通信电子电路仿真实验报告
通信电子线路实验报告三点式振荡讲解

通信电子线路课程设计课程名称通信电子线路课程设计专业通信工程班级学号姓名指导教师2015年7月15日前言现代通信的主要任务就是迅速而准确的传输信息。
随着通信技术的日益发展,组成通信系统的电子线路不断更新,其应用十分广泛。
实现通信的方式和手段很多,通信电子线路主要利用电磁波传递信息的无线通信系统。
在本课程设计中,着眼于无线电通信的基础电路——LC正弦振荡器的分析和研究。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。
其中LC振荡器和晶体振荡器用于产生高频正弦波。
正反馈放大器既可以由晶体管、场效应管等分立器件组成,也可由集成电路组成。
LC振荡器中除了有互感耦合反馈型振荡器之外,其最基本的就是三端式(又称三点式)的振荡器。
而三点式的振荡器中又有电容三点式振荡器和电感三点式振荡器这两种基本类型。
反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。
本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式易起振,调整频率方便,可以通过改变电容调整频率而不影响反馈系数。
正弦波振荡器在各种电子设备中有着广泛的应用。
根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。
前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。
在此次的通信电子线路课程设计中,我选做的是电感三点式振荡设计,通过为时一周的上机实验,我学到了很多书本之外的知识,在老师的指导下达到实验设计的要求指标,并且完成了低频、中频到高频的过渡,同时利用傅里叶变换分析产生的振荡波形。
希望此次的课程设计能够得到老师的认可与肯定。
二零一五年七月目 录一、课程设计的目的 (2)二、课程设计的基本要求 (2)三、课程设计题目及指标 (2)四、理论基础 (3)4.1 振荡器 (3)4.2 三点式振荡器原理及分类 (3)4.3 电感三点式(哈特莱)振荡器 (4)4.4 振荡器工作原理 (5)五、振荡条件 (6)5.1自激振荡建立的过程 (6)5.2自激振荡器的电路构成 (7)5.3振荡器的起振条件 (7)5.4振荡器的平衡条件 (7)5.5振荡器平衡状态的稳定条件 (8)5.6振荡器三类条件总结 (9)5.7 振荡器的频率稳定 (9)六、电路设计 (11)6.1 设计概述 (11)6.2 电感振荡部分 (11)6.3 输出缓冲级部分 (13)七、电路调试 (14)7.1电路调试概述 (14)7.2晶体管选择 (14)7.3直流馈电线线路调试 (14)7.4振荡回路调试 (15)7.5问题总结 (17)八、实验仿真演示 (18)8.1 低频时仿真试验 (18)8.1.1电路图 (18)8.1.2示波器波形显示 (18)8.1.3 3R 4C 参数设置 (19)8.2 中频时仿真试验 (22)8.2.1电路图 (22)8.2.2 波形图 (22)8.3 高频时仿真试验 (23)8.3.1电路图 (23)8.3.2波形图 (24)九、结果分析 (28)十、心得体会 (29)十一、参考文献 (31)附录 (32)一、课程设计的目的通过课程设计,加强对高频电子技术电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。
FSK通信系统调制解调综合实验电路设计 仿真报告

学生实验报告书实验课程名称通信系统原理开课学院信息工程学院指导教师姓名学生姓名学生专业班级2015-- 2016学年第 1 学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。
为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。
1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。
2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。
3、实验报告应由实验预习、实验过程、结果分析三大部分组成。
每部分均在实验成绩中占一定比例。
各部分成绩的观测点、考核目标、所占比例可参考附表执行。
各专业也可以根据具体情况,调整考核内容和评分标准。
4、学生必须在完成实验预习内容的前提下进行实验。
教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。
5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。
在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。
6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。
实验课程名称:__通信系统原理__________图3-2 2FSK调制器各点的时间波形本次综合设计实验调制部分正是采用此方法设计的。
整个调制系统包括:载波振荡器、分频器、反相器、调制器与加法器等单元电路组成。
)信号常用解调方法有很多种,在设计中利用过零检测法。
过零检测法是利用信号波形在单位时间内与零电平轴交叉的次数来测定信号频率。
解调系所示电路:图4-3 分频器电原理图分频电路输出信号波形如图4-4所示:波形变换电路设计与工作原理为使载波的波形是正弦波,需将分频器输出的方波转换成正弦波。
模拟电子技术实验报告

