高效晶体硅太阳能电池介绍

合集下载

晶体硅太阳能电池结构及原理

晶体硅太阳能电池结构及原理

晶体硅太阳能电池的性能特点
晶体硅太阳能电池具有高效率、可靠性和长寿命的特点。它们在各种气候条 件下都能发电,并且能够在户用、商用和工业领域广泛应用。
晶体硅太阳能电池的发展趋势
晶体硅太阳能电池的发展正朝着更高效、更薄、更柔性和更具可持续性的方向发展。新的技术和材料正在被研 发,以提高晶体硅太阳能电池的性能并降低成本。
晶体硅太阳能电池的工作原理
晶体硅太阳能电池通过光电效应将太阳光转化为电能。当光子击中电池的表 面时,它们会激发硅中的电子。这些激发的电子会被电场收集,并沿电池的 电路产生电流。
晶体硅太阳能电池制造过程
晶体硅太阳能电池的制造过程包括多个步骤,如硅晶片的生长、切割和抛光,抗反射涂层的涂覆,电极的薄膜 沉积和加工,以及最终的封装和测试。
晶体硅太阳能电池的市场前景
随着对可再生能源的需求不断增加,晶体硅太阳能电池在未来的市场前景非 常广阔。它们被广泛应用于建筑、交通、通信和电力原理
晶体硅太阳能电池是最常见和广泛应用的太阳能电池类型之一。本节将介绍 晶体硅太阳能电池的基本结构和工作原理,以及其在能源行业的重要性和应 用。
晶体硅太阳能电池的基本结构
晶体硅太阳能电池由多个层次的组件构成,包括抗反射涂层、正极电极、硅 基底、负极电极和保护层。每个组件在电池的工作中扮演着不同的角色,使 得太阳能电能可以高效地转化为电能。

