离散数学第三章谓词逻辑习题答案
离散数学第3版习题答案
离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。
离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。
在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。
本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。
第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。
(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。
(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。
(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。
1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。
(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。
(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。
(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。
1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。
(完整版)离散数学课后习题答案(第三章)
a t a t i m e an dA l lt h i ng si nt h ei r be i ng ar eg oo df o r so me t hi n 3-5.1 列出所有从X={a,b,c}到Y={s}的关系。
解:Z 1={<a,s>}Z 2={<b,s>} Z 3={<c,s>}Z 4={<a,s>,<b,s>} Z 5={<a,s>,<c,s>} Z 6={<b,s>,<c,s>}Z 7={<a,s>,<b,s>,<c,s>}3-5.2 在一个有n 个元素的集合上,可以有多少种不同的关系。
解 因为在X 中的任何二元关系都是X ×X 的子集,而X ×X=X 2中共有n 2个元素,取0个到n 2个元素,共可组成22n 个子集,即22|)(|n X X =⨯℘。
3-5.3 设A ={6:00,6:30,7:30,…, 9:30,10:30}表示在晚上每隔半小时的九个时刻的集合,设B={3,12,15,17}表示本地四个电视频道的集合,设R 1和R 2是从A 到B 的两个二元关系,对于二无关系R 1,R 2,R 1∪R 2,R 1∩R 2,R 1⊕R 2和R 1-R 2可分别得出怎样的解释。
解:A ×B 表示在晚上九个时刻和四个电视频道所组成的电视节目表。
R 1和R 2分别是A ×B 的两个子集,例如R 1表示音乐节目播出的时间表,R 2是戏曲节日的播出时间表,则R 1∪R 2表示音乐或戏曲节目的播出时间表,R 1∩R 2表示音乐和戏曲一起播出的时间表,R 1⊕R 2表示音乐节目表以及戏曲节目表,但不是音乐和戏曲一起的节日表,R 1-R 2表示不是戏曲时间的音乐节目时间麦。
3-5.4 设L 表示关系“小于或等于”,D 表示‘整除”关系,L 和D 刀均定义于解:L={<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>}D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>} L ∩D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>}3-5.5对下列每一式,给出A 上的二元关系,试给出关系图:a){<x,y>|0≤x ∧y ≤3},这里A={1,2,3,4};b){<x,y>|2≤x,y ≤7且x 除尽y ,这里A ={n|n ∈N ∧n ≤10}c) {<x,y>|0≤x-y<3},这里A={0,1,2,3,4};d){<x,y>|x,y 是互质的},这里A={2,3,4,5,6}解:a) R={<0,0>,<0,1>,<0,2>,<0,3>, <1,0>,<1,1>,<1,2>,<1,3>, <2,0>,<2,1>,<2,2>,<2,3>, <3,0>,<3,1>,<3,2>,<3,3>,} 其关系图b) R={<2,0>,<2,2>,<2,4>,<2,6>,<3,0>,<3,3>,<3,6>, <4,0>,<4,4>, <5,0>,<5,5>,i m e an dA l lt h in gs in th ei r be i ng ar eg oo df o rsa)若R1和R2是自反的,则R1○R2也是自反的;b)若R1和R2是反自反的,则R1○R2也是反自反的;c)若R1和R2是对称的,则R1○R2也是对称的;d)若R1和R2是传递的,则R1○R2也是传递的。
离散数学第3章答案
习题3.11.(1) {0,1,2,3,4,5,6,7,8,9}(2) {aa , ab , ba , bb }(3) {-1,1}(4) {11,13,17,19,23,29}(5) {1,2,3, (79)(6) {2}2. 用描述法表示下列集合:(1) 不超过200的自然数的集合;{|N 200}x x x ∈∧≤(2) 被5除余1的正整数的集合;+{|I (N 51)}x x y y x y ∈∧∃∈∧=+(3) 函数y =sin x 的值域;{|R 11}y y y ∈∧-≤≤(4) 72的质因子的集合;{|N |72(N 2|)}x x x y y y x y x ∈∧∧∀∈∧≤<→/(5) 不等式031>-x 的解集; {|R 3}x x x ∈∧>(6) 函数2312+-=x x y 的定义域集. {|R 12}x x x x ∈∧≠∧≠3. 用归纳定义法描述下列集合:(1) 允许有前0的十进制无符号整数的集合;① {0,1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x x x x x x x x x x x A ⊆(2) 不允许有前0的十进制无符号整数的集合;① {1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x A ⊆(3) 不允许有前0的二进制无符号偶数的集合;① 1A ∈② 如果x A ∈,则{0,1}x x A ⊆(4) 5的正整数倍的集合.① 5A ∈② 如果x A ∈,则5x A +∈4. 判断下列命题中,哪些是真的,哪些是假的(A 是任意集合):(1) ;A ∈∅(2) ;A ⊆∅ (3) };{A A ∈ (4) ;A A ⊆ (5) ;A A ∈ (6) };{A A = (7) }.{∅=∅答:(2),(3),(4)为真,(1),(5),(6),(7)为假。