模拟电子技术实验报告模拟电子技术实验报告引言模拟电子技术是电子工程领域中的重要分支,它研究的是电子信号的传输、处理和控制。
在实际应用中,模拟电子技术被广泛应用于通信、娱乐、医疗等领域。
本篇实验报告将介绍我在模拟电子技术实验中的学习和实践经验。
实验一:放大电路设计与实验在这个实验中,我们主要学习了放大电路的设计和实验。
首先,我们通过理论计算和仿真软件的辅助,设计了一个放大电路。
然后,我们按照设计要求,选择合适的电子元件进行实验搭建。
在搭建完成后,我们使用示波器和信号发生器对电路进行测试和分析。
通过实验,我们深入了解了放大电路的工作原理和特性。
实验二:滤波电路设计与实验滤波电路是模拟电子技术中常见的电路之一。
在这个实验中,我们学习了低通滤波器和高通滤波器的设计和实验。
通过理论计算和仿真软件的辅助,我们设计了一个低通滤波器和一个高通滤波器。
然后,我们使用合适的电子元件进行实验搭建,并使用示波器和信号发生器对电路进行测试和分析。
通过实验,我们掌握了滤波电路的设计和调试方法。
实验三:振荡电路设计与实验振荡电路是模拟电子技术中的重要内容之一。
在这个实验中,我们学习了振荡电路的设计和实验。
通过理论计算和仿真软件的辅助,我们设计了一个振荡电路。
然后,我们使用合适的电子元件进行实验搭建,并使用示波器对电路进行测试和分析。
通过实验,我们了解了振荡电路的工作原理和特性,并学会了调试振荡电路的方法。
实验四:运算放大器设计与实验运算放大器是模拟电子技术中常见的电子元件之一。
在这个实验中,我们学习了运算放大器的设计和实验。
通过理论计算和仿真软件的辅助,我们设计了一个运算放大器电路。
然后,我们使用合适的电子元件进行实验搭建,并使用示波器和信号发生器对电路进行测试和分析。
通过实验,我们掌握了运算放大器的工作原理和特性,并学会了调试运算放大器电路的方法。
实验五:电源设计与实验电源是模拟电子技术中不可或缺的一部分。
在这个实验中,我们学习了电源的设计和实验。
基于Proteus的虚实结合通信电子电路实验教学

基于Proteus的虚实结合通信电子电路实验教学Proteus是一款常用的电子电路仿真软件,其拥有丰富的模块库,可以模拟各种电子电路,并能对电路进行仿真分析。
在电子电路实验中,虚拟仿真已经成为了不可或缺的一部分,但是,虚拟仿真又不能完全取代实际物理实验的作用,因此虚实结合的电子电路实验教学已逐渐成为了一种新的趋势。
虚实结合通信电子电路实验教学是以Proteus为平台的电子电路教学方法之一。
在这种教学方法中,首先在Proteus中将要进行的实验电路进行模拟仿真,保证电路的可靠性和稳定性,之后再将电路搭建到物理实验平台上进行实验操作。
通过虚实结合的方式,实现了对真实电路的仿真和实验的结合,不仅可以使学生更加深入地了解电子电路的原理和特性,还可以提高学生的动手能力,增加学生的实践经验。
以通信电子电路实验教学为例,以下简单介绍一下虚实结合教学的具体实现。
1. 实验电路的仿真设计通信电子电路实验通常会涉及到各种传输媒介、传输方式和调制解调技术等等,Proteus提供的模块库中也包含了各种常用的电子电路元件和设备,可以轻松实现这些实验的仿真设计。
例如,要搭建一个基于AM调制解调技术的通信电路实验,可以在Proteus中选择相应的电路元件,比如信号发生器、放大器、调频解调器等,然后按照实验要求进行电路连接和参数设置,最终得到一份完整的电路仿真图。
2. 教学示范与操作演示在完成实验电路的仿真设计之后,可以将仿真图与实际物理实验平台进行结合,进行操作演示和示范教学。
在演示过程中,可以将电路各个元件的特性和作用进行讲解,让学生更加深入地了解电路的工作原理和特点,并在操作过程中加强学生的动手能力。
3. 学生实验操作与实验报告通过教学示范后,学生需要将自己所学的理论知识和操作技能应用到实际的物理实验中,在完成实验任务之后,需要撰写实验报告,对实验进行总结、归纳和分析。
总之,虚实结合通信电子电路实验教学可以提高学生的实际操作能力和实验技能,增强学生的动手能力和实践经验,对于电子电路专业的学生来说,是一种非常实用的教学方法。
通信电子线路实验报告

中南大学《通信电子线路》实验报告学院信息科学与工程学院题目调制与解调实验学号专业班级姓名指导教师实验一振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号。
本实验中载波是由晶体振荡产生的10MHZ高频信号。
1KHZ的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5与V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
图2-1 MC1496内部电路图用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。
器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
高频仿真实验报告

实验报告实验课程:通信电子线路实验(软件部分)学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期: 2014-10-24 实验成绩:、实验三非线性丙类功放仿真设计(软件)一、实验目的1.了解丙类功率放大器的基本工作原理.掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
3. 掌握丙类放大器的计算与设计方法。
二、实验内容1. 观察高频功率放大器丙类工作状态的现象.并分析其特点2. 测试丙类功放的调谐特性3. 测试丙类功放的负载特性4. 观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。
功率放大器电流导通角越小.放大器的效率越高。
非线性丙类功率放大器的电流导通角小于90°.效率可达到80%.通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小).基极偏置为负值.电流导通角小于90°.为了不失真地放大信号.它的负载必须是LC谐振回路。
在丙类谐振功放中.若将输入谐振回路调谐在输出信号频率n次谐波上.则可近似的认为.输出信号回路上仅有ic中的n次谐波分量产生的高频电压.而它的分量产生的电压均可忽略。
因而.在负载RL上得到了频率为输入信号频率n倍的输出信号功率。
通信电子电路高频实验报告

