°;平角=180°;所以;∠3=180°﹣∠1﹣∠2=180°﹣90°﹣60°=30°;∠5=180°﹣∠1=180°﹣60°=120°;∠4=180°﹣∠5=180°﹣120°=60°;(2)因为∠1=75°;平角=180°;所以;∠2=180°﹣∠1=180°﹣75°=105°;∠4=180°﹣∠1=180°﹣75°=105°;∠3=180°﹣∠4=180°﹣105°=75°;故答案为:90°;30°;60°;120°;105°;75°;105°50.测量可得图中∠1=90°;∠2=45°;∠3=90°;∠4=135°.∠1+∠2+∠3+∠4=90°+45°+90°+135°=360°.故答案为:90°;45°;90°;135°.360°51.观察图形可知:∠3=90°;∠1=180﹣35=145(度);∠2=90﹣30=60(度);故答案为:145°;60°;90°52.因为∠1是等腰直角三角形底角;所以∠1=90°÷2=45°;因为正方形的两条对角线互相垂直;所以∠2=∠3=90°.故答案为:45°;90°;90°53.(1)∠3=180°﹣∠2=180°﹣50°=130°;(2)∠4=180°﹣∠3=180°﹣130°=50°;(3)∠5=180°﹣∠1﹣∠2=180°﹣90°﹣50°=40°.故答案为:∠3=130°;∠4=50°;∠5=40°54.∠1=180°﹣90°﹣65°=25°;∠2=180°﹣120°=60°.答:∠1的度数是25°;∠2的度数是60°.55.∠ADE=(180°﹣40°)÷2+40°;=140°÷2+40°;=70°+40°;=110°.答:∠ADE是110°.56.∠4=180°﹣∠1﹣(∠2+∠3);∠4=180°﹣38°﹣90°;∠4=52°;∠3=180°﹣90°﹣∠4;∠3=180°﹣90°﹣52°;∠3=38°.答:∠3是38°;∠4是52°57.因为∠1+∠3+∠4=180°;∠l=60°;∠3=50°;所以∠4=180°﹣60°﹣50°=70°;因为∠6=90°;所以∠2=90°﹣∠3;=90°﹣50°;=40°58.∠2+∠3=30°+90°=120°;∠1+∠2+∠3+∠4=360°;∠1+∠2+∠4=360°﹣90°=270°.故答案为:120°;270°;360°.59.(1)∠2=90°=50°=40°;∠3=180°﹣(40°+30°)=110°;(2)∠1=180°﹣120°=60°;∠2=180°﹣(60°+45°);=180°﹣105°;=75°;∠3=180°﹣75°=105°.故答案为:40°、110°;60°、75°、60.因为∠1+∠2=180°;∠1=75°;所以75°+∠2=180°;75°﹣75°+∠2=180°﹣75°;∠2=105°;因为∠1与∠3;∠2与∠4;分别是对顶角;所以∠1=∠3=75°;∠2=∠4=105°;(2)因为∠1+35°=180°;∠1+35°﹣35°=180°﹣35°;∠1=145°;因为∠2+30°=90°;∠2+30°﹣30°=90°﹣30°;∠2=60°;因为∠3是一个直角;所以∠3=90°;故答案为:(1)105°;75°;105°.(2)145°;60°;90°.。
角的计算专项练习60题(有答案)ok
角的计算专项练习60题(有答案)ok角的计算练习60题(附参考答案)1.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.2.已知∠1=35°,∠2= _________ .3.计算出下列各角的度数.4.算一算,下面是一个直角三角形.∠1= _________∠2= _________∠3= _________ .9.求下面各个三角形中∠A的度数10.如图中,已知∠1=43°,∠2= _________ ,∠3= _________ .11.计算三角形中角的度数.∠1= _________ ,∠2= _________ ,∠3=_________ .12.算一算:∠1= _________ ;∠2= _________ ;∠3=_________ .13.算一算,这些角各是多少度.已知∠2=40°求得:∠1= _________ °,∠3= _________ °,∠4= _________ °.14.求出如图所示各角的度数.15.如图,已知∠l=20°,∠2=46°,求∠3的度数.16.如图所示,∠BOC=110°,∠AOB=∠DOC,∠AOB是几度?17.如图:∠1=48°;∠2= _________ .18.算一算.已知∠1=65°,求出:∠2、∠3、∠4的度数.19.求下面各角的度数.图1,∠1= _________ ∠2= _________图2,∠1= _________ .20.求下面各角的度数.已知∠1=30°,∠2=90°.∠3= _________ ;∠4= _________ ;∠5= _________ .21.∠1=32゜,∠2=36゜,∠3= _________ .22.如图已知∠1=35°,∠2= _________ ,∠3=_________ ,∠4= _________ .23.如图所示,已知∠1=30°.求:∠2、∠3和∠4的度数.24.已知∠1=25°,∠2= _________ °,∠3= _________ °,∠4= _________ °.25.算一算:∠1= _________ ;∠2= _________ ;∠3=_________ .26.角的计算(1)如图1所示,已知:∠1=72°,∠2=45°,求:∠AOB= _________ ?(2)如图2所示,已知:∠1=35°,求∠2= _________ ?27.用量角器量出图中∠2的度数,再求∠1、∠3和∠4的度数.28.如图,已知∠1=130°,求∠2、∠3的度数.29.如图中,∠AOB=14°,∠COB=∠COD,求∠COD.30.在直角∠AOB内有射线OC、OD.∠AOC=∠BOD=60°,求∠COD的大小.31.求下面各角的度数.∠A= _________ ∠B= _________ ∠B=∠C=_________ ∠C= _________ .32.(1)如图1,已知:∠1=45°,求:∠2(2)如图2,已知:∠1=90°,∠2=30°求:∠3等于多少度?(3)如图3,已知:∠1=135°求:∠2、∠3、∠4各等于多少度?33.如图,已知∠1=70°,∠2=25°,∠3=50°,求∠5=?34.如图是一张长方形纸折起来以后的图形,已知么∠2是65°,∠1是多少度?35.已知∠1=28°求∠2、∠3、∠4和∠5各是多少度?36.算一算∠1=65°∠2= _________ ∠3= _________ ∠4=_________ ∠1+∠2+∠3+∠4= _________ .37.求角的度数.(1)AB=AC(如图1)∠1= _________∠2= _________(2)三角形ABC是等腰三角形(如图2)∠1= _________∠2= _________ .38.如图中∠1=30°,∠2= _________ ,∠3=_________ ,∠4= _________ ,∠5= _________ .39.如图所示,∠1=55.,请分别求出∠2、∠3、∠4的度数.40.图中,已知∠1=37°∠2= _________ ;∠3= _________ ;∠4=_________ .41.如图,已知∠1=40°,∠2= _________ ,∠3=_________ ,∠4= _________ ,∠3+∠4= _________42.图中∠1= _________ ,∠2= _________ ,∠3= _________ ,∠1+∠2= _________ .43.已知∠1=50°,求∠2=?∠3=?44.算一算.已知∠1=36°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5= _________ .45.图中,∠1=55°,∠2是直角,你能求∠3、∠4、∠5各是多少度吗?46.先量一量,再填空.①∠1= _________ ,是_________ 角;∠2=_________ ,是_________ 角;∠3= _________ ,是_________ 角.②画出∠1,使∠1=75°.47.算一算如图:已知∠1=35°∠3= _________ ∠4= _________∠2= _________ ∠1+∠2+∠3= _________ .48.如图1,已知∠1=40°,∠2= _________ ,∠3= _________ ,∠4= _________ .如图2,已知∠1=30°,∠2= _________ ,∠3=_________ ,∠4= _________ ,∠5=_________ .49.求各个角的度数.(1)图1中:已知∠1=60°∠2= _________∠3= _________∠4= _________∠5= _________(2)图2中:已知∠1=75°∠2= _________∠3= _________∠4= _________ .50.分别量出图中4个角的度数,再求出这4个角的和.∠1= _________ ;∠2= _________ ;∠3=_________ ;∠4= _________ ;∠1+∠2+∠3+∠4= _________ .51.∠1= _________ ;∠2= _________ ;∠3=_________ .52.∠1= _________ ;∠2= _________ ;∠3=_________ .53.已知∠1=90°,∠2=50°,求∠3、∠4和∠5的度数.54.如图,求∠1和∠2的度数.55.已知:∠1=∠3,∠2=40°求:∠ADE=?56.在下面三角形中,∠1=38°,∠2+∠3=90°,求∠3和∠4各是多少度?57.在三角形ABC中,∠l=60°,∠3=50°,求∠2、∠4的度数.58.如图,已知:∠2=30°,∠3是直角,则∠2+∠3=_________ ,∠1+∠2+∠4= _________ ,∠1+∠2+∠3+∠4= _________ .59.求图中各角的度数.图1:∠2= _________ ∠3= _________ 图2:∠1= _________ ∠2= _________ ∠3= _________ .60.看图填数.①如图一,已知∠1=75°,那么∠2= _________ ∠3= _________ ∠4= _________ .②如图二,∠1= _________ ∠2= _________ ∠3= _________ .角的计算参考答案:1.设∠AOB=x,∠BOC=2x.则∠AOC=3x.又OD平分∠AOC,因为∠AOD=x.所以∠BOD=∠AOD﹣∠AOB=x ﹣x=14°因为x=28°即∠AOB=28°.答:∠AOB的度数是28°2.∠2=180°﹣∠1,∠2=180°﹣35°,∠2=145°.故答案为:145°.3.(1)(180°﹣50°)÷2,=130°÷2,=65°.答:角的度数是65°.(2)180°﹣40°=140°.答:角的度数是140°4.∠2=90°﹣60°=30°;∠3=180°﹣50°=130°;∠1=180°﹣∠2﹣∠3=180°﹣30°﹣130°=20°.故答案为:20°;30°;130°5.在直角三角形ABD中,因为∠ADB=90°,所以∠2=180°﹣90°﹣42°,∠2=48°;在直角三角形ADC中,∠ADC=90°,所以∠3=180°﹣90°﹣36°,∠3=54°答:∠2和∠3分别是48°和54°.6.(1)∠1=180°﹣90°﹣25°=65°;(2)180°﹣25°﹣20°=135°;∠2=135°﹣90°=45°;(3)∠3=180°﹣∠1=180°﹣65°=115°.故答案为:65°,45°,115°7.∠1与∠2组成了一个平角,所以∠2=180°﹣30°=150°;∠1与∠3组成一个直角,所以∠3=90°﹣30°=60°;故答案为:150°;60°8.根据题干分析可得:∠1=180﹣90﹣45=45(度),∠3=180﹣45=135(度),∠2=180﹣135=45(度),故答案为:45°,45°,135°9.∠ABC=90°,∠ACB=60°.所以,∠BAC=90°﹣∠BAC=90°﹣60°=30°;∠A=180°﹣∠B﹣∠C=180°﹣135°﹣20°=25°10.(1)∠2=90°﹣∠1=90°﹣43°=47°;(2)∠3=180°﹣∠2=180°﹣47°=133°.故答案为:47°,133°11.(1)根据题干分析可得:∠2=65°;则∠1=180°﹣65°﹣65°=50°;(2)∠3=90°﹣41°=49°;故答案为:50°;65°;49°12.∠1=180°﹣45°﹣90°=45°;∠2=180°﹣45°=135°;∠3=180°﹣135°=45°.故答案为:45°;135°;45°.13.根据题干分析可得:∠1=90°﹣40°=50°;∠3=180°﹣40°=140°;∠4=180°﹣140°=40°;故答案为:50;140;40.14.∠A=180°﹣40°﹣85°=55°;∠B=180°﹣90°﹣35°=55°;∠C=180°﹣20°﹣47°=113°.如图所示:故答案为:55°、55°、113°15.∠4=180°﹣∠1﹣∠2,=180°﹣20°﹣46°,=114°,∠3=180°﹣∠4,=180°﹣114°,=66°.答:∠3是66°16.根据题干分析可得:(180﹣110)÷2,=70÷2,=35(度),答:∠AOB的度数是35度.17.∠2=90°﹣48°=42°,故答案为:42°18.∠1与∠3是对顶角,所以∠3也是65°;因为∠1与∠2组成了一个平角,∠2与∠4又是对顶角,所以∠2=∠4=180°﹣65°=115°,答:∠2=115°,∠3=65°,∠4=115°.19.(1)∠1=∠2=(180°﹣120°)÷2=30°;(2)90°﹣40°=50°;所以∠1=50°;故答案为:30°;30°;50°20.∠1和∠5组成了一个直角,所以∠5=90﹣30=60(度),∠5与∠4组成了一个平角,所以∠4=180﹣60=120(度);因为∠5与∠3是一组对顶角,所以∠3=∠5=60(度),故答案为:60°;120°;60°21.180°﹣32°﹣36°=112°;故答案为:112°22.∠2=90°﹣∠1=90°﹣35°=55°,∠3=180°﹣∠2=180°﹣55°=125°,∠4=180°﹣∠3=180°﹣125°=55°,故答案为:55°,125°,55°.23.∠2=90°﹣30°=60°,∠3=180°﹣60°=120°,∠4=180°﹣120°=60°.答:∠2的度数是60°,∠3的度数是120°,∠4的度数是60°24.∠2=180°﹣∠1=155°,∠3=180°﹣∠2=25°,∠4=180°﹣∠1=155°.故答案为:155,25,155.25.∠1=180°﹣35°=145°;∠2=180°﹣90°=90°;∠3=180°﹣125°=55°.故答案为:145°;90°;55°26.(1)∠AOB=∠1+∠2=72°+45°=117°;(2)∠2=180°﹣90°﹣∠1=55°.故答案为:117°;55°.27.经测量可得∠2=35°,则∠1=90°﹣35°=55°,∠3=180°﹣35°=145°,∠4=180°﹣145°=35°.答:∠1的度数是55°,∠3的度数是145°,∠4的度数是35°28.∠2=180°﹣∠1=180°﹣130°=50°;∠3=90°﹣∠2=90°﹣50°=40°;答:∠2是50度,∠3是40度.29.(90°﹣14°)÷2,=76°÷2,=38°;答:∠COD=38°30.∠COD=∠AOC+∠BOD﹣∠AOB,=60°+60°﹣90°,=30°.答:∠COD的大小是30°.31.(1)∠A=90°﹣34°=56°;(2)∠C=180°﹣90°﹣18°=72°,∠B=180°﹣60°﹣72°=48°;(3)∠B=∠C=(180°﹣48°)÷2=66°;(4)∠A=180°﹣119°=61°,∠C=90°﹣61°=29°.故答案为:56°;48°;66°;29°32.(1)∠2=180°﹣∠1=180°﹣45°=135°.(2)∠3=180°﹣∠1﹣∠2=180﹣90°﹣30°=60°.(3)∠3=180°﹣∠1=180°﹣135°=45°,∠4=180°﹣∠1=180°﹣135°=45°,∠2=180°﹣∠3=180°﹣45°=135°33.在小三角形里最大的角=180°﹣∠2﹣∠3=105°,∠4=180°﹣105°=75°,∠5=180°﹣∠1﹣∠4,=180°﹣70°﹣75°,=35°.答:∠5是35°34.180°﹣65°×2=180°﹣130°=50°.答:∠1是50度.35.∠4=90°,∠5=90°﹣∠1=90°﹣28°=62°,∠2=180°﹣∠1=180°﹣28°=152°,∠3=180°﹣∠2=180°﹣152°=28°;答:∠2=152°,∠3=28°,∠4=90°,∠5=62°.36.(1))∠2=90°﹣∠1,=90°﹣65°,=25°;(2))∠3=180°﹣∠2,=180°﹣25°,=155°;(3))∠4=180°﹣∠3,=180°﹣155°,=25°;(4))∠1+∠2+∠3+∠4=360°﹣90°,=270°.或∠1+∠2+∠3+∠4=65°+25°+155°+25°=270°.故答案为:25°;155°;25°;270°37.(1)∠C=180°﹣120°=60°,∠1=90°﹣∠C=90°﹣60°=30°;∠2=180°﹣60°×2=60°;(2)∠1=90°﹣60°=30°;∠2=180°﹣∠1×2﹣90°,=180°﹣30°×2﹣90°,=30°.故答案为:(1)30°,60°;(2)30°,30°38.根据题干分析可得:∠3=90°;∠2=90°﹣30°=60°;∠4=∠1=30°;∠5=180°﹣30°=150°;故答案为:60°;90°;30°;15039.如图:∠4=90°﹣∠1,=90°﹣55°,=35°,∠3=180°﹣∠4﹣∠5,=180°﹣35°﹣90°,=55°,∠2=180°﹣∠3,=180°﹣55°,=125°,答:∠2是125°、∠3是55°、∠4是35°40.