高中物理《功和机械能》综合题突破
高中物理必修二机械能守恒定律和动能定理综合测试及答案解析(历年高考)

A . t 1B . t 2C . t 3D . t42.(2013•江苏)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.江苏)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连. 弹簧处于自然长度时物块位于O 点(图中未标出). 物块的质量为m ,AB=a ,物块与桌面间的动摩擦因数为μ. 现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W . 撤去拉力后物块由静止向左运动,经O 点到达B 点时速度为零.点时速度为零. 重力加速度为g . 则上述过程中(则上述过程中()A . 物块在A 点时,弹簧的弹性势能等于B . 物块在B 点时,弹簧的弹性势能小于C . 经O 点时,物块的动能小于W ﹣μmgaD . 物块动能最大时弹簧的弹性势能小于物块在B 点时弹簧的弹性势能点时弹簧的弹性势能 3.(2013•山东)如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )A . 两滑块组成系统的机械能守恒两滑块组成系统的机械能守恒B . 重力对M 做的功等于M 动能的增加动能的增加C . 轻绳对m 做的功等于m 机械能的增加机械能的增加D . 两滑块组成系统的机械能损失等于M 克服摩擦力做的功克服摩擦力做的功4.如图,一很长的不可伸长的柔软细绳跨过光滑定滑轮,绳两端各系一小球a 和b .a 球质量为m ,静置于地面,b 球质量为3m ,用手托住,高度为h ,此时轻绳刚好拉紧.从静止开始释放b 后,a 可能到达的最大高度为(可能到达的最大高度为( )高中物理必修二机械能守恒定律与动能定理专题复习 综合测试及答案解析(历年高考)一.选择题(共15小题) 1.(2014•天津二模)质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上.已知t=0时质点的速度为零.在图中所示的t 1、t 2、t 3和t 4各时刻中,哪一时刻质点的动能最大(各时刻中,哪一时刻质点的动能最大( )A.h B.l.5h C.2h D.2.5h 5.(2014•上海)静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力.不计空气阻力,在整个上升过程中,物体机械能随时间变化的关系是(个上升过程中,物体机械能随时间变化的关系是( )A.B.C.D.6.(2014•海南)如图,质量相同的两物体a、b,用不可伸长的轻绳跨接在同一光滑的轻质定滑轮两侧,a在水平桌面的上方,b在水平粗糙桌面上.初始时用力压住b使a、b静止,撤去此压力后,a开始运动,在a下降的过程中,b始终未离开桌面.在此过程中(始终未离开桌面.在此过程中( )A.a的动能小于b的动能的动能B.两物体机械能的变化量相等两物体机械能的变化量相等C.a的重力势能的减小量等于两物体总动能的增加量的重力势能的减小量等于两物体总动能的增加量D.绳的拉力对a所做的功与对b所做的功的代数和为零所做的功的代数和为零7.(2014•广东广东高考高考)如图是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫块,楔块与弹簧盒、垫块间均有摩擦,在车厢相互撞击时弹簧压缩过程中(弹簧盒、垫块间均有摩擦,在车厢相互撞击时弹簧压缩过程中( )A.缓冲器的机械能守恒 B.摩擦力做功消耗机械能.摩擦力做功消耗机械能C.垫块的动能全部转化成内能.垫块的动能全部转化成内能 D.弹簧的弹性势能全部转化为动能.弹簧的弹性势能全部转化为动能8.(2014•岳阳模拟)如图所示,小球从竖直放置的轻弹簧正上方高为H处由静止释放,从小球接触弹簧到被弹起离开的过程中,弹簧的最大压缩量为x.若空气阻力忽略不计,弹簧的形变在弹性限度内.关于上述过程,下列说法中正确的是(法中正确的是( )A.在小球和立方体分离前,当轻杆与水平面的夹角为θ时,小球的速度大小为B.在小球和立方体分离前,当轻杆与水平面的夹角为θ时,立方体和小球的速度大小之比为sinθC.在小球和立方体分离前,小球所受的合外力一直对小球做正功在小球和立方体分离前,小球所受的合外力一直对小球做正功D.在落地前小球的机械能一直减少在落地前小球的机械能一直减少10.(2014•杨浦区一模)如图所示,甲、乙两个容器形状不同,现有两块完全相同的金属块用细线系着分别浸没入同样深度,这时两容器的水面相平齐,如果将金属块缓慢提升一段相同的位移,最后都停留在水面的上方,不计水的阻力,则(的阻力,则()A.在甲容器中提升时,拉力做功较多在甲容器中提升时,拉力做功较多B.在乙容器中提升时,拉力做功较多在乙容器中提升时,拉力做功较多C.在两个容器中提升时,拉力做功相同在两个容器中提升时,拉力做功相同D.做功多少无法比较做功多少无法比较11.(2014•徐汇区一模)如图,一质点在一恒力作用下做曲线运动,从M点运动到N点时,质点的速度方向恰好改变了90°,在此过程中,质点的动能(,在此过程中,质点的动能()A.小球接触弹簧后的下降过程中,加速度先减小后增大,速度先增大后减小小球接触弹簧后的下降过程中,加速度先减小后增大,速度先增大后减小B.上升过程中小球加速度先增大后减小,速度先增大后减小上升过程中小球加速度先增大后减小,速度先增大后减小C.上升过程中小球上升过程中小球动能动能与弹簧弹性势能之和不断减小与弹簧弹性势能之和不断减小D.整个过程中弹簧弹性势能的最大值为mg(H+x)9.(2014•宜昌模拟)如图所示,在光滑的水平地面上有一个表面光滑的立方体Q一长为L的轻杆下端用光滑铰链连接于O点,O点固定于地面上,轻杆的上端连接着一个可视为质点的小球P,小球靠在立方体左侧,P和Q的质量相等,整个装置处于静止状态.受到轻微扰动后P倒向右侧并推动Q.下列说法中正确的是(.下列说法中正确的是( )A.不断增大增大后减小 D.先减小后增大减小后增大断增大 B.不断减小断减小 C.先增大后减小12.(2014•徐汇区二模)质量分别为m1、m2的A、B两物体放在同一水平面上,受到大小相同的水平力F的作用,各自由静止开始运动.经过时间t0,撤去A物体的外力F;经过4t0,撤去B物体的外力F.两物体运动的v﹣t关两物体( )系如图所示,则A、B两物体(A.与水平面的摩擦力大小之比为5:12 B.在匀加速运动阶段,合外力做功之比为4:1 C.在整个运动过程中,克服摩擦力做功之比为1:2 D.在整个运动过程中,摩擦力的平均功率之比为5:3 13.(2014•徐汇区二模)如图,两个小球分别被两根长度不同的细绳悬于等高的悬点,现将细绳拉至水平后由静止释放小球,当两小球通过最低点时,两球一定有相同的( )释放小球,当两小球通过最低点时,两球一定有相同的(A.速度B.角速度械能速度 D.机械能速度 C.加速度14.(2014•潍坊模拟)如图所示,足够长粗糙斜面固定在水平面上,物块a通过平行于斜面的轻绳跨过光滑轻滑轮与物块b相连,b的质量为m.开始时,a、b均静止且a刚好不受斜面摩擦力作用.现对b施加竖直向下的恒力F,高度过程中( )使a、b做加速运动,则在b下降h高度过程中(A.a的加速度为B.a的重力势能增加mgh C.绳的拉力对a做的功等于a机械能的增加机械能的增加D.F对b做的功与摩擦力对a做的功之和等于a、b动能的增加的增加15.(2014•武汉模拟)如图所示,半径为R的光滑圆环竖直放置,环上套有质量分别为m和2m的小球A和B,A、的光滑圆环竖直放置,环上套有质量分别为B之间用一长为R的轻杆相连.