离散数学概论习题答案第3章
第二部分集合、矩阵、关系和函数集合论是处理集合,函数和关系的数学理论。
集合包括最基本的数学概念,例如集合,元素和成员关系。
在大多数现代数学公式中,集合论提供了一种描述数学对象的语言。
集合可用来表示数及其运算,还可表示和处理非数值计算,如数据间关系的描述等。
集合论,逻辑和一阶逻辑构成了数学公理化的基础。
同时,函数和关系是基于集合的映射,它们是满足某些属性的特殊集合。
接下来,我们将在两个单独的章节中介绍它们。
集和矩阵将在第3章中介绍,而关系和函数将在第4章中介绍。
第三章集合和矩阵3.1 集合3.1.1 集合概念集合没有确定的概念。
一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合,也简称集。
通常用大写英文字母表示集合。
例如,N代表是自然数集合,Z代表是整数集合,R代表是实数集合。
用小写英文字母表示集合内元素。
若元素a是集合A的一个元素,则表示为a A∈,读作元素a属于集合A;若元素a不是集合A的一个元素,则表示为a A∉,读作a不属于集合A。
集合分为有限集合和无限集合两种,下面给出定义。
表示集合方法有列举法和描述法两种方式,下面分别介绍。
1. 列举法当集合是有限集合时,可以列出集合的所有元素,用逗号隔开各元素,并用花括号把所有元素括起来。
这种表述方式为列举法。
例如:S1={a, b, c, d, e, f},S2={a, b, b, c, d, e, f},S3={ d, e, a, b, c, f}上述三个集合S1、S2和S3是相同集合,尽管有重复元素。
且集合元素之间没有次序关系。
一个集合可以作为另个集合的元素。
例如,S1={a, b,{ c, d, e, f }}集合S1包含元素a, b和{ c, d, e, f }。
因为{ c, d, e, f }是集合S1中的元素,故可记为:{}∈。
,,,c d e f A以上给出的集合实例都是有限集合。
当集合是无限集合时,无法列出集合的所有元素,可先列出一部分元素,若剩余元素与已给出元素存在一定规律,那剩余元素的一般形式很明显可用省略号表示。
自考 离散数学教材课后题第三章答案
3.1 习题参考答案1、写出下列集合的的表示式。
a)所有一元一次方程的解组成的集合。
A={x|x是所有一元一次方程的解组成的集合}晓津答案:A={x| ax+b=0∧a∈R∧b∈R}b) x2-1 在实数域中的因式集。
B={1,(x-1),(x+1)|x∈R}c)直角坐标系中,单位圆内(不包括单位圆周)的点集。
C={x,y| x2+y2<1 }晓津答案:C={a(x,y)|a为直角坐标系中一点且 x2+y2<1 }d)极坐标中,单位圆外(不包括单位圆周)的点集。
D={r,θ| r>1,0<=θ<=360}晓津答案:D={a(r,θ)|a为极坐标系中一点且 r>1,0<=θ<=2π }e)能被5整除的整数集E={ x| x mod 5=0}----------------------------------------------------------------2、判定下列各题的正确与错误。
a) {x}{x};正确b) {x}∈{x};正确晓津观点:本命题错误。
理由:{x}作为一个元素是一个集合,而右边集合中的元素并不是集合。
c) {x}∈{x,{x}};正确d) {x}{x,{x}};正确----------------------------------------------------------------3、设 A={1,2,4},B={1,3,{2}},指出下列各式是否成立。
a) {2}∈A; b) {2}∈B c) {2}Ad) {2}B; e) ∈A f) A解:jhju、晓津和wwbnb 的答案经过综合补充,本题的正确答案是:b、c、d、f成立,a,d、e不成立。
理由:a式中,{2}是一个集合,而在A中并无这样的元素。
因此不能说{2}属于A,当然如果说2∈A则是正确的。
对于e式也应作如此理解,空集是一个集合,在A中并无这个集合元素,如f 式则是正确的。
《离散数学》谓词逻辑
内容导航
CONTENTS
第 3章 谓词逻辑
7
1 历史人物 学习要求
3.1 自然语言的谓词符号化 3.2 谓词公式与解释 3.3 谓词公式的标准型——前束范式 3.4 谓词逻辑的推理理论 3.5 谓词逻辑的应用 3.6 作业
3.1 自然语言的谓词符号化
第 3章 谓词逻辑
8
命题是具有真假意义的陈述句,从语法上分析,一个陈述句由主语和谓语两部分组成。
学习要求
重点
1 自然语言的谓词符号化 2 谓词公式的解释 3 特性谓词识别与翻译 4 基本等价规律 5 量词去掉/添加规则 6 谓词逻辑的推理
第 3章 谓词逻辑
6
难点
1 自然语言的谓词符号化 2 谓词逻辑与命题逻辑的联系与区别 3 谓词翻译的两条原则 4 合式公式的解释 5 量词去掉/添加规则的正确使用
历史人物
第 3章 谓词逻辑
4
1848-1923,德国数学家、 逻辑学家和哲学家
1906-1978,美籍奥地利数学家、逻 辑学家和哲学家,二十世纪最伟大的 逻辑学家之一
内容导航
CONTENTS
第 3章 谓词逻辑
5
1 历史人物 学习要求
3.1 自然语言的谓词符号化 3.2 谓词公式与解释 3.3 谓词公式的标准型——前束范式 3.4 谓词逻辑的推理理论 3.5 谓词逻辑的应用 3.6 作业
(x)(P(x)∧C(x))
谓词符号
变量符号
提出问题
第 3章 谓词逻辑
22
符号化“李兰的母亲是高级工程师”
设M(x,y):x是y的母亲,
设g(x):x的母亲;
P(x):x是高级工程师;
P(x):x是高级工程师;
离散数学CH03_谓词逻辑(1)
3.1 个体、谓词和量词
实例
• 符号化下列命题: 1)所有的人都是要呼吸的。 2)每个学生都要参加考试。 3)所有的人都要呼吸,并且每个学生都要考试。
解
(2) (1) (3) P(x): M(x):x x 是学生, 是人, x(M(x) →H(x)) Q(x): H(x):x x要呼吸, 要参加考试, x(P(x) →Q(x)) ( ( x) x) (P(x) (M(x) → →Q(x)). H(x)).