∠2=90°﹣∠1=90°﹣37°=53°,∠3=180°﹣∠2=180°﹣53°=127°,∠4=180°﹣∠3=180°﹣127°=53°故答案为:53°,127°,53°41.∠2=∠4=180°﹣40°=140°,∠3=180°﹣∠2=40°,∠3+∠4=180°.故答案为:140°,40°,140°,180°42.∠1=90﹣50=40(度);∠2=90﹣40=50(度);∠3=180﹣50=130(度);∠1+∠2=90(度);故答案为:40°;50°;130°;90°43.∠2=180°﹣50°=130°,∠3=180°﹣90°=90°.答:∠2=130°,∠3=90°.44.根据题干分析可得:∠3是直角,是90°;∠2=90°﹣36°=54°;∠4=90°﹣54°=36°;∠5=180°﹣36°=144°,故答案为:54°;90°;36°;144°45.∠3=90°﹣55°=35°,∠5=180°﹣55°=125°,∠4=180°﹣125°=55°.答:∠3=35°、∠4=55°、∠5=125°46.(1)经过测量可知∠1=50°,是锐角,∠2=40°,是锐角,∠3=120°,是钝角;(2)根据分析画图如下:故答案为:50°;锐;4°;锐;120°;钝47.∠2=180°﹣∠1=180°﹣35°=145°,∠3=180°﹣∠2=180°﹣145°=35°,∠4=90°,∠1+∠2+∠3=35°+145°+35°=215°.故答案为:35°,90°,145°,215°48.图一:因为,∠1=40°.所以,∠2=180°﹣40°=140°;∠3=180°﹣140°=40°;∠4=180°﹣40°=140°;图二:因为,∠1=30°.所以,∠2=90°﹣30°=60°;∠3=90°;∠4=180°﹣60°﹣90°=30°;∠5=180°﹣30°=150°;故答案为:140°,40°,140°,60°,90°,30°,150°49.(1)因为∠2=90°,平角=180°,所以,∠3=180°﹣∠1﹣∠2=180°﹣90°﹣60°=30°;∠5=180°﹣∠1=180°﹣60°=120°;∠4=180°﹣∠5=180°﹣120°=60°;(2)因为∠1=75°,平角=180°,所以,∠2=180°﹣∠1=180°﹣75°=105°;∠4=180°﹣∠1=180°﹣75°=105°;∠3=180°﹣∠4=180°﹣105°=75°;故答案为:90°,30°,60°,120°,105°,75°,105°50.测量可得图中∠1=90°,∠2=45°,∠3=90°,∠4=135°.∠1+∠2+∠3+∠4=90°+45°+90°+135°=360°.故答案为:90°,45°,90°,135°.360°51.观察图形可知:∠3=90°;∠1=180﹣35=145(度);∠2=90﹣30=60(度);故答案为:145°;60°;90°52.因为∠1是等腰直角三角形底角,所以∠1=90°÷2=45°;因为正方形的两条对角线互相垂直,所以∠2=∠3=90°.故答案为:45°;90°;90°53.(1)∠3=180°﹣∠2=180°﹣50°=130°;(2)∠4=180°﹣∠3=180°﹣130°=50°;(3)∠5=180°﹣∠1﹣∠2=180°﹣90°﹣50°=40°.故答案为:∠3=130°,∠4=50°,∠5=40°54.∠1=180°﹣90°﹣65°=25°;∠2=180°﹣120°=60°.答:∠1的度数是25°;∠2的度数是60°.55.∠ADE=(180°﹣40°)÷2+40°,=140°÷2+40°,=70°+40°,=110°.答:∠ADE是110°.56.∠4=180°﹣∠1﹣(∠2+∠3),∠4=180°﹣38°﹣90°,∠4=52°;∠3=180°﹣90°﹣∠4,∠3=180°﹣90°﹣52°,∠3=38°.答:∠3是38°,∠4是52°57.因为∠1+∠3+∠4=180°,∠l=60°,∠3=50°,所以∠4=180°﹣60°﹣50°=70°;因为∠6=90°,所以∠2=90°﹣∠3,=90°﹣50°,=40°58.∠2+∠3=30°+90°=120°;∠1+∠2+∠3+∠4=360°;∠1+∠2+∠4=360°﹣90°=270°.故答案为:120°,270°,360°.59.(1)∠2=90°=50°=40°;∠3=180°﹣(40°+30°)=110°;(2)∠1=180°﹣120°=60°;∠2=180°﹣(60°+45°),=180°﹣105°,=75°;∠3=180°﹣75°=105°.故答案为:40°、110°;60°、75°、60.因为∠1+∠2=180°,∠1=75°,所以75°+∠2=180°,75°﹣75°+∠2=180°﹣75°,∠2=105°;因为∠1与∠3,∠2与∠4,分别是对顶角,所以∠1=∠3=75°,∠2=∠4=105°;(2)因为∠1+35°=180°,∠1+35°﹣35°=180°﹣35°,∠1=145°;因为∠2+30°=90°,∠2+30°﹣30°=90°﹣30°,∠2=60°;因为∠3是一个直角,所以∠3=90°;故答案为:(1)105°,75°,105°.(2)145°,60°,90°.。
角的计算专项练习60题(有答案)ok汇编
角的计算练习60题(附参考答案)1.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.2.已知∠1=35°,∠2= _________ .3.计算出下列各角的度数.4.算一算,下面是一个直角三角形.∠1= _________∠2= _________∠3= _________ .5.三角形ABC的一条高将∠BAC分成角度为42°和36°的两个角(如图).∠2和∠3分别是多少度?6.求下图中各角的度数.∠1= _________∠2= _________∠3= _________ .7.如图中,已知∠1=30°,∠2= _________ ,∠3= _________ .8.如图,∠1= _________ ,∠2= _________ ,∠3= _________ .9.求下面各个三角形中∠A的度数10.如图中,已知∠1=43°,∠2= _________ ,∠3= _________ .11.计算三角形中角的度数.∠1= _________ ,∠2= _________ ,∠3= _________ .12.算一算:∠1= _________ ;∠2= _________ ;∠3= _________ .13.算一算,这些角各是多少度.已知∠2=40°求得:∠1= _________ °,∠3= _________ °,∠4= _________ °.14.求出如图所示各角的度数.15.如图,已知∠l=20°,∠2=46°,求∠3的度数.16.如图所示,∠BOC=110°,∠AOB=∠DOC,∠AOB是几度?17.如图:∠1=48°;∠2= _________ .18.算一算.已知∠1=65°,求出:∠2、∠3、∠4的度数.19.求下面各角的度数.图1,∠1= _________ ∠2= _________图2,∠1= _________ .20.求下面各角的度数.已知∠1=30°,∠2=90°.∠3= _________ ;∠4= _________ ;∠5= _________ .21.∠1=32゜,∠2=36゜,∠3= _________ .22.如图已知∠1=35°,∠2= _________ ,∠3= _________ ,∠4= _________ .23.如图所示,已知∠1=30°.求:∠2、∠3和∠4的度数.24.已知∠1=25°,∠2= _________ °,∠3= _________ °,∠4= _________ °.25.算一算:∠1= _________ ;∠2= _________ ;∠3= _________ .26.角的计算(1)如图1所示,已知:∠1=72°,∠2=45°,求:∠AOB= _________ ?(2)如图2所示,已知:∠1=35°,求∠2= _________ ?27.用量角器量出图中∠2的度数,再求∠1、∠3和∠4的度数.28.如图,已知∠1=130°,求∠2、∠3的度数.29.如图中,∠AOB=14°,∠COB=∠COD,求∠COD.30.在直角∠AOB内有射线OC、OD.∠AOC=∠BOD=60°,求∠COD的大小.31.求下面各角的度数.∠A= _________ ∠B= _________ ∠B=∠C= _________ ∠C= _________ .32.(1)如图1,已知:∠1=45°,求:∠2(2)如图2,已知:∠1=90°,∠2=30°求:∠3等于多少度?(3)如图3,已知:∠1=135°求:∠2、∠3、∠4各等于多少度?33.如图,已知∠1=70°,∠2=25°,∠3=50°,求∠5=?34.如图是一张长方形纸折起来以后的图形,已知么∠2是 65°,∠1是多少度?35.已知∠1=28°求∠2、∠3、∠4和∠5各是多少度?36.算一算∠1=65°∠2= _________ ∠3= _________ ∠4= _________ ∠1+∠2+∠3+∠4= _________ .37.求角的度数.(1)AB=AC(如图1)∠1= _________∠2= _________(2)三角形ABC是等腰三角形(如图2)∠1= _________∠2= _________ .38.如图中∠1=30°,∠2= _________ ,∠3= _________ ,∠4= _________ ,∠5= _________ .39.如图所示,∠1=55.,请分别求出∠2、∠3、∠4的度数.40.图中,已知∠1=37°∠2= _________ ;∠3= _________ ;∠4= _________ .41.如图,已知∠1=40°,∠2= _________ ,∠3= _________ ,∠4= _________ ,∠3+∠4= _________42.图中∠1= _________ ,∠2= _________ ,∠3= _________ ,∠1+∠2= _________ .43.已知∠1=50°,求∠2=?∠3=?44.算一算.已知∠1=36°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5= _________ .45.图中,∠1=55°,∠2是直角,你能求∠3、∠4、∠5各是多少度吗?46.先量一量,再填空.①∠1= _________ ,是_________ 角;∠2= _________ ,是_________ 角;∠3= _________ ,是_________ 角.②画出∠1,使∠1=75°.47.算一算如图:已知∠1=35°∠3= _________ ∠4= _________∠2= _________ ∠1+∠2+∠3= _________ .48.如图1,已知∠1=40°,∠2= _________ ,∠3= _________ ,∠4= _________ .如图2,已知∠1=30°,∠2= _________ ,∠3= _________ ,∠4= _________ ,∠5=_________ .49.求各个角的度数.(1)图1中:已知∠1=60°∠2= _________∠3= _________∠4= _________∠5= _________(2)图2中:已知∠1=75°∠2= _________∠3= _________∠4= _________ .50.分别量出图中4个角的度数,再求出这4个角的和.∠1= _________ ;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠1+∠2+∠3+∠4= _________ .51.∠1= _________ ;∠2= _________ ;∠3= _________ .52.∠1= _________ ;∠2= _________ ;∠3= _________ .53.已知∠1=90°,∠2=50°,求∠3、∠4和∠5的度数.54.如图,求∠1和∠2的度数.55.已知:∠1=∠3,∠2=40°求:∠ADE=?56.在下面三角形中,∠1=38°,∠2+∠3=90°,求∠3和∠4各是多少度?57.在三角形ABC中,∠l=60°,∠3=50°,求∠2、∠4的度数.58.如图,已知:∠2=30°,∠3是直角,则∠2+∠3= _________ ,∠1+∠2+∠4= _________ ,∠1+∠2+∠3+∠4= _________ .59.求图中各角的度数.图1:∠2= _________ ∠3= _________ 图2:∠1= _________ ∠2= _________ ∠3= _________ .60.看图填数.①如图一,已知∠1=75°,那么∠2= _________ ∠3= _________ ∠4= _________ .②如图二,∠1= _________ ∠2= _________ ∠3= _________ .更多精品文档角的计算参考答案:1.设∠AOB=x,∠BOC=2x.则∠AOC=3x.又OD平分∠AOC,因为∠AOD=x.所以∠BOD=∠AOD﹣∠AOB=x﹣x=14°因为x=28°即∠AOB=28°.答:∠AOB的度数是28°2.∠2=180°﹣∠1,∠2=180°﹣35°,∠2=145°.故答案为:145°.3.(1)(180°﹣50°)÷2,=130°÷2,=65°.答:角的度数是65°.(2)180°﹣40°=140°.答:角的度数是140°4.∠2=90°﹣60°=30°;∠3=180°﹣50°=130°;∠1=180°﹣∠2﹣∠3=180°﹣30°﹣130°=20°.故答案为:20°;30°;130°5.在直角三角形ABD中,因为∠ADB=90°,所以∠2=180°﹣90°﹣42°,∠2=48°;在直角三角形ADC中,∠ADC=90°,所以∠3=180°﹣90°﹣36°,∠3=54°答:∠2和∠3分别是48°和54°.6.(1)∠1=180°﹣90°﹣25°=65°;(2)180°﹣25°﹣20°=135°;∠2=135°﹣90°=45°;(3)∠3=180°﹣∠1=180°﹣65°=115°.故答案为:65°,45°,115°7.∠1与∠2组成了一个平角,所以∠2=180°﹣30°=150°;∠1与∠3组成一个直角,所以∠3=90°﹣30°=60°;故答案为:150°;60°8.根据题干分析可得:∠1=180﹣90﹣45=45(度),∠3=180﹣45=135(度),∠2=180﹣135=45(度),故答案为:45°,45°,135°9.∠ABC=90°,∠ACB=60°.所以,∠BAC=90°﹣∠BAC=90°﹣60°=30°;∠A=180°﹣∠B﹣∠C=180°﹣135°﹣20°=25°10.(1)∠2=90°﹣∠1=90°﹣43°=47°;(2)∠3=180°﹣∠2=180°﹣47°=133°.故答案为:47°,133°11.(1)根据题干分析可得:∠2=65°;则∠1=180°﹣65°﹣65°=50°;(2)∠3=90°﹣41°=49°;故答案为:50°;65°;49°12.∠1=180°﹣45°﹣90°=45°;∠2=180°﹣45°=135°;∠3=180°﹣135°=45°.故答案为:45°;135°;45°.13.根据题干分析可得:∠1=90°﹣40°=50°;∠3=180°﹣40°=140°;∠4=180°﹣140°=40°;故答案为:50;140;40.14.∠A=180°﹣40°﹣85°=55°;∠B=180°﹣90°﹣35°=55°;∠C=180°﹣20°﹣47°=113°.如图所示:故答案为:55°、55°、113°15.∠4=180°﹣∠1﹣∠2,=180°﹣20°﹣46°,=114°,∠3=180°﹣∠4,=180°﹣114°,=66°.答:∠3是66°16.根据题干分析可得:(180﹣110)÷2,=70÷2,=35(度),答:∠AOB的度数是35度.17.∠2=90°﹣48°=42°,故答案为:42°18.∠1与∠3是对顶角,所以∠3也是65°;更多精品文档因为∠1与∠2组成了一个平角,∠2与∠4又是对顶角,所以∠2=∠4=180°﹣65°=115°,答:∠2=115°,∠3=65°,∠4=115°.19.(1)∠1=∠2=(180°﹣120°)÷2=30°;(2)90°﹣40°=50°;所以∠1=50°;故答案为:30°;30°;50°20.∠1和∠5组成了一个直角,所以∠5=90﹣30=60(度),∠5与∠4组成了一个平角,所以∠4=180﹣60=120(度);因为∠5与∠3是一组对顶角,所以∠3=∠5=60(度),故答案为:60°;120°;60°21.180°﹣32°﹣36°=112°;故答案为:112°22.∠2=90°﹣∠1=90°﹣35°=55°,∠3=180°﹣∠2=180°﹣55°=125°,∠4=180°﹣∠3=180°﹣125°=55°,故答案为:55°,125°,55°.23.∠2=90°﹣30°=60°,∠3=180°﹣60°=120°,∠4=180°﹣120°=60°.答:∠2的度数是60°,∠3的度数是120°,∠4的度数是60°24.∠2=180°﹣∠1=155°,∠3=180°﹣∠2=25°,∠4=180°﹣∠1=155°.故答案为:155,25,155.25.∠1=180°﹣35°=145°;∠2=180°﹣90°=90°;∠3=180°﹣125°=55°.故答案为:145°;90°;55°26.(1)∠AOB=∠1+∠2=72°+45°=117°;(2)∠2=180°﹣90°﹣∠1=55°.故答案为:117°;55°.27.经测量可得∠2=35°,则∠1=90°﹣35°=55°,∠3=180°﹣35°=145°,∠4=180°﹣145°=35°.答:∠1的度数是55°,∠3的度数是145°,∠4的度数是35°28.∠2=180°﹣∠1=180°﹣130°=50°;∠3=90°﹣∠2=90°﹣50°=40°;答:∠2是50度,∠3是40度.29.(90°﹣14°)÷2,=76°÷2,=38°;答:∠COD=38°30.∠COD=∠AOC+∠BOD﹣∠AOB,=60°+60°﹣90°,=30°.答:∠COD的大小是30°.31.