实验一高频小信号谐振放大器一、实验目的1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2.了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、预习要求1.复习高频小信号放大器的功用。
答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。
由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。
就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。
一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。
2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,宽带放大器。
三、实验内容1.参照电路原理图1-1连线。
,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f电感。
图1-1 小信号谐振放大器1.在选用三极管时要查晶体管手册,使参数合理。
2.观察瞬态分析的波形输出及频谱分析是否合理。
3.在pspice中设定:参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。
V2参数CD=12V。
V1在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。
②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。
、Lntervat为10。
③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V1四、实验报告1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成表1-12.画出输入信号和输出信号的波形;(根据图形输出)仿真图如下:3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;=60Au=UoUi(2)测量放大器的通频带;谐振回路的通频带:BW=fH-fL =0.02MHz实验二三点式振荡器一、实验目的1.熟悉三点式振荡器的工作原理及电路构成。
通信电子电路实验报告

一、实验目的1. 了解通信电子电路的基本组成和工作原理。
2. 掌握通信电子电路的基本实验技能和操作方法。
3. 培养分析问题和解决问题的能力。
二、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 通信电子电路实验板5. 连接线三、实验原理通信电子电路是现代通信系统中的核心组成部分,其主要功能是将信号进行调制、放大、解调等处理,以实现信号的传输。
本实验主要涉及以下通信电子电路:1. 模拟调制解调电路:将模拟信号进行调制和解调,实现信号的传输。
2. 数字调制解调电路:将数字信号进行调制和解调,实现信号的传输。
3. 放大电路:对信号进行放大,提高信号的传输质量。
四、实验内容1. 模拟调制解调电路实验(1)实验目的:掌握模拟调制解调电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入调制电路的输入端。
③ 使用示波器观察调制电路的输出波形。
④ 改变调制电路的参数,观察输出波形的变化。
⑤ 将调制电路的输出信号接入解调电路的输入端。
⑥ 使用示波器观察解调电路的输出波形。
⑦ 改变解调电路的参数,观察输出波形的变化。
2. 数字调制解调电路实验(1)实验目的:掌握数字调制解调电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入调制电路的输入端。
③ 使用示波器观察调制电路的输出波形。
④ 改变调制电路的参数,观察输出波形的变化。
⑤ 将调制电路的输出信号接入解调电路的输入端。
⑥ 使用示波器观察解调电路的输出波形。
⑦ 改变解调电路的参数,观察输出波形的变化。
3. 放大电路实验(1)实验目的:掌握放大电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入放大电路的输入端。
③ 使用示波器观察放大电路的输出波形。
④ 改变放大电路的参数,观察输出波形的变化。
⑤ 使用数字万用表测量放大电路的增益。
高频功率放大器实验报告

《通信电子线路》实验报告实验名称:高频功率放大器一、实验环境Multisim 14.0二、实验目的1、进一步了解Multisim仿真步骤,熟练操作获取波形2、仿真验证高频功率放大器原理,观察高频功率放大器工作在过压、临界、和欠压状态的波形三、实验原理和设计高频功率放大器工作在三极管截止区,导通角小于90度,属于丙类放大器。
故三极管输出波形为尖顶余弦脉冲序列(临界或欠压)或是凹顶余弦脉冲序列(过压),信号经过选频网络后,能够恢复指定频率的波形信号。
原理图如图2.1所示。
图2.1输出电流Ic和Vce 关系曲线,如图2.2图2.2四、实验步骤1,按照原理图连接电路。
2,计算电路谐振频率,画出幅频响应和相频响应。
3,选择合适的电源电压值,使三极管发射结反偏,集电结反偏。
4,调节基极偏置电压源、信号源幅度、并联回路电阻值和集电极电源,观察输出电压Vc 、输出电流ic波形,判断电路状态五、实验结果及分析1、并联谐振回路的幅频响应和相频响应,如图4.1所示图4.1并联谐振回路谐振频率为11.56MHz,与电路参数计算相吻合。
其0.707带宽为15.65MHz2、输入信号改为f= 11,56MHz,计算频谱如图4.2.1所示图4.2.1输出信号频谱如图4.2.2所示图4.2.23、观察时域波形。
调节参数Vbb= 0.7V反偏,Vi = 0.9Vrms,Vcc = 10V,波形如图4.3.1所示图4.3.1根据三极管特性,发射极反偏时,电流信号Ib需克服Vbb和Vbz才能导通,所以Ib和Ic应为尖顶余弦脉冲。
但是仿真出波形为完整余弦脉冲,不符合理论。
可能的原因有,三极管导通电压参数与理论值差异较大,发射结反偏程度低。
三极管模型不符合实际特性,无截止区。
调节Vbm,使Vi = 1.0V,其余参数不变,观察时域波形,如图4.3.2输出电压Vc产生失真,可能因放大倍数等参数不合适导致。
图4.3.2波形出现尖顶余弦脉冲,电路为欠压状态,导通角2θ=(202.6-188.6)ns * 11.56Mhz*360°= 58.26°,半导通角θ= 29.13°信号电压,ic的频谱如图4.3.3所示图4.3.3继续增大信号电压至1.2V,波形如图4.3.4图4.3.4观察输出波形Ic,类似出现了凹顶余弦脉冲,所以电路处于过压状态,半导通角θ= 28°输入输出信号频谱如图4.3.5.1和4.3.5.2所示图4.3.5.1图4.3.5.2六、小结本次实验验证高频功率放大器的欠压和过压状态,观察欠压状态的尖顶余弦脉冲序列和过压时的凹顶余弦脉冲序列。
通信电路制作实验报告(3篇)