3.1 个体、谓词和量词
个体词
• 设 R(x) :“ x 是大学生”, • 如果 x 的个体域为: – “某大学里的学生”,则 R(x) 是永真式。 – “某单位里的职工”,则 R(x) 对一些人为 真,对另一些人为假。
3.1 个体、谓词和量词
谓词
• 谓词——表示个体词性质或相互之间关系的词。 谓词常项:表示具体性质或关系的谓词,如 F(a) :a是人。 谓词变项:表示抽象的、泛指的性质或关系的谓词 ,如 F(x):x具有性质F。
为止,认为原子命题是不能再分解的,仅仅研
究以原子命题为基本单位的复合命题之间的逻 辑关系和推理。这样,有些推理用命题逻辑就 难以确切地表示出来。
谓词逻辑研究内容
• 在命题逻辑中, 命题演算的基本单位是命题, 不再对原子命题进行分解, 故无法研究命题的 语法结构、成分和内在的逻辑特性。
例: p:人总是要死的 q:苏格拉底是人 r:苏格拉底是要死的 p q → r不是重言式
3.1 个体、谓词和量词
对于给定的命题,当用表示其个体的小写字母和表示其 谓词的大写字母来表示时,规定把小写字母写在大写字 母右侧的圆括号( )内。 例如,在命题“张明是位大学生”中,“张明”是个体 ,“是位大学生”是谓词,它刻划了“张明”的性质。 设S:是位大学生,c:张明,则“张明是位大学生”可 表示为S(c),或者写成S(c):张明是位大学生。又如, 在命题“武汉位于北京和广州之间”中,武汉、北京和 广州是三个个体,而“„位于„和„之间”是谓词,它 刻划了武汉、北京和广州之间的关系。设P:„位于„ 和„之间,a:武汉,b:北京,c:广州,则P(a,b, c):武汉位于北京和广州之间。
离散数学第三章习题详细答案
离散数学第三章习题详细答案3.9解:符号化:p:a是奇数.q:a是偶数.r:a能被2整除前提:(p→¬r),(q→r)结论:(q→¬p)证明:方法2(等值演算法)(p→¬r)∧(q→r)→(q→¬p)⇔(¬p∨¬r)∧(¬q∨r)→(¬q∨¬p)⇔(p∧r)∨(q∧¬r)∨¬q∨¬p⇔((p∧r)∨¬p)∨((q∧¬r)∨¬q)⇔(r∨¬p)∨(¬r∨¬q)⇔¬p∨(r∨¬r)∨¬q⇔1即为成佛该式为重言式,则原结论恰当。
方法3(主析取范式法)(p→¬r)∧(q→r)→(q→¬p)⇔(¬p∨¬r)∧(¬q∨r)→(¬q∨¬p)⇔(p∧r)∨(q∧¬r)∨¬q∨¬p⇔m0+m1+m2+m3+m4+m5+m6+m7所述该式为重言式,则结论推理小说恰当。
3.10.解:符号化:p:a就是负数.q:b就是负数.r:a、b之四维负前提:r→(p∧¬q)∨(¬p∧q)结论:¬r→(¬p∧¬q)方法1(真值法)证明:方法2(主析取范式法)证明:(r→(p∧¬q)∨(¬p∧q))→(¬r→(¬p∧¬q))⇔¬(¬r∨(p∧¬q)∨(¬p∧q))∨(r∨(¬p∧¬q))⇔r∨(¬p∧¬q)⇔m0+m2+m4+m6+m7只不含5个极小项,课件完整不是重言式,因此推理小说不恰当3.11.填充下面推理证明中没有写出的推理规则。
解:③:①②谓词三段论⑤:③④谓词三段论⑦:⑤⑥假言推理小说3.12.填充下面推理证明中没有写出的推理规则。
离散数学课后习题答案(第三章)之欧阳法创编
时间:2021.03.09
创作:欧阳法
<<x,y>, <u,v>>∈R =
1对任意<x,y>∈A,因为 =ቤተ መጻሕፍቲ ባይዱ,所以
<<x,y>, <x,y>>∈R
即R是自反的。
2设<x,y>∈A,<u,v>∈A,若
<<x,y>, <u,v>>∈R = = <<u,v>,<x,y>>∈R
证明:若Π细分Π。由假设aRb,则在Π中有某个块S,使得a,b∈S,因Π细分Π,故在Π中,必有某个块S,使SS,即a,b∈S,于是有aRb,即RR。
反之,若RR,令S为H的一个分块,且a∈S,则S=[a]R={x|xRa}
但对每一个x,若xRa,因RR,故xRa,因此{x|xRa}{x|xRa}即[a]R[a]R
证明:(1)对任意非零实数a,有a2>0(a+bi)R(a+bi)
故R在C*上是自反的。
(2) 对任意(a+bi)R(c+di)ac>0,
因ca=ac>0(c+di)R(a+bi),
所以R在C*上是对称的。
(3)设(a+bi)R(c+di) ,(c+di)R(u+vi),则有ac>0cu>0
若c>0,则a>0u>0au>0
<a,b>∈R1○R1∧<b, c>∈R1○R1
(e1)(<a, e1>∈R1∧<e1, b>∈R1) ∧(e2)(<b, e2>∈R1∧<e2, c>∈R1)
<a,b>∈R1∧<b, c>∈R1(∵R1传递)
<a,c>∈R12
即R12是传递的。
故R12是A上的等价关系。
离散数学测验题——谓词逻辑答案
离散数学测验题(谓词逻辑部分)一、符号化下列命题。
(20分,每题10分)1. 任何两个不同的人都性格不相同。
解:设F(x):x是人,H(x,y), x与y相同丄(x,y): x与y性格相同则原命题对应的谓词公式为:-x(F(x)厂y(F(y) -H(x,yH 1L(x,y)))或-x-y(F(x) F(y) ~H(x,y) ‘-L(x,y))2. 尽管有些人爱吃西瓜,但并不是所有人都爱吃西瓜。