晶硅太阳能电池介绍

晶硅太阳能电池介绍

晶硅太阳能电池介绍晶体硅太阳能电池(也称为硅片太阳能电池)是一种常见且广泛应用于太阳能领域的太阳能转换技术。

它是利用硅片材料对光能的吸收和转化来产生电能的一个过程。

晶体硅太阳能电池主要由硅片、电极、导线和其他附件组成。

硅片是电池的核心部分,也是光能的主要转换区域。

硅片可分为单晶硅、多晶硅和非晶硅三种。

其中,单晶硅最为常见和普遍,它的晶格排列非常有序,电池效率相对较高。

晶体硅太阳能电池的工作原理主要涉及光电效应和PN结。

当光照射到硅片上时,光子会将电子从硅原子中激发出来,使其跃迁到空导带中,形成电流。

此时,硅片的一个表面被掺杂为N型导电层,另一个表面被掺杂为P型电导层,两者之间形成了一个PN结。

当光照射到PN结上时,电子会从N型区域流入P型区域,产生电流,同时产生电压差。

这样就完成了光能到电能的转换。

晶体硅太阳能电池的优点主要有以下几个方面:1.高效率:晶体硅太阳能电池的转换效率相对较高,可以达到20%以上,甚至高达25%。

2.长寿命:晶体硅太阳能电池的使用寿命可以达到25年以上,因此使用寿命较长,可以有效降低运维成本。

3.稳定性:晶体硅太阳能电池的稳定性较好,能够在不同环境条件下保持较高的转换效率。

4.良好的可靠性:晶体硅太阳能电池的可靠性较高,能够适应复杂多变的气候条件和环境。

5.可制造成各种形状和尺寸:晶体硅太阳能电池可以根据需求进行灵活制造,可以制作成不同形状和尺寸的太阳能板。

不过,晶体硅太阳能电池也存在一些局限性:1.成本较高:晶体硅太阳能电池的生产成本相对较高,需要较高的投资。

尽管随着技术不断进步,成本正在逐渐降低,但仍然有一定程度的限制。

2.对光强度和温度的敏感性:晶体硅太阳能电池对光强度和温度的变化较为敏感,在光强度较低或温度较高的环境下,效率会有所降低。

3.制造过程对环境的影响:晶体硅太阳能电池的生产过程中需要使用一定数量的能源和化学物质,可能会对环境造成一定的影响。

综上所述,晶体硅太阳能电池是一种广泛应用于太阳能领域的高效太阳能转换技术。

晶体硅太阳能电池和薄膜太阳能电池。

晶体硅太阳能电池和薄膜太阳能电池。

晶体硅太阳能电池和薄膜太阳能电池。

【摘要】晶体硅太阳能电池和薄膜太阳能电池是目前主流的太阳能电池技术。

晶体硅太阳能电池采用单晶硅或多晶硅制成,具有高转换效率和较长寿命的特点,广泛应用于家用光伏发电系统和大型光伏电站。

制造成本高和生产过程能耗大是其主要缺点。

薄膜太阳能电池利用薄膜材料制成,具有灵活性和轻便性,适用于建筑一体化等特殊场景。

但是转换效率较低,使用寿命短。

比较晶体硅太阳能电池和薄膜太阳能电池的效率、成本、适用场景等方面可见各有优劣。

未来,随着技术的进步和成本的下降,晶体硅和薄膜太阳能电池将继续发展,为清洁能源产业注入新动力。

【关键词】晶体硅太阳能电池、薄膜太阳能电池、原理、特点、应用、优缺点、比较、发展前景、总结。

1. 引言1.1 太阳能电池简介太阳能电池,也称为光伏电池,是一种能够将太阳能转化为电能的设备。

它是利用半导体材料的光电效应将太阳辐射直接转换为直流电的装置。

太阳能电池是清洁能源中的重要组成部分,具有环保、可再生和低碳的特点。

太阳能电池的核心部件是光伏电池片,其主要材料包括硅、硒化镉、铜铟镓硒等。

目前市场上主要有晶体硅太阳能电池和薄膜太阳能电池两类。

晶体硅太阳能电池具有较高的转换效率和稳定性,是目前主流的太阳能电池技术;而薄膜太阳能电池则具有柔性、轻便和生产成本低的优势。

太阳能电池的应用领域广泛,包括家用光伏发电系统、工业和商业用途,以及航天航空领域等。

随着太阳能产业的快速发展,太阳能电池的效率和成本不断提升,未来将在能源领域扮演越来越重要的角色。

1.2 晶体硅太阳能电池和薄膜太阳能电池介绍晶体硅太阳能电池是目前应用最广泛的太阳能电池技术之一。

它由大面积的单晶硅或多晶硅材料组成,通过将硅材料加工成光伏电池片并组装成电池组,从而将太阳能转化为电能。

晶体硅太阳能电池具有转换效率高、稳定性好、寿命长等优点,被广泛应用于屋顶光伏发电、太阳能光伏电站等领域。

薄膜太阳能电池是一种新型的太阳能电池技术,采用薄膜材料作为光伏电池片,相比于晶体硅太阳能电池,薄膜太阳能电池具有重量轻、柔软性好、制造成本低等优点。

高效晶体硅太阳能电池介绍

高效晶体硅太阳能电池介绍

高效晶体硅太阳能电池介绍高效晶体硅太阳能电池是目前市场上最为常见和广泛应用的一种太阳能电池。

它的高效性和可靠性使其成为太阳能发电领域的主要选择。

本文将介绍高效晶体硅太阳能电池的原理、制造过程、优点和应用领域,并探讨其未来的发展趋势。

高效晶体硅太阳能电池是由单晶硅或多晶硅制成的。

其原理基于光伏效应,即将太阳能转化为电能。

当光线照射到太阳能电池板上时,光子与半导体材料中的电子发生相互作用,激发电子跃迁到导带。

通过电子与空穴的复合,电荷被释放出来,形成电流,最终产生电能。

制造高效晶体硅太阳能电池的过程通常由几个关键步骤组成。

首先,需要从硅矿石提取原始硅材料,并通过化学方法将其转化为硅粉。

然后,硅粉与其他材料混合均匀,形成硅溶胶。

接下来,将硅溶胶涂覆在导电玻璃或衬底上,并将其烘干,形成硅膜。

最后,通过加热和连续处理,将硅膜转化为晶体硅太阳能电池。

高效晶体硅太阳能电池具有许多优点。

首先,它们具有较高的转换效率,通常在15%至25%之间。

这意味着电池可以将大部分太阳能转化为电能,提高能源利用效率。

其次,晶体硅太阳能电池寿命长,可持续使用25年以上。

此外,它们对光强的响应较好,即在弱光条件下仍能产生较高的电能输出。

最后,高效晶体硅太阳能电池的制造工艺相对成熟和稳定,成本相对较低。

高效晶体硅太阳能电池在各个领域都有广泛的应用。

在家庭屋顶和建筑物上安装太阳能电池板,可以将太阳能转化为电能,用于供电、照明和暖气等。

此外,高效晶体硅太阳能电池也广泛应用于太阳能电池板、太阳能电池组件、充电设备和太阳能灯等产品。

随着对可再生能源和环境保护的关注度不断增加,高效晶体硅太阳能电池的未来发展前景十分广阔。

为了提高其转换效率,研究人员正在不断改进太阳能电池设计和材料。

例如,人们正在研究如何改进波长选择器,以优化太阳能电池对不同波长的光线的吸收和利用效率。

此外,研究人员还在探索新型材料,如钙钛矿材料,以提高太阳能电池的效率和稳定性。

晶硅单结电池-概述说明以及解释

晶硅单结电池-概述说明以及解释

晶硅单结电池-概述说明以及解释1.引言1.1 概述晶硅单结电池是一种基于晶体硅材料制造的太阳能电池,它利用光的能量转化为电能。

晶硅单结电池具有高效转化太阳能的特点,被广泛应用于太阳能发电系统中。

晶硅单结电池的工作原理基于光电效应。

当光线照射到晶硅单结电池的表面时,光子会激发晶体硅中的电子。

这些被激发的电子会从材料中释放出来,并在电场的作用下形成电流。

通过将两个不同掺杂的硅层连接在一起,形成一个p-n结。

当光子通过p-n结时,会产生电子和空穴对,并形成电流。

这样,晶硅单结电池就能将太阳能转化为电能。

制备晶硅单结电池的方法具有一定的复杂性。

首先,需要选择高质量的硅材料作为基底。

然后,通过在硅基底上加热和涂覆一层掺杂层,形成p-n结。

接下来,使用电子束蒸发或物理气相沉积等技术,在硅基底上镀上金属电极,以提供电流的输出通路。

最后,通过对制备好的晶硅单结电池进行分选和封装,保证其性能和稳定性。

晶硅单结电池在太阳能领域具有广泛的应用前景。

它可以作为光伏组件,广泛应用于屋顶太阳能发电系统、太阳能道路照明系统、太阳能灯饰等领域。

由于其高效能转换和长时间稳定工作的特点,晶硅单结电池也被用于航天器、卫星等领域的能源供应。

对于晶硅单结电池的展望,人们正在不断研究改进其制备工艺和提高其转换效率。

还有一些新型太阳能电池技术的出现,如多晶硅电池、钙钛矿太阳能电池等,对晶硅单结电池提出了一些竞争。

然而,晶硅单结电池作为已经商业化和应用广泛的太阳能电池技术,预计仍将持续发展和完善,为人类的清洁能源需求做出更大贡献。

1.2文章结构文章结构部分的内容可以包括以下内容:2. 文章结构本文共分为三个部分,即引言、正文和结论。

2.1 引言部分介绍了本文要讨论的主题——晶硅单结电池,并包含了概述、文章结构和目的三个小节。

2.2 正文部分着重介绍了晶硅单结电池的原理和制备方法,通过对其原理进行深入剖析和对制备方法进行介绍,使读者对晶硅单结电池有一个全面的了解。

科技成果——激光掺杂选择性发射极高效晶体硅太阳能电池技术

科技成果——激光掺杂选择性发射极高效晶体硅太阳能电池技术

科技成果——激光掺杂选择性发射极高效晶体硅太阳能电池技术技术开发单位中科院电工研究所项目简介激光掺杂选择性发射极高效晶体硅太阳能电池是选择性发射极(SE)晶体硅太阳能电池的一种,是澳大利亚新南威尔士大学(UNSW)开发的PERL高效电池的简化形式。