第1篇一、实验目的1. 理解通信电路的基本组成和工作原理。
2. 掌握通信电路中常用元件的性能和作用。
3. 学习通信电路的调试方法和故障排除技巧。
4. 提高实际操作能力和动手能力。
二、实验器材1. 通信电路实验箱2. 双踪示波器3. 函数信号发生器4. 信号源5. 测试仪6. 连接线7. 阻抗箱三、实验原理通信电路主要包括发送电路、接收电路和传输线路。
本实验主要涉及以下原理:1. 调制与解调:将信息信号转换成适合传输的信号(调制),在接收端再将信号还原为信息信号(解调)。
2. 放大与滤波:放大信号,增强信号强度,同时滤除干扰信号。
3. 编码与解码:将信息信号进行编码,以便于传输和识别,接收端再将编码信号解码为信息信号。
四、实验步骤1. 搭建通信电路:根据实验要求,搭建通信电路,包括发送电路、接收电路和传输线路。
2. 调试电路:调整电路参数,使电路工作在最佳状态。
3. 测试电路性能:使用测试仪测量电路的各项性能指标,如增益、带宽、信噪比等。
4. 分析实验结果:根据实验数据,分析电路性能,找出存在的问题,并提出改进措施。
五、实验内容1. 调制与解调实验:- 使用函数信号发生器产生基带信号。
- 使用调制电路将基带信号调制为高频信号。
- 使用解调电路将调制信号解调为基带信号。
- 比较调制前后信号的变化,验证调制和解调电路的工作原理。
2. 放大与滤波实验:- 使用信号源产生信号。
- 使用放大电路放大信号。
- 使用滤波电路滤除干扰信号。
- 测量放大和滤波后的信号强度,验证放大和滤波电路的工作原理。
3. 编码与解码实验:- 使用编码电路将信息信号编码。
- 使用解码电路将编码信号解码。
- 比较编码前后信号的变化,验证编码和解码电路的工作原理。
六、实验结果与分析1. 调制与解调实验:- 通过实验验证了调制和解调电路的工作原理。
- 发现调制后的信号频率较高,带宽较宽,有利于信号的传输。
- 解调后的信号与基带信号基本一致,说明解调电路能够有效还原信息信号。
华中科技大学电子线路实验报告

专业:通信工程班级:姓名:指导老师:___________实验名称:Pspice仿真1——单级共射放大电路实验目的:学习用Papice仿真软件设计电子电路实验原理:一、Orcad功能简述电子线路的计算机辅助分析(或仿真)与设计是指用计算机来模拟电路设计者在实验板上搭接电路,并对电路的特性进行分析和仿真,以测量电路及模拟仪器测量电路性能指标等工作。
1、OrCAD 的主要功能模块包括Capture CIS(电路原理图设计)、PSpice A/D(模数混合仿真)、PSpice Optimizer(电路优化)和Layout Plus(PCB设计)。
(1)Capture CIS(电路原理图设计)该模块除了可以生成各类电路原理图外,在工业版中还配备有元器件信息系统,可以对元器件的采用实施高效管理,还具有ICA功能,可以在设计电路图的过程中从Internet的元器件数据库中查询、调用上百万种元器件。
(2)PSpice A/D(模数混合仿真)该模块可以对各类电路进行仿真分析和模拟,比如静态工作点分析、瞬态分析(时域分析)、交流小信号分析(频域分析)、直流扫描分析、直流小信号传递函数值分析、直流小信号灵敏度分析、统计特性分析(蒙特卡罗分析和最坏情况分析)。
(3)PSpice Optimizer(电路优化)该模块可以对电路进行优化设计。
OrCAD 的运行环境:Intel Pentium或等效的其他CPU,硬盘为200M以上,内存为32M以上,显示其分辨率为800×600以上,操作系统为Windows 95、Windows 98以上或Windows NT 以上。
2、Orcad 集成环境有:模拟和模数混合电路仿真环境、PCB板仿真环境、可编程数字逻辑器件分析设计环境。
二、PSpice仿真步骤1. 创建工程项目文件(创建的目录名和文件名中不能有汉字、空格等!)。
2. 编辑电路原理图(画电路图)(1)调元件(2)元件移动、旋转和删除(3)画线(4)修改元器件标号和参数(5)保存和自动检查3. 设置仿真分析类型(1)静态(直流)工作点分析:(2)瞬态(时域)分析;(3)增益Av的频率特性分析;4. 仿真分析5. 查看仿真输出结果。
通信电子线路实验报告《实验三 振幅调制》