(1)∠A=90°﹣34°=56°;(2)∠C=180°﹣90°﹣18°=72°,∠B=180°﹣60°﹣72°=48°;(3)∠B=∠C=(180°﹣48°)÷2=66°;(4)∠A=180°﹣119°=61°,∠C=90°﹣61°=29°.故答案为:56°;48°;66°;29°32.(1)∠2=180°﹣∠1=180°﹣45°=135°.(2)∠3=180°﹣∠1﹣∠2=180﹣90°﹣30°=60°.(3)∠3=180°﹣∠1=180°﹣135°=45°,∠4=180°﹣∠1=180°﹣135°=45°,∠2=180°﹣∠3=180°﹣45°=135°33.在小三角形里最大的角=180°﹣∠2﹣∠3=105°,∠4=180°﹣105°=75°,∠5=180°﹣∠1﹣∠4,=180°﹣70°﹣75°,=35°.答:∠5是35°34.180°﹣65°×2=180°﹣130°=50°.答:∠1是50度.35.∠4=90°,∠5=90°﹣∠1=90°﹣28°=62°,∠2=180°﹣∠1=180°﹣28°=152°,∠3=180°﹣∠2=180°﹣152°=28°;答:∠2=152°,∠3=28°,∠4=90°,∠5=62°.36.(1))∠2=90°﹣∠1,=90°﹣65°,=25°;(2))∠3=180°﹣∠2,=180°﹣25°,=155°;(3))∠4=180°﹣∠3,=180°﹣155°,=25°;(4))∠1+∠2+∠3+∠4=360°﹣90°,=270°.或∠1+∠2+∠3+∠4=65°+25°+155°+25°=270°.故答案为:25°;155°;25°;270°37.(1)∠C=180°﹣120°=60°,∠1=90°﹣∠C=90°﹣60°=30°;∠2=180°﹣60°×2=60°;(2)∠1=90°﹣60°=30°;∠2=180°﹣∠1×2﹣90°,=180°﹣30°×2﹣90°,=30°.故答案为:(1)30°,60°;更多精品文档(2)30°,30°38.根据题干分析可得:∠3=90°;∠2=90°﹣30°=60°;∠4=∠1=30°;∠5=180°﹣30°=150°;故答案为:60°;90°;30°;15039.如图:∠4=90°﹣∠1,=90°﹣55°,=35°,∠3=180°﹣∠4﹣∠5,=180°﹣35°﹣90°,=55°,∠2=180°﹣∠3,=180°﹣55°,=125°,答:∠2是125°、∠3是55°、∠4是35°40.∠2=90°﹣∠1=90°﹣37°=53°,∠3=180°﹣∠2=180°﹣53°=127°,∠4=180°﹣∠3=180°﹣127°=53°故答案为:53°,127°,53°41.∠2=∠4=180°﹣40°=140°,∠3=180°﹣∠2=40°,∠3+∠4=180°.故答案为:140°,40°,140°,180°42.∠1=90﹣50=40(度);∠2=90﹣40=50(度);∠3=180﹣50=130(度);∠1+∠2=90(度);故答案为:40°;50°;130°;90°43.∠2=180°﹣50°=130°,∠3=180°﹣90°=90°.答:∠2=130°,∠3=90°.44.根据题干分析可得:∠3是直角,是90°;∠2=90°﹣36°=54°;∠4=90°﹣54°=36°;∠5=180°﹣36°=144°,故答案为:54°;90°;36°;144°45.∠3=90°﹣55°=35°,∠5=180°﹣55°=125°,∠4=180°﹣125°=55°.答:∠3=35°、∠4=55°、∠5=125°46.(1)经过测量可知∠1=50°,是锐角,∠2=40°,是锐角,∠3=120°,是钝角;(2)根据分析画图如下:故答案为:50°;锐;4°;锐;120°;钝47.∠2=180°﹣∠1=180°﹣35°=145°,∠3=180°﹣∠2=180°﹣145°=35°,∠4=90°,∠1+∠2+∠3=35°+145°+35°=215°.故答案为:35°,90°,145°,215°48.图一:因为,∠1=40°.所以,∠2=180°﹣40°=140°;∠3=180°﹣140°=40°;∠4=180°﹣40°=140°;图二:因为,∠1=30°.所以,∠2=90°﹣30°=60°;∠3=90°;∠4=180°﹣60°﹣90°=30°;∠5=180°﹣30°=150°;故答案为:140°,40°,140°,60°,90°,30°,150°49.(1)因为∠2=90°,平角=180°,所以,∠3=180°﹣∠1﹣∠2=180°﹣90°﹣60°=30°;∠5=180°﹣∠1=180°﹣60°=120°;∠4=180°﹣∠5=180°﹣120°=60°;(2)因为∠1=75°,平角=180°,所以,∠2=180°﹣∠1=180°﹣75°=105°;∠4=180°﹣∠1=180°﹣75°=105°;∠3=180°﹣∠4=180°﹣105°=75°;故答案为:90°,30°,60°,120°,105°,75°,105°50.测量可得图中∠1=90°,∠2=45°,∠3=90°,∠4=135°.∠1+∠2+∠3+∠4=90°+45°+90°+135°=360°.故答案为:90°,45°,90°,135°.360°51.观察图形可知:∠3=90°;∠1=180﹣35=145(度);∠2=90﹣30=60(度);故答案为:145°;60°;90°52.因为∠1是等腰直角三角形底角,所以∠1=90°÷2=45°;因为正方形的两条对角线互相垂直,所以∠2=∠3=90°.故答案为:45°;90°;90°更多精品文档53.(1)∠3=180°﹣∠2=180°﹣50°=130°;(2)∠4=180°﹣∠3=180°﹣130°=50°;(3)∠5=180°﹣∠1﹣∠2=180°﹣90°﹣50°=40°.故答案为:∠3=130°,∠4=50°,∠5=40°54.∠1=180°﹣90°﹣65°=25°;∠2=180°﹣120°=60°.答:∠1的度数是25°;∠2的度数是60°.55.∠ADE=(180°﹣40°)÷2+40°,=140°÷2+40°,=70°+40°,=110°.答:∠ADE是110°.56.∠4=180°﹣∠1﹣(∠2+∠3),∠4=180°﹣38°﹣90°,∠4=52°;∠3=180°﹣90°﹣∠4,∠3=180°﹣90°﹣52°,∠3=38°.答:∠3是38°,∠4是52°57.因为∠1+∠3+∠4=180°,∠l=60°,∠3=50°,所以∠4=180°﹣60°﹣50°=70°;因为∠6=90°,所以∠2=90°﹣∠3,=90°﹣50°,=40°58.∠2+∠3=30°+90°=120°;∠1+∠2+∠3+∠4=360°;∠1+∠2+∠4=360°﹣90°=270°.故答案为:120°,270°,360°.59.(1)∠2=90°=50°=40°;∠3=180°﹣(40°+30°)=110°;(2)∠1=180°﹣120°=60°;∠2=180°﹣(60°+45°),=180°﹣105°,=75°;∠3=180°﹣75°=105°.故答案为:40°、110°;60°、75°、60.因为∠1+∠2=180°,∠1=75°,所以75°+∠2=180°,75°﹣75°+∠2=180°﹣75°,∠2=105°;因为∠1与∠3,∠2与∠4,分别是对顶角,所以∠1=∠3=75°,∠2=∠4=105°;(2)因为∠1+35°=180°,∠1+35°﹣35°=180°﹣35°,∠1=145°;因为∠2+30°=90°,∠2+30°﹣30°=90°﹣30°,∠2=60°;因为∠3是一个直角,所以∠3=90°;故答案为:(1)105°,75°,105°.(2)145°,60°,90°.更多精品文档。
数学角练习题
数学角练习题角是数学中常见的概念,在几何学和三角学等学科中有着重要的应用。
掌握角的性质和计算方法对于解决各种几何问题至关重要。
以下是一些数学角练习题,帮助你巩固对角的理解和运用。
题1:在直角三角形ABC中,角A是直角,角B的度数是30°,求角C的度数。
解析:由于角A是直角,角B的度数是30°,那么角C的度数可以通过计算角的和为180°来获得。
即180° - 90° - 30° = 60°。
所以,角C的度数是60°。
题2:已知正方形ABCD的边长为a,在该正方形内有一点E,连接DE,使得∠BED = 45°。
请计算角DAE的度数。
解析:由于正方形ABCD的边长为a,所以角BAD的度数为90°。
又∠BED = 45°,根据角的性质,角DAE的度数为90° - 45° = 45°。
题3:在平行四边形ABCD中,角A的度数是x°,角D的度数是y°,角C的度数是60°,求角B的度数。
解析:由于平行四边形的对边对角相等,所以角A的度数是x°,角D的度数是y°。
又角A + 角B = 180°(平行四边形的性质),角B +角C = 180°(平行四边形的性质)。
将已知条件代入方程,可得 x° + y°= 180° - 60°。
化简得 x° + y° = 120°。
所以,角B的度数是120°。
题4:在三角形ABC中,已知角A的度数是60°,角B的度数是30°,边AC的长度为3 cm。
求边BC的长度。
解析:根据三角形的角度和为180°,可以计算得到角C的度数为90°(180° - 60° - 30°)。
角度计算的综合大题专项训练(30道)(含答案)
专题11.7 角度计算的综合大题专项训练(30道)考卷信息:本套训练卷共30题,培优篇15题,拔尖篇15题,题型针对性较高,覆盖面广,选题有深度,渗透角度计算由一般到特殊的思想!1.(2021春•平顶山期末)如图,已知△ABC,AD平分∠BAC交BC于点D,AE⊥BC于点E,∠B<∠C.(1)若∠B=44°,∠C=72°,求∠DAE的度数;(2)若∠B=27°,当∠DAE=21度时,∠ADC=∠C.【解题思路】(1)利用三角形的内角和求出∠BAC,再利用内角与外角的关系先求出∠ADC,再求出∠DAE;(2)利用三角形的内角和定理及推论,用含∠C的代数式表示出∠BAC、∠ADC,根据∠C=∠ADC得到关于∠C的方程,先求出∠C,再求出∠DAE的度数.【解答过程】解:∵AD平分∠BAC交BC于点D,AE⊥BC于点E,∴∠BAD=∠CAD=12∠BAC,∠AED=90°.(1)∵∠B=44°,∠C=72°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣44°﹣72°=64°.∴∠BAD=12×64°=32°.∵∠ADC=∠B+∠BAD =44°+32°=76°,∴∠DAE=90°﹣∠ADC=90°﹣76°=24°.(2))∵∠B=27°,∠C=∠ADC,∴∠BAC=180°﹣∠B﹣∠C=180°﹣27°﹣∠C=153°﹣∠C.∴∠BAD=12×(153°﹣∠C)=76.5°−12∠C.∴∠ADC=∠B+∠BAD=27°+76.5°−12∠C=103.5°−12∠C.∵∠ADC=∠C,∴103.5°−12∠C=∠C.∴∠ADC=∠C=69°.∴∠DAE=∠AED﹣∠ADC=90°﹣69°=21°.故答案为:21.2.(2021春•长春期末)如图,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,BC延长线交OM于点G.解决问题:(1)若∠OBA=80°,∠OAB=40°,则∠ACG=60°;(直接写出答案)(2)若∠MON=100°,求出∠ACG的度数.【解题思路】(1)由角平分线的定义可求出∠CBA和∠CAB的度数,再根据三角形外角的性质求出∠ACG的度数即可;(2)先根据三角形内角和定理求出∠OBA+∠OAB的度数,然后再根据角平分线的定义求出∠CBA+∠CAB的度数,最后根据三角形外角的性质求出结果即可.【解答过程】解:(1)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∵∠OBA=80°,∠OAB=40°,∴∠CBA=40°,∠CAB=20°,∴∠ACG=∠CBA+∠CAB=60°.故答案为:60°.(2)∵∠MON=100°,∴∠BAO+∠ABO=180°﹣100°=80°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=12×80°=40°,∴∠ACG=∠CBA+∠CAB=40°.3.(2021春•兴化市期末)如图,在△ABC中,∠ACB=90°,AE平分∠CAB,CD⊥AB,AE、CD相交于点F.(1)若∠DCB=50°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.【解题思路】(1)根据直角三角形的性质得到∠DCB+∠B=90°,∠CAB+∠B=90°,进而得到∠CAB =∠DCB,根据角平分线的定义计算即可;(2)根据角平分线的定义得到∠BAE=∠CAE,根据直角三角形的性质得到∠CEF=∠AFD,根据对顶角相等证明结论.【解答过程】(1)解:∵CD⊥AB,∴∠DCB+∠B=90°,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠CAB=∠DCB=50°,∵AE平分∠CAB,∴∠CAE=12∠CAB=25°,∴∠CEF=90°﹣∠CAE=65°;(2)证明:∵AE平分∠CAB,∴∠BAE=∠CAE,∵∠CAE+∠CEF=90°,∠BAE+∠AFD=90°,∴∠CEF=∠AFD,∵∠CFE=∠AFD,∴∠CEF=∠CFE.4.(2021春•海陵区期末)如图,CD是△ABC的角平分线,DE∥BC,交AB于点E.(1)若∠A=45°,∠BDC=70°,求∠CED的度数;(2)若∠A﹣∠ACD=34°,∠EDB=97°,求∠A的度数.【解题思路】(1)利用三角形内角和定理求出∠ACB,再求出∠ECD,∠EDC,可得结论.(2)设∠A=x,则∠ACD=x﹣34°,根据∠EDB=∠A+∠AED,构建方程求解即可.【解答过程】解:(1)∵∠CDB=∠A+∠ACD,∴∠ACD=70°﹣45°=25°,∵CD平分∠ACB,∴∠DCB=∠ACB=25°,∵DE∥CB,∴∠EDC=∠BCD=25°,∴∠DEC=180°﹣25°﹣25°=130°.(2)设∠A=x,则∠ACD=x﹣34°,∵CD平分∠ACB,∴∠ACB=2x﹣68°,∵DE∥CB,∴∠AED=∠ACB=2x+68°,∵∠EDB=∠A+∠AED,∴97°=x+2x﹣68°,∴x=55°,∴∠A=55°.5.(2021春•宽城区期末)如图,在△ABC中,点E是边AC上一点,∠AEB=∠ABC.(1)如图1,作∠BAC的平分线交CB、BE于D、F两点.求证:∠EFD=∠ADC.(2)如图2,作△ABC的外角∠BAG的平分线,交CB的延长线于点D,延长BE、DA交于点F,试探究(1)中的结论是否成立?请说明理由.【解题思路】(1)首先根据角平分线的性质可得∠BAD=∠DAC,再根据内角与外角的性质可得∠EFD =∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,进而得到∠EFD=∠ADC;(2)首先根据角平分线的性质可得∠BAD=∠DAG,再根据等量代换可得∠F AE=∠BAD,然后再根据内角与外角的性质可得∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,进而得∠EFD=∠ADC.【解答过程】解:(1)∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC;(2)探究(1)中结论仍成立;理由:∵AD平分∠BAG,∴∠BAD=∠GAD,∵∠F AE=∠GAD,∴∠F AE=∠BAD,∵∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.6.(2021春•镇江期中)如图,将一张三角形纸片ABC的一角折叠,使得点A落在四边形BCDE的外部A'的位置,且A'与点C在直线AB的异侧,折痕为DE,已知∠C=90°,∠A=30°.(1)求∠1﹣∠2的度数;(2)若保持△A′DE的一边与BC平行,求∠ADE的度数.【解题思路】(1)先求出∠B的度数,在根据四边形内角和求出∠1+∠BFD的度数,由∠BFD=∠A′FE和∠A’的度数可求出答案.(2)分EA'∥BC和DA'∥BC两种情况讨论.当DA'∥BC时,先求出∠A′DA=90°,再根据折叠可得出∠ADE=45°;当EA'∥BC时,根据平行线的性质求出∠2=∠ABC=60°,由(1)得出∠1=120°,再根据折叠可求出∠ADE的度数.【解答过程】解:(1)由折叠可知,∠A′=∠A=30°,在△A′EF中,∠A′+∠2+∠A′FE=180°,∴∠2=180°﹣∠A′﹣∠A′FE=150°﹣∠A′FE,在△ABC中,∠B=180°﹣∠C﹣∠A=60°,在四边形BCDF中,∠1+∠C+∠B+∠BFD=360°,∴∠1=360°﹣∠C﹣∠B﹣∠BFD=210°﹣∠BFD,∵∠BFD=∠A′FE,∴∠1﹣∠2=210°﹣150°=60°;(2)当DA'∥BC时,如图,∠A′DA=∠ACB=90°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=45°,当EA'∥BC时,如图,∠2=∠ABC=60°.由(1)知,∠1﹣∠2=60°,∴∠1=∠2+60°=120°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=(180°﹣∠1)=30°.综上所述∠ADE的度数为:45°或30°.7.(2021春•常熟市期中)已知△ABC中,AD⊥BC于点D,AE平分∠BAC,过点A作直线GH∥BC,且∠GAB=60°,∠C=40°.(1)求△ABC的外角∠CAF的度数;(2)求∠DAE的度数.【解题思路】(1)根据平行线的性质、对顶角相等计算即可;(2)根据角平分线的定义得到∠BAE=40°,根据平行线的性质求出∠GAD=90°,结合图形计算,得到答案.【解答过程】解:(1)∵GH∥BC,∠C=40°,∴∠HAC=∠C=40°,∵∠F AH=∠GAB=60°,∴∠CAF=∠HAC+∠F AH=100°;(2)∵∠HAC=40°,∠GAB=60°,∴∠BAC=80°,∵AE平分∠BAC,∴∠BAE=40°,∵GH∥BC,AD⊥BC,∴∠GAD=90°,∴∠BAD=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=10°.8.