所谓SE太阳能电池即在金属栅线(电极)与硅片接触部位进行重掺杂,在电极之间位置进行轻掺杂。

这样的结构可降低扩散层复合,由此提高太阳能电池的短波响应,并减少前金属电极与硅的接触电阻,使短路电流、开路电压和填充因子都得到较好改善,从而提高转换效率。

PERL电池激光掺杂是实现SE结构的有效方法。

激光具有方向性好、能量集中、非接触性等优点,适合对薄硅片进行加工以节省硅材料。

通过控制激光参数,可以在室温环境下进行选择性扩散和掺杂,替代传统的在扩散炉中进行的高温杂质扩散,减少能量消耗。

工业化激光掺杂技术能够提供大于2000片/小时的生产效率,完全满足太阳电池的产业化应用。

所制备的太阳能电池的效率可以超过20%。

本项目可以提供两种具体技术路线:(1)磷硅玻璃激光掺杂结合丝网印刷技术(LDSE+Print)。

(2)喷涂磷源激光掺杂结合光诱导化学镀技术(LDSE+LIP)。

前者多晶硅效率稳定在17%,单晶硅效率稳定在18.8%;后者多晶效率达到17.2%,单晶硅效率达到19%。

应用范围晶体硅太阳能电池生产线技术升级、整线引进、工艺调试、技术开发等。

项目所处阶段承担中科院太阳能行动计划重点项目、北京市科委重点项目,开发激光掺杂选择性发射区太阳能电池产业化技术,已获得多晶硅效率大于17%,单晶硅效率达到19%。