一、实验目的1.通过实验了解振幅调制的工作原理。
2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。
3.掌握用示波器测量调幅系数的方法。
二、实验内容1.模拟相乘调幅器的输入失调电压调节。
2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。
3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。
4.用示波器观察调制信号为方波、三角波的调幅波。
三、实验原理调制过程是用被传递的低频信号去控制高频振荡信号,使高频输出信号的参数(幅度、频率、相位)相应于低频信号变化而变化,从而实现低频信号搬移到高频段,被高频信号携带传播的目的。
完成调制过程的装置叫调制器。
1.振幅调制和调幅波振幅调制就是用低频调制信号去控制高频载波信号的振幅,使载波的振幅随调制信号成正比地变化。
经过振幅调制的高频载波称为振幅调制波(简称调幅波)。
调幅波有普通调幅波(AM)、抑制载波的双边带调幅波(DSB)和抑制载波的单边带调幅波(SSB)三种。
2.振幅调制实验电路MC1496组成的调幅器实验电路用1496组成的调幅器实验电路如图所示。
图中,与图相对应之处是:8R08对应于RT,8R09对应于RB,8R03、8R10对应于RC。
此外,8W01用来调节(1)、(4)端之间的平衡,8W02用来调节(8)、(10)端之间的平衡。
8K01开关控制(1)端是否接入直流电压,当8K01置“on”时,1496的(1)端接入直流电压,其输出为正常调幅波(AM),调整8W03电位器,可改变调幅波的调制度。
当8K01置“off”时,其输出为平衡调幅波(DSB)。
晶体管8Q01为随极跟随器,以提高调制器的带负载能力。
四、实验结果及分析1. 整理按实验步骤所得数据,绘制记录的波形,并作出相应的结论。
DSB信号波形DSB信号反相点波形AM(常规调幅)波形不对称调制度的AM波形调制度为100%的AM波形过调制时的AM波形调制信号为三角波时的调幅波根据上述AM(常规调幅)波形和Ma的定义,测出A=420和B=84,可得到调制度Ma=67%。
ADS仿真

《通信电子电路—ADS仿真》实验报告专业:班级:姓名:学号:教师:时间:实验项目实验一电路模拟基础 (02)实验二直流仿真和建立电路模型 (11)实验三交流(AC)仿真 (19)实验四 S参数仿真与优化 (26)实验五电路包络仿真 (36)Agilent公司推出的ADS软件以其强大的功能成为现今国内各大学和研究所使用最多的软件之一。
ADS电子设计自动化(EDA软件全称为Advanced Design System)是美国安捷伦(Agilent)公司所生产拥有的电子设计自动化软件;ADS功能十分强大,包含时域电路仿真(SPICE-like Simulation)、频域电路仿真(Harmonic Balance Linear Analysis)、三位电磁仿真(EM Simulation)、通信系统仿真(Communication System Simulation)和数字信号处理仿真软件(DSP);支持射频和系统设计工程师开发所有类型的RF设计,从简单到复杂,从离散的射频/微波模块到用于通信和航天/国防的集成MMIC,是当今国内各大学和研究所使用最多的微波/射频电路和通信系统仿真软件。
在本次实验中采用的软件版本为ADS2006。
实验一电路模拟基础一、概述本实验包括用户基础界面,ADS文件的创建过程包括建立原理图、仿真控件、仿真、和数据显示等部分的内容。
该实验还包括调谐与谐波平衡法仿真的一个简单例子。
二、任务1.建立一个新的项目和原理图设计2.设置并执行S参数模拟3.显示模拟数据和储存4.在模拟过程中调整电路参数5.使用例子文件和节点名称6.执行一个谐波平衡模拟7.在数据显示区写一个等式三、低通滤波器设计1.运行ADS2.建立新项目3.检查你的新项目内的文件4.建立一个低通滤波器设计5.设置S参数模拟6.开始模拟并显示数据7.储存数据窗口8.调整滤波器电路四、由行为模型构成的RF接收系统设计1.建立一个新的系统项目和原理图使用上一章学到的方法,建立一个新的项目取名rf_sys。
北邮通电实验报告