开始时A在圆环的最高点,现将A、B静止释放,则(静止释放,则( )A .B 球从开始运动至到达圆环最低点的过程中,杆对B 球所做的总功为零球所做的总功为零B . A 球运动到圆环的最低点时,速度为零球运动到圆环的最低点时,速度为零C . B 球可以运动到圆环的最高点球可以运动到圆环的最高点D . 在A 、B 运动的过程中,A 、B 组成的系统机械能守恒组成的系统机械能守恒二.填空题(共3小题) 16.(2014•上海二模)如图,竖直放置的轻弹簧,下端固定,上端与质量为3kg 的物块B 相连接.另一个质量为1kg 的物块A 放在B 上.先向下压A ,然后释放,A 、B 共同向上运动一段后将分离,分离后A 又上升了0.2m 到达最高点,此时B 的速度方向向下,且弹簧恰好为原长.则从A 、B 分离到A 上升到最高点的过程中,弹簧弹力对B做的功为做的功为 _________ J ,弹簧回到原长时B 的速度大小为的速度大小为 _________ m/s .(g=10m/s 2)17.(2014•浦东新区二模)长为L 的轻杆上端连着一质量为m 的小球,杆的下端用铰链固接于水平地面上的O 点,斜靠在质量为M 的正方体上,在外力作用下保持静止,如图所示.忽略一切摩擦,现撤去外力,使杆向右倾倒,当正方体和小球刚脱离瞬间,杆与水平面的夹角为θ,小球速度大小为v ,此时正方体M 的速度大小为的速度大小为 _________ ,小球m 落地时的速度大小为落地时的速度大小为 _________ .18.(2014•临沂模拟)利用自由落体运动可测量重力加速度.有两组同学分别利用下面甲、乙两种实验装置进行了实验,其中乙图中的M 为可恢复簧片,M 与触头接触,开始实验时需要手动敲击M 断开电路,使电磁铁失去磁性释放第一个小球,当前一个小球撞击M 时后一个小球被释放.时后一个小球被释放.①下列说法正确的有下列说法正确的有 _________ A .两种实验都必须使用交流电源.两种实验都必须使用交流电源B .甲实验利用的是公式△x=gT 2;乙实验利用的是公式 m/s 2(结果保留两位有效数字). h=gt 2,所以都需要用秒表测量时间,用直尺测量距离,所以都需要用秒表测量时间,用直尺测量距离C .甲实验要先接通电源,后释放纸带;乙实验应在手动敲击M 的同时按下秒表开始计时的同时按下秒表开始计时D .这两个实验装置均可以用来验证.这两个实验装置均可以用来验证机械能守恒定律机械能守恒定律 ②图丙是用甲实验装置进行实验后选取的一条符合实验要求的纸带,O 为第一个点,A 、B 、C 为从合适位置开始选取的三个连续点(其他点未画出).已知打点计时器每隔0.02s 打一次点,可以计算出重力加速度g= _________③用乙实验装置做实验,测得小球下落的高度H=1.200m ,10个小球下落的总时间t=5.0s .可求出重力加速度g=_________ (填正确答案标号). A .小球的质量m B .小球抛出点到落地点的水平距离s C .桌面到地面的高度h D .弹簧的压缩量△x E .弹簧原长l 0(2)用所选取的测量量和已知量表示E k ,得E k = _________ .(3)图(b )中的直线是实验测量得到的s ﹣△x 图线.从理论上可推出,如果h 不变,m 增加,s ﹣△x 图线的斜率会 _________ (填“增大”、“减小”或“不变”);如果m 不变,h 增加,s ﹣△x 图线的斜率会图线的斜率会 _________ (填“增大”、“减小”或“不变”).由图(b ) 中给出的直线关系和E k 的表达式可知,E p 与△x 的 _________ 次方成正比.20.(2013•福建)如图,一不可伸长的轻绳上端悬挂于O 点,T 端系一质量m=1.0kg 的小球.现将小球拉到A 点(保持绳绷直)由静止释放,当它经过B 点时绳恰好被拉断,小球平抛后落在水平地面上的C 点.地面上的D 点与OB在同一竖直线上,在同一竖直线上,已知绳长已知绳长L=1.0m ,B 点离地高度H=1.0m ,A 、B 两点的高度差h=0.5m ,重力加速度g 取10m/s 2,不计空气影响,求:不计空气影响,求:(1)地面上DC 两点间的距离s ; (2)轻绳所受的最大拉力大小.)轻绳所受的最大拉力大小.21.(2012•广东)图(a )所示的装置中,小物块AB 质量均为m ,水平面上PQ 段长为l ,与物块间的动摩擦因数为μ,其余段光滑.初始时,挡板上的轻质弹簧处于原长;长为r 的连杆位于图中虚线位置;A 紧靠滑杆(AB 间距大于2r ).随后,连杆以角速度ω匀速转动,带动滑杆做水平运动,滑杆的速度﹣时间图象如图(b )所示.A 在滑杆推动下运动,并在脱离滑杆后与静止的B 发生完全非弹性碰撞.发生完全非弹性碰撞.m/s 2(结果保留两位有效数字).三.解答题(共12小题) 19.(2014•山东模拟)某同学利用下述装置对轻质弹簧的弹性势能进行探究:一轻质弹簧放置在光滑水平桌面上,弹簧左端固定,右端与一小球接触而不固连;弹簧处于原长时,小球恰好在桌面边缘,如图(a )所示.向左推小球,使弹黄压缩一段距离后由静止释放;小球离开桌面后落到水平地面.通过测量和计算,可求得弹簧被压缩后的弹性势能.弹性势能. 回答下列问题:回答下列问题:(1)本实验中可认为,弹簧被压缩后的弹性势能E p 与小球抛出时的与小球抛出时的动能动能E k 相等.已知重力加速度大小为g .为求得E k,至少需要测量下列物理量中的,至少需要测量下列物理量中的 _________(1)求A脱离滑杆时的速度v0,及A与B碰撞过程的机械能损失△E.(2)如果AB不能与弹簧相碰,设AB从P点到运动停止所用的时间为t1,求ω的取值范围,及t1与ω的关系式.(3)如果AB能与弹簧相碰,但不能返回到P点左侧,设每次压缩弹簧过程中弹簧的最大弹性势能为E p,求ω的取值范围,及E与ω的关系式(弹簧始终在弹性限度内).p22.(2009•安徽)过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m、R2=1.4m.一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以v0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m.小球与水平轨道间的动摩擦因数为0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重,计算结果保留小数点后一位数字.试求叠.重力加速度取g=10m/s2,计算结果保留小数点后一位数字.试求)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二圆形轨道,B、C间距L应是多少;应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;的距离.小球最终停留点与起点A的距离.23.(2008•天津)光滑水平面上放着质量m A=lkg的物块A与质量m B=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能E P=49J.在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C.取g=l0m/s2,求的大小;(1)绳拉断后B的速度V B的大小;的大小;(2)绳拉断过程绳对B的冲量I的大小;(3)绳拉断过程绳对A所做的功W.24.(2008•山东)某兴趣小组设计了如图所示的玩具轨道,其中“2008”四个等高数字用内壁光滑的薄壁细圆管弯成,某兴趣小组设计了如图所示的玩具轨道,其中固定在竖直平面内(所有数字均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切.