(2020秋•红桥区期末)如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的大小.【解题思路】根据三角形高线可得∠ADC=90°,利用三角形的内角和定理可求解∠DAC的度数;由三角形的内角和可求解∠B的度数,再根据角平分线的定义可求出∠BAO和∠ABO的度数,再利用三角形的内角和定理可求解.【解答过程】解:∵AD是△ABC的高线,∴∠ADC=90°,∵∠ADC+∠C+∠CAD=180°,∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠ABC+∠C+∠CAB=180°,∠C=70°,∠BAC=50°,∴∠ABC=180°﹣70°﹣50°=60°,∵AE,BF分别平分∠BAC,∠ABC,AE,BF相交于点O,∴∠BAO=12∠BAC=25°,∠ABO=12∠ABC=30°,∵∠ABO+∠BAO+∠AOB=180°,∴∠AOB=180°﹣25°﹣30°=125°.9.(2020秋•涪城区期末)如图,在△ABC中,∠1=∠2=∠3.(1)证明:∠BAC=∠DEF;(2)∠BAC=70°,∠DFE=50°,求∠ABC的度数.【解题思路】(1)利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质解决问题即可.【解答过程】(1)证明:∵∠BAC=∠1+∠CAE,∠DEF=∠3+∠CAE,∠1=∠3,∴∠BAC=∠DEF.(2)∵∠ABC=∠2+∠ABD,∠1=∠2,∴∠ABC=∠1+∠ABD=∠EDF,由(1)可知∠DEF=∠BAC=70°,∴∠ABC=∠1+∠ABD=∠EDF=180°﹣∠DEF﹣∠DFE=180°﹣70°﹣50°=60°,∴∠ABC=60°.10.(2021春•苏州期末)如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD 于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.【解题思路】(1)由角平分线定义得∠ABE=∠CBE,再根据三角形的外角性质得∠AEF=∠AFE;(2)由角平分线定义得∠AFE=∠GFE,进而得∠AEF=∠GFE,由平行线的判定得FG∥AC,再根据平行线的性质求得结果.【解答过程】解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.11.(2020秋•恩施市期末)已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.【解题思路】(1)根据三角形的外角性质即可得出结论;(2)根据三角形内角和和互余进行分析解答即可.【解答过程】解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°.12.(2020秋•白银期末)(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.【解题思路】(1)作射线OA,由三角形外角的性质可知∠1+∠B=∠3,∠2+∠C=∠4,两式相加即可得出结论;(2)连接AD,由(1)的结论可知∠F+∠2+∠3=∠DEF,∠1+∠4+∠C=∠ABC,两式相加即可得出结论.【解答过程】解:(1)作射线OA,∵∠3是△ABO的外角,∴∠1+∠B=∠3,①∵∠4是△AOC的外角,∴∠2+∠C=∠4,②①+②得,∠1+∠B+∠2+∠C=∠3+∠4,即∠BOC=∠A+∠B+∠C;(2)连接AD,同(1)可得,∠F+∠2+∠3=∠DEF③,∠1+∠4+∠C=∠ABC④,③+④得,∠F+∠2+∠3+∠1+∠4+∠C=∠DEF+∠ABC=130°+100°=230°,即∠A+∠C+∠D+∠F=230°.13.(2021春•新蔡县期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.【解题思路】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答过程】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.14.(2020春•香坊区校级月考)如图,在△ABC中,∠C=40°,AE、BF分别为△ABC的角平分线,它们相交于点O.(1)求∠EOF的度数.(2)AD是△ABC的高,∠AFB=80°时,求∠DAE的度数.【解题思路】(1)先根据三角形内角和定理得∠C=180°﹣(∠BAC+∠ABC)的度数,由角平分线的定义和三角形内角和定理可得结论;(2)先根据垂直的定义及三角形内角和可得到∠CAD的度数,再求出∠1的度数,最后根据三角形内角和即可求解.【解答过程】解:(1)∵∠CAB+∠ABC=180°﹣∠C,∵AE、BF是角平分线,∴∠EAB=12∠BAC,∠FBA=12∠ABC,∴∠EAB+∠FBA=12(∠BAC+∠ABC)=12(180°﹣∠C)=90°−12∠C,∴∠AOB=180°﹣(90°−12∠C)=90°+12∠C,∵∠C=40°,∴∠AOB=110°,∴∠EOF=∠AOB=110°.(2)∵AD⊥BC,∠C=40°,∴∠CAD=50°,∵∠AFB=80°,∴∠1=180°﹣50°﹣80°=50°,∴∠DAE=180°﹣∠1﹣∠AOB=180°﹣50°﹣110°=20°.15.(2021春•海陵区校级月考)如图1,△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)如图1,∠B=30°,∠ACB=70°,求∠CFE的度数;(2)若(1)中的∠B=α,∠ACB=β(α<β),则∠CFE=12β−12α;(用α、β表示)(3)如图2,(2)中的结论还成立么?请说明理由.【解题思路】(1)求∠CFE的度数,求出∠DAE的度数即可,只要求出∠BAE﹣∠BAD的度数,由平分和垂直易得∠BAE和∠BAD的度数即可;(2)由(1)类推得出答案即可;(3)类比以上思路,把问题转换为∠CFE=90°﹣∠ECF即可解决问题.【解答过程】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∠B=α,∠ACB=β,∴∠CFE=∠DAE=20°;(2)∵∠BAE=90°﹣∠B,∠BAD=12∠BAC=12(180°﹣∠B﹣∠ACB),∵CF ∥AD ,∴∠CFE =∠DAE =∠BAE ﹣∠BAD =90°﹣∠B −12(180°﹣∠B ﹣∠BCA )=12(∠ACB ﹣∠B )=12β−12α, 故答案为:12β−12α; (3)(2)中的结论成立.∵∠B =α,∠ACB =β,∴∠BAC =180°﹣α﹣β,∵AD 平分∠BAC ,∴∠DAC =12∠BAC =90°−12α−12β,∵CF ∥AD ,∴∠ACF =∠DAC =90°−12α−12β,∴∠BCF =β+90°−12α−12β=90°−12α+12β,∴∠ECF =180°﹣∠BCF =90°+12α−12β,∵AE ⊥BC ,∴∠FEC =90°,∴∠CFE =90°﹣∠ECF =12β−12α.16.(2021春•市北区期末)阅读并填空将三角尺(△MPN ,∠MPN =90°)放置在△ABC 上(点P 在△ABC 内),如图1所示,三角尺的两边PM 、PN 恰好经过点B 和点C .我们来探究:∠ABP 与∠ACP 是否存在某种数量关系.(1)特例探索:若∠A =50°,则∠PBC +∠PCB = 90 度;∠ABP +∠ACP = 40 度;(2)类比探索:∠ABP、∠ACP、∠A的关系是∠ABP+∠ACP=90°﹣∠A;(3)变式探索:如图2所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是∠ACP﹣∠ABP=90°﹣∠A.【解题思路】(1)利用三角形内角和定理即可解决问题.(2)结论:∠ABP+∠ACP=90°﹣∠A.利用三角形内角和定理即可证明.(3)不成立;存在结论:∠ACP﹣∠ABP=90°﹣∠A.利用三角形内角和定理即可解决问题.【解答过程】解:(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP+∠ACP=130°﹣90°=40°,故答案为:90,40;(2)结论:∠ABP+∠ACP=90°﹣∠A.证明:∵(∠PBC+∠PCB)+(∠ABP+∠ACP)+∠A=180°,∴90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°﹣∠A.故答案为:∠ABP+∠ACP=90°﹣∠A;(3)结论:∠ACP﹣∠ABP=90°﹣∠A,理由是:设AB交PC于O,如图2:∵∠AOC=∠POB,∴∠ACO+∠A=∠P+∠PBO,即∠ACP+∠A=90°+∠ABP,∴∠ACP﹣∠ABP=90°﹣∠A,故答案为:∠ACP﹣∠ABP=90°﹣∠A.17.(2021春•东海县期末)如图1.△ABC的外角平分线BF、CF交于点F.(1)若∠A=50°.则∠F的度数为65°;(2)如图2,过点F作直线MN∥BC,交AB,AC延长线于点M、N.若设∠MFB=α,∠NFC=β,则∠A与a+β满足的数量关系是α+β−12∠A=90°;(3)在(2)的条件下,将直线MN绕点F转动.①如图3,当直线MN与线段BC没有交点时,试探索∠A与α,β之间满足的数量关系,并说明理由;②当直线MN与线段BC有交点时,试问①中∠A与α,β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出三者之间满足的数量关系.【解题思路】(1)根据三角形内角和定理以及角平分线的定义,即可得到∠F的度数;(2)根据三角形内角和定理以及角平分线的定义,即可得到∠BFC的度数,再根据平行线的性质,即可得到∠A与α+β的数量关系;(3)①根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系;②分两种情况进行讨论,根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系.【解答过程】解:(1)如图1,∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠DBC﹣∠ECB=360°﹣130°=230°,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECD)=12×230°=115°,∴△BCF中∠F=180°﹣115°=65°,故答案为65°;(2)如图2,∵∠ABC+∠ACB=180°﹣∠A,∴∠DBC+∠ECB=360°﹣(180°﹣∠A)=180°+∠A,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECB)=12×(180°+∠A)=90°+12∠A,∴△BCF中,∠BFC=180°﹣(90°+12∠A)=90°−12∠A,又∵∠MFB=α,∠NFC=β,MN∥BC,∴∠FBC=α,∠FCB=β,∵△BCF中,∠FBC+∠FCB+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,故答案为:α+β−12∠A=90°;(3)①α+β−12∠A=90°,理由如下:如图3,由(2)可得,∠BFC=90°−12∠A,∵∠MFB+∠NFC+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,②当直线MN与线段BC有交点时,①中∠A与α,β之间的数量关系不成立,分两种情况:如图4,当M在线段AB上,N在AC延长线上时,由(2)可得,∠BFC=90°−12∠A,∵∠BFC﹣∠MFB+∠NFC=180°,∴90°−12∠A﹣α+β=180°,即β﹣α−12∠A=90°;如图5,当M在AB的延长线上,N在线段AC上时,由(2)可得,∠BFC=90°−12∠A,∴∠BFC﹣∠NFC+∠MFB=180°,∴90°−12∠A﹣β+α=180°,即α﹣β−12∠A=90°;综上所述,∠A与α,β之间的数量关系为β﹣α−12∠A=90°或α﹣β−12∠A=90°.18.(2021春•宽城区期末)在△ABC中,∠ACB=90°,点D、E分别是边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)如图1,点P在斜边AB上运动.①若∠α=70°,则∠1+∠2=160度.②写出∠α、∠1、∠2之间的关系,并说明理由.(2)如图2,点P在斜边AB的延长线上运动(CE<CD),BE、PD交于点F,试说明∠1﹣∠2=90°+∠α.(3)如图3,点P在△ABC外运动(只需研究图③的情形),直接写出∠α、∠1、∠2之间的关系.【解题思路】(1)①求出∠CEP+∠CDP,可得结论.②结论:∠1+∠2=90°+∠α.连接PC,利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质以及三角形内角和定理证明即可.(3)利用基本结论∠C+∠3=∠P+∠4,构建关系式,可得结论.【解答过程】解:(1)①∵∠C=90°,α=70°,∴∠CEP+∠CDP=360°﹣(90°+70°)=200°,∴∠1+∠2=360°﹣200°=160°,故答案为:160.②结论:∠1+∠2=90°+∠α.理由:如图1中,连结CP.∵∠1=∠DCP+∠CPD,∠2=∠ECP+∠CPE,∴∠1+∠2=∠DCP+∠CPD+∠ECP+∠CPE,∵∠DCP+∠ECP=∠ACB=90°,∠CPD+∠CPE=∠DPE=∠α,∴∠1+∠2=90°+∠α.(2)如图2中,∵∠1=∠ACB+∠CFD,∠CFD=∠2+∠α,∴∠1=∠ACB+∠2+∠α.∵∠ACB=90°,∴∠1=90°+∠2+∠α.∴∠1﹣∠2=90°+∠α.(3)结论:∠2﹣∠1=90°﹣∠α.理由:如图3中,∵∠C+∠3=∠P+∠4,∠C=90°,∠P=α,∴90°+(180°﹣∠2)=α+(180°﹣∠1),∴∠2﹣∠1=90°﹣∠α.19.(2021春•延庆区期末)在三角形ABC中,点D在线段AC上,ED∥BC交AB于点E,点F在线段AB上(点F不与点A,E,B重合),连接DF,过点F作FG⊥FD交射线CB于点G.(1)如图1,点F在线段BE上,用等式表示∠EDF与∠BGF的数量关系,并证明;(2)如图2,点F在线段BE上,求证:∠ABC+∠BFG﹣∠EDF=90°;(3)当点F在线段AE上时,依题意,在图3中补全图形,请直接用等式表示∠EDF与∠BGF的数量关系,不需证明.【解题思路】(1)结论:∠EDF+∠BGF=90°.如图1中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(2)如图2中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(3)作出图形,利用平行线的性质求解即可.【解答过程】(1)解:结论:∠EDF+∠BGF=90°.理由:如图1中,过点F作FH∥BC交AC于点H.∵ED∥BC,∴ED∥FH.∴∠EDF=∠1.∵FH∥BC,∴∠BGF=∠2.∵FG⊥FD,∴∠DFG=90°.∴∠1+∠2=90°.∴∠EDF+∠BGF=90°.(2)证明:如图2中,过点F作FH∥BC交AC于点H.∴∠ABC=∠AFH.∴∠ABC=∠1+∠3.∴∠3=∠ABC﹣∠1.∵∠EDF=∠1,∴∠3=∠ABC﹣∠EDF.∵FG⊥FD,∴∠DFG=90°.∴∠BFG+∠3=90°.∴∠3=90°﹣∠BFG.∴90°﹣∠BFG=∠ABC﹣∠EDF.∴∠ABC+∠BFG﹣∠EDF=90°.(3)解:结论:∠BGF﹣∠EDF=90°.理由:设DE 交FG 于J .∵DE ∥BC ,∴∠BGF =∠FJE ,∵∠FJE =∠DEJ +∠EDF ,∠DEJ =90°,∴∠BGF ﹣∠EDF =90°20.(2021春•中山市期末)同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC 的平分线与∠EGC 的平分线相交于点Q ,求∠FQG 的大小;(3)如图3,点P 是线段AD 上的动点(不与A ,D 重合),连接PF 、PG ,∠DFP+∠FPG ∠EGP 的值是否变化?如果不变,请求出比值;如果变化,请说明理由.【解题思路】(1)如图1,延长AM 交EG 于M .由题意知:DF ∥EG ,∠ACB =90°,故∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.进而推断出∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°,得∠1=∠GNC ,∠CGN +∠GNC =90°,故∠1+∠CGN =90°.因为∠DFC 的平分线与∠EGC 的平分线相交于点Q ,所以∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1,∠GQC =90°−12∠CGN .那么,∠FQG =360°﹣∠QFC ﹣∠QGC﹣∠ACB =135°.(3)由题意知:DF ∥EG ,得∠FOG =∠EGO ,故∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1.【解答过程】解:(1)如图1,延长AM 交EG 于M .∠β+∠α=90°,理由如下:由题意知:DF ∥EG ,∠ACB =90°.∴∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.∵∠EGB 和∠CGM 是 对顶角,∴∠β=∠CGM .∴∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°.