北京邮电大学电子电路综合设计实验实验报告课题名称:函数信号发生器的设计与调测院系:通信工程班级:2012211119学号:姓名:班内序号:摘要:本实验要求实现生成合适幅度和频率的方波、三角波、正弦波。
方波三角波发生器由集成运放电路构成,包括比较器与RC积分器组成。
方波发生器的基本电路由带正反馈的比较器及RC组成的负反馈构成,三角波主要由积分电路产生。
三角波转换为正弦波,则是通过差分电路实现。
该电路振荡频率和幅度便于调节,输出方波幅度大小由稳压管的稳压值决定,方波经积分得到三角波,而正弦波发生电路中两个电位器实现正弦波幅度与电路的对称性调节,实现较理想的正弦波输出波形。
关键词:函数信号发生器、方波、三角波、正弦波设计任务要求:设计一个方波-三角波-正弦波信号发生器,供电电源为±12V。
信号输出频率能在1~10kHz范围内连续可调,无明显失真。
方波信号输出电压Uopp=12V(误差小于20%),上升下降沿小于10us。
三角波信号输出电压Uopp=8V(误差小于20%)。
正弦波信号输出电压Uopp≥1V,无明显失真。
设计思路及总体结构框图:原理框图:设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。
此次实验采用滞回比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。
利用电位器实现频率和正弦波幅度的调节。
由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。
其中方波三角波生成电路为基本电路,添加电位器调节其频率。
正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
系统的组成框图:分块电路和总体电路的设计:方波三角波信号发生电路:由于采用了运算放大器组成的积分电路,可得到比较理想的方波和三角波。
通信电子线路实验报告

一、实验目的1. 理解通信电子线路的基本原理和组成;2. 掌握通信电子线路实验仪器的使用方法;3. 通过实验验证通信电子线路理论知识的正确性;4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验原理通信电子线路是研究信号在传输过程中,如何通过电子电路进行调制、解调、放大、滤波等处理的学科。
本实验主要涉及以下内容:1. 调制:将信息信号(基带信号)加载到高频载波上,以便于信号的传输;2. 解调:将调制后的信号还原为基带信号;3. 放大:提高信号强度,满足传输要求;4. 滤波:去除信号中的噪声,提高信号质量。
三、实验器材1. 通信电子线路实验箱;2. 双踪示波器;3. 高频信号发生器;4. 万用表;5. 长度可调同轴电缆。
四、实验内容1. 调制实验(1)实验目的:掌握调制原理和调制电路的设计方法。
(2)实验步骤:① 调制信号发生:使用示波器观察调制信号波形,确保其频率、幅度等参数符合要求;② 载波信号发生:使用高频信号发生器产生高频载波信号,频率与调制信号频率相同;③ 调制电路搭建:将调制信号和载波信号接入调制电路,观察调制后的信号波形;④ 分析调制效果:根据调制后的信号波形,分析调制深度、相位等参数,判断调制效果。
2. 解调实验(1)实验目的:掌握解调原理和解调电路的设计方法。
(2)实验步骤:① 解调信号发生:使用示波器观察解调信号波形,确保其频率、幅度等参数符合要求;② 解调电路搭建:将解调信号接入解调电路,观察解调后的信号波形;③ 分析解调效果:根据解调后的信号波形,分析解调深度、相位等参数,判断解调效果。
3. 放大实验(1)实验目的:掌握放大电路的设计方法,提高信号强度。
(2)实验步骤:① 放大信号发生:使用示波器观察放大信号波形,确保其频率、幅度等参数符合要求;② 放大电路搭建:将放大信号接入放大电路,观察放大后的信号波形;③ 分析放大效果:根据放大后的信号波形,分析放大倍数、频率响应等参数,判断放大效果。
通信原理实验报告

实验一:标准调幅(AM )系统电子c121班 姓名 学号一.实验目的1.学习使用SYSTEMVIEW 构建简单的仿真系统。
2.掌握调幅信号产生和解调的过程及实现方法。
3.研究信道噪声对调幅信号的影响。
二.实验原理1.调制幅度调制是无线电通信中最常用的调制方式之一。
普通的调幅广播就是它的典型应用。
幅度调制的基本原理是用基带信号(调制信号)控制高频载波的幅度,使其携带基带信号信息,从而实现信息的传输。
调制的基本作用是频谱搬移,其目的是进行频率变换,使信号能够有效的传输(辐射)或实现信道的多路复用。
根据频谱特性的不同,通常可将调幅分为标准调幅(AM ),抑制载波双边带调幅(DSB ),单边带调幅(SSB )和残留边带调幅(VSB )等。
2.调制信号的实现方法设f (t )为调制信号,高频载波为C (t )=A 0cos (ω0t +θ0)(1)标准调幅AM 信号可以表示为:S AM (t )=[A 0+f (t )]cos (ω0t +θ0)已调信号的频谱为(设θ。
=0)S AM (ω)=πA o [δ(ω-ωo )+δ(ω+ω0)]+1/2[F (ω-ωo )+F (ω+ωo )]标准调幅的数学模型如图1-1所示。
图1-l 标准调幅的数学模型(2)抑制载波双边带调幅DSB 信号可以表示为: S DSB (t )=f (t )cos (ω0t +θ0)已调信号的频谱为S DSB (ω)= 1/2[F (ω-ω0)+F (ω+ω0)] (设θ0=0) 抑制载波双边带调幅的数学模型如图1-4所示。
图1-4 抑制载波双边带调幅的数学模型3)单边带调制00000)cos(ω0t +θ0)SSB 信号可以表示为:S SSB (t ) = f (t )cos ω0t ± f ^(t )sin ω0t已调信号的频谱为S SSB (ω) = l /2[F (ω-ω0)+F (ω+ω0)]H SSB (ω)SSB 的数学模型如图41-7所示。
通信电路实验报告