解:设M(x): x是人,C(x): x爱吃西瓜,则原命题可以表示为前后两个原子命题之间的合取,有些人爱吃西瓜”可以表示为:x M (x) C(x);不是所有人都爱吃西瓜”可以表示为--X M (x) 、C(x),或者x M(x) -C(x)则原命题对应的谓词公式为:x M (x) C(x) x M (x)-; C(x),或者x M(x) C(x) x M (x) -C(x)二、说明下列推理的有效性。
(45分,每题15分)1. 乌鸦是黑色的,天鹅不是黑色的;所以,天鹅不是乌鸦。
解:设B(x): x是乌鸦,M(x): x是天鹅,F(x): x黑色的。
则此推理可以表示为:-x B(x)—;F(x) , -x M (x) —;| F(x) = - x M(x)—;「B(x).证明:(1) -x ( M ( x ) —? F ( x )) P规则⑵ M ( y ) —? F ( y ) US(1)⑶-x ( B( x ) — F ( x )) P规则WB( y ) —F ( y US(3)(5)? F ( y ) —?y ) (4)假言易位⑹ M ( y ) -B?( y ) (2)(5)假言三段论⑺—x( M( x ) -B?( x )) UG(6),证毕。
利用反证法证明:12(I) 一- x M (x) ,—B(x),⑵ x M(x) B(x), (3)M(c)B(c),⑷ M(c),(5)B(c),⑹-x M (x) ‘ —F (x), ⑺M(c)》-F(c), (8) -F(c), (9) -x B(x) > F(x), (10) B(c) > F(c), (II) F(c), 与(8)矛盾,所以假设错误。
离散数学第三章谓词逻辑习题答案
习题三 17.
(2)证明2A ? 2B = 2 A ? B. 证明:X ? 2A ? 2B ? X ? 2A ? X ? 2B
? X? A? X? B ? X? A? B
? X? 2A ? B
习题三 18.
? 设A是含n个元素的集合,a和b是A中的两个因素,试决定 在2A中含有a 的元素(即A的子集)有多少个?同时含 a 和 b的元素有多少个?
琴一张,有棋一局,而常置酒一壶。”客曰:“是为五一尔,奈何?”居士曰:“以吾一翁,老于此五物之间,岂不为六一乎?”写作背景:宋仁宗庆历五年
(1045 年),参知政事范仲淹等人遭谗离职,欧阳
修上书替他们分辩,被贬到滁州做了两年知州。到任以后,他内心抑郁,但还能发挥“宽简而不扰”的作风,取得了某些政绩。《醉翁亭记》就是在这个时期写就的。目标导学二:朗读文章,通文顺字 读文章,结合工具书梳理文章字词。 2.朗读文章,划分文章节奏,标出节奏划分有疑难的语句。节奏划分示例
(5) A ? (B ? C) = (A ? B )? (A ? C) 证明: A ? (B ? C) = A ? ((B-C) ? (C-B)) = (A ? B ? C) ? (A ? C ? B) = (A ? B ? C) ? (A ? B ? A) ? (A ? C ? B) ? (A ? C ? A) = (A ? B ? A ? C) ? (A ? C ? A ? B ) = (A ? B -A ? C) ? (A ? C - A ? B ) = (A ? B )? (A ? C)
阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
关于“醉翁”与“六一居士”:初谪滁山,自号醉翁。既老而衰且家藏书一万卷,集录三代以来金石遗文一千卷,有
离散数学答案 第三章 谓词逻辑
第三章 谓词逻辑习题3.11.解 ⑪个体:离散数学;谓词:…是一门计算机基础课程。
⑫个体:田亮;谓词:…是一名优秀的跳水运动员。
⑬个体:大学生;谓词:…要好好学习计算机课程;量词:所有。
⑭个体:推理;谓词:…是能够由计算机来完成的;量词:一切。
2. 解 ⑪设)(x F :x 是舞蹈演员;a :小芳。
命题符号化:)(a F 。
⑫设)(x F :x 是一位有名的哲学家;a :苏格拉底。
命题符号化:)(a F 。
⑬设)(x F :x 作完了他的作业家;a :张三。
命题符号化:)(a F 。
⑭设)(x F :x 身体很好;a :我。
命题符号化:)(a F 。
3.解 ⑪选取个体域为整数集合。
设)(x F :x 的平方是奇数;)(x G :x 是奇数。
命题符号化:)()(x G x F →。
⑫选取个体域为所有国家的集合。
设)(x F :x 在南半球;)(x G :x 在北半球。
命题符号化:)()(x xG x xF ∃∧∃。
⑬选取个体域为所有人的集合。
设)(x F :x 在中国居住;)(x G :x 是中国人。
命题符号化:))()((x G x F x ⌝→⌝⌝∀⑭选取个体域为所有人的集合。
设)(x M :x 是艺术家;)(x F :x 是导演;)(x G :x 是演员。