弹射装置将一个小物体(可视力质点)以v a=5m/s的水平初速度由c点弹出,从b点进入轨道,依次经过“8002”后从p点水平抛出.小物体勺地面ab段间的动摩擦因数μ=0.3,不计其它机械能损失.已知ab段长L=1.5m,数字“0”的半径R=0.2m,小物体质量m=0.01kg,g=10m/s2.求:.求:(1)小物体从P 点抛出后的水平射程.点抛出后的水平射程.(2)小物体经过数字“0”的最高点时管道对小物体作用力的大小和方向.的最高点时管道对小物体作用力的大小和方向.25.(2007•重庆)某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如图所示不用完全相同的轻绳将N 个大小相同、质量不等的小球并列悬挂于一水平杆、球间有微小间隔,从左到右,球的编号依次为1、2、3…N ,球的质量依次递减,每球质量与其相邻左球质量之比为k (k <1).将1号球向左拉起,然后由静止释放,使其与2号球碰撞,2号球再与3号球碰撞…所有碰撞皆为无机械能损失的正碰.(不计空气阻力,忽略绳的伸长,g 取10m/s 22) (1)设与n+1号球碰撞前,n 号球的速度为v n,求n+1号球碰撞后的速度.号球碰撞后的速度.(2)若N=5,在1号球向左拉高h 的情况下,要使5号球碰撞后升高16k (16h 小于绳长)问k 值为多少?值为多少?26.(2007•天津)天津)如图所示,如图所示,如图所示,水平光滑地面上停放着一辆小车,水平光滑地面上停放着一辆小车,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,左侧靠在竖直墙壁上,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道小车的四分之一圆弧轨道AB 是光滑的,在最低点B 与水平轨道BC 相切,BC 的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内.可视为质点的物块从A 点正上方某处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行至轨道末端C 处恰好没有滑出.恰好没有滑出.已知物块到达圆弧轨道最低点已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,倍,不不考虑空气阻力和物块落入圆弧轨道时的能量损失.求:考虑空气阻力和物块落入圆弧轨道时的能量损失.求:(1)物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的几倍的竖直高度是圆弧半径的几倍 (2)物块与水平轨道BC 间的动摩擦因数μ27.(2014•浙江模拟)如图所示,AB 是高h 1=0.6m 、倾角θ=37°的斜面,固定在水平桌面上,斜面下端是与桌面相切的一小段圆弧,且紧靠桌子边缘.桌面距地面的高度h 2=1.8m .一个质量为m=1.0kg 的小滑块从斜面顶端A 由静止开始沿轨道下滑,运动到斜面底端B 时沿水平方向离开斜面,落到水平地面上的C 点.已知小滑块经过B 点时的速度大小v 1=2m/s ,g=10m/s 2,sin37°sin37°=0.6=0.6,cos37°cos37°=0.8=0.8,不计空气阻力.求:,不计空气阻力.求:(1)滑块与斜面间的动摩擦因数μ; (2)小滑块落地点C 与B 点的水平距离x ; (3)小滑块落地时的速度大小v 2.28.(2014•浙江模拟)如图所示,在光滑斜面上O 点固定长度为l 的轻细绳的一端,轻绳的另一端连接一质量为m 的小球A ,斜面r 的倾角为α.现把轻绳拉成水平线HH′上,然后给小球一沿斜面向下且与轻绳垂直的初速度v 0.若小球能保持在斜面内作圆周运动.取重力加速度g=10m/s 2.试求:.试求: (1)倾角α的值应在什么范围?的值应在什么范围? (2)若把细线换成一轻质细杆,倾角α的范围又如何?的范围又如何?29.(2014•盐城一模)如图所示,质量分别为M 、m 的两物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑.弹簧开始时处于原长,运动过程中始终处在弹性限度内.在物块A 上施加一个水平恒力F ,A 、B 从静止开始运动,弹簧第一次恢复原长时A 、B 速度分别为υ1、υ2. (1)求物块A 加速度为零时,物块B 的加速度;的加速度; (2)求弹簧第一次恢复原长时,物块B 移动的距离;移动的距离;(3)试分析:在弹簧第一次恢复原长前,弹簧的弹性势能最大时两物块速度之间的关系?简要说明理由.)试分析:在弹簧第一次恢复原长前,弹簧的弹性势能最大时两物块速度之间的关系?简要说明理由.30.(2014• (填“甲”、“乙”、“丙”或“丁”) ②利用打点计时器打出纸带,请将下列步骤按合理顺序排列利用打点计时器打出纸带,请将下列步骤按合理顺序排列 _________ (填选项前字母)(填选项前字母) A .释放纸带.释放纸带 B 接通电源接通电源 C 取下纸带取下纸带 D 切断电源切断电源 ③在打出的纸带上选取连续打出的三个点A 、B 、C ,如图所示.测出起始点O 到A 点的距离为s o ,A 、B 两点间的距离为s 1,B 、C 两点间的距离为s 2,根据前述条件,如果在实验误差允许的范围内满足关系式,根据前述条件,如果在实验误差允许的范围内满足关系式 _________ ,即验证了物体下落过程中机械能是守恒的(已知当地重力加速度为g ,使用交流电的周期为T ). ④下列叙述的实验处理方法和实验结果,正确的是下列叙述的实验处理方法和实验结果,正确的是 _________A .该实验中不用天平测重锤的质量,则无法验证机械能守恒定律.该实验中不用天平测重锤的质量,则无法验证机械能守恒定律B .该实验选取的纸带,测量发现所打的第一和第二点间的距离为1.7mm ,表明打点计时器打第一点时重锤的速度不为零不为零C .为了计算方便,本实验中选取一条理想纸带,然后通过对纸带的测量、分析,求出当地的重力加速度的值,再代入表达式:mgh=mv 2进行验证进行验证D .本实验中,实验操作非常规范.数据处理足够精确,实验结果一定是mgh 略大于mv 2,不可能出现mv 2略大于mgh 的情况.的情况.厦门一模)关于验证厦门一模)关于验证机械能守恒定律机械能守恒定律的实验.请回答下列问题:①某同学安装实验装置并进行实验,释放纸带前瞬间,其中最合理的操作是如图中的其中最合理的操作是如图中的 _________A . 物块在A 点时,弹簧的弹性势能等于B . 物块在B 点时,弹簧的弹性势能小于C . 经O 点时,物块的动能小于W ﹣μmgaD . 物块动能最大时弹簧的弹性势能小于物块在B 点时弹簧的弹性势能点时弹簧的弹性势能参考答案与试题解析一.选择题(共15小题) 1.(2014•天津二模)质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上.已知t=0时质点的速度为零.在图中所示的t 1、t 2、t 3和t 4各时刻中,哪一时刻质点的各时刻中,哪一时刻质点的动能动能最大(最大( )A . t 1B .t 2 C . t 3 D . t 4考点: 动能定理的应用;匀变速直线运动的图像.专题: 动能定理的应用专题.动能定理的应用专题.分析: 通过分析质点的运动情况,确定速度如何变化,再分析动能如何变化,确定什么时刻动能最大.通过分析质点的运动情况,确定速度如何变化,再分析动能如何变化,确定什么时刻动能最大. 解答:解:由力的图象分析可知:解:由力的图象分析可知:在0∽t 1时间内,质点向正方向做加速度增大的加速运动.时间内,质点向正方向做加速度增大的加速运动. 在t 1∽t 2时间内,质点向正方向做加速度减小的加速运动.