市场前景晶体硅电池效率每增加1%,成本将下降6%;另外,随着规模扩大,生产成本还会继续下降。

晶体硅太阳能电池2011年全球产量近34GW,占国际光伏市场的约90%。

晶硅电池的这种主导地位在以后相当长的时间内仍然不会改变。

但目前,晶硅电池的产能已经严重过剩,只有性能优异的高效晶体硅太阳能电池,在以后的光伏市场中才会具有竞争优势。

晶体硅太阳能电池的工作原理的其他解释

晶体硅太阳能电池的工作原理的其他解释

晶体硅太阳能电池的工作原理的其他解释晶体硅太阳能电池是一种常见且广泛使用的光伏设备,其工作原理基于光电效应和半导体物理原理。

通过深入探讨晶体硅太阳能电池的工作原理,我们可以更好地理解它在转换太阳能为电能的过程中的关键步骤和原理。

1. 光电效应:晶体硅太阳能电池的工作原理首先涉及光电效应。

光电效应是指当光子碰撞到某些材料表面时,能量可被传递给材料中的电子,使其脱离原子成为自由电子。

在晶体硅太阳能电池中,硅材料中的原子可以通过光电效应释放出电子。

2. pn结构:为了实现有效的电子抽取和流动,晶体硅太阳能电池采用了pn结构。

pn结构是指半导体材料中有两个区域:n区和p区,它们具有不同的电子导电性质。

在晶体硅太阳能电池中,n区被掺杂有杂质,使其具有过剩的电子,而p区被掺杂有杂质,使其具有过剩的空穴(电荷缺失)。

这种构造使得在pn结的界面上形成电场。

3. 光生电荷的产生:当太阳光照射到晶体硅太阳能电池的表面时,光子会与电池材料相互作用,并传递能量给材料中的电子。

这些能量足以克服能带间隙,使得电子从价带跃迁到导带中。

在导带中,电子和空穴被激发,形成了光生电荷对。

4. 电荷分离和漂移:光生电荷对的形成标志着工作原理中的一个关键步骤。

由于pn结的电场,电子和空穴将被分离到n区和p区。

电子和空穴在各自的区域中受到电场力的作用,向相对高浓度的杂质区域漂移。

这个电荷分离和漂移的过程是为了有效地分离正负电荷并产生电流。

5. 电流输出:经过电荷分离和漂移过程后,电子和空穴将一直向pn结的不同侧面漂移,最终汇集在电池的正负极上。

这样,产生了一个电流,可以通过连接电池的电路来提供电能。

对于晶体硅太阳能电池的工作原理,我认为有几个观点和理解值得关注:光电效应是实现太阳能转化的核心过程,它使得光子的能量可以转化为电子的能量。

深入理解光电效应有助于我们明白为什么只有特定波长的太阳光才能被晶体硅太阳能电池吸收,并促使我们思考如何利用更广泛的光谱范围来提高电池的效率。

晶体硅太阳能电池结构及原理

晶体硅太阳能电池结构及原理

晶体硅太阳能电池结构及原理1.衬底层:通常采用硅衬底,它是一个薄而坚固的基底,用于支撑整个电池。

2.P-N结:位于衬底层上方的是一个P-N结,它由P型硅层和N型硅层组成。

P型硅层向上注入杂质,使之成为P型半导体,N型硅层向下注入杂质,使之成为N型半导体。

P-N结的形成是通过在硅层中引入不同杂质原子,使得两侧形成不同的杂质浓度,从而形成P-N结。

3.金属网格:位于P型硅层和N型硅层之间的金属网格,通常采用铝作为材料。

金属网格的作用是收集通过P-N结产生的电子和空穴。

4.导电层:覆盖在金属网格上方的是导电层,它通常由透明的氧化锡或氧化铟锡薄膜组成,用于将电流导出。

5.防反射层:位于导电层上方的是防反射层,它通常由二氧化硅薄膜或其他适当的材料制成,用于提高光的吸收效率。

1.吸收光能:当光线照射到晶体硅太阳能电池上时,大部分光线将被引导进入P-N结内部,与P型硅层和N型硅层的杂质原子相互作用。

光能会使杂质原子中的电子被激发,跃迁到更高的能级上,形成自由电子和自由空穴。

2.分离电荷:自由电子和自由空穴会在P-N结内部被分离出来。

由于P型硅层中的杂质原子的排列方式,自由电子将被吸引到N型硅层,并向金属网格中流动,而自由空穴则被吸引到P型硅层,并向另一面流动。

3.电流输出:自由电子和自由空穴的运动形成了电流,这个电流可以通过金属网格和导电层导出。

通过在金属网格和导电层上连接线路,可以将电流输出到外部设备或储存电池中。

总之,晶体硅太阳能电池利用光的能量将其转化为电能。

通过P-N结的形成和光的吸收、电子和空穴的分离,最终形成电流输出。

这种电池结构简单、稳定,且具有较高的转化效率,因此被广泛应用于太阳能发电系统中。

高效晶体硅太阳能电池结构分析

高效晶体硅太阳能电池结构分析

高效晶体硅太阳能电池结构分析晶体硅太阳能电池占据了光伏市场的主要份额,在产业化的道路上一直追求高效低成本。

晶体硅太阳能电池的性能与其结构息息相关,文章介绍了几种高效晶体硅太阳能电池的结构,分析了其结构特征和性能参数。

标签:晶体硅太阳能电池;高效;电池结构晶体硅太阳能电池要获得大面积推广,关键在于如何降低成本和提高转换效率。

降低成本主要是降低原材料成本特别是硅片成本。

设计高效的太阳能电池结构,不仅能提升太阳能电池的转换效率,也在一定程度上能降低成本。

文章对几种高效晶体硅太阳能电池逐一作介绍。

1 PESC太阳能电池钝化发射极太阳能电池(Passivated-Emitter Solar Cell,PESC)是第一个转换效率超过20%的晶体硅太阳能电池[1]。

PESC太阳能电池效率的提升得益于微型槽技术,也就是选择性刻蚀暴露晶面的表面纹理技术。

微型槽能够减少光线在电池表面的反射;垂直光线首先到达微型槽表面,经表面折射后以41°角进入硅片内部,使光生载流子更接近太阳能电池的发射结,因而提高了光生载流子的收集效率,还使得发射极横向电阻降低了3倍,降低发射结电阻可提高电池的填充因子。

PESC太阳能电池的主要特征是表面氧化层钝化技术。

经磷扩散制得发射结后,在太阳能电池背面沉积上一层铝并使Al和硅形成合金制得Al背场,Al背场既可以起到吸杂的作用,又在电池背面建立起一个电场,阻止载流子向背面迁移,降低了背表面的复合。

接着采用氧化工艺在表面生长一层二氧化硅,正面氧化层可大大降低载流子的表面复合速率,因此提高了太阳能电池的开路电压。

PESC太阳能电池的金属电极先由剥离方法形成Ti-Pd接触,然后电镀Ag构成。

这种接触有大的高宽比和小的接触面积,镀Ag也提高了电极的导电能力,因此PESC太阳能电池的填充因子可以做到大于83%,转换效率也达到了20.8%(AM1.5)。

2 PERL太阳能电池钝化发射极、背面局部扩散(Passivated-Emitter and Rear-Locally diffused,PERL)太阳能电池是转换效率的保持者,其转换效率高达25%[3]。

晶体硅太阳能电池的应用

晶体硅太阳能电池的应用

晶体硅太阳能电池的应用
晶体硅太阳能电池是目前最常见和广泛应用的太阳能电池技术之一。

它具有高效率、良好的稳定性和长寿命等优点,在许多领域有广泛的应用,包括:
1. 太阳能发电系统:晶体硅太阳能电池常用于建筑物、家庭和工业用途的太阳能电池组件,用于将太阳能转化为电能供电。

2. 光伏电力系统:晶体硅太阳能电池常用于大型光伏电站,以产生大规模的太阳能电力。

3. 光伏电池板:晶体硅太阳能电池广泛应用于制造光伏电池板,这些电池板可以安装在屋顶、墙壁和地面上,用于分布式发电。

4. 光热发电:晶体硅太阳能电池也可以用于光热发电系统,即利用太阳能集热器将阳光转化为热能,并通过热能发电装置产生电能。

5. 移动设备充电:晶体硅太阳能电池还可以用于充电移动设备,如手机、平板电脑和笔记本电脑等,通过太阳能充电板将阳光转化为电能。

6. 农业和灌溉:晶体硅太阳能电池可以用于农业领域,供电农田灌溉系统和农业设备。

7. 交通信号灯:晶体硅太阳能电池还可用于供电道路交通信号灯,减少对传统电网的依赖。

总之,晶体硅太阳能电池具有广泛的应用领域,用于各种场景中的电力供应和充电需求,以推动可再生能源的利用和减少对化石燃料的依赖。

晶体硅太阳能电池简介

晶体硅太阳能电池简介

太阳能电池的分类
• 从基体材料分: 晶体硅电池、非晶体硅电池、薄膜电池、硒光电池、化 合物电池、有机半导体; 晶体硅电池:单晶硅、多晶硅 非晶硅电池:单结、双结、三结 化合物太阳能电池:硫化镉、硒铟铜、磷化铟、锑化 镉、砷化镓 • 从用途分类: 空间太阳能电池、地面太阳能电池、光伏传感器; • 按工作方式分类: 平板太阳能电池、聚光太阳能电池、分光太阳能电池。
技术要求
• 层压电池组件的基本要求: • 1.在规定的工作环境下,使用寿命大于20年(使用20年, 转换效率不得低于原来的80%); • 2.组件的电池上表面颜色应均匀一致,无机械损伤,焊点无 氧化斑; • 3.电池片应排列整齐,框架整洁无腐蚀斑点; • 4.封装层中不允许气泡或脱层在某一片电池与组件边缘形成 一个通路,气泡或脱层的几何尺寸和个数应符合相应的产品 详细规范规定; • 5.绝缘电阻大于200MΩ; • 6.EVA的交联度大于65%,EVA与玻璃的剥离强度大于 30N/cm,EVA与TPT的剥离强度大于15N/cm;
D
国外光伏发电系统发展现状-跟踪系统(3)
国内光伏电站及平衡系统 技术发展现状
国内太阳能电站介绍
上海宝山庙行野桥菜场15KW光伏并网发电系统
国内太阳能电站介绍
西藏羊八井100千瓦高压并网光伏电站
国内太阳能电站介绍
深圳国际园林花卉博览园1兆瓦并网光伏电站
中国光伏系统应用的主要领域
• 无电地区独立运行系统 • 城镇中建筑结合并网系统 • 荒漠或草原地区大型或超大型并 网光伏系统
测试条件
标准测试条件 标准规定地面标准阳光光谱采用总辐射的AM1.5标准阳光 光谱。 地面阳光的总辐照度规定为1000 w/m2。标准测试温度规 定为25°C 对定标测试,标准测试温度的允许差为±1°C。对非定标准 测试。标准测试温度允许差为±2°C。 如受客观条件所限,只能在非标准条件下进行测试,,则必 须将测量结果换算到标准测试条件。