篇一:通信电子电路实验报告实验八三点式lc振荡器及压控振荡器一、实验目的1、掌握三点式lc振荡器的基本原理;2、掌握反馈系数对起振和波形的影响;3、掌握压控振荡器的工作原理;4、掌握三点式lc振荡器和压控振荡器的设计方法。
二、实验内容1、测量振荡器的频率变化范围;2、观察反馈系数对起振和输出波形的影响;三、实验仪器20mhz示波器一台、数字式万用表一块、调试工具一套四、实验原理1、三点式lc振荡器三点式lc振荡器的实验原理图如图8-1所示。
图 8-1 三点式lc振荡器实验原理图图中,t2为可调电感,q1组成振荡器,q2组成隔离器,q3组成放大器。
c6=100pf,c7=200pf,c8=330pf,c40=1nf。
通过改变k6、k7、k8的拨动方向,可改变振荡器的反馈系数。
设c7、c8、c40的组合电容为c∑,则振荡器的反馈系数f=c6/ c∑。
通常f约在0.01~0.5之间。
同时,为减小晶体管输入输出电容对回路振荡频率的影响,c6和c∑取值要大。
当振荡频率较高时,有时可不加c6和c∑,直接利用晶体管的输入输出电容构成振荡电容,使电路振荡。
忽略三极管输入输出电容的影响,则三点式lc振荡器的交流等效电路图如图8-2所示。
c6图8-2 三点式lc振荡器交流等效电路图图8-2中,c5=33pf,由于c6和c∑均比c5大的多,则回路总电容c0?c5?c4 则振荡器的频率f0可近似为:f0?12?2c0?12?2(c5?c4)调节t2则振荡器的振荡频率变化,当t2变大时,f0将变小,振荡回路的品质因素变小,振荡输出波形的非线性失真也变大。
实际中c6和c∑也往往不是远远大于c5,且由于三极管输入输出电容的影响,在改变c∑,即改变反馈系数的时候,振荡器的频率也会变化。
五、实验步骤1、三点式lc振荡器(1)连接实验电路在主板上正确插好正弦波振荡器模块,开关k1、k9、k10、k11、k12向左拨,k2、k3、k4、k7、k8向下拨,k5、k6向上拨。
基于Proteus的虚实结合通信电子电路实验教学

基于Proteus的虚实结合通信电子电路实验教学随着现代科技的不断发展,电子电路技术在通信领域中扮演着越来越重要的角色。
为了更好地培养学生的实践能力和创新精神,很多教育机构开始引入虚实结合的实验教学模式,其中Proteus仿真软件作为电子电路仿真工具被广泛使用。
本文将探讨基于Proteus的虚实结合通信电子电路实验教学,通过结合实验、仿真和理论学习,帮助学生更好地理解和掌握通信电子电路技术。
一、虚实结合的实验教学模式虚实结合实验教学模式是一种将虚拟仿真和实际实验相结合的教学方法。
通过虚拟仿真软件,学生可以在计算机上进行电路设计和仿真实验,同时通过实际搭建电路并进行测试实验,使学生在理论学习的基础上,能够更深入地了解电路工作原理和实际应用技巧。
这种教学模式不仅提高了学生的实践操作能力,还能够在一定程度上减少实验设备和材料的消耗。
二、Proteus仿真软件在通信电子电路实验教学中的应用Proteus是一款功能强大的电子电路仿真软件,具有良好的用户界面和丰富的元件库,广泛应用于电子电路设计和教学中。
在通信电子电路实验教学中,Proteus软件可以帮助学生进行各种通信电子电路的设计、仿真和测试,包括放大器、滤波器、调制解调器、发射接收电路等。
通过Proteus软件,学生可以在计算机上进行电路的设计和参数设置,然后进行仿真测试,观察电路的工作状态和性能指标,并对仿真结果进行分析和评估。
Proteus软件还提供了实时波形显示和数据采集功能,学生可以通过软件直观地观察和分析电路的输入输出波形,并进行数据采集和分析,从而更好地理解电路的工作原理。
除了虚拟仿真,Proteus软件还支持与实际电路板进行连接,通过USB接口和Proteus VSM module进行通信,并实现虚拟仿真与实际实验的无缝衔接。
这种虚实结合的教学模式,不仅可以有效地引导学生进行电路设计和仿真实验,还可以通过实际实验验证虚拟仿真结果,加深学生对通信电子电路原理的理解和掌握。
通信电子线路实验报告