时间内,质点向正方向做加速度减小的加速运动. 在t 2∽t 3时间内,质点向正方向做加速度增大的减速运动.时间内,质点向正方向做加速度增大的减速运动. 在t 3∽t 4时间内,质点向正方向做加速度减小的减速运动.t 4时刻速度为零.时刻速度为零. 则t 2时刻质点的速度最大,动能最大.时刻质点的速度最大,动能最大.故选B .点评: 动能是状态量,其大小与速度大小有关,根据受力情况来分析运动情况确定速度的变化,再分析动能的变化是常用的思路.能的变化是常用的思路. 2.(2013•江苏)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.江苏)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连. 弹簧处于自然长度时物块位于O 点(图中未标出). 物块的质量为m ,AB=a ,物块与桌面间的动摩擦因数为μ. 现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W . 撤去拉力后物块由静止向左运动,经O 点到达B 点时速度为零.点时速度为零. 重力加速度为g . 则上述过程中(则上述过程中( )。
高中物理力学综合题解题技巧

高中物理力学综合题解题技巧一力学综合题的特点力学综合题是一种含有多个物理过程、多个研究对象、运用到多个物理概念和规律、难度较大的题目。
它的特点就在于知识的综合与能力的综合上。
综合题的题型可以是计算、证明,又可以是选择、填空、问答。
但以计算题为多,故在此着重研究综合计算题。
二、力学综合题求解要领力学的知识总的来说就是力和运动问题,因而它包含了两大方面的规律:一是物体的受力规律,二是物体的运动规律。
物体的运动是由它的受力情况和初始条件所决定的。
由于力有三种作用效果:1、力的即时作用效果——使物体产生加速度 a 或形变,2、力对时间的积累效果——冲量 I ;3、力对空间的积累效果——功 W 。
所以,加速度a,动量P和功W就是联系力和运动的桥梁。
因而与上述三个桥梁密切相关的知识是:牛顿运动定律、动量知识包括动量定理和动量守恒定律、功能知识包括动能定理和机械能守恒定律 ,这些知识就是解决力学问题的三大途径。
若考查有关物理量的瞬时对应关系,须应用牛顿定律,若考查一个过程,三种方法都有可能,但方法不同,处理问题的难易、繁简程度可能有很大的差别.若研究对象为一个系统,应优先考虑两大守恒定律,若研究对象为单一物体,可优先考虑两个定理,特别涉及时间问题时应优先考虑动量定理,涉及功和位移问题的应优先考虑动能定理.因为两个守恒定律和两个定理只考查一个物理过程的始末两个状态有关物理量间关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力作用问题,在中学阶段无法用牛顿定律处理时,就更显示出它们的优越性.解题的路子是多种多样的,可有不同的变通和组合,也还会有别的巧妙方法,如图象解题等。
只要在实践中积极思考,认真总结,是不断会有所发现和发展的。
具体说,求解力学综合题的要领如下:在认真审题、做好受力分析和运动分析的基础上,选取一个相对比较好的解题途径,而途径的选取,又该如何考虑呢选择的依据如下:1、题目中如果要求的是始、末状态的量,而它们又满足守恒条件,这时应优先运用守恒定律解题。
2023人教版带答案高中物理必修二第八章机械能守恒定律微公式版考点突破

2023人教版带答案高中物理必修二第八章机械能守恒定律微公式版考点突破单选题1、如图甲所示,绷紧的水平传送带始终以恒定速率v1运行,初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带。
若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示。
已知v2>v1,物块和传送带间的动摩擦因数为μ,物块的质量为m。
则()A.t2时刻,小物块离A处的距离最大B.0∼t2时间内,小物块的加速度方向先向右后向左C.0∼t2时间内,因摩擦产生的热量为μmg[v12(t2+t1)+v2t12]D.0∼t2时间内,物块在传送带上留下的划痕为v2+v12(t1+t2)答案:CA.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带,小物块在传送带上运动的v−t图象可知,t1时刻,小物块离A处的距离达到最大,A错误;B.0~t2时间内,小物块受到的摩擦力方向一直向右,所以小物块的加速度方向一直向右,B错误;CD.0~t1时间内物体相对地面向左的位移s1=v2 2 t1这段时间传送带向右的位移s 2=v 1t 1因此物体相对传送带的位移Δs 1=s 1+s 2=v 22t 1+v 1t 1t 1~t 2时间内物体相对地面向右的位移s 1′=v 12(t 2−t 1) 这段时间传送带向右的位移s 2′=v 1(t 2−t 1)因此物体相对传送带的位移Δs 2=s 2′−s 1′=v 12(t 2−t 1) 0∼t 2时间内物块在传送带上留下的划痕为Δs =Δs 1+Δs 2=v 12(t 2+t 1)+v 2t 120~t 2这段时间内,因此摩擦产生的热量Q =μmg ×Δs =μmg [v 12(t 2+t 1)+v 2t 12]C 正确,D 错误。
故选C 。
2、如图所示,在光滑地面上,水平外力F 拉动小车和木块一起做无相对滑动的加速运动。
备战中考物理—功和机械能问题的综合压轴题专题复习附答案

一、初中物理功和机械能问题1. 如图所示为运动员投掷铅球的过程示意图,下列有关说法错误的是( )A .在 a 到 b 的过程中,运动员对铅球做了功B .在 b 到 c 的过程中,运动员对铅球没有做功C .在 c 到 d 的过程中,没有力对铅球做功D .在 a 到 d 的过程中,铅球的运动状态在不断的变化【答案】 C【解析】【分析】【详解】图中从 a 到 b 过程中,运动员对铅球施加了力,铅球在力的方向上通过距离,故运动员对 铅球做了功, A 说法正确;从 b 到 c 过程中,铅球虽然运动了一段距离,但运动员对铅球 没有施加力的作用,故运动员对铅球没有做功, B 说法正确;从 c 到 d 的过程中,铅球受 到重力的作用,铅球在重力方向上通过一段距离,故重力对铅球做功, C 说法错误;从 a 到 d 的过程中,铅球的运动方向随时改变,故铅球的运动状态在不断改变, D 说法正确; 答案选 C .2.将皮球从离地某一高度 O 点处水平抛出,球落地后又弹起。
它的部分运动轨迹如图所 示.下列说法正确的是A .皮球经过同一高度 A 、B 两点时,动能相等P 时,动能为零C 点时的机械能D .若将皮球表面涂黑,则在地面 【答案】 D【解析】详解】A .由图可知,每次小球反弹后到的最高点都比上一次的最高点要低,说明小球受到空气 阻力,机械能逐渐变小,在 A 点的机械能大于在B 点的机械能;机械能是物体动能与势能 的总和,在 A 、B 两点高度相同则重力势能相同,所以在 A 点的动能大于在 B 点的动能;B .皮球第一次反弹后到达最高点C .皮球在D 点时的机械能大于在 M 点的黑色圆斑大于 N 点的黑色圆斑故 A 错误。
B.从轨迹来看,小球既有水平方向的速度又有竖直方向的速度。
小球在最高点时,竖直方向速度为零,但是仍然能往右运动,说明小球还具有水平方向速度,动能不为零;故 B 错误。
C.每次小球反弹后到的最高点都比上一次的最高点要低,说明小球受到空气阻力,机械能逐渐变小。
高中物理功能关系知识点及习题总结