命题符号化:∃x (M (x )∧F (x )∧G (x ))。
⑮选取个体域为所有猫的集合。
设M (x ):x 是好猫;F (x ):x 捉耗子。
命题符号化:∃x ⌝M (x )∧∀x (F (x )→M (x ))。
4.解 ⑪①设)(x F :x 喜欢开汽车;)(x G :x 喜欢骑自行车。
命题符号化:)()(x xG x xF ∃∧∃。
②设)(x F :x 喜欢开汽车;)(x G :x 喜欢骑自行车;)(x M :x 是人。
命题符号化:))()(())()((x G x M x x F x M x ∧∃∧∧∃。
⑫①设)(x F :x 必须学好数学。
离散数学第三章
离散数学第三章第一篇:离散数学第三章第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r 结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r 结论:p∧q 证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)⑤ 置换⑦(q→t)⑥化简⑧q ②⑥ 假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q 结论:s→r 证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r)前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s 结论:⌝p 证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦ 合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第二篇:离散数学离散数学课件作业第一部分集合论第一章集合的基本概念和运算1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2} ⊆ A。
1-2 A,B,C 为任意集合,则他们的共同子集是[ D ]A.C;B.A;C.B;D.Ø。
1-3 设 S = {N,Z,Q,R},判断下列命题是否成立?(1)N ⊆ Q,Q ∈S,则 N ⊆ S[不成立](2)-1 ∈Z,Z ∈S,则-1 ∈S[不成立]1-4 设集合 A ={3,4},B = {4,3} ∩ Ø,C = {4,3} ∩{ Ø },D ={ 3,4,Ø },2E = {x│x ∈R 并且 x-7x + 12 = 0},F = { 4,Ø,3,3},试问哪两个集合之间可用等号表示?答:A = E;B = C;D = F1-5 用列元法表示下列集合(1)A = { x│x ∈N 且x2 ≤ 9 }(2)A = { x│x ∈N 且 3-x 〈 3 }答:(1)A = { 0,1,2,3 };(2)A = { 1,2,3,4,……} = Z+;第二章二元关系2-1 给定 X =(3, 2,1),R 是 X 上的二元关系,其表达式如下:R = {〈x,y〉x,y ∈X 且x≤ y }求:(1)domR =?;(2)ranR =?;(3)R 的性质。
离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC
离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p?r)∧(﹁q∨s)⇔(0?1)∧(1∨1)⇔0∧1⇔0.(3)(⌝(4)(176能被2q:3r:2s:619(4)(p(5)(p(6)((p答:(pqp→q⌝0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P qrp∨qp∧r(p∨q)→(p∧r)0000010010014.(2)(p→(4)(p∧证明(2(45.(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p⇔1∧(p⇔(p∨⇔∏(2)⌝(p→q)⇔(p∧(3)⇔⌝⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r⑤⌝q⑥p→q⑦¬p(3证明(4①t②t③q④s⑤q⑥(⑦(⑧q⑨q⑩p15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p②p③﹁④¬⑤¬⑥r⑦r⑧r3.:(1)均有2=(x+)(x).(2)其中(a)(b)解:F(x):2=(x+)(x).G(x):x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命题。
离散数学第三版课后习题答案
由此可得(A\B)\(B\C)(A\B)\C。
3)方法一:(A\C)\C
=A\(B∪C)(根据1))
=A\(C∪B)(并运算交换律)
4)真。因为是集合{}的元素;
5)真。因为{a,b}是集合{a,b,c,{a,b,c}}的子集;