通信电子线路实验报告通信电子线路实验报告概述:通信电子线路是现代通信系统中不可或缺的组成部分。
本实验旨在通过搭建和测试不同类型的通信电子线路,深入了解其原理和功能。
本报告将详细介绍实验过程、结果分析以及对通信电子线路的应用前景进行探讨。
实验一:放大器电路在本实验中,我们搭建了一个基本的放大器电路,通过输入信号的放大来实现信号传输。
我们使用了共射极放大器电路,该电路具有较高的电压增益和较低的输出电阻。
通过测量输入和输出信号的幅度,我们可以计算出电压增益。
实验结果表明,放大器电路能够有效地放大输入信号,从而提高信号的传输质量。
实验二:滤波器电路滤波器电路是通信电子线路中常用的组件,它可以通过选择性地通过或阻断特定频率的信号来实现信号的处理和调整。
我们搭建了一个RC低通滤波器电路,并通过改变电容和电阻的数值来调整滤波器的截止频率。
实验结果显示,滤波器电路能够有效地滤除高频杂波,使得输出信号更加纯净和稳定。
实验三:调制解调电路调制解调电路是现代通信系统中必不可少的部分,它能够将信息信号转换为适合传输的载波信号,并在接收端将载波信号还原为原始信息信号。
我们搭建了一个简单的调制解调电路,通过改变调制信号的幅度和频率来观察调制效果。
实验结果表明,调制解调电路能够有效地实现信号的传输和还原,为通信系统的正常运行提供了基础支持。
实验四:数字信号处理电路随着数字通信技术的发展,数字信号处理电路在通信系统中的作用日益重要。
我们搭建了一个简单的数字信号处理电路,通过数字滤波器对输入信号进行滤波和调整。
实验结果显示,数字信号处理电路能够有效地抑制噪声和干扰,提高信号的传输质量和可靠性。
应用前景:通信电子线路在现代通信系统中具有广泛的应用前景。
随着通信技术的不断发展,人们对通信电子线路的需求也越来越高。
通信电子线路的应用领域涵盖了移动通信、卫星通信、光纤通信等多个领域。
例如,在移动通信领域,通信电子线路可以实现无线信号的放大和调整,提高信号的传输距离和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信电子电路仿真实验报告
——基于Multisim的AM调制与解调
班级:
姓名:
学号:
一、电路的总框图
如上图显示,调制信号与载波信号经过模拟乘法器MC1496(由于Multisim中没有此芯片,在网上找了一个电路图搭建),得到已调制信号。
再输入半波整流器得到上半周信号,在进入低通滤波器滤除高频分量。
本实验电路忽略了载波和调制信号的功放,但由于加入乘法器,信号可顺利调制。
解调部分也只含有检波器。
二、AM调制部分
(1)MC1496模拟乘法器
根据双差分对模拟相乘器基本原理构成的MC1496是对两个模拟信号(电压或电流)实现相乘功能的有源非线性器件,主要功能是实现两个互不相关的信号的相乘,即输出信号和两信号相乘积成正比。
实验中考虑过对MC1496进行封装,但由于后面检查线路连接较为繁琐,于是把电路结构直接与外部电路搭建。
(2)调制解调总电路
(3)相关参数设置
1.调制信号为F=10Khz,V=22mvp正弦信号
2.载波信号为F=1Mhz,V=23mvp的正弦信号
调制系数Ma=22mvp/23mvp=0.96
(4)工作原理
滑动变阻器W1向右滑动到100%电源VEE产生一个电压加载到信号发生器XFG2产生频率为10kHz幅值为的22mv的调制信号,然后与信号发生器XFG1产生的频率为10MHz,幅值为23mv的载波信号进
入到乘法器形成已调信号,用框图的形式表现如下:
(5)调制结果
已调信号波形图:
已调信号频谱图:
从频谱图观察可知,经过乘法器相乘的信号不仅含有基波,还有多次谐波,要是仅仅想得到一次谐波,需要加入一个带通滤波器,以滤除其他次谐波。
三、解调部分
1.二极管包络检波电路
¸
2.工作原理
二极管峰值包络检波器
Ui 为AM 调制波时,要求:Uim>0.5V ,
二极管的作用是滤除负半轴的波,因为二极管的正向内阻较小,而反向内阻较大,所以调制信号负半轴的波形不能通过二极管进入到检波电路中所以形成的波形都在时间轴的上方。
锗管的正向特性曲线在电压为(0.2-0.3)v 左右已陡峭,而硅管则要(0.5-0.7)v ,但锗管反向特性不如硅管,因一般情况下主要考虑正向特性,故选锗管 3.解调波形及频谱图
实验器件清单:
四、心得体会
通过这次设计让我们真正理解了生活中日常见到的电子的装置的基本工作原理,认识到理论与实践之间的差距,联系实际的应用去理解知识比一大堆理论来的直接与清晰明了。
在设计中难免会遇到很多学习中不会注意到的问题,比如说在调制中在取某些值后输出是失真的波形,在设计开始并没有想过会存在那样多的问题,当着手时才发现要完成一个信号的调制与解调,在元器件、电路和取值都要有一部分的要求,科学是严谨的,这更让我们一丝不苟起来。