perc电池原理

perc电池原理

perc电池原理PERC电池原理引言•PERC电池是一种高效能的晶体硅太阳能电池,通过其特殊的结构和工艺,在光电转换效率方面取得了显著的突破。

•本文将从浅入深,逐步解释PERC电池的原理,帮助读者更好地理解其工作机制。

PERC电池的结构•PERC电池具有与传统晶体硅太阳能电池相似的基本结构,包括背反射层、PN结和金属电极等组成部分。

•然而,PERC电池在背反射层和PN结之间引入了一层掺杂的区域,称为“掺杂区”。

PERC电池的工作原理1.光吸收和电子-空穴对产生–入射光线穿过背反射层到达PN结,被晶体硅吸收并产生电子-空穴对。

–这些光生载流子被掺杂区域中的电场分离,电子被吸引到PN结的负极,空穴则被吸引到掺杂区域的接触面。

2.掺杂区的作用–掺杂区的电场导致电子和空穴在此处分离的距离增加,从而减小其再复合的可能性。

–这种增加的分离距离使得电子更有可能到达PN结,产生有效的电流。

3.后向电场提高–PN结的负极上形成的后向电场会增加掺杂区的厚度,提高电子和空穴在此处分离的距离。

–越高的后向电场效应意味着更高的光生载流子收集率和更高的光电转换效率。

4.金属电极和电流–金属电极连接到PN结和掺杂区的接触面,将光生载流子带离电池。

–这些载流子组成的电流可以用来驱动外部电路,实现能量转化和利用。

总结•PERC电池通过引入掺杂区,增加电子和空穴的分离距离,提高光生载流子收集率和光电转换效率。

•其独特的结构和工艺使其成为高效能的晶体硅太阳能电池,广泛应用于可再生能源领域。

以上是对PERC电池原理的简要介绍,希望能够帮助读者深入了解这一技术的工作原理和优势。

PERC电池的改进•随着技术的进步,PERC电池在不断改进和优化,以进一步提高其光电转换效率和稳定性。

•一种改进是在掺杂区中引入加强剂,增加电子和空穴的分离效果,进而提高电力输出。

•另一种改进是优化后向电场的形成,通过调整PN结和掺杂区的结构参数,使后向电场更加均匀和强大。

晶体硅太阳能电池基本原理课件

晶体硅太阳能电池基本原理课件

05 晶体硅太阳能电池的制造 工艺
硅片的制备
硅片是晶体硅太阳能电池的基础材料,其质量对电池性能有着至关重要的影响。
硅片的制备通常采用多晶硅作为原料,通过一系列的物理或化学方法,如机械切割、研磨、 抛光等,得到具有特定厚度和表面质量的硅片。
硅片的厚度和表面粗糙度对太阳能电池的光吸收和电性能具有重要影响,因此制备过程中需 严格控制相关参数。
THANKS FOR WATCHING
感谢您的观看
03 晶体硅太阳能电池的材料 与结构
单晶硅太阳能电池
单晶硅太阳能电池是以高纯度的单晶硅棒为原料,经过切割 、研磨、腐蚀、抛光、清洗、烘烤等工序后制成。其结构通 常包括导电电极、P型硅片、N型硅片、PN结等部分。
单晶硅太阳能电池的效率较高,技术成熟,是目前应用最广 泛的太阳能电池之一。
多晶硅太阳能电池
多晶硅太阳能电池是以多晶硅材料为原料,经过铸锭、切片、清洗、制绒、扩散 、减反射膜制备、金属化等工序后制成。其结构与单晶硅太阳能电池类似,但多 晶硅材料内部晶粒大小和分布不均匀,导致其光电转换效率相对较低。
多晶硅太阳能电池成本较低,适合大规模生产,因此在光伏发电领域应用广泛。
薄膜硅太阳能电池
薄膜硅太阳能电池具有成本低、重量轻、可弯曲等特 点,因此在便携式设备、建筑一体化等领域具有广阔 的应用前景。
02 晶体硅太阳能电池的工作 原理
光吸收原理
晶体硅太阳能电池通过光吸收原理将太阳光转化为电能。当太阳光照射到电池表面 时,光子能量激发硅原子中的电子,产生光生载流子。
光吸收系数与入射光的波长有关,不同波长的光子具有不同的能量,能够激发不同 能级的电子。
光吸收系数随着硅材料中掺杂浓度的增加而减小,因此高掺杂浓度的硅材料具有更 好的光吸收性能。

晶体硅太阳能电池结构及原理

晶体硅太阳能电池结构及原理

射层的原因是由于硅材料在可见光到红外线波段400~1100nm的区域
内有相对于空气较大的折射率3.5~6.0.也就是说,在可见光区域有接
近50%,红外线区域内有30%的反射损失。在三层物质的界面的电磁
波反射系数R为:
R=
2 −0 .
2
2 +0 . 2
18
3.1.2 结晶硅太阳能电池的结构
比(111) 面快。
(100)硅片的各向异性腐蚀导致在表面产生许多密布的表面为
(111)面的四面方锥体。形成绒面的硅表面。
3.1.2 结晶硅太阳能电池的结构
可通过不同途径实现表面织
构化:晶体硅可通过腐蚀晶
面的刃面来实现织构化
如果晶体硅表面是沿内部原
子排列的,则织构化表面类
似金字塔。商业单晶硅电池
常用的手段。
21
3.1.2 结晶硅太阳能电池的结构
电极图形设计:设计原则是使电池的输出最大。要兼顾两个方面:
使电池的串联电阻尽可能小,电池的光照作用面积尽可能大。
3.1.2 结晶硅太阳能电池的结构
1.
电极材料的选择
(1) 能与 硅形成牢固的接触;
(2) 这种接触应是欧姆接触,接触电阻小;
(3) 有优良的导电性;
(n=2.3)、Al2O3(n=1.86)、SiO2(n=1.44)
19
3.1.2 结晶硅太阳能电池的结构
单晶硅太阳能电池在不同入射角与不同防反射材质条件下的光反射率:
20
3.1.2 结晶硅太阳能电池的结构
上电极
上电极的作用是将移动至表面的电子/空穴取出,以形成外部电流,
提供给外部负载。由于电极与硅材料接触,为了降低串联电阻,电极