6)假。因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;
7)真。因为{a,b}是集合{a,b,{{a,b}}}的子集;
8)假。因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4.对任意集合A,B,C,确定下列命题的真假性:
A′∪B=(A∪A′)∪B(∪的交换律)
A′∪B=X∪B(互补律)
A′∪B=X(零壹律)
方法三:因为A′X且BX,所以根据定理2的3)就有A′∪BX;
另一方面,由于BA′∪B及根据换质位律可得B′A′A′∪B,因此,由互补律及再次应用定理2的3),可得X=B∪B′A′∪B,即XA′∪B;
所以,A′∪B=X。
=(A\C)\B(根据1))
方法二:对任一元素x∈(A\B)\C,可知x∈A,xB,xC。由为x∈A,xC,所以,x∈A\C。又由xB,x∈(A\C)\B。所以,(A\B)\C(A\C)\B。
同理可证得(A\C)\B(A\B)\C。
9.设A、B是Ⅹ全集的子集,证明:
ABA′∪B=XA∩B′=
[解](采用循环证法)
离散数学辅助教材
概念分析结构思想与推理证明
第一部分
集合论
离散数学习题解答
离散数学习题解答-第3章谓词逻辑
3
(3)不是闭公式, H ( x, y) 中的 y 是自由变元。
习 题 3.3
1. 在谓词逻辑系统中将下列命题符号化。 (1) 没有不需要吃饭的人。 (2) 所有无理数都是实数。 (3) 大牛与小马是同学。 (4) 高山和刘水都是大学生。 (5) 并不是所有的人都喜欢跳舞。 (6) 所有火车都比某些汽车跑得快。 解:(1) x(M ( x) P( x)) . 其中, P( x) 表示: x 需要吃饭; M ( x) 表示: x 是人。 (2) x( P( x) R( x)) . 其中, P( x) 表示: x 是无理数; R( x) 表示: x 是实数。 (3) P(a, b) . 其中, P( x, y ) 表示: x 与 y 是同学; a 表示:大牛; b 表示:小马。 (4) S (a) S (b) . 其中, S ( x) 表示: x 是大学生; a 表示:高山; b 表示:刘水。 (5) x(M ( x) D( x)) . 其中, M ( x) 表示: x 是人; D( x) 表示: x 喜欢跳舞。 (6) x(T ( x) y(C ( y) F ( x, y))) . 其中,T ( x) 表示:x 是火车;C ( y ) 表示: y 是 汽车; F ( x, y ) 表示: x 比 y 跑得快。
P( x) 表示: x 是质数; D( x) 表示: x 是偶数; G( x, y) 表示: x 整除 y .
离散数学课后习题答案(第三章)
<<x,y>,<w,s>>∈R
故是传递的,于是R是A上的等价关系。
3-10.6设R是集合A上的对称和传递关系,证明如果对于A中的每一个元素a,在A中同时也存在b,使<a,b>在R之中,则R是一个等价关系。
证明:对任意a∈A,必存在一个b∈A,使得<a,b>∈R.
因为R是传递的和对称的,故有:
c)若R1是A上等价关系,则
<a,a>∈R1<a,a>∈R1○R1
所以R12是A上自反的。
若<a,b>∈R12则存在c,使得<a, c>∈R1∧<c,b>∈R1。因R1对称,故有
<b, c>∈R1∧<c,a>∈R1<b, a>∈R12
即R12是对称的。
若<a,b>∈R12∧<b, c>∈R12,则有
若c<0,则a<0u<0au>0
所以(a+bi)R(u+vi),即R在C*上是传递的。
关系R的等价类,就是复数平面上第一、四象限上的点,或第二、三象限上的点,因为在这两种情况下,任意两个点(a,b),(c,d),其横坐标乘积ac>0。
3-10.9设Π和Π是非空集合A上的划分,并设R和R分别为由Π和Π诱导的等价关系,那么Π细分Π的充要条件是RR。
r1和r2分别是ab的两个子集例如r1表示音乐节目播出的时间表r2是戏曲节日的播出时间表则r1r2表示音乐或戏曲节目的播出时间表r1r2表示音乐和戏曲一起播出的时间表r1r2表示音乐节目表以及戏曲节目表但不是音乐和戏曲一起的节日表r1r2表示不是戏曲时间的音乐节目时间麦
证明:设A上定义的二元关系R为:
<a,b>∈R1○R1∧<b, c>∈R1○R1
(e1)(<a, e1>∈R1∧<e1, b>∈R1)∧(e2)(<b, e2>∈R1∧<e2, c>∈R1)
应用离散数学谓词逻辑谓词公式及其解释题库试卷习题及答案
§2.2 谓词公式及其解释习题2.21. 指出下列谓词公式的指导变元、量词辖域、约束变元和自由变元。
(1)))()((y x Q x P x ,→∀(2))()(y x yQ y x xP ,,∃→∀ (3))())()((z y x xR z y Q y x P y x ,,,,∃∨∧∃∀解 (1)x ∀中的x 是指导变元;量词x ∀的辖域是),()(y x Q x P →,其中x 是约束变元,y 是自由变元。