∴∠1=∠GNC ,∠CGN +∠GNC =90°.∴∠1+∠CGN =90°.∵QF 平分∠DFC ,∴∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1.同理可得:∠GQC =90°−12∠CGN .∵四边形QFCG 的内角和等于360°.∴∠FQG =360°﹣∠QFC ﹣∠QGC ﹣∠ACB =360°﹣(90°−12∠1)﹣(90°−12∠CGN )﹣90°. ∴∠FQG =135°.(3)如图3,由题意知:DF ∥EG .∴∠FOG =∠EGO .∴∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1. ∴∠DFP+∠FPG ∠EGP 的值不变.21.(2021春•禅城区期末)△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,求∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 与∠B 、∠C 的数量关系;(3)拓展:如图3,四边形ABDC 中,AE 是∠BAC 的角平分线,DA 是∠BDC 的角平分线,猜想:∠DAE 与∠B 、∠C 的数量关系是否改变.说明理由.【解题思路】(1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据角平分线的定义得到∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),求得∠MAD=∠ADN,根据角的和差即可得到结论.【解答过程】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE=12∠BAC﹣(90°﹣∠C)=12(180°﹣∠B﹣∠C)﹣90°+∠C=12∠C−12∠B,即∠DAE=12∠C−12∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN=12(∠ACB﹣∠ABC)+12(∠BCD﹣∠CBD)=12(∠ACD﹣∠ABD).22.(2021春•侯马市期末)(1)已知:如图①的图形我们把它称为“8字形”,试说明:∠A+∠B=∠C+∠D.(2)如图②,AP,CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=90°+12(∠B+∠D);(4)如图(4),直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=180°−12(∠B+∠D).【解题思路】(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠P AD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)根据四边形的内角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解.【解答过程】解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)∵AP,CP分别平分∠BAD,∠BCD,∴∠BAP=∠P AD,∠BCP=∠PCD,由(1)的结论得,∠P+∠BCP=∠ABC+∠BAP,①,∠P+∠P AD=∠ADC+∠PCD②,①+②得,2∠P+∠BCP+∠P AD=∠BAP+∠PCD+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∵∠ABC=36°,∠ADC=16°,∴∠P=26°.(3)∵直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠P AB=∠P AD,∠PCB=∠PCE,∴2∠P AB+∠B=180°﹣2∠PCB+∠D,∴180°﹣2(∠P AB+∠PCB)+∠D=∠B,∵∠P+∠P AD=∠PCB+∠AOC=∠PCB+∠B+2∠P AD,∴∠P=∠P AD+∠B+∠PCB=∠P AB+∠B+∠PCB,∴∠P AB+∠PCB=∠P﹣∠B,∴180°﹣2(∠P﹣∠B)+∠D=∠B,即∠P=90°+12(∠B+∠D).故答案为:∠P=90°+12(∠B+∠D).(4)∵直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∴∠F AP=∠P AO,∠PCE=∠PCB,在四边形APCB中,(180°﹣∠F AP)+∠P+∠PCB+∠B=360°①,在四边形APCD中,∠P AD+∠P+(180°﹣∠PCE)+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,∴∠P=180°−12(∠B+∠D).故答案为:∠P=180°−12(∠B+∠D).23.(2020春•西城区校级期末)在△ABC中,BD,CE是它的两条角平分线,且BD,CE相交于点M,MN⊥BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.(1)如图1,若∠A=110°,∠BEC=130°,则∠2=20°,∠3﹣∠1=55°;(2)如图2,猜想∠3﹣∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,用含α和β的代数式表示∠3﹣∠1的度数.(直接写出结果即可)解:(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.(3)∠3﹣∠1=α+β3−30°.【解题思路】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠BEC﹣∠A,再根据角平分线的定义可得∠2=∠ACE;根据角平分线的定义求出∠ACB,再根据三角形的内角和定理求出∠ABC,然后求出∠1,根据直角三角形两锐角互余求出∠3,然后相减即可得解;(2)根据角平分线的定义可得∠1=12∠ABC,∠2=12∠ACB,再根据直角三角形两锐角互余表示出∠3,然后表示出∠3﹣∠1=90°−12∠ACB−12∠ABC,再根据三角形的内角和定理可得∠ACB+∠ABC=180°﹣∠A,然后代入整理即可得解;(3)在△BCE和△BCD中,根据三角形内角和定理列式整理得到∠1+∠2,再根据三角形的内角和定理和角平分线的定义用∠A表示出∠1+∠2,然后根据∠3﹣∠1=12∠A整理即可得解.【解答过程】(1)解:在△ACE中,∠ACE=∠BEC﹣∠A=130°﹣110°=20°,∵CE平分∠ACE,∴∠2=∠ACE=20°,∴∠ACB=2∠2=2×20°=40°,在△ABC中,∠ABC=180°﹣∠A﹣∠ACB=180°﹣110°﹣40°=30°,∵BD平分∠ABC,∴∠1=12∠ABC=12×30°=15°,∵MN⊥BC,∴∠3=90°﹣∠2=90°﹣20°=70°,∴∠3﹣∠1=70°﹣15°=55°,故答案为:20,55;(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.证明:在△ABC中,BD,CE是它的两条角平分线,∴∠1=12∠ABC,∠2=12∠ACB,∵MN⊥BC于点N,∴∠MNC=90°,在△MNC中,∠3=90°﹣∠2,∴∠3﹣∠1=90°﹣∠2﹣∠1,=90°−12∠ACB−12∠ABC,=90°−12(∠ACB+∠ABC),∵在△ABC中,∠ACB+∠ABC=180°﹣∠A,∴∠3﹣∠1=90°−12(180°﹣∠A)=12∠A;故答案为:∠3﹣∠1=12∠A ;(3)∵BD ,CE 是△ABC 的两条角平分线, ∴∠ABC =2∠1,∠ACB =2∠2,在△BCE 和△BCD 中,∠1+2∠2+β=180°, ∠2+2∠1+α=180°, ∴∠1+∠2=120°−α+β3,∵∠1+∠2=12(∠ACB +∠ABC )=12(180°﹣∠A ), ∴120°−α+β3=12(180°﹣∠A ), 整理得,12∠A =α+β3−30°,∴∠3﹣∠1=α+β3−30°. 故答案为:α+β3−30°.24.(2020春•福山区期中)直线在同一平面内有平行和相交两种位置关系,线段首尾连接可以变换出很多不同的图形,这些不同的角又有很多不同关系,今天我们就来探究一下这些奇妙的图形吧! 【问题探究】(1)如图1,请直接写出∠A +∠B +∠C +∠D +∠E = 180° ;(2)将图1变形为图2,∠A +∠DBE +∠C +∠D +∠E 的结果如何?请写出证明过程; (3)将图1变形为图3,则∠A +∠B +∠C +∠D +∠E 的结果如何?请写出证明过程. 【变式拓展】(4)将图3变形为图4,已知∠BGF =160°,那么∠A +∠B +∠C +∠D +∠E +∠F 的度数是 320° .【解题思路】(1)根据三角形外角的性质,得到∠2=∠C+∠E,∠1=∠A+∠2,根据三角形内角和等于180°即可求解.(2)根据三角形外角的性质,得到∠ABE=∠C+∠E,∠DBC=∠A+∠D,即可证明此结论.(3)根据三角形外角的性质,得到∠DFG=∠B+∠E,∠FGD=∠A+∠C,即可证明此结论;(4)根据三角形外角的性质,得到∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∠BGF=∠1+∠E=160°,∠1=∠A+∠C,即可得到结论.【解答过程】(1)解:如图1,∵∠2=∠C+∠E,∠1=∠A+∠2,∴∠A+∠B+∠C+∠D+∠E=∠1+∠B+∠D=180°,故答案为:180°;(2)证明:∵∠ABE=∠C+∠E,∠DBC=∠A+∠D,∠ABE+∠DBE+∠DBC=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°∴将图①变形成图②∠A+∠DBE+∠C+∠D+∠E仍然为180°;(3)证明:∵在△FGD中,∠DFG+∠FGD+∠D=180°,∠DFG=∠B+∠E,∠FGD=∠A+∠C,∴∠A+∠B+∠C+∠D+∠E=180°,∴将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°;(4)解:∵∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∴∠B+∠D+∠F=160°,∵∠BGF=∠1+∠E=160°,∠1=∠A+∠C,∴∠A+∠C+∠E=160°,∴∠A+∠B+∠C+∠D+∠E+∠F=320°,故答案为:320°.25.(2020春•蓬溪县期末)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=122°;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC 与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC=119°,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R=29°.【解题思路】(1)根据三角形的内角和角平分线的定义;(2)由角平分线得出∠ECB=12∠ACB,∠EBD=12∠ABD.由三角形外角的性质知∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,根据∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB可得答案;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠QBC与∠QCB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解答过程】解:(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB(角平分线的定义),∵∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠EBD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12α;(3)结论:∠BQC=90°−12∠A.理由如下:∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠QCB,=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB),=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.26.(2021春•鄂州期末)探究知:任何一个三角形都满足三角形三内角和等于180°,我们把这个结论称之为三角形三内角和定理.如图1,AB∥CD,且∠BED+∠CDE=120°,请根据题目条件,结合三角形三内角和定理,探究下列问题:(1)如图2,在图1基础上作:∠BEF=12∠DEF,∠CDE=3∠CDF,EF与DF交于点F,求∠EFD的度数;(2)如图3,在图1基础上作:过B作BG⊥AB,交CD于点F,且∠CDG=34∠CDE,求∠G∠E的值.【解题思路】(1)设∠BEF=α,∠CDF=β,根据角之间的比例关系可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,进而可得∠DEF+∠EDF=80°,所以可得答案;(2)根据垂直可得∠CDG =90°﹣∠G ,再根据∠E +∠CDE =120°经过整理得3∠E =4∠G ,进而可得答案.【解答过程】解:(1)∵∠BEF =12∠DEF , ∴∠DEF =2∠BEF , 又∵∠CDE =3∠CDF , ∴设∠BEF =α,∠CDF =β,∴∠DEF =2α,∠DEB =3α,∠CDE =3β,∠EDF =2β, ∵∠BED +∠CDE =120°, ∴3α+3β=120°, ∴α+β=40°, ∴2α+2β=80°,∴∠EFD =180°﹣∠DEF ﹣∠EDF =180°﹣(2α+2β)=180°﹣80°=100°, 答:∠EFD 的度数为100°; (2)∵BF ⊥AB , ∴∠ABG =90°, ∵AB ∥CD ,∴∠ABG +∠BFC =180°, ∴∠BFC =∠GFD =90°,在△GFD 中,∠GFD +∠CDG +∠G =180°, ∴∠CDG =90°﹣∠G ,∵∠E +∠CDE =120°,∠CDG =34∠CDE ,∴∠E +43∠CDG =120°,∠E +43(90°﹣∠G )=120°, 整理得:3∠E =4∠G , ∴∠G ∠E=34.27.(2020秋•南昌期中)【问题探究】将三角形ABC 纸片沿DE 折叠,使点A 落在点A ′处(1)如图1,当点A 落在四边形BCDE 的边CD 上时,直接写出∠A 与∠1之间的数量关系; (2)如图2,当点A 落在四边形BCDE 的内部时,求证:∠1+∠2=2∠A ;(3)如图3,当点A落在四边形BCDE的外部时,探索∠1,∠2,∠A之间的数量关系,并加以证明;【拓展延伸】(4)如图4,若把四边形ABCD纸片沿EF折叠,使点A、D落在四边形BCFE的内部点A′、D′的位置,请你探索此时∠1,∠2,∠A,∠D之间的数量关系,写出你发现的结论,并说明理由.【解题思路】(1)运用折叠原理及三角形的外角性质即可解决问题;(2)运用折叠原理及四边形的内角和定理即可解决问题;(3)运用三角形的外角性质即可解决问题;(4)根据三角形的内角和和四边形的内角和即可得到结论.【解答过程】解:(1)如图1,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A;(2)如图2,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2;(3)如图3,∠1﹣∠2=2∠A,理由:∵∠1+2∠AED=180°,2∠ADE﹣∠2=180°,∴∠1﹣∠2+2∠AED+2∠AED=360°,∵∠A+∠AED+∠ADE=180°,∴2∠A+2∠AED+2∠ADE=360°,∴∠1﹣∠2=2∠A;(4)∠1+∠2=2(∠A+∠D)﹣360°,理由:∵∠1+2∠AEF=180°,∠2+2∠DFE=180°,∴∠1+∠2+2∠AEF+2∠DFE=360°,∵∠A+∠D+∠AEF+∠DFE=360°,∴2∠A+2∠D+2∠AEF+2∠DFE=720°,∴∠1+∠2=2(∠A+∠D)﹣360°.28.(2021春•桥西区期末)请认真思考,完成下面的探究过程.已知在△ABC中,AE是∠BAC的角平分线,∠B=60°,∠C=40°.【解决问题】如图1,若AD⊥BC于点D,求∠DAE的度数;【变式探究】如图2,若F为AE上一个动点(F不与E重合),且FD⊥BC于点D时,则∠DFE=10°;【拓展延伸】如图2,△ABC中,∠B=x°,∠C=y°,(且∠B>∠C),若F为线段AE上一个动点(F不与E重合),且FD⊥BC于点D时,试用x,y表示∠DFE的度数,并说明理由.【解题思路】(1)由∠B=60°,∠C=40°,得∠BAC=180°﹣∠B﹣∠C=80°.由角平分线的定义,得∠EAC=40°.根据三角形外角的性质,得∠FED=80°.由FD⊥BC,根据三角形内角和定理,故可求得∠DFE.(2)与(1)同理.(3)与(1)同理.【解答过程】解:(1)解决问题:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=80°.又∵AE是∠BAC的角平分线,∴∠EAC=12∠BAC=40°.∴∠AED=∠C+∠EAC=40°+40°=80°.∵AD⊥BC,∴∠ADE=90°.∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣90°﹣80°=10°.(2)变式探究:由(1)知:∠AED=80°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣80°=10°.故答案为:10°.