IBC电池——高效晶体硅太阳能电池

IBC电池——高效晶体硅太阳能电池

IBC电池——高效晶体硅太阳能电池IBC 电池是背电极接触( Interdigitated Back-contact )硅太阳能电池的简称。

由Sunpower公司开发的高效电池,其特点是正面无栅状电极,正负极交叉排列在背后。

利用点接触(Point-contact cell,PCC)及丝网印刷技术。

这种把正面金属栅极去掉的电池结构有很多优点:(1)减少正面遮光损失,相当于增加了有效半导体面积;(2)组件装配成本降低;(3)外观好。

由于光生载流子需要穿透整个电池,被电池背表面的PN节所收集,故IBC电池需要载流子寿命较高的硅晶片,一般采用N型FZ单晶硅作为衬底;正面采用二氧化硅或氧化硅/氮化硅复合膜与N+层结合作为前表面电场,并制成绒面结构以抗反射。

背面利用扩散法做成P+和N+交错间隔的交叉式接面,并通过氧化硅上开金属接触孔,实现电极与发射区或基区的接触。

交叉排布的发射区与基区电极几乎覆盖了背表面的大部分,十分有利于电流的引出, 结构见图。

图 4:Sunpower公司 IBC 电池 h=22.3%这种背电极的设计实现了电池正面“零遮挡”,增加了光的吸收和利用。

但制作流程也十分复杂,工艺中的难点包括P+扩散、金属电极下重扩散以及激光烧结等。

2009年7月SunPower公司上市了转换效率为19.3%的太阳能电池模块。

IBC电池的工艺流程大致如下:清洗->制绒->扩散N+->丝印刻蚀光阻->刻蚀P扩散区->扩散P+->减反射镀膜->热氧化->丝印电极->烧结->激光烧结。

(作者 和海一样的新能源 微博)原文地址:/news/37175.html。

高效晶体硅太阳能电池介绍

高效晶体硅太阳能电池介绍

高效晶体硅太阳电池简介(1)PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究的高效电池。

它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。

由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。

为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。

然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。

另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。

为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。

这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。

后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。

1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。

定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。

经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。

孔间距离也进行了调整,由2 mm缩短为250 µm,大大减少了横向电阻。

如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。

1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。

晶体硅太阳能电池工作原理

晶体硅太阳能电池工作原理

晶体硅太阳能电池工作原理一、引言太阳能电池作为一种新型的绿色能源,具有无污染、可再生、寿命长等优点,在全球范围内得到了广泛的应用和推广。

其中晶体硅太阳能电池是目前最常见的一种,本文将详细介绍晶体硅太阳能电池的工作原理。

二、晶体硅太阳能电池的结构晶体硅太阳能电池主要由p型硅和n型硅两个半导体材料组成。

p型硅中掺入了少量的三价元素(如铝、镓等),使其带正电荷,称为空穴(hole);n型硅中掺入了少量的五价元素(如磷、砷等),使其带负电荷,称为自由电子(free electron)。

两者相遇时会形成pn结,即p-n结。

三、光生载流子产生当光线照射在p-n结上时,光子会被吸收并激发出一个电子和一个空穴。

这个过程称为光生载流子产生。

激发出来的自由电子会向n区移动,而激发出来的空穴则会向p区移动。

四、内建电场产生当电子和空穴分别向p区和n区移动时,它们会与原有的载流子相遇并发生复合。

这个过程中,电子会填补空穴的位置,并释放出能量。

这些能量最终会被转化为内建电场。

五、光电流产生内建电场可以促使自由电子向p区移动,同时也可以促使空穴向n区移动。

这样就形成了一个光生载流子的漂移运动。

当外部连接导线时,漂移运动中的自由电子和空穴就会通过导线流回到p-n结上,形成一个光电流。

六、总结晶体硅太阳能电池的工作原理是基于光生载流子产生、内建电场产生和光电流产生三个基本过程。

当太阳光照射在p-n结上时,激发出来的自由电子和空穴分别向n区和p区移动,并在两者相遇处形成内建电场。

这个内建电场可以促使光生载流子发生漂移运动,并最终形成一个光电流输出。

晶硅太阳能电池介绍(精)

晶硅太阳能电池介绍(精)

常规多晶制绒后表面形貌
新型晶硅太阳能电池
PERC电池
PERC电池与传统电池相比较,在电池背面
增加了 Al2O3/SiNx 绝缘钝化层,然后利用激光 在钝化层上形成接触图形,实现与背面电极的接 触。 Al2O3与SiO2等钝化膜层不同的是,它具有大 量固定负电荷,对于 p型层来说,除了具有良好的 化学钝化外,还有显著的场钝化作用。因此这种结
晶硅太阳能电池工艺-制绒
制绒的目的
1.去除硅片表面的机械损伤层 2.清除表面油污和金属杂质 3.形 成起伏不平的绒面,增加硅片对太阳光的吸收。
单晶制绒原理:
单晶硅片在一定浓度范围的碱溶液中被腐 蚀时是各向异性的,不同晶向上的腐蚀速 率不一样。 利用这一原理,将特定晶向的单晶硅片放 入碱溶液中腐蚀,即可在硅片表面产生出 许多细小的金字塔状外观,这一过程称为 单晶碱制绒。
子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,
这就形成了电源。
晶硅太阳能电池简介与分类
硅基太阳能电池是指以硅为基本原料制造的太阳电池,其中包括:
1.单晶硅太阳能电池 2.多晶硅太阳能电池 3.冶晶硅太阳电池 4.非晶硅薄膜太阳能电池
5.非晶/微晶硅叠层太阳能电池
6.多晶硅薄膜太阳能电池
晶硅太阳能电池工艺-制绒
晶硅太阳能电池工艺-扩散 扩散的目的:形成P-N结 采用携带法将POCl3液态源代入扩散炉内,在高温加热的情况下实现扩散:
5POCl3
2P2O5 +SiO2
3PCl5+P2O5(>600℃)
5SiO2+4P 氧气(O2):对三氯氧磷进行氧化 大氮(N2):保护气体,防止硅片氧 化,维持扩散炉管内的气体均匀流动 小氮(N2):将三氯氧磷吹进石英管, 控制P源浓度 三氯氧磷(POCl3):扩散P源,温度 控制在20℃