高中物理功能关系专题定位本专题主要用功能的观点解决物体的运动和带电体、带电粒子、导体棒在电场或磁场中的运动问题.考查的重点有以下几方面:①重力、摩擦力、静电力和洛伦兹力的做功特点和求解;②与功、功率相关的分析与计算;③几个重要的功能关系的应用;④动能定理的综合应用;⑤综合应用机械能守恒定律和能量守恒定律分析问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题.应考策略深刻理解功能关系,抓住两种命题情景搞突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题.1.常见的几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能.转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.2.几个重要的功能关系(1)重力的功等于重力势能的变化,即W G=-ΔE p.(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.(4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE.(5)一对滑动摩擦力做的功等于系统中内能的变化,即Q=F f·l相对.1.动能定理的应用(1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.(2)应用动能定理解题的基本思路①选取研究对象,明确它的运动过程.②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.③明确物体在运动过程始、末状态的动能E k1和E k2.④列出动能定理的方程W合=E k2-E k1,及其他必要的解题方程,进行求解.2.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“物体间碰撞”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系统.②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始、末状态时的机械能.④根据机械能守恒定律列方程,进行求解.题型1力学中的几个重要功能关系的应用例1如图1所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B相连.开始时用手托住B,让细线恰好伸直,然后由静止释放B,直至B获得最大速度.下列有关该过程的分析正确的是()A.B物体的机械能一直减小B.B物体的动能的增加量等于它所受重力与拉力做的功之和C.B物体机械能的减少量等于弹簧的弹性势能的增加量D.细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量以题说法 1.本题要注意几个功能关系:重力做的功等于重力势能的变化量;弹簧弹力做的功等于弹性势能的变化量;重力以外的其他力做的功等于机械能的变化量;合力做的功等于动能的变化量.2.本题在应用动能定理时,应特别注意研究过程的选取.并且要弄清楚每个过程各力做功的情况.如图2所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功题型2动力学方法和动能定理的综合应用例2(15分)如图3所示,上表面光滑、长度为3 m、质量M=10 kg的木板,在F=50 N 的水平拉力作用下,以v0=5 m/s的速度沿水平地面向右匀速运动.现将一个质量为m =3 kg的小铁块(可视为质点)无初速度地放在木板最右端,当木板运动了L=1 m时,又将第二个同样的小铁块无初速地放在木板最右端,以后木板每运动1 m就在其最右端无初速度地放上一个同样的小铁块.(g取10 m/s2)求:(1)木板与地面间的动摩擦因数;(2)刚放第三个小铁块时木板的速度;(3)从放第三个小铁块开始到木板停止的过程,木板运动的距离.以题说法 1.在应用动能定理解题时首先要弄清物体的受力情况和做功情况.此题特别要注意每放一个小铁块都会使滑动摩擦力增加μmg.2.应用动能定理列式时要注意运动过程的选取,可以全过程列式,也可以分过程列式.如图4所示,倾角为37°的粗糙斜面AB底端与半径R=0.4 m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1 kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C点,求滑块从A点沿斜面滑下时的初速度v0的最小值;(3)若滑块离开C点的速度大小为4 m/s,求滑块从C点飞出至落到斜面上所经历的时间t.题型3动力学方法和机械能守恒定律的应用例3(14分)如图5,质量为M=2 kg的顶部有竖直壁的容器A,置于倾角为θ=30°的固定光滑斜面上,底部与斜面啮合,容器顶面恰好处于水平状态,容器内有质量为m=1 kg的光滑小球B与右壁接触.让A、B系统从斜面上端由静止开始下滑L后刚好到达斜面底端,已知L=2 m,取重力加速度g=10 m/s2.求:(1)小球到达斜面底端的速度大小;(2)下滑过程中,A的水平顶面对B的支持力大小;(3)下滑过程中,A对B所做的功.以题说法若判断多个物体组成的系统机械能是否守恒,最简单有效的方法是看能量是否向机械能之外的其他能量转化.比如,此题中各个接触面都是光滑的,不会产生内能,也没有其他能量参与转移或转化,所以A、B组成的系统机械能守恒.如图所示,轮半径r=10 cm的传送带,水平部分AB的长度L=1.5 m,与一圆心在O点、半径R=1 m的竖直光滑圆轨道的末端相切于A点,AB高出水平地面H=1.25 m,一质量m=0.1 kg的小滑块(可视为质点),由圆轨道上的P点从静止释放,OP与竖直线的夹角θ=37°.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,滑块与传送带间的动摩擦因数μ=0.1,不计空气阻力.(1)求滑块对圆轨道末端的压力;(2)若传送带一直保持静止,求滑块的落地点与B间的水平距离;(3)若传送带以v0=0.5 m/s的速度沿逆时针方向运行(传送带上部分由B到A运动),求滑块在传送带上滑行过程中产生的内能.6.综合应用动力学和能量观点分析多过程问题汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为0.02 (sin α=0.02)的长直公路上时,如图所示,所受摩擦阻力为车重的0.1倍(g=10 m/s2),求:(1)汽车所能达到的最大速度v m;(2)若汽车从静止开始以0.6 m/s 2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车匀加速行驶的速度达到最大值时,汽车做功多少?如图8所示,将一质量m =0.1 kg 的小球自水平平台顶端O 点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A 并沿斜面下滑,斜面底端B 与光滑水平轨道平滑连接,小球以不变的速率过B 点后进入BC 部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h =3.2 m ,斜面高H =15 m ,竖直圆轨道半径R =5 m .取sin 53°=0.8,cos 53°=0.6,g =10 m/s 2,试求: (1)小球水平抛出的初速度v 0及斜面顶端与平台边缘的水平距离x ; (2)小球从平台顶端O 点抛出至落到斜面底端B 点所用的时间; (3)若竖直圆轨道光滑,小球运动到圆轨道最高点D 时对轨道的压力.专题突破一、单项选择题1.