(3)拓展延伸:∠DFE=12x°−12y°,理由如下:∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°.又∵AE是∠BAC的角平分线,∴∠CAE=12∠BAC=12(180°−x°−y°)=90°−12x°−12y°.∴∠AED=∠C+∠CAE=y°+90°−12x°−12y°=90°−12x°+12y°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣(90°−12x°+12y°)=12x°−12y°.29.(2021春•庐江县期末)如图1,AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,则∠F的度数是45°(直接写出答案即可);(3)如图3,EH平分∠CED,EH的反向延长线交∠BAE的平分线AF于点G.求证:EG⊥AF.(提示:三角形内角和等于180°)【解题思路】(1)根据垂直得到直角三角形,由直角三角形两锐角互余利用等量代换证明结论;(2)通过作FM∥AB∥CD可证∠DF A=∠CDF+∠BAF,因为∠CDE+∠BAE=90°和角平分线的定义可得∠F=12(∠CDE+∠BAE),继而得到答案;(3)根据角平分线的定义得∠CEH=∠DEH=∠GEB=∠BAG=∠EAF,由于∠B=90°,∠BAE+∠BEA =90°,在△AEG中,可证得∠EAG+∠AEG=90°,从而证得结论.【解答过程】(1)证明:∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠CED=90°,∴∠BAE=∠CED.(2)解:答案为45°;过点F作FM∥AB,如图,∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴AB∥CD,∵∠C=90°,∴∠CED+∠CDE=90°,∵∠BAE=∠CED,∴∠BAE+∠CDE=90°,∵AF、DF分别平分∠BAE和∠CDE,∴∠CDF=12∠CDE,∠BAF=12∠BAE,∴∠CDF+∠BAF=12(∠BAE+∠CDE)=45°,∵FM∥AB∥CD,∴∠CDF=∠DFM,∠BAF=∠AFM,∴∠AFD=∠CDF+∠BAF=45°.(3)∵EH平分∠CED,∴∠CEH=12∠CED,∴∠BEG=12∠CED,∵AF平分∠BAE,∴∠BAG=12∠BAE,∵∠BAE=∠CED,∴∠BAG=∠BEG,∵∠BAE+∠BEA=90°,∴∠BAG+∠GAE+∠AEB=90°,即∠GAE+∠AEB+∠BEG=90°,∴∠AGE=90°,∴EG⊥AF.30.(2021春•崇川区期末)在△ABC中,BD是△ABC的角平分线,E为边AC上一点,EF⊥BC,垂足为F,EG平分∠AEF交BC于点G.(1)如图1,若∠BAC=90°,延长AB、EG交于点M,∠M=α.①用含α的式子表示∠AEF为180°﹣2α;②求证:BD∥ME;(2)如图2,∠BAC<90°,延长DB,EG交于点N,请用等式表示∠A与∠N的数量关系,并证明.。
四年级数学角练习题有答案
四年级数学角练习题有答案角是数学中重要的几何概念之一,学好角的概念和计算方法对于四年级的学生来说至关重要。
为了提高学生对角的理解和运用能力,以下是一些适合四年级学生的角练习题,每个题目都有详细的答案。
练习题一:1. 如图所示,判断下列角的类型:a) ∠ABCb) ∠DEFc) ∠GHI2. 如图所示,计算下列角的度数:a) ∠JKLb) ∠MNOc) ∠PQR练习题二:1. 如图所示,根据其他已知角度计算下列角的度数:a) ∠STU = ∠RST + ∠RTU,已知∠RST = 30°,∠RTU = 45°。
b) ∠VWX = ∠VWZ - ∠YWZ,已知∠VWZ = 80°,∠YWZ = 25°。
c) ∠YZX = ∠YZW + ∠WZX,已知∠YZW = 50°,∠WZX = 60°。
2. 如图所示,判断下列角的大小关系(大于、小于、等于):a) ∠ABC ? ∠DEF,已知∠ABC = 50°,∠DEF = 50°。
b) ∠GHI ? ∠JKL,已知∠GHI = 60°,∠JKL = 50°。
c) ∠MNO ? ∠PQR,已知∠MNO = 70°,∠PQR = 70°。
练习题三:1. 如图所示,计算下列角的度数(使用特殊角度):a) ∠ABC = 180° - ∠DEF,已知∠DEF = 80°。
b) ∠GHI = 360° - ∠JKL,已知∠JKL = 160°。
c) ∠MNO = 2 ×∠PQR,已知∠PQR = 40°。
2. 如图所示,计算下列角的度数(使用相同变量):a) ∠STU = ∠RST + ∠RTU,已知∠RST = 30°。
b) ∠VWX = ∠VWZ - ∠YWZ,已知∠YWZ = 25°。
角的计算练习题
角的计算练习题角的计算练习题角是几何学中的重要概念,它可以帮助我们理解和描述物体之间的相对位置关系。
在几何学中,我们经常需要进行角的计算,以求解各种问题。
本文将通过一系列角的计算练习题,帮助读者巩固对角的理解和运用。
1. 已知一个角的度数为30°,请问它是锐角、直角还是钝角?答案:这个角的度数小于90°,因此它是一个锐角。
2. 如果两个角的和为180°,其中一个角的度数是60°,请问另一个角的度数是多少?答案:设另一个角的度数为x°,根据题意可得60° + x° = 180°,解方程可得x° = 120°。
因此,另一个角的度数是120°。
3. 一条直线上有两个角,它们的度数之比为2:3,求这两个角的度数。
答案:设两个角的度数分别为2x°和3x°,根据题意可得2x°/3x° = 2/3,解方程可得x° = 90°。
因此,两个角的度数分别为180°和270°。
4. 已知一个角的度数为x°,它的补角的度数是120°,求x的值。
答案:两个角的度数之和为180°,根据题意可得x° + 120° = 180°,解方程可得x° = 60°。
因此,这个角的度数为60°。
5. 一条直线上有两个角,它们的度数之和为90°,其中一个角的度数是30°,求另一个角的度数。
答案:设另一个角的度数为x°,根据题意可得x° + 30° = 90°,解方程可得x° = 60°。
因此,另一个角的度数是60°。
通过以上的练习题,我们可以看到角的计算并不复杂,只需要根据题目给出的条件,灵活运用角的性质和运算法则,就可以求解出各种角的度数。
角的度量练习题带答案
角的度量练习题带答案角的度量是数学中的一个重要概念,它涉及到角度的计算和度量单位。
以下是一些角的度量练习题及其答案,以帮助学生更好地理解和掌握这一概念。
练习题1:一个角的度数是30°,另一个角是它的两倍,求另一个角的度数。
答案:30° × 2 = 60°练习题2:如果一个角的度数是90°,它是一个直角。
那么一个角的度数是45°,它是什么角?答案:45°是一个锐角。
练习题3:一个角的度数是120°,它比直角大多少度?答案:120° - 90° = 30°练习题4:一个角的度数是360°,它是一个周角。
如果将它平均分成4个相等的角,每个角的度数是多少?答案:360° ÷ 4 = 90°练习题5:一个角的度数是180°,它是一个平角。
如果将它平均分成3个相等的角,每个角的度数是多少?答案:180° ÷ 3 = 60°练习题6:一个角的度数是15°,它是一个锐角。
如果将它扩大到原来的3倍,新的角的度数是多少?答案:15° × 3 = 45°练习题7:一个角的度数是150°,它是一个钝角。
如果将它缩小到原来的一半,新的角的度数是多少?答案:150° ÷ 2 = 75°练习题8:如果一个角的度数是75°,它是一个钝角。
那么一个角的度数是75°的三分之一,这个角的度数是多少?答案:75° ÷ 3 = 25°练习题9:一个角的度数是300°,它是一个周角的四分之三。
求这个周角的度数。
答案:300° ÷ (3/4) = 400°练习题10:一个角的度数是40°,另一个角的度数是它的补角。
七年级数学角度计算专项练习题及答案
七年级数学角度计算专项练习题及答案1. 角度的定义和计算角度是指由两条射线或线段所围成的部分,可以用度进行表示。
角度的计算主要有以下几个方面:(1) 同界角:同界角是指角的顶点和两边分别相等的角。
如果两个角是同界角,那么它们的度数也相等。
(2) 互补角:互补角是指两个角的度数加起来等于90度。
例如,30度的互补角是60度。
(3) 补角:补角是指两个角的度数加起来等于180度。
例如,80度的补角是100度。
(4) 相邻补角:相邻补角是指两个角的度数加起来等于180度,并且这两个角共享一条边。
例如,120度和60度是相邻补角。
2. 角度计算的基本步骤计算角度时,我们需要根据给定的信息进行分析,然后采取适当的计算方法。
下面是角度计算的基本步骤:(1) 首先,仔细观察题目中给出的图形和信息,理解题目所求的具体内容。
(2) 其次,在图形上标出已知的角度和线段长度。
(3) 根据已知信息,应用与角度计算相关的定理和公式进行计算。
(4) 最后,检查计算结果是否符合题目要求,并进行合理的解释。
3. 角度计算专项练习题及答案:现在我们来进行一些角度计算的练习,解答如下:题目一:在直线AB上,两点C和D分别位于B的两侧,且∠ACD = 40度,∠CBD = 70度,求∠ABC的度数。
解答:根据角度相加定理,可以得知∠ABC = ∠ACD + ∠CBD = 40度 + 70度 = 110度。
题目二:在平行线AB和CD之间,直线AC和BD相交于点O,如果∠AOC = 50度,求∠DOB的度数。
解答:由于直线AC和BD是平行线AB和CD的交线,所以根据同位角定理可知∠AOC = ∠DOB。
因此,∠DOB的度数也是50度。
题目三:在平行四边形ABCD中,∠C = 110度,求∠A和∠B的度数。
解答:根据平行四边形的性质可知,对角线是互补角。
所以,∠A + ∠C = 180度,∠B + ∠C = 180度。
由此可得,∠A = 180度 - ∠C = 180度 - 110度 = 70度,∠B = 180度 - ∠C = 180度 - 110度 = 70度。
三角函数专项练习60题(有答案)
三角函数专项练习60题(有答案)题目1:已知三角形ABC,角A的补角是30度,角B的补角是60度,求角C的度数。
答案:90度。
题目2:已知sin(60°)的值等于√3/2,求cos(30°)的值。
答案:√3/2。
题目3:已知cos(30°)的值等于0.866,求sin(60°)的值。
答案:0.866。
题目4:已知tan(45°)的值等于1,求cot(45°)的值。
答案:1。
题目5:已知cot(60°)的值等于√3/3,求tan(30°)的值。
答案:√3。
题目6:已知cos(45°)的值等于0.707,求sin(45°)的值。
答案:0.707。
题目7:已知sin(45°)的值等于0.707,求cot(45°)的值。
答案:1.题目8:已知sin(30°)的值等于0.5,求cos(60°)的值。
答案:0.5.题目9:已知cot(30°)的值等于√3,求tan(60°)的值。
答案:√3.题目10:已知cos(60°)的值等于0.5,求sin(30°)的值。
答案:0.5.题目11:已知sin(90°)的值等于1,求cos(0°)的值。
答案:1.题目12:已知sin(0°)的值等于0,求cos(90°)的值。
答案:0.题目13:已知cos(90°)的值等于0,求sin(0°)的值。
答案:1.题目14:已知cos(0°)的值等于1,求sin(90°)的值。
答案:0.题目15:已知cot(45°)的值等于1,求tan(45°)的值。
答案:1.题目16:已知tan(60°)的值等于√3,求cot(60°)的值。
答案:√3.题目17:已知cot(30°)的值等于√3/3,求tan(30°)的值。
角的计算初二练习题
角的计算初二练习题在初中数学学习中,角的计算是一个非常重要的内容。
通过熟练地掌握角的计算方法,可以帮助我们解决各种与角相关的问题。
下面是一些初二角的计算练习题,希望对你巩固这一知识点有所帮助。
1. 已知∠ABC=120°,求补角和余补角的度数。
解析:补角是与已知角相加等于90°的角,余补角是与已知角相加等于180°的角。
因此,补角的度数是90°-120°=60°,余补角的度数是180°-120°=60°。
2. 已知∠DEF为直角,求其补角和余补角的度数。
解析:直角的补角是90°-90°=0°,即补角是一个度数为0°的角。
余补角的度数是180°-90°=90°。
3. 已知∠MNO的补角为40°,求∠MNO的度数。
解析:由题意可知∠MNO的补角为40°,根据补角的概念可得∠MNO+∠X=90°,其中∠X为补角。
代入已知条件可得∠MNO+40°=90°,解方程可得∠MNO=50°。
4. 已知∠PQR和∠QRS的度数分别为70°和110°,求∠PQS的度数。
解析:首先根据角的性质可知∠PQR+∠QRS+∠PQS=180°,代入已知条件可得70°+110°+∠PQS=180°,解方程可得∠PQS=180°-70°-110°=0°。
因此,∠PQS的度数为0°。
5. 已知∠ABC的余角是75°,求∠ABC的补角的度数。
解析:余角是与已知角相加等于180°的角,补角是与已知角相加等于90°的角。
根据已知条件可知∠ABC+75°=180°,解方程可得∠ABC=180°-75°=105°。
角的计算专项练习60题(有答案)ok
角的计算练习60题(附参考答案)1.如图,已知∠2∠,平分∠,∠14°,求∠的度数.2.已知∠1=35°,∠2= .3.计算出下列各角的度数.4.算一算,下面是一个直角三角形.∠1=∠2=∠3= .5.三角形的一条高将∠分成角度为42°和36°的两个角(如图).∠2和∠3分别是多少度?6.求下图中各角的度数.∠1=∠2=∠3= .7.如图中,已知∠1=30°,∠2= ,∠3= .8.如图,∠1= ,∠2= ,∠3= .9.求下面各个三角形中∠A的度数10.如图中,已知∠1=43°,∠2= ,∠3= .11.计算三角形中角的度数.∠1= ,∠2= ,∠3= .12.算一算:∠1= ;∠2= ;∠3= .13.算一算,这些角各是多少度.已知∠2=40°求得:∠1= °,∠3= °,∠4= °.14.求出如图所示各角的度数.15.如图,已知∠20°,∠2=46°,求∠3的度数.16.如图所示,∠110°,∠∠,∠是几度?17.如图:∠1=48°;∠2= .18.算一算.已知∠1=65°,求出:∠2、∠3、∠4的度数.19.求下面各角的度数.图1,∠1= ∠2=图2,∠1= .20.求下面各角的度数.已知∠1=30°,∠2=90°.∠3= ;∠4= ;∠5= .21.∠1=32゜,∠2=36゜,∠3= .22.如图已知∠1=35°,∠2= ,∠3= ,∠4= .23.如图所示,已知∠1=30°.求:∠2、∠3和∠4的度数.24.已知∠1=25°,∠2= °,∠3= °,∠4= °.25.算一算:∠1= ;∠2= ;∠3= .26.角的计算(1)如图1所示,已知:∠1=72°,∠2=45°,求:∠?(2)如图2所示,已知:∠1=35°,求∠2= ?27.用量角器量出图中∠2的度数,再求∠1、∠3和∠4的度数.28.如图,已知∠1=130°,求∠2、∠3的度数.29.如图中,∠14°,∠∠,求∠.30.在直角∠内有射线、.∠∠60°,求∠的大小.31.求下面各角的度数.∠∠∠∠∠.32.(1)如图1,已知:∠1=45°,求:∠2(2)如图2,已知:∠1=90°,∠2=30°求:∠3等于多少度?(3)如图3,已知:∠1=135°求:∠2、∠3、∠4各等于多少度?33.如图,已知∠1=70°,∠2=25°,∠3=50°,求∠5=?34.如图是一张长方形纸折起来以后的图形,已知么∠2是 65°,∠1是多少度?35.已知∠1=28°求∠2、∠3、∠4和∠5各是多少度?36.算一算∠1=65°∠2= ∠3= ∠4= ∠1+∠2+∠3+∠4= .37.求角的度数.(1)(如图1)∠1=∠2=(2)三角形是等腰三角形(如图2)∠1=∠2= .38.如图中∠1=30°,∠2= ,∠3= ,∠4= ,∠5= .39.如图所示,∠1=55.,请分别求出∠2、∠3、∠4的度数.40.图中,已知∠1=37°∠2= ;∠3= ;∠4= .41.如图,已知∠1=40°,∠2= ,∠3= ,∠4= ,∠3+∠4=42.图中∠1= ,∠2= ,∠3= ,∠1+∠2= .43.已知∠1=50°,求∠2=?∠3=?44.算一算.已知∠1=36°;∠2= ;∠3= ;∠4= ;∠5= .45.图中,∠1=55°,∠2是直角,你能求∠3、∠4、∠5各是多少度吗?46.先量一量,再填空.①∠1= ,是角;∠2= ,是角;∠3= ,是角.②画出∠1,使∠1=75°.47.算一算如图:已知∠1=35°∠3= ∠4=∠2= ∠1+∠2+∠3= .48.如图1,已知∠1=40°,∠2= ,∠3= ,∠4= .如图2,已知∠1=30°,∠2= ,∠3= ,∠4= ,∠5= .49.求各个角的度数.(1)图1中:已知∠1=60°∠2=∠3=∠4=∠5=(2)图2中:已知∠1=75°∠2=∠3=∠4= .50.分别量出图中4个角的度数,再求出这4个角的和.∠1= ;∠2= ;∠3= ;∠4= ;∠1+∠2+∠3+∠4= .51.∠1= ;∠2= ;∠3= .52.∠1= ;∠2= ;∠3= .53.已知∠1=90°,∠2=50°,求∠3、∠4和∠5的度数.54.如图,求∠1和∠2的度数.55.已知:∠1=∠3,∠2=40°求:∠?56.在下面三角形中,∠1=38°,∠2+∠3=90°,求∠3和∠4各是多少度?57.在三角形中,∠60°,∠3=50°,求∠2、∠4的度数.58.如图,已知:∠2=30°,∠3是直角,则∠2+∠3= ,∠1+∠2+∠4= ,∠1+∠2+∠3+∠4= .59.求图中各角的度数.图1:∠2= ∠3= 图2:∠1= ∠2= ∠3= .60.看图填数.①如图一,已知∠1=75°,那么∠2= ∠3= ∠4= .②如图二,∠1= ∠2= ∠3= .角的计算参考答案:1.设∠,∠2x.则∠3x.又平分∠,因为∠.所以∠∠﹣∠﹣14°因为28°即∠28°.