OECO电池——高效晶体硅太阳能电池

OECO电池——高效晶体硅太阳能电池

OECO电池——高效晶体硅太阳能电池OECO电池是倾斜蒸发金属接触(Obliquely evaporated contact,OECO)硅太阳能电池的简称。

OECO太阳电池是德国ISFH研究所从九十年代就开始研制的一种新型单晶硅电池。

与其他高效电池相比,具有结构设计新颖、制作简单、电极原料无损耗、成本低廉和适合大批量生产等优点。

OECO电池结构基于金属-绝缘体-半导体(MIS)接触,利用表面沟槽形貌的遮掩在极薄的氧化隧道层上倾斜蒸镀低成本的Al作为电极,无需光刻、电极烧穿、电极下重掺杂和高温工艺即可形成高质量的接触,并且一次性可蒸镀大批量的电池电极。

更为重要的是当这种电池制作面积从4 cm2扩大到100cm2时,效率也只是从21.1%略微降到20%,仍然属于高效范围,所以这种结构的电池更适宜于工艺生产。

图 :德国 ISFH 的 OECO 电池 h=21.1%OECO结构示意图如图8所示,电池的表面由许多排列整齐的方形沟槽组成,浅发射极n+位于硅片的上表面,在其上有一极薄的氧化隧道层,Al电极倾斜蒸镀于沟槽的侧面,然后利用PECVD蒸镀氮化硅作为钝化层和减反射膜OECO电池有以下特点:(1)电极是蒸镀在沟槽的侧面,有利于提高短路电流;(2)优异的MIS结构设计,可以获得很高的开路电压和填充因子;(3)高质量的蒸镀电极接触;(4)不受接触特性限制的可以被最优化的浅发射极;(5)高质量的低温表面钝化。

电池的制作具体过程为:前表面机械开槽→化学腐蚀清洗→背面掩膜(扩散)→前表面化学制绒→使用液态源POCl3进行磷扩散制作n+发射极→打开背面接触→真空蒸镀Al作为背电极→前表面低温热氧化形成氧化隧道层→前表面无需掩膜直接倾斜蒸镀Al作为面电极→使用导电胶将各个面电极连接起来→采用PECVD法在前表面蒸镀氮化硅作为钝化和减反射层。

(作者和海一样的新能源 微博)原文地址:/news/37395.html。

第三章晶体硅太阳能电池的基本原理介绍

第三章晶体硅太阳能电池的基本原理介绍

第三章晶体硅太阳能电池的基本原理介绍晶体硅太阳能电池是一种利用光的能量直接转换成电能的设备。

其基本原理是通过光的能量激发硅晶体中电子的运动,从而产生电流。

晶体硅太阳能电池由P-N结构组成,即P型硅和N型硅之间形成的结。

P型硅中的杂质是三价元素,如铋、铝等,它们只有三个价电子,因此形成缺电子少的材料,被称为'P型'。

而N型硅中的杂质是五价元素,如磷、锑等,它们有五个价电子,因此形成富余电子的材料,被称为'N型'。

在N型硅中,铝或锑取代硅原子形成空位,这些空位被称为施主杂质;而在P型硅中,硅原子被磷原子取代形成多余的电子,这些多余的电子被称为受主杂质。

在P-N结中,P型和N型硅的电子浓度和空穴浓度明显不同。

P型硅中由于受主杂质的存在,电子浓度远低于空穴浓度,而N型硅由于施主杂质的存在,电子浓度远高于空穴浓度。

这样会形成在P-N结表面上的电场,这个电场被称为内建电场。

当没有外加电源时,P-N结上的内建电场将阻止电子和空穴的扩散和重新组合。

当光照射到P-N结上时,光子的能量可以激发P-N结中的电子,使其通过光电效应从价带跃迁到导带,形成电子空穴对。

由于内建电场的存在,这些电子和空穴被分离,并沿着P型硅和N型硅的电场向相应的电极移动。

通过连接一个外部负载,由于电流的流动,可以产生电能。

晶体硅太阳能电池的效率受多种因素的影响。

首先,吸收光子的能力与材料的光吸收系数有关,材料吸收光子的能力越强,效率越高。

其次,载流子的寿命也影响着电流的流动,载流子的寿命越长,效率越高。

另外,晶体硅太阳能电池的电子结构和掺杂方式也会影响其性能。

总的来说,晶体硅太阳能电池的基本原理是利用光子激发硅晶体中的电子跃迁,通过内建电场将电子和空穴分离,从而产生电流。

不过,晶体硅太阳能电池的效率相对较低,因此近年来研发人员一直致力于开发更高效、更经济的太阳能电池技术,以实现更广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效晶体硅太阳电池简介(1)PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究的高效电池。

它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。

由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。

为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。

然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。

另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。

为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。

这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。

后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。

1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。

定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。

经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。

孔间距离也进行了调整,由2 mm缩短为250 µm,大大减少了横向电阻。

如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。

1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。

这种PERL电池取得高效的原因是[28]:(1)正面采光面为倒金字塔结构,结合背电极反射器,形成了优异的光陷阱结构;(2)在正面上蒸镀了MgF2/ZnS双层减反射膜,进一步降低了表面反射;(3)正面与背面的氧化层均采用TCA工艺(三氯乙烯工艺)生长高质量的氧化层,降低了表面复合;(4)为了和双层减反射膜很好配合,正面氧化硅层要求很薄,但是随着氧化层的减薄,电池的开路电压和短路电流又会降低。