(2)x ∀中的x ,y ∃中的y 都是指导变元;x ∀的辖域是)(y x P ,,y ∃的辖域是)(y x Q ,;其中)(y x P ,中的x 是x ∀的约束变元,y 是自由变元;)(y x Q ,中的x 是自由变元,y 是约束变元。
(3)x ∀中的x ,y ∃中的y 以及x ∃中的x 都是指导变元;x ∀的辖域是))()((z y Q y x P y ,,∧∃,y ∃的辖域是)()(z y Q y x P ,,∧,x ∃的辖域是)(z y x R ,,;其中)(y x P ,中的x ,y 都是约束变元;)(z y Q ,中的y 是约束变元;z 是自由变元,)(z y x R ,,中的x 为约束变元,y ,z 是自由变元。
2. 设个体域}21{,=D ,请给出两种不同的解释1I 和2I ,使得下面谓词公式在1I 下都是真命题,而在2I 下都是假命题。
(1)))()((x Q x P x →∀ (2)))()((x Q x P x ∧∃解(1)解释1I :个体域}21{,=D ,0:)(,0:)(>>x x Q x x P 。
(2)解释2I :个体域}21{,=D ,2:)(,0:)(>>x x Q x x P 。
3. 对下面的谓词公式,分别给出一个使其为真和为假的解释。
(1))))()(()((y x R y Q y x P x ,∧∃→∀(2))),()()((y x R y Q x P y x →∧∀∀解 (1)成真解释:个体域D ={1,2,3},0:)(<x x P ,2:)(>y y Q ,3:),(>+y x y x R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
修上书替他们分辩,被贬到滁州做了两年知州。到任以后,他内心抑郁,但还能发挥“宽简而不扰”的作风,取得了某些政绩。《醉翁亭记》就是在这个时期写就的。目标导学二:朗读文章,通文顺字1.初
读文章,结合工具书梳理文章字词。2.朗读文章,划分文章节奏,标出节奏划分有疑难的语句。节奏划分示例
环滁/皆山也。其/西南诸峰,林壑/尤美,望之/蔚然而深秀者,琅琊也。山行/六七里,渐闻/水声潺潺,而泻出于/两峰之间者,酿泉也。峰回/路转,有亭/翼然临于泉上者,醉翁亭也。作亭者/谁?山之僧/曰/智
翁亭”的名字便暗中透出,然后引出“醉翁亭”来。作者利用空间变幻的手法,移步换景,由远及近,为我们描绘了一幅幅山水特写。2.第二段主要写了什么?它和第一段有什么联系?明确:第二段利用时 间推移,抓住朝暮及四季特点,描绘了对比鲜明的晦明变化图及四季风光图,写出了其中的“乐亦无穷”。第二段是第一段“山水之乐”的具体化。3.第三段同样是写“乐”,但却是写的游人之乐,作者是
习题三 10.下面3式中,哪一个可以得出B=C的结论?
(1) A B=A C(2) A B=A C(3) A B=A C
单由A B=A C或A B=A C不能得出B=C, 而由A B=A C可以得出B=C. (因为A B=A C,同时A B=A C)
并形成一片浓荫,秋天风高气爽,霜色洁白,冬日水枯而石底上露,如此,就是山中的四季。【教学提示】翻译有直译与意译两种方式,直译锻炼学生用语的准确性,但可能会降低译文的美感;意译可加强
译文的美感,培养学生的翻译兴趣,但可能会降低译文的准确性。因此,需两种翻译方式都做必要引导。全文直译内容见《我的积累本》。目标导学四:解读文段,把握文本内容1.赏析第一段,说说本文是
生的“意译”能力,引导学生关注文言文的美感,在一定程度上有助于培养学生的核心素养。
奏划分。2.以四人小组为单位,组内互助解疑,并尝试用“直译”与“意译”两种方法译读文章。3.教师选择疑难句或值得翻译的句子,请学生用两种翻译方法进行翻译。翻译示例:若夫日出而林霏开,
云归而岩穴暝,晦明变化者,山间之朝暮也。野芳发而幽香,佳木秀而繁阴,风霜高洁,水落而石出者,山间之四时也。直译法:那太阳一出来,树林里的雾气散开,云雾聚拢,山谷就显得昏暗了,朝则自
(1)证明2A 2B 2 A B,给出等号成立的条件.
证明:X 2A 2B X 2A X 2B XA XB XA B X 2 AB
等号成立的条件: A B或B A
(因为若A和B没有子集关系, 必有a A– B和 b B– A, 使{a, b} 2 A B ,但{a, b} 2A 2B 。)
(5) A (B C) = (A B ) (A C) 证明: A (B C) = A ((B-C) (C-B)) = (A B C) (A C B) = (A B C) (A B A) (A C B) (A C A) = (A B A C) (A C A B ) = (A B -A C) (A C - A B ) = (A B ) (A C)
(x)[x A B] (x)[x A B]
习题三 16. 求A={, a, {b}}的幂 集
解: A={, a, {b}} 2A = {, {} , {a} , {{b}} , {,a} , {,b} ,
{a, {b}} , {, a, {b}}}
习题三 17.