答:∠的度数是28°2.∠2=180°﹣∠1,∠2=180°﹣35°,∠2=145°.故答案为:145°.3.(1)(180°﹣50°)÷2,=130°÷2,=65°.答:角的度数是65°.(2)180°﹣40°=140°.答:角的度数是140°4.∠2=90°﹣60°=30°;∠3=180°﹣50°=130°;∠1=180°﹣∠2﹣∠3=180°﹣30°﹣130°=20°.故答案为:20°;30°;130°5.在直角三角形中,因为∠90°,所以∠2=180°﹣90°﹣42°,∠2=48°;在直角三角形中,∠90°,所以∠3=180°﹣90°﹣36°,∠3=54°答:∠2和∠3分别是48°和54°.6.(1)∠1=180°﹣90°﹣25°=65°;(2)180°﹣25°﹣20°=135°;∠2=135°﹣90°=45°;(3)∠3=180°﹣∠1=180°﹣65°=115°.故答案为:65°,45°,115°7.∠1与∠2组成了一个平角,所以∠2=180°﹣30°=150°;∠1与∠3组成一个直角,所以∠3=90°﹣30°=60°;故答案为:150°;60°8.根据题干分析可得:∠1=180﹣90﹣45=45(度),∠3=180﹣45=135(度),∠2=180﹣135=45(度),故答案为:45°,45°,135°9.∠90°,∠60°.所以,∠90°﹣∠90°﹣60°=30°;∠180°﹣∠B﹣∠180°﹣135°﹣20°=25°10.(1)∠2=90°﹣∠1=90°﹣43°=47°;(2)∠3=180°﹣∠2=180°﹣47°=133°.故答案为:47°,133°11.(1)根据题干分析可得:∠2=65°;则∠1=180°﹣65°﹣65°=50°;(2)∠3=90°﹣41°=49°;故答案为:50°;65°;49°12.∠1=180°﹣45°﹣90°=45°;∠2=180°﹣45°=135°;∠3=180°﹣135°=45°.故答案为:45°;135°;45°.13.根据题干分析可得:∠1=90°﹣40°=50°;∠3=180°﹣40°=140°;∠4=180°﹣140°=40°;故答案为:50;140;40.14.∠180°﹣40°﹣85°=55°;∠180°﹣90°﹣35°=55°;∠180°﹣20°﹣47°=113°.如图所示:故答案为:55°、55°、113°15.∠4=180°﹣∠1﹣∠2,=180°﹣20°﹣46°,=114°,∠3=180°﹣∠4,=180°﹣114°,=66°.答:∠3是66°16.根据题干分析可得:(180﹣110)÷2,=70÷2,=35(度),答:∠的度数是35度.17.∠2=90°﹣48°=42°,故答案为:42°18.∠1与∠3是对顶角,所以∠3也是65°;因为∠1与∠2组成了一个平角,∠2与∠4又是对顶角,所以∠2=∠4=180°﹣65°=115°,答:∠2=115°,∠3=65°,∠4=115°.19.(1)∠1=∠2=(180°﹣120°)÷2=30°;(2)90°﹣40°=50°;所以∠1=50°;故答案为:30°;30°;50°20.∠1和∠5组成了一个直角,所以∠5=90﹣30=60(度),∠5与∠4组成了一个平角,所以∠4=180﹣60=120(度);因为∠5与∠3是一组对顶角,所以∠3=∠5=60(度),故答案为:60°;120°;60°21.180°﹣32°﹣36°=112°;故答案为:112°22.∠2=90°﹣∠1=90°﹣35°=55°,∠3=180°﹣∠2=180°﹣55°=125°,∠4=180°﹣∠3=180°﹣125°=55°,故答案为:55°,125°,55°.23.∠2=90°﹣30°=60°,∠3=180°﹣60°=120°,∠4=180°﹣120°=60°.答:∠2的度数是60°,∠3的度数是120°,∠4的度数是60°24.∠2=180°﹣∠1=155°,∠3=180°﹣∠2=25°,∠4=180°﹣∠1=155°.故答案为:155,25,155.25.∠1=180°﹣35°=145°;∠2=180°﹣90°=90°;∠3=180°﹣125°=55°.故答案为:145°;90°;55°26.(1)∠∠1+∠2=72°+45°=117°;(2)∠2=180°﹣90°﹣∠1=55°.故答案为:117°;55°.27.经测量可得∠2=35°,则∠1=90°﹣35°=55°,∠3=180°﹣35°=145°,∠4=180°﹣145°=35°.答:∠1的度数是55°,∠3的度数是145°,∠4的度数是35°28.∠2=180°﹣∠1=180°﹣130°=50°;∠3=90°﹣∠2=90°﹣50°=40°;答:∠2是50度,∠3是40度.29.(90°﹣14°)÷2,=76°÷2,=38°;答:∠38°30.∠∠∠﹣∠,=60°+60°﹣90°,=30°.答:∠的大小是30°.31.(1)∠90°﹣34°=56°;(2)∠180°﹣90°﹣18°=72°,∠180°﹣60°﹣72°=48°;(3)∠∠(180°﹣48°)÷2=66°;(4)∠180°﹣119°=61°,∠90°﹣61°=29°.故答案为:56°;48°;66°;29°32.(1)∠2=180°﹣∠1=180°﹣45°=135°.(2)∠3=180°﹣∠1﹣∠2=180﹣90°﹣30°=60°.(3)∠3=180°﹣∠1=180°﹣135°=45°,∠4=180°﹣∠1=180°﹣135°=45°,∠2=180°﹣∠3=180°﹣45°=135°33.在小三角形里最大的角=180°﹣∠2﹣∠3=105°,∠4=180°﹣105°=75°,∠5=180°﹣∠1﹣∠4,=180°﹣70°﹣75°,=35°.答:∠5是35°34.180°﹣65°×2=180°﹣130°=50°.答:∠1是50度.35.∠4=90°,∠5=90°﹣∠1=90°﹣28°=62°,∠2=180°﹣∠1=180°﹣28°=152°,∠3=180°﹣∠2=180°﹣152°=28°;答:∠2=152°,∠3=28°,∠4=90°,∠5=62°.36.(1))∠2=90°﹣∠1,=90°﹣65°,=25°;(2))∠3=180°﹣∠2,=180°﹣25°,=155°;(3))∠4=180°﹣∠3,=180°﹣155°,=25°;(4))∠1+∠2+∠3+∠4=360°﹣90°,=270°.或∠1+∠2+∠3+∠4=65°+25°+155°+25°=270°.故答案为:25°;155°;25°;270°37.(1)∠180°﹣120°=60°,∠1=90°﹣∠90°﹣60°=30°;∠2=180°﹣60°×2=60°;(2)∠1=90°﹣60°=30°;∠2=180°﹣∠1×2﹣90°,=180°﹣30°×2﹣90°,=30°.故答案为:(1)30°,60°;(2)30°,30°38.根据题干分析可得:∠3=90°;∠2=90°﹣30°=60°;∠4=∠1=30°;∠5=180°﹣30°=150°;故答案为:60°;90°;30°;150 39.如图:∠4=90°﹣∠1,=90°﹣55°,=35°,∠3=180°﹣∠4﹣∠5,=180°﹣35°﹣90°,=55°,∠2=180°﹣∠3,=180°﹣55°,=125°,答:∠2是125°、∠3是55°、∠4是35°40.∠2=90°﹣∠1=90°﹣37°=53°,∠3=180°﹣∠2=180°﹣53°=127°,∠4=180°﹣∠3=180°﹣127°=53°故答案为:53°,127°,53°41.∠2=∠4=180°﹣40°=140°,∠3=180°﹣∠2=40°,∠3+∠4=180°.故答案为:140°,40°,140°,180°42.∠1=90﹣50=40(度);∠2=90﹣40=50(度);∠3=180﹣50=130(度);∠1+∠2=90(度);故答案为:40°;50°;130°;90°43.∠2=180°﹣50°=130°,∠3=180°﹣90°=90°.答:∠2=130°,∠3=90°.44.根据题干分析可得:∠3是直角,是90°;∠2=90°﹣36°=54°;∠4=90°﹣54°=36°;∠5=180°﹣36°=144°,故答案为:54°;90°;36°;144°45.∠3=90°﹣55°=35°,∠5=180°﹣55°=125°,∠4=180°﹣125°=55°.答:∠3=35°、∠4=55°、∠5=125°46.(1)经过测量可知∠1=50°,是锐角,∠2=40°,是锐角,∠3=120°,是钝角;(2)根据分析画图如下:故答案为:50°;锐;4°;锐;120°;钝47.∠2=180°﹣∠1=180°﹣35°=145°,∠3=180°﹣∠2=180°﹣145°=35°,∠4=90°,∠1+∠2+∠3=35°+145°+35°=215°.故答案为:35°,90°,145°,215°48.图一:因为,∠1=40°.所以,∠2=180°﹣40°=140°;∠3=180°﹣140°=40°;∠4=180°﹣40°=140°;图二:因为,∠1=30°.所以,∠2=90°﹣30°=60°;∠3=90°;∠4=180°﹣60°﹣90°=30°;∠5=180°﹣30°=150°;故答案为:140°,40°,140°,60°,90°,30°,150°49.(1)因为∠2=90°,平角=180°,所以,∠3=180°﹣∠1﹣∠2=180°﹣90°﹣60°=30°;∠5=180°﹣∠1=180°﹣60°=120°;∠4=180°﹣∠5=180°﹣120°=60°;(2)因为∠1=75°,平角=180°,所以,∠2=180°﹣∠1=180°﹣75°=105°;∠4=180°﹣∠1=180°﹣75°=105°;∠3=180°﹣∠4=180°﹣105°=75°;故答案为:90°,30°,60°,120°,105°,75°,105°50.测量可得图中∠1=90°,∠2=45°,∠3=90°,∠4=135°.∠1+∠2+∠3+∠4=90°+45°+90°+135°=360°.故答案为:90°,45°,90°,135°.360°51.观察图形可知:∠3=90°;∠1=180﹣35=145(度);∠2=90﹣30=60(度);故答案为:145°;60°;90°52.因为∠1是等腰直角三角形底角,所以∠1=90°÷2=45°;因为正方形的两条对角线互相垂直,所以∠2=∠3=90°.故答案为:45°;90°;90°53.(1)∠3=180°﹣∠2=180°﹣50°=130°;(2)∠4=180°﹣∠3=180°﹣130°=50°;(3)∠5=180°﹣∠1﹣∠2=180°﹣90°﹣50°=40°.故答案为:∠3=130°,∠4=50°,∠5=40°54.∠1=180°﹣90°﹣65°=25°;∠2=180°﹣120°=60°.答:∠1的度数是25°;∠2的度数是60°.55.∠(180°﹣40°)÷2+40°,=140°÷2+40°,=70°+40°,=110°.答:∠是110°.56.∠4=180°﹣∠1﹣(∠2+∠3),∠4=180°﹣38°﹣90°,∠4=52°;∠3=180°﹣90°﹣∠4,∠3=180°﹣90°﹣52°,∠3=38°.答:∠3是38°,∠4是52°57.因为∠1+∠3+∠4=180°,∠60°,∠3=50°,所以∠4=180°﹣60°﹣50°=70°;因为∠6=90°,所以∠2=90°﹣∠3,=90°﹣50°,=40°58.∠2+∠3=30°+90°=120°;∠1+∠2+∠3+∠4=360°;∠1+∠2+∠4=360°﹣90°=270°.故答案为:120°,270°,360°.59.(1)∠2=90°=50°=40°;∠3=180°﹣(40°+30°)=110°;(2)∠1=180°﹣120°=60°;∠2=180°﹣(60°+45°),=180°﹣105°,=75°;∠3=180°﹣75°=105°.故答案为:40°、110°;60°、75°、60.因为∠1+∠2=180°,∠1=75°,所以75°+∠2=180°,75°﹣75°+∠2=180°﹣75°,∠2=105°;因为∠1与∠3,∠2与∠4,分别是对顶角,所以∠1=∠3=75°,∠2=∠4=105°;(2)因为∠1+35°=180°,∠1+35°﹣35°=180°﹣35°,∠1=145°;因为∠2+30°=90°,∠2+30°﹣30°=90°﹣30°,∠2=60°;因为∠3是一个直角,所以∠3=90°;故答案为:(1)105°,75°,105°.(2)145°,60°,90°.。
小学数学《角度的计算》练习题(含答案)
小学数学《角度的计算》练习题(含答案)知识要点角度计算是指平面图形中,不知道大小的角,可以通过已知角的大小根据角与角的关系计算出来。
小于90°的角叫做锐角,直角等于90°,大于90°而小于180°的角叫钝角;平角等于180°,周角等于360°.三角形内角和是180°,在一个三角形中最多有一个钝角,最多有一个直角。
可以有三个锐角。
直角三角形的两个锐角的度数和是90°。
等腰三角形的两个锐角度数相等,等边三角形的三个内角相等,都是60°;平行四边形,梯形、正方形、长方形的内角和都是360°。
正方形和长方形每个角都是90°。
两条直线相交,形成的对角度数相等,与相邻的角相加等于180°.∠1=∠2 ∠3=∠4 ∠1+∠3=180°∠2+∠4=180°解题指导 1【例1】求下图中∠a的度数。
【思路点拨】三角形的内角和是180°,根据图形可以看出, 180°-(∠a+57°)=180°-142°,也就是∠a+57°=142°,就可以求出∠a的度数。
【解题过程】180°-142°=38°180°-57°-38°=85°答:∠a是85°.总结:同学们要牢记三角形的内角和是180°。
【变式题1】下图中x是多少度?解题指导 2【例2】在下面的图中,∠1=∠2=∠3,在这个图中所有锐角的和是150°。
∠AOB是多少度?【思路点拨】图中所有锐角的和是150°,图中一共有几个锐角呢,观察图形可知,除了∠1,∠2,∠3外,还有∠1+∠2,∠2+∠3,和∠AOB三个锐角。
因此有∠1+∠2+∠3+(∠1+∠2)+(∠2+∠3)+∠AOB=150°,根据∠1=∠2=∠3,就可以求出∠AOB的度数。
小学数学《角度的计算》练习题(含答案)
小学数学《角度的计算》练习题(含答案)知识要点角度计算是指平面图形中,不知道大小的角,可以通过已知角的大小根据角与角的关系计算出来。
小于90°的角叫做锐角,直角等于90°,大于90°而小于180°的角叫钝角;平角等于180°,周角等于360°.三角形内角和是180°,在一个三角形中最多有一个钝角,最多有一个直角。
可以有三个锐角。
直角三角形的两个锐角的度数和是90°。
等腰三角形的两个锐角度数相等,等边三角形的三个内角相等,都是60°;平行四边形,梯形、正方形、长方形的内角和都是360°。
正方形和长方形每个角都是90°。
两条直线相交,形成的对角度数相等,与相邻的角相加等于180°.∠1=∠2 ∠3=∠4 ∠1+∠3=180°∠2+∠4=180°解题指导1【例1】求下图中∠a的度数。
【思路点拨】三角形的内角和是180°,根据图形可以看出, 180°-(∠a+57°)=180°-142°,也就是∠a+57°=142°,就可以求出∠a的度数。
【解题过程】180°-142°=38°180°-57°-38°=85°答:∠a是85°.总结:同学们要牢记三角形的内角和是180°。
【变式题1】下图中x是多少度?解题指导2【例2】在下面的图中,∠1=∠2=∠3,在这个图中所有锐角的和是150°。
∠AOB是多少度?【思路点拨】图中所有锐角的和是150°,图中一共有几个锐角呢,观察图形可知,除了∠1,∠2,∠3外,还有∠1+∠2,∠2+∠3,和∠AOB三个锐角。