质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMmr,其中G为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm ⎝⎛⎭⎫1R 2-1R 1B .GMm ⎝⎛⎭⎫1R 1-1R 2C.GMm 2⎝⎛⎭⎫1R 2-1R 1D.GMm 2⎝⎛⎭⎫1R 1-1R 2 2. 如图1所示,质量为m 的物体(可视为质点)以某一初速度从A 点冲上倾角为30°的固定斜面,其运动的加速度大小为34g ,沿斜面上升的最大高度为h ,则物体沿斜面上升的过程中( )A .物体的重力势能增加了34mghB .物体的重力势能增加了mghC .物体的机械能损失了14mghD .物体的动能减少了mgh3. 用电梯将货物从六楼送到一楼的过程中,货物的v -t 图象如图2所示.下列说法正确的是( )A .前2 s 内货物处于超重状态B .最后1 s 内货物只受重力作用C .货物在10 s 内的平均速度是1.7 m/sD .货物在2 s ~9 s 内机械能守恒4. 质量为m 的汽车在平直的路面上启动,启动过程的速度—时间图象如图3所示,其中OA 段为直线,AB 段为曲线,B 点后为平行于横轴的直线.已知从t 1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为F f ,以下说法正确的是 ( )A .0~t 1时间内,汽车牵引力的数值为m v 1t 1B .t 1~t 2时间内,汽车的功率等于(m v 1t 1+F f )v 2C .t 1~t 2时间内,汽车的平均速率小于v 1+v 22D .汽车运动的最大速率v 2=(m v 1F f t 1+1)v 1二、多项选择题5.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上.现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( )A .小球P 的速度先增大后减小B .小球P 和弹簧的机械能守恒,且P 速度最大时所受弹力与库仑力的合力最大C .小球P 的动能、重力势能、电势能与弹簧的弹性势能的总和不变D .系统的机械能守恒6. 一物体静止在水平地面上,在竖直向上的拉力F 的作用下开始向上运动,如图5甲所示.在物体运动过程中,空气阻力不计,其机械能E 与位移x 的关系图象如图乙所示,其中曲线上点A 处的切线的斜率最大.则( )A .在x 1处物体所受拉力最大B .在x 2处物体的速度最大C .在x 1~x 3过程中,物体的动能先增大后减小D .在0~x 2过程中,物体的加速度先增大后减小7. 被誉为“豪小子”的纽约尼克斯队17号华裔球员林书豪在美国职业篮球(NBA)赛场上大放光彩.现假设林书豪准备投二分球前先屈腿下蹲再竖直向上跃起,已知林书豪的质量为m ,双脚离开地面时的速度为v ,从开始下蹲至跃起过程中重心上升的高度为h ,则下列说法正确的是( )A .从地面跃起过程中,地面支持力对他所做的功为0B .从地面跃起过程中,地面支持力对他所做的功为12m v 2+mghC .离开地面后,他在上升过程和下落过程中都处于失重状态D .从下蹲到离开地面上升过程中,他的机械能守恒 三、非选择题8. 水上滑梯可简化成如图6所示的模型,光滑斜槽AB 和粗糙水平槽BC 平滑连接,斜槽AB 的竖直高度H =6.0 m ,倾角θ=37°,水平槽BC 长d =2.5 m ,BC 面与水面的距离h =0.80 m ,人与BC 间的动摩擦因数为μ=0.40.一游戏者从滑梯顶端A 点无初速度地自由滑下,求:(取重力加速度g =10 m/s2,cos 37°=0.8,sin 37°=0.6) (1)游戏者沿斜槽AB 下滑时加速度的大小; (2)游戏者滑到C 点时速度的大小;(3)在从C 点滑出至落到水面的过程中,游戏者在水平方向上的位移的大小.9. 如图所示,倾角为θ的光滑斜面上放有两个质量均为m 的小球A 和B ,两球之间用一根长为L 的轻杆相连,下面的小球B 离斜面底端的高度为h .两球从静止开始下滑,不计球与地面碰撞时的机械能损失,且地面光滑,求: (1)两球都进入光滑水平面时两小球运动的速度大小; (2)此过程中杆对B 球所做的功.10. 如图7所示,质量为m =1 kg 的小物块轻轻地放在水平匀速运动的传送带上的P 点,随传送带运动到A 点后水平抛出,小物块恰好无碰撞地沿圆弧切线从B 点进入竖直光滑的圆弧轨道.B 、C 为圆弧轨道的两端点,其连线水平,已知圆弧轨道的半径R =1.0m ,圆弧轨道对应的圆心角θ=106°,轨道最低点为O ,A 点距水平面的高度h =0.8 m ,小物块离开C 点后恰能无碰撞地沿固定斜面向上运动,0.8 s 后经过D 点,小物块与斜面间的动摩擦因数为μ1=13.(g =10 m/s2,sin 37°=0.6,cos 37 °=0.8)(1)求小物块离开A 点时的水平初速度v 1的大小;(2)求小物块经过O 点时对轨道的压力;(3)假设小物块与传送带间的动摩擦因数为μ2=0.3,传送带的速度为5 m/s ,求P 、A 间的距离;(4)求斜面上C 、D 间的距离.11.如图8所示是一皮带传输装载机械示意图.井下挖掘工将矿物无初速度地放置于沿图示方向运行的传送带A 端,被传输到末端B 处,再沿一段圆形轨道到达轨道的最高点C 处,然后水平抛到货台上.已知半径为R =0.4 m 的圆形轨道与传送带在B 点相切,O 点为半圆的圆心,BO 、CO 分别为圆形轨道的半径,矿物m 可视为质点,传送带与水平面间的夹角θ=37°,矿物与传送带间的动摩擦因数μ=0.8,传送带匀速运行的速率为v0=8 m/s ,传送带A 、B 点间的长度s AB =45 m .若矿物落到点D 处离最高点C 点的水平距离为s CD =2 m ,竖直距离为h CD =1.25 m ,矿物质量m =50 kg ,sin 37°=0.6,cos 37°=0.8,g =10 m/s2,不计空气阻力.求:(1)矿物到达B 点时的速度大小;(2)矿物到达C 点时对轨道的压力大小;(3)矿物由B 点到达C 点的过程中,克服阻力所做的功.。
高中物理压轴题03 用功能关系、能量的观点解题(解析版)

压轴题03功和功率、功能关系专题1.本专题是功能关系的典型题型,包括功和功率、机车启动问题、动能定理及其应用、功能关系机械能守恒定律含功和能的综合题。
是历年高考考查的热点。
2.通过本专题的复习,可以培养同学们的用功能关系解决问题的能力,提高学生物理核心素养和关键能力。
3.用到的相关知识有:功和功率的求解,如何求变力做功,动能定理、机械能守恒定律功能关系的灵活运用等。
实践中包括体育运动中功和功率问题,风力发电功率计算,蹦极运动、过山车等能量问题,汽车启动问题,生活、生产中能量守恒定律的应用等。
要求考生在探究求解变力做功的计算,机车启动问题,单物体机械能守恒,用绳、杆连接的系统机械能守恒问题,含弹簧系统机械能守恒问题,传送带、板块模型的能量等问题的过程中,形成系统性物理思维,对做功是能量转化的量度这一功能观点有更深刻的理解。
考向一:变力功的求解求变力做功的五种方法质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ·Δx 1+F f ·Δx 2+F f ·Δx 3+…=F f (Δx 1+Δx 2+Δx 3+…)=F f ·2πR恒力F 把物块从A 拉到B ,绳子对物块做功W =F ·(hsin α-hsin β)一水平拉力拉着一物体在水平面上运动的位移为x 0,F -x图线与横轴所围面积表示拉力所做的功,W =F 0+F 12x 0平均值法当力与位移为线性关系,力可用平均值F =F 1+F 22表示,W =F Δx ,可得出弹簧弹性势能表达式为E p =12k (Δx )2应用动能定理用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F -mgL (1-cos θ)=0,得W F =mgL (1-cos θ)考向二:机车启动问题1.两种启动方式P2.三个重要关系式(1)无论哪种启动过程,机车的最大速度都为v m =P F 阻。