示】
更多文言现象请参见《我的积累本》。三、板书设计路线:环滁——琅琊山——酿泉——醉翁亭风景:朝暮之景——四时之景
山水之乐(醉景)风俗:滁人游——太守宴——众宾欢 ——太守醉
宴游之乐(醉人)
心情:禽鸟乐——人之乐——乐其乐 与民同乐(醉情)
可取之处
重视朗读,有利于培养学生的文言语感,并通过节奏划分引导学生理解文意,突破了仅按注释疏通文义的桎梏,有利于引导学生自主思考;不单纯关注“直译”原则,同时培养学
暗而明,暮则自明而暗,或暗或明,变化不一,这是山间早晚的景色。野花开放,有一股清幽的香味,好的树木枝叶繁茂,形成浓郁的绿荫。天高气爽,霜色洁白,泉水浅了,石底露出水面,这是山中四季
的景色。意译法:太阳升起,山林里雾气开始消散,烟云聚拢,山谷又开始显得昏暗,清晨自暗而明,薄暮又自明而暗,如此暗明变化的,就是山中的朝暮。春天野花绽开并散发出阵阵幽香,夏日佳树繁茂
一种骈散结合的独特风格。如“野芳发而幽香,佳木秀而繁阴”“朝而往,暮而归,四时之景不同,而乐亦无穷也”。(2)文章多用判断句,层次极其分明,抒情淋漓尽致,“也”“而”的反复运用,形成回
环往复的韵律,使读者在诵读中获得美的享受。(3)文章写景优美,又多韵律,使人读来不仅能感受到绘画美,也能感受到韵律美。目标导学七:探索文本虚词,把握文言现象虚词“而”的用法用法
关于“醉翁”与“六一居士”:初谪滁山,自号醉翁。既老而衰且病,将退休于颍水之上,则又更号六一居士。客有问曰:“六一何谓也?”居士曰:“吾家藏书一万卷,集录三代以来金石遗文一千卷,有
琴一张,有棋一局,而常置酒一壶。”客曰:“是为五一尔,奈何?”居士曰:“以吾一翁,老于此五物之间,岂不为六一乎?”写作背景:宋仁宗庆历五年(1045年),参知政事范仲淹等人遭谗离职,欧阳
文本举例表并列
1.蔚然而深秀者;2.溪深而鱼肥;3.泉香而酒洌;4.起坐而喧哗者表递进
1.而年又最高;2.得之心而寓之酒也表承接 1.渐闻水声潺潺,
而泻出于两峰之间者;2.若夫日出而林霏开,云归而岩穴暝;3.野芳发而幽香,佳木秀而繁阴;4.水落而石出者;5.临溪而渔;6.太守归而宾客从也;7.人知从太守游而乐表修饰
仙也。名之者/谁?太守/自谓也。太守与客来饮/于此,饮少/辄醉,而/年又最高,故/自号曰/醉翁也。醉翁之意/不在酒,在乎/山水之间也。山水之乐,得之心/而寓之酒也。节奏划分思考“山行/六七里”为什
么不能划分为“山/行六七里”?
明确:“山行”意指“沿着山路走”,“山行”是个状中短语,不能将其割裂。“望之/蔚然而深秀者”为什么不能划分为“望之蔚然/而深秀者”?明确:“蔚然而深秀”是两个并列的词,不宜割裂,“望
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到
贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也是在此期间,欧阳修在滁州留下了不逊于
1.朝而往,暮而归
;2.杂然而前陈者表转折
1.而不知人之乐;2.而不知太守之乐其乐也虚词“之”的用法用法 文本举例表助词“的” 1.泻出于两峰之间者;2.醉翁之意不在酒;3.山水之乐;4.山间之
朝暮也;5.宴酣之乐位于主谓之间,取消句子独立性
而不知太守之乐其乐也表代词
1.望之蔚然而深秀者;2.名之者谁(指醉翁亭);3.得之心而寓之酒也(指山水之乐)【教学提
如何写游人之乐的?明确:“滁人游”,前呼后应,扶老携幼,自由自在,热闹非凡;“太守宴”,溪深鱼肥,泉香酒洌,美味佳肴,应有尽有;“众宾欢”,投壶下棋,觥筹交错,说说笑笑,无拘无束。
如此勾画了游人之乐。4.作者为什么要在第三段写游人之乐?明确:写滁人之游,描绘出一幅太平祥和的百姓游乐图。游乐场景映在太守的眼里,便多了一层政治清明的意味。太守在游人之乐中酒酣而醉,
解: 在2A中含有元素a的子集与不含a的子集一样多, 故在2A中含
有元素a的子集为2n-1个; 同时含有元素a和b的子集个数等于不含这2个元素的子集个
数, 故为2n-2个;
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
如何引出“醉翁亭”的位置的,作者在此运用了怎样的艺术手法。
明确:首先以“环滁皆山也”五字领起,将滁州的地理环境一笔勾出,点出醉翁亭坐落在群山之中,并纵观滁州全貌,鸟瞰群山环抱之景。接着作者将“镜头”全景移向局部,先写“西南诸峰,林壑尤美”
,醉翁亭坐落在有最美的林壑的西南诸峰之中,视野集中到最佳处。再写琅琊山“蔚然而深秀”,点山“秀”,照应上文的“美”。又写酿泉,其名字透出了泉与酒的关系,好泉酿好酒,好酒叫人醉。“醉
在乎山水之间也。醉能同其乐,醒能述以文者,太守也。这种情绪是作者遭贬谪后的抑郁,作者并未在文中袒露胸怀,只含蓄地说:“醉能同其乐,醒能述以文者,太守也。”此句与醉翁亭的名称、“醉翁
之意不在酒,在乎山水之间也”前后呼应,并与“滁人游”“太守宴”“众宾欢”“太守醉”连成一条抒情的线索,曲折地表达了作者内心复杂的思想感情。目标导学六:赏析文本,感受文本艺术特色1.在 把握作者复杂感情的基础上朗读文本。2.反复朗读,请同学说说本文读来有哪些特点,为什么会有这些特点。(1)句法上大量运用骈偶句,并夹有散句,既整齐又富有变化,使文章越发显得音调铿锵,形成
《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学
一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世称欧 阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
习题三 17.
(2)证明2A 2B = 2 A B. 证明:X 2A 2B X 2A X 2B
XAXB XAB
X2A B
习题三 18.
• 设A是含n个元素的集合,a和b是A中的两个因素,试决定 在2A中含有a的元素(即A的子集)有多少个?同时含a和 b的元素有多少个?