因此有∠1+∠2+∠3+(∠1+∠2)+(∠2+∠3)+∠AOB=150°,根据∠1=∠2=∠3,就可以求出∠AOB的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的计算练习60题(附参考答案)1.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.2.已知∠1=35°,∠2= _________ .3.计算出下列各角的度数.4.算一算,下面是一个直角三角形.∠1= _________∠2= _________∠3= _________ .5.三角形ABC的一条高将∠BAC分成角度为42°和36°的两个角(如图).∠2和∠3分别是多少度?6.求下图中各角的度数.∠1= _________∠2= _________∠3= _________ .7.如图中,已知∠1=30°,∠2= _________ ,∠3= _________ .8.如图,∠1= _________ ,∠2= _________ ,∠3= _________ .9.求下面各个三角形中∠A的度数10.如图中,已知∠1=43°,∠2= _________ ,∠3= _________ .11.计算三角形中角的度数.∠1= _________ ,∠2= _________ ,∠3= _________ .12.算一算:∠1= _________ ;∠2= _________ ;∠3= _________ .13.算一算,这些角各是多少度.已知∠2=40°求得:∠1= _________ °,∠3= _________ °,∠4= _________ °.14.求出如图所示各角的度数.15.如图,已知∠l=20°,∠2=46°,求∠3的度数.16.如图所示,∠BOC=110°,∠AOB=∠DOC,∠AOB是几度?17.如图:∠1=48°;∠2= _________ .18.算一算.已知∠1=65°,求出:∠2、∠3、∠4的度数.19.求下面各角的度数.图1,∠1= _________ ∠2= _________图2,∠1= _________ .20.求下面各角的度数.已知∠1=30°,∠2=90°.∠3= _________ ;∠4= _________ ;∠5= _________ .21.∠1=32゜,∠2=36゜,∠3= _________ .22.如图已知∠1=35°,∠2= _________ ,∠3= _________ ,∠4= _________ .23.如图所示,已知∠1=30°.求:∠2、∠3和∠4的度数.24.已知∠1=25°,∠2= _________ °,∠3= _________ °,∠4= _________ °.25.算一算:∠1= _________ ;∠2= _________ ;∠3= _________ .26.角的计算(1)如图1所示,已知:∠1=72°,∠2=45°,求:∠AOB= _________ ?(2)如图2所示,已知:∠1=35°,求∠2= _________ ?27.用量角器量出图中∠2的度数,再求∠1、∠3和∠4的度数.28.如图,已知∠1=130°,求∠2、∠3的度数.29.如图中,∠AOB=14°,∠COB=∠COD,求∠COD.30.在直角∠AOB内有射线OC、OD.∠AOC=∠BOD=60°,求∠COD的大小.31.求下面各角的度数.∠A= _________ ∠B= _________ ∠B=∠C= _________ ∠C= _________ .32.(1)如图1,已知:∠1=45°,求:∠2(2)如图2,已知:∠1=90°,∠2=30°求:∠3等于多少度?(3)如图3,已知:∠1=135°求:∠2、∠3、∠4各等于多少度?33.如图,已知∠1=70°,∠2=25°,∠3=50°,求∠5=?34.如图是一张长方形纸折起来以后的图形,已知么∠2是 65°,∠1是多少度?35.已知∠1=28°求∠2、∠3、∠4和∠5各是多少度?36.算一算∠1=65°∠2= _________ ∠3= _________ ∠4= _________ ∠1+∠2+∠3+∠4= _________ .37.求角的度数.(1)AB=AC(如图1)∠1= _________∠2= _________(2)三角形ABC是等腰三角形(如图2)∠1= _________∠2= _________ .38.如图中∠1=30°,∠2= _________ ,∠3= _________ ,∠4= _________ ,∠5= _________ .39.如图所示,∠1=55.,请分别求出∠2、∠3、∠4的度数.40.图中,已知∠1=37°∠2= _________ ;∠3= _________ ;∠4= _________ .41.如图,已知∠1=40°,∠2= _________ ,∠3= _________ ,∠4= _________ ,∠3+∠4= _________42.图中∠1= _________ ,∠2= _________ ,∠3= _________ ,∠1+∠2= _________ .43.已知∠1=50°,求∠2=?∠3=?44.算一算.已知∠1=36°;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠5= _________ .45.图中,∠1=55°,∠2是直角,你能求∠3、∠4、∠5各是多少度吗?46.先量一量,再填空.①∠1= _________ ,是_________ 角;∠2= _________ ,是_________ 角;∠3= _________ ,是_________ 角.②画出∠1,使∠1=75°.47.算一算如图:已知∠1=35°∠3= _________ ∠4= _________∠2= _________ ∠1+∠2+∠3= _________ .48.如图1,已知∠1=40°,∠2= _________ ,∠3= _________ ,∠4= _________ .如图2,已知∠1=30°,∠2= _________ ,∠3= _________ ,∠4= _________ ,∠5=_________ .49.求各个角的度数.(1)图1中:已知∠1=60°∠2= _________∠3= _________∠4= _________∠5= _________(2)图2中:已知∠1=75°∠2= _________∠3= _________∠4= _________ .50.分别量出图中4个角的度数,再求出这4个角的和.∠1= _________ ;∠2= _________ ;∠3= _________ ;∠4= _________ ;∠1+∠2+∠3+∠4= _________ .51.∠1= _________ ;∠2= _________ ;∠3= _________ .52.∠1= _________ ;∠2= _________ ;∠3= _________ .53.已知∠1=90°,∠2=50°,求∠3、∠4和∠5的度数.54.如图,求∠1和∠2的度数.55.已知:∠1=∠3,∠2=40°求:∠ADE=?56.在下面三角形中,∠1=38°,∠2+∠3=90°,求∠3和∠4各是多少度?57.在三角形ABC中,∠l=60°,∠3=50°,求∠2、∠4的度数.58.如图,已知:∠2=30°,∠3是直角,则∠2+∠3= _________ ,∠1+∠2+∠4= _________ ,∠1+∠2+∠3+∠4= _________ .59.求图中各角的度数.图1:∠2= _________ ∠3= _________ 图2:∠1= _________ ∠2= _________ ∠3= _________ .60.看图填数.①如图一,已知∠1=75°,那么∠2= _________ ∠3= _________ ∠4= _________ .②如图二,∠1= _________ ∠2= _________ ∠3= _________ .角的计算参考答案:1.设∠AOB=x,∠BOC=2x.则∠AOC=3x.又OD平分∠AOC,因为∠AOD=x.所以∠BOD=∠AOD﹣∠AOB=x﹣x=14°因为x=28°即∠AOB=28°.答:∠AOB的度数是28°2.∠2=180°﹣∠1,∠2=180°﹣35°,∠2=145°.故答案为:145°.3.(1)(180°﹣50°)÷2,=130°÷2,=65°.答:角的度数是65°.(2)180°﹣40°=140°.答:角的度数是140°4.∠2=90°﹣60°=30°;∠3=180°﹣50°=130°;∠1=180°﹣∠2﹣∠3=180°﹣30°﹣130°=20°.故答案为:20°;30°;130°5.在直角三角形ABD中,因为∠ADB=90°,所以∠2=180°﹣90°﹣42°,∠2=48°;在直角三角形ADC中,∠ADC=90°,所以∠3=180°﹣90°﹣36°,∠3=54°答:∠2和∠3分别是48°和54°.6.(1)∠1=180°﹣90°﹣25°=65°;(2)180°﹣25°﹣20°=135°;∠2=135°﹣90°=45°;(3)∠3=180°﹣∠1=180°﹣65°=115°.故答案为:65°,45°,115°7.∠1与∠2组成了一个平角,所以∠2=180°﹣30°=150°;∠1与∠3组成一个直角,所以∠3=90°﹣30°=60°;故答案为:150°;60°8.根据题干分析可得:∠1=180﹣90﹣45=45(度),∠3=180﹣45=135(度),∠2=180﹣135=45(度),故答案为:45°,45°,135°9.∠ABC=90°,∠ACB=60°.所以,∠BAC=90°﹣∠BAC=90°﹣60°=30°;∠A=180°﹣∠B﹣∠C=180°﹣135°﹣20°=25°10.(1)∠2=90°﹣∠1=90°﹣43°=47°;(2)∠3=180°﹣∠2=180°﹣47°=133°.故答案为:47°,133°11.(1)根据题干分析可得:∠2=65°;则∠1=180°﹣65°﹣65°=50°;(2)∠3=90°﹣41°=49°;故答案为:50°;65°;49°12.∠1=180°﹣45°﹣90°=45°;∠2=180°﹣45°=135°;∠3=180°﹣135°=45°.故答案为:45°;135°;45°.13.根据题干分析可得:∠1=90°﹣40°=50°;∠3=180°﹣40°=140°;∠4=180°﹣140°=40°;故答案为:50;140;40.14.∠A=180°﹣40°﹣85°=55°;∠B=180°﹣90°﹣35°=55°;∠C=180°﹣20°﹣47°=113°.如图所示:故答案为:55°、55°、113°15.∠4=180°﹣∠1﹣∠2,=180°﹣20°﹣46°,=114°,∠3=180°﹣∠4,=180°﹣114°,=66°.答:∠3是66°16.根据题干分析可得:(180﹣110)÷2,=70÷2,=35(度),答:∠AOB的度数是35度.17.∠2=90°﹣48°=42°,故答案为:42°18.∠1与∠3是对顶角,所以∠3也是65°;因为∠1与∠2组成了一个平角,∠2与∠4又是对顶角,所以∠2=∠4=180°﹣65°=115°,答:∠2=115°,∠3=65°,∠4=115°.19.(1)∠1=∠2=(180°﹣120°)÷2=30°;(2)90°﹣40°=50°;所以∠1=50°;故答案为:30°;30°;50°20.∠1和∠5组成了一个直角,所以∠5=90﹣30=60(度),∠5与∠4组成了一个平角,所以∠4=180﹣60=120(度);因为∠5与∠3是一组对顶角,所以∠3=∠5=60(度),故答案为:60°;120°;60°21.180°﹣32°﹣36°=112°;故答案为:112°22.∠2=90°﹣∠1=90°﹣35°=55°,∠3=180°﹣∠2=180°﹣55°=125°,∠4=180°﹣∠3=180°﹣125°=55°,故答案为:55°,125°,55°.23.∠2=90°﹣30°=60°,∠3=180°﹣60°=120°,∠4=180°﹣120°=60°.答:∠2的度数是60°,∠3的度数是120°,∠4的度数是60°24.∠2=180°﹣∠1=155°,∠3=180°﹣∠2=25°,∠4=180°﹣∠1=155°.故答案为:155,25,155.25.∠1=180°﹣35°=145°;∠2=180°﹣90°=90°;∠3=180°﹣125°=55°.故答案为:145°;90°;55°26.(1)∠AOB=∠1+∠2=72°+45°=117°;(2)∠2=180°﹣90°﹣∠1=55°.故答案为:117°;55°.27.经测量可得∠2=35°,则∠1=90°﹣35°=55°,∠3=180°﹣35°=145°,∠4=180°﹣145°=35°.答:∠1的度数是55°,∠3的度数是145°,∠4的度数是35°28.∠2=180°﹣∠1=180°﹣130°=50°;∠3=90°﹣∠2=90°﹣50°=40°;答:∠2是50度,∠3是40度.29.(90°﹣14°)÷2,=76°÷2,=38°;答:∠COD=38°30.∠COD=∠AOC+∠BOD﹣∠AOB,=60°+60°﹣90°,=30°.答:∠COD的大小是30°.31.(1)∠A=90°﹣34°=56°;(2)∠C=180°﹣90°﹣18°=72°,∠B=180°﹣60°﹣72°=48°;(3)∠B=∠C=(180°﹣48°)÷2=66°;(4)∠A=180°﹣119°=61°,∠C=90°﹣61°=29°.故答案为:56°;48°;66°;29°32.(1)∠2=180°﹣∠1=180°﹣45°=135°.(2)∠3=180°﹣∠1﹣∠2=180﹣90°﹣30°=60°.(3)∠3=180°﹣∠1=180°﹣135°=45°,∠4=180°﹣∠1=180°﹣135°=45°,∠2=180°﹣∠3=180°﹣45°=135°33.在小三角形里最大的角=180°﹣∠2﹣∠3=105°,∠4=180°﹣105°=75°,∠5=180°﹣∠1﹣∠4,=180°﹣70°﹣75°,=35°.答:∠5是35°34.180°﹣65°×2=180°﹣130°=50°.答:∠1是50度.35.∠4=90°,∠5=90°﹣∠1=90°﹣28°=62°,∠2=180°﹣∠1=180°﹣28°=152°,∠3=180°﹣∠2=180°﹣152°=28°;答:∠2=152°,∠3=28°,∠4=90°,∠5=62°.36.(1))∠2=90°﹣∠1,=90°﹣65°,=25°;(2))∠3=180°﹣∠2,=180°﹣25°,=155°;(3))∠4=180°﹣∠3,=180°﹣155°,=25°;(4))∠1+∠2+∠3+∠4=360°﹣90°,=270°.或∠1+∠2+∠3+∠4=65°+25°+155°+25°=270°.故答案为:25°;155°;25°;270°37.(1)∠C=180°﹣120°=60°,∠1=90°﹣∠C=90°﹣60°=30°;∠2=180°﹣60°×2=60°;(2)∠1=90°﹣60°=30°;∠2=180°﹣∠1×2﹣90°,=180°﹣30°×2﹣90°,=30°.故答案为:(1)30°,60°;(2)30°,30°38.根据题干分析可得:∠3=90°;∠2=90°﹣30°=60°;∠4=∠1=30°;∠5=180°﹣30°=150°;故答案为:60°;90°;30°;15039.如图:∠4=90°﹣∠1,=90°﹣55°,=35°,∠3=180°﹣∠4﹣∠5,=180°﹣35°﹣90°,=55°,∠2=180°﹣∠3,=180°﹣55°,=125°,答:∠2是125°、∠3是55°、∠4是35°40.∠2=90°﹣∠1=90°﹣37°=53°,∠3=180°﹣∠2=180°﹣53°=127°,∠4=180°﹣∠3=180°﹣127°=53°故答案为:53°,127°,53°41.∠2=∠4=180°﹣40°=140°,∠3=180°﹣∠2=40°,∠3+∠4=180°.故答案为:140°,40°,140°,180°42.∠1=90﹣50=40(度);∠2=90﹣40=50(度);∠3=180﹣50=130(度);∠1+∠2=90(度);故答案为:40°;50°;130°;90°43.∠2=180°﹣50°=130°,∠3=180°﹣90°=90°.答:∠2=130°,∠3=90°.44.根据题干分析可得:∠3是直角,是90°;∠2=90°﹣36°=54°;∠4=90°﹣54°=36°;∠5=180°﹣36°=144°,故答案为:54°;90°;36°;144°45.∠3=90°﹣55°=35°,∠5=180°﹣55°=125°,∠4=180°﹣125°=55°.答:∠3=35°、∠4=55°、∠5=125°46.(1)经过测量可知∠1=50°,是锐角,∠2=40°,是锐角,∠3=120°,是钝角;(2)根据分析画图如下:故答案为:50°;锐;4°;锐;120°;钝47.∠2=180°﹣∠1=180°﹣35°=145°,∠3=180°﹣∠2=180°﹣145°=35°,∠4=90°,∠1+∠2+∠3=35°+145°+35°=215°.故答案为:35°,90°,145°,215°48.图一:因为,∠1=40°.所以,∠2=180°﹣40°=140°;∠3=180°﹣140°=40°;∠4=180°﹣40°=140°;图二:因为,∠1=30°.所以,∠2=90°﹣30°=60°;∠3=90°;∠4=180°﹣60°﹣90°=30°;∠5=180°﹣30°=150°;故答案为:140°,40°,140°,60°,90°,30°,150°49.(1)因为∠2=90°,平角=180°,所以,∠3=180°﹣∠1﹣∠2=180°﹣90°﹣60°=30°;∠5=180°﹣∠1=180°﹣60°=120°;∠4=180°﹣∠5=180°﹣120°=60°;(2)因为∠1=75°,平角=180°,所以,∠2=180°﹣∠1=180°﹣75°=105°;∠4=180°﹣∠1=180°﹣75°=105°;∠3=180°﹣∠4=180°﹣105°=75°;故答案为:90°,30°,60°,120°,105°,75°,105°50.测量可得图中∠1=90°,∠2=45°,∠3=90°,∠4=135°.∠1+∠2+∠3+∠4=90°+45°+90°+135°=360°.故答案为:90°,45°,90°,135°.360°51.观察图形可知:∠3=90°;∠1=180﹣35=145(度);∠2=90﹣30=60(度);故答案为:145°;60°;90°52.因为∠1是等腰直角三角形底角,所以∠1=90°÷2=45°;因为正方形的两条对角线互相垂直,所以∠2=∠3=90°.故答案为:45°;90°;90°53.(1)∠3=180°﹣∠2=180°﹣50°=130°;(2)∠4=180°﹣∠3=180°﹣130°=50°;(3)∠5=180°﹣∠1﹣∠2=180°﹣90°﹣50°=40°.故答案为:∠3=130°,∠4=50°,∠5=40°54.∠1=180°﹣90°﹣65°=25°;∠2=180°﹣120°=60°.答:∠1的度数是25°;∠2的度数是60°.55.∠ADE=(180°﹣40°)÷2+40°,=140°÷2+40°,=70°+40°,=110°.答:∠ADE是110°.56.∠4=180°﹣∠1﹣(∠2+∠3),∠4=180°﹣38°﹣90°,∠4=52°;∠3=180°﹣90°﹣∠4,∠3=180°﹣90°﹣52°,∠3=38°.答:∠3是38°,∠4是52°57.因为∠1+∠3+∠4=180°,∠l=60°,∠3=50°,所以∠4=180°﹣60°﹣50°=70°;因为∠6=90°,所以∠2=90°﹣∠3,=90°﹣50°,=40°58.∠2+∠3=30°+90°=120°;∠1+∠2+∠3+∠4=360°;∠1+∠2+∠4=360°﹣90°=270°.故答案为:120°,270°,360°.59.(1)∠2=90°=50°=40°;∠3=180°﹣(40°+30°)=110°;(2)∠1=180°﹣120°=60°;∠2=180°﹣(60°+45°),=180°﹣105°,=75°;∠3=180°﹣75°=105°.故答案为:40°、110°;60°、75°、60.因为∠1+∠2=180°,∠1=75°,所以75°+∠2=180°,75°﹣75°+∠2=180°﹣75°,∠2=105°;因为∠1与∠3,∠2与∠4,分别是对顶角,所以∠1=∠3=75°,∠2=∠4=105°;(2)因为∠1+35°=180°,∠1+35°﹣35°=180°﹣35°,∠1=145°;因为∠2+30°=90°,∠2+30°﹣30°=90°﹣30°,∠2=60°;因为∠3是一个直角,所以∠3=90°;故答案为:(1)105°,75°,105°.(2)145°,60°,90°.。