专题2功和功率+实际问题模型-2023年高考物理机械能常用模型最新模拟题精练(解析版)

高考物理《机械能》常用模型最新模拟题精练专题2.功和功率+实际问题模型一.选择题1.(2023重庆沙家坝重点中学质检)某国产电动汽车厂商对旗下P7、G3两款产品进行百公里加速性能测试,某次加速过程中P7、G3的速度一时间图像分别为图中的图线A 和图线B 若测试时两车的质量和所受的阻力(恒定不变)均相等,则对此次加速过程,下列说法正确的是()A.当两车的速度相等时,P7发动机的功率大于G3发动机的功率B.当两车的速度相等时,P7发动机的功率小于G3发动机的功率C.P7发动机做的功大于G3发动机做的功D.P7发动机做的功小于G3发动机做的功【参考答案】AD 【名师解析】根据图像可知,两车均做匀加速直线运动,速度时间图像的斜率表示加速度,由图像可知,P7的加速度大于G3,根据牛顿第二定律有F f ma-=两车受到的阻力和两车质量都相等,所以P7的牵引力大于G3的牵引力,由P Fv=可知,当两车的速度相等时,P7发动机的功率大于G3发动机的功率,A 正确,B 错误;加速过程中两车的初、末速度相等,受到的阻力大小相等,根据速度时间图像与时间轴围成的面积可知,两车在加速过程中P7的位移小于G3,根据动能定理有2102F W fx mv -=-所以P7发动机做的功小于G3发动机做的功,C 错误,D 正确。
2.(2023重庆八中高三质检)若某人的心率为75次/分,每跳一次输送80mL 血液,他的血压(可看作心脏压送血液的平均压强)为41.510Pa ⨯,此人心脏跳动做功的平均功率约为()A.1.2W B.1.5WC.12WD.9W【参考答案】B 【名师解析】根据平均功率表达式W P t=可得461.51075W 8010W 1.560p V P t -⨯⨯∆⨯⨯===,选项B 正确。
3.(2021江西吉安高一期末)如图甲所示,“水上飞人”是一种水上娱乐运动。
喷水装置向下持续喷水,总质量为M 的人与喷水装置,受到向上的反冲作用力腾空而起,在空中做各种运动。
人教版高中物理必修2第七章 机械能守恒定律3. 功率 习题

2018-2019年高中物理人教版《必修2》《第七章机械能守恒定律》《第三节功率》综合测试试卷【4】含答案考点及解析班级:___________ 姓名:___________ 分数:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.我国曾经发射了一颗“北斗一号”导航定位卫星,预示着我国通讯技术的不断提高。
该卫星处于地球的同步轨道,其质量为m,假设其离地高度为h,地球半径为R,地面附近重力加速度为g,则有()A.该卫星运行周期为24hB.该卫星向心加速度是C.该卫星运动动能是D.该卫星周期与近地卫星周期之比是【答案】 ABC【解析】试题分析:地球的同步卫星运动周期必须与地球自转周期相同,故知该卫星运行周期为24h.故A正确;在地面附近万有引力等于重力得:=mg,得g=,卫星做圆周运动的向心力由万有引力提供,ma=,解得该卫星向心加速度是,所以B正确;卫星做圆周运动的向心力由万有引力提供,,该卫星运动动能是,故C正确;,解得:,该卫星周期与近地卫星周期之比是,故D错误考点:万有引力定律应用2.从“嫦娥奔月”到“万户飞天”,从“东方红”乐曲响彻寰宇到航天员杨利伟遨游太空,中华民族载人航天的梦想已变成现实.如图所示,“神舟”五号飞船升空后,先运行在近地点高度200千米、远地点高度350千米的椭圆轨道上,实施变轨后,进入343千米的圆轨道.假设“神舟”五号实施变轨后做匀速圆周运动,共运行了n 周,起始时刻为t 1,结束时刻为t 2,运行速度为v ,半径为r.则计算其运行周期可用 ( ).A .T =B .T =C .T =D .T =【答案】AC【解析】由题意可知飞船做匀速圆周运动n 周所需时间Δ t =t 2-t 1,故其周期T ==,故选项A 正确.由周期公式有T =,故选项C 正确.3.有报道说:我国一家厂商制作了一种特殊的手机,在电池电能耗尽时,摇晃手机,即可产生电能维持通话,摇晃过程是将机械能转化为电能;如果将该手机摇晃一次,相当于将100g 的重物缓慢举高20cm 所需的能量,若每秒摇两次,则摇晃手机的平均功率为(g 取10m/s 2): A .0.04w B .0.4wC .4wD .40w【答案】B 【解析】试题分析:每摇晃一次手机,就会克服重力做功W=mgh=0.1×10×0.2J=0.2J ,所以晃手机的平均功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理《功和机械能》综合题突破(动能定理、机械能守恒、能量守恒定律综合运用)一、对功能关系的理解 ①222111=22k W E mv mv ∆=-合(末-初). ②12G p W E mgh mgh =-∆=-重(初-末). ③12p p p W E E E =-∆=-弹弹(初-末).④W E =∆其它力机(其它力是除系统中的重力、弹力.........以外的力). 机械能守恒的条件: 只有______的_______与________做功,_______的机械能守恒。
⑤=f Q W f x =⋅∆克(x ∆为系统中物体运动时发生的相对位移....) 【例1】一质量为m 的物体,以13g 的加速度减速上升h 高度,g 为重力加速度,不计空气阻力,则( )A. 物体的机械能守恒B. 物体的动能减小13mghC. 物体的机械能减少23mgh D. 物体的重力势能减少mgh【例2】如图1所示,一质量为m 的物体以某一初速度冲上倾角为30°的固定斜面,物体的加速度为35g (g 为重力加速度),物体沿斜面上升的最大高度为h ,则物体在这一过程中动能损失了______,机械能损失了______.【例3】如图所示,板长为L ,板的B 端静止且放有一个质量为m 的小物体,物体与板之间的动摩擦因数为μ。
开始时板水平,在缓慢转过一个小角度α的过程中,小物体与板相对静止,则在此过程中( )A. 摩擦力对小物体做的功为μmgL cos α (1-cos α)B. 摩擦力对小物体做的功为mgL cos α (1-cos α)C. 弹力对小物体做的功为mgL cos α·sin αD. 板对小物体做的功为mgL sin α【例4】如图,两个质量相同的小球A 、B 分别用不计质量的细线悬在等高的O 1、O 2点,A 球的悬线比B 球的长。
把两球的悬线分别拉至水平后无初速度释放,则经过最低点时( ) A. A 球的机械能等于B 球的机械能 B. A 球的速度等于B 球的速度C. A 球的向心加速度等于B 球的向心加速度D. A 球的动能等于B 球的动能【例5】如图所示,一个轻质弹簧一端固定在粗糙的斜面底端,弹簧轴线与斜面平行,小滑块A 从斜面的某一高度由静止开始沿斜面向下运动一段距离后与弹簧接触,直到把弹簧压缩到最短.在此过程中下列说法正确的是( ) A. 滑块先做匀加速运动后做匀减速运动B. 滑块先做匀加速运动,接触弹簧后再做匀加速运动最后做变减速运动C. 滑块重力做功等于内能与弹性势能的增加量D. 滑块重力势能减少量与内能增加量之和等于弹性势能增加量1. 如图所示,a 、b 两物块的质量分别为m 、2m ,用不计质量的细绳相连接,悬挂在定滑轮的两侧,不计滑轮质量和一切摩擦。
开始时,a 、b 两物块距离地面的高度相同,用手托住物块B ,然后突然有静止释放,直至a 、b 两物体之间高度差为h 。
在此过程中,下列说法正确的是( )A. 物块a 的机械能守恒B. 物块b 的机械能减少23mgh C. 物块b 的重力势能的减小量等于细绳拉力对它做的功 D. 物块a 重力势能的增加量小于其动能增加量2. 如图所示,倾角θ=30°的粗糙斜面固定在地面上,长为l 、质量为m 、粗细均匀、质量分布均匀的软绳置于斜面上,其上端与斜面顶端齐平.用细线将物块与软绳连接,物块由静止释放后向下运动,直到软绳刚好全部离开斜面(此时物块未到达地面),在此过程中( ) A. 物块的机械能逐渐增加 B. 软绳重力势能共减少了14mglC. 物块重力势能的减少等于软绳摩擦力所做的功D. 软绳重力势能的减少小于其动能增加与克服摩擦力所做功之和3. 如图所示是全球最高(高度为208m )的北京朝阳公园摩天轮。
一质量为m 的乘客坐在摩天轮中以恒定的速度v 在竖直平面内做半径为R 的匀速圆周运动。
假设t =0时刻乘客在轨迹最低点且重力势能为零,则下列判断中正确的是( )A. 乘客运动的过程中,重力势能随时间变化的关系为(1cos )p v E mgR t R =- B. 乘客运动的过程中,在最高点受到座位的支持力为2v m mg R - C. 乘客运动的过程中,机械能守恒,且机械能为21=2E mvD. 乘客运动的过程中,机械能随时间变化的关系为21=+(1cos )2vE mv mgR t R-4. 如图所示,A 、B 两物块质量均为m ,用一轻质弹簧相连。
将A 用长度适当的轻绳悬挂于天花板上,轻绳为伸直状态,B 物块在力F 的作用下处于静止状态,弹簧被压缩。
现将力F 撤去,已知弹簧的弹性势能仅与形变量大小有关,且弹簧始终在弹性限度内,则下列说法中正确的是( )A. 弹簧恢复到原长时B的速度最大B. A一直保持静止C. 在B下降的过程中弹簧的弹性势能先减小,后增大D. F撤去之前,绳子的拉力不可能为05. 如图所示,劲度系数为k的弹簧,一端系在竖直放置的半径为R的圆环顶点P,另一端系一质量为m的小球,小球穿在圆环上做无摩擦的运动。
设开始时小球置于A点,弹簧处于自然状态,当小球运动到最低点时速率为v,对圆环恰好没有压力。
下列分析正确的是()A. 从A到B的过程中,小球的机械能守恒B. 从A到B的过程中,小球的机械能减少C. 小球过B点时,弹簧的弹力为2v mg mR+D. 小球过B点时,弹簧的弹力为22v mg mR+6. 一块质量为m的木块放在地面上,用一根弹簧连着木块,如图所示,用恒力F(大于物体重力)拉弹簧上端,使木块离开地面上升一定高度,如果力F的作用点从弹簧原长位置开始向上移动的距离为h,则()A. 拉力做的功为FhB. 木块的动能增加FhC. 弹簧的劲度系数为F/hD. 木块的机械能增加量为Fh7.( )半径为R的光滑圆环竖直放置,环上套有两个质量分别为m和3m的小球A和B,A、B之间用一长为2R的轻杆相连,如图所示。
开始时,A、B都静止,且A在圆环的最高点,现将A、B释放,试求:(1)B球到达最低点时的速度大小;(2)B球在圆环右侧区域内能达到的最高点到圆环圆心的竖直高度8.( )如图所示,在竖直方向上A 、B 两物体通过进度系数为k 的轻质弹簧相连,A放在水平地面上;B 、C 两物体通过细绳绕过轻质定滑轮相连,C 放在固定的光滑斜面上。
用手拿住C ,使细线正好拉直但无拉力作用,并保证ab 段细线竖直、cd 段细线与斜面保持平行。
已知A 、B 的质量均为m ,C 的质量为4m ,重力加速度为g ,细线与滑轮之间摩擦不计,开始时整个系统处于静止状态。
释放C 后它沿斜面下滑(斜面足够长),A 刚离开地面时,B 获得最大速度,求: (1)斜面倾角α (2)B 的最大速度v m9. 如图是检验某种防护罩承受冲击能力的装置,M 为半径R =1.6 m 、固定于竖直平面内的光滑半圆弧轨道,A 、B 分别是轨道的最低点和最高点;N 为防护罩,它是一个竖直固定的14圆弧,其半径r =45 5 m ,圆心位于B 点.在A 放置水平向左的弹簧枪,可向M轨道发射速度不同的质量均为m =0.01 kg 的小钢珠,弹簧枪可将弹性势能完全转化为小钢珠的动能。
假设某次发射的小钢珠沿轨道恰好能经过B 点,水平飞出后落到N 的某一点上,取g =10 m/s 2.求: (1)钢珠在B 点的速度的大小;(2)发射该钢珠前,弹簧的弹性势能E p ;(3)钢珠从圆弧轨道B 点飞出至落到圆弧N 上所用的时间.二、板块运动模型(动能定理+功能关系)【例1】如图所示,质量为M=5kg的木板禁止在光滑的水平面上,木板上端有一质量为m=4kg 的木块。
一水平向左的恒力F=15N作用在木块上。
已知木块与木板间动摩擦因数为μ=0.5,求4s内摩擦力对物体做的功。
(设最大静摩擦力等于滑动摩擦力,g取10m/s2)【例2】一个木块静止于光滑水平面上,现有一颗水平飞来的子弹射入此木块并进入2 cm 而相对于木块静止,同时木块被带动前移了1 cm。
则子弹损失的动能、木块获得的动能、子弹和木块产生的热量之比为()A. 3:2:1B. 3:1:2C. 2:1:3D. 2:3:1【例3】如图所示,长木板A放在光滑的水平地面上,物体B以水平速度冲上A后,由于摩擦力作用,最后停止在木板A上,则从B冲到木板A上到相对木板A静止的过程中,下述说法中正确的是()A. 物体B动能的减少量等于系统损失的机械能B. 物体B克服摩擦力做的功等于系统内能的增加量C. 物体B损失的机械能等于木板A获得的动能与系统损失的机械能之和D. 摩擦力对物体B做的功和对木板A做的功的总和等于系统内能的增加量【例4】如图所示,质量为m的长木块A静止于光滑水平面上,在其水平的上表面左端放一质量为m的滑块B,已知木块长为L,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F拉滑块B。
(1)当长木块A的位移为多少时,B从A的右端滑出?(2)求上述过程中滑块与木块之间产生的内能.1. 如图所示,A为一具有光滑曲面的固定轨道,轨道底端是水平的,质量为M=40kg的小车B静止于轨道右侧,其板面与轨道底端靠近且在同一水平面上,一个质量为m=20kg,可视为质点的小滑块C以v1=2.0m/s的初速度从轨道顶端滑下,C冲上小车B后,经过一段时间与小车相对静止并继续一起运动。
若轨道顶端与低端水平面的高度差为h=0.8m,C与小车板面间的动摩擦因数为μ=0.40,小车与水平面间的摩擦不计,g取10m/s2。
求:(1)C与小车保持相对静止时的速度大小(2)C从冲上小车的瞬间到与小车保持相对静止瞬间所用的时间(3)C冲上小车后与小车板面间产生的热量.三、综合计算题(力与运动+动能定理/机械能守恒)1. 如图所示,光滑水平面AB与竖直面内的半圆形粗糙导轨在B点衔接,导轨半径为R。
一个质量为m的物块将弹簧压缩后静止在A处,释放后再弹力作用下获得一向右的速度,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能到达半圆导轨的最高点C。
求:(1)弹簧被压缩至A点时的弹性势能(2)物块从B至C克服阻力做的功2. 如图甲所示,在粗糙的水平面上,一质量m=0.1kg可视为质点的滑块压缩一轻弹簧并被锁定,滑块与弹簧不相连,解除锁定前滑块处于P处,t=0时解除锁定计算机通过传感器描绘出滑块速度--时间图像如图乙所示。
其中oab段为曲线,bc段为直线,在t1=1s时滑块已经在水平面上滑行了s=4m的距离。
在滑块运动方向上相距7m的Q处有一竖直挡板,若滑块与挡板碰撞被弹回时无能量损失,g取10m/s2,求(1)滑块与水平面间动摩擦因数μ(2)锁定时弹簧具有的弹性势能E p(3)滑块停下时与挡板的距离3. 如图所示,传送带A、B之间的距离为L=3.2m,与水平面间的夹角θ=37o,传送带沿顺时针方向移动,速度恒为v=2m/s。