为了解决这个矛盾,相对于以前的研究,增加了“alneal”工艺,即在正面的氧化层上蒸镀铝膜,然后在370 ℃的合成气氛中退火30 min,最后用磷酸腐蚀掉这层铝膜。

经过“alneal”工艺后,载流子寿命和开路电压都得到较大提高,而与正面氧化层的厚度关系不大。

这种工艺的原理是,在一定温度下,铝和氧化物中OH-离子发生反应产生了原子氢,在Si/SiO2的界面处对一些悬挂键进行钝化。

(5)电池的背电场通过定域掺杂形成,掺杂的温度和时间至关重要,对实现定域掺杂的接触孔的设计也非常重要,因为这关系到能否在整个背面形成背电场以及体串联电阻的大小。

在这个电池中浓硼扩散区面积为30 µm×30 µm,接触孔的面积为10 µm ×10 µm,孔间距为250 µm,浓硼扩散区的面积仅占背面积的1.44%。

定域扩散提供了良好的背面场,同时减少了背面金属接触面积,使金属与半导体界面的高复合速率区域大大减少。

并且由于背面浓掺杂区域的大面积减少,也大大降低了背面的表面复合。

综合以上技术,该电池电学性能很好,在1.0 Ωcm左右的p型Fz硅片上制作的4 cm2的PERL电池开路电压达到706 mV,短路电流为42.2 mA/cm2,填充因子为82.8%,效率达24.7%。

在其它类型的硅片上采用PERL结构也可实现高效,例如采用MCZ 硅片制作的4 cm2的PERL电池效率达到23.5%[29]。

但是利用CZ(B)硅片上制作的4 cm2的PERL电池效率较低,只有18.7%,这是因为CZ硅里含有大量的氧,在光照的情况下会与硼发生反应导致效率大幅降低。

利用FZ硅制作大面积的PERL电池效率也很高,1997年制作的21.6 cm2的电池效率达到23.7%[30]。

对于多晶硅来说,它的载流子寿命较短,并且一般在高于950 ℃下进行处理时载流子寿命将会大幅降低。

但是在利用其制作PERL电池过程中,即使有的制备工艺温度在1100 ℃左右,载流子寿命也不会受到很大影响,这充分说明了PERL结构钝化工艺的完美。

1997年J.Zhao制备了1 cm2多晶硅PERL电池,考虑到载流子寿命较短,所以背面接触孔间的距离由250μm缩短到180μm,这虽然增加了接触孔的密度,但并不影响开路电压。

在正面没有采用倒金字塔陷光结构的情况下,该电池开路电压仍然达到643 mV,短路电流为34.5 mA/cm2,填充因子为82.0%,转换效率达18.2%[31]。

在对PERC电池改进成PERL电池的同时,又将定域掺杂扩大到在整个背面进行全掺杂,制成PERT电池,结构如图2-13c所示。

可以看出它和PERL结构非常相似,电极与衬底的接触孔处实行浓硼掺杂,但是在背面的其它区域增加了淡硼掺杂。

经过这样处理后,开路电压和填充因子可以得到最优化,更为重要的它可以在很高电阻率的衬底上达到较高的填充因子。

2001年在p型MCZ(B)硅片上制作的4 cm2的PERT电池效率达到24.5%,在n型Cz硅片上制作的电池效率也超过了21%[29]高效晶体硅太阳电池简介(2)HIT电池是三洋公司开发的大面积高效太阳电池。

这种电池具有结特性优秀、温度系数低、生产成本低廉和转换效率高等优点,所以在光伏市场上受到青睐。

三洋公司从90年代初就开始了利用n型硅片制作HIT电池的研究,94年取得了突破性的进展,成功制备出转换效率为20%的1 cm2 HIT电池[32]。

随后三洋公司展开产业化研究,97年制作的100 cm2 HIT电池效率达到17.3%,实现产业化;2000年三洋公司又利用n型CZ硅材料作为衬底,在100.5 cm2的CZ硅上制备出开路电压为719 mV,效率为20.7%的HIT太阳电池,创造了当时的最高记录[33]。

2003年三洋公司又把100 cm2HIT电池片的效率提高为21.2%,继续保持大面积电池的世界最高记录[34]。

HIT电池制作过程大致如下:利用PECVD在表面织构化后的n型CZ-Si片(200 µm,1 Ωcm )的正面沉积很薄的本征α-Si:H层和p 型α-Si:H,然后在硅片的背面沉积薄的本征α-Si:H层和n型α-Si:H层;利用溅射技术在电池的两面沉积透明氧化物导电薄膜(TCO),用丝网印刷的方法在TCO上制作Ag电极[34]。

值得注意的是所有的制作过程都是在低于200 ℃的条件下进行,这对保证电池的优异性能和节省能耗具有重要的意义。

HIT电池具有高效的原理是[32,34]:(1)全部制作工艺都是在低温下完成,有效地保护载流子寿命;(2)双面制结,可以充分利用背面光线;(3)表面的非晶硅层对光线有非常好的吸收特性;(4)采用的n型硅片其载流子寿命很大,远大于p型硅,并且由于硅片较薄,有利于载流子扩散穿过衬底被电极收集;(5)织构化的硅片对太阳光的反射降低;(6)利用PECVD在硅片上沉积非晶硅薄膜过程中产生的原子氢对其界面进行钝化,这是该电池取得高效的重要原因。

高效晶体硅太阳电池简介(3)刻槽埋栅电池也是澳大利亚新南威尔士大学光伏器件实验室最先研制成功的,由于具有高效、低成本和适合大批量生产的特点,很快引起注意。

西班牙BP Solar公司购买了其专利,成功地进行了产业化生产。

这个电池结构的主要特点是表面电极通过化学镀埋在硅衬底的沟槽里,电极与沟槽接触部位采用重掺杂,表面的其它地方进行淡磷扩散。

它的工艺过程一般为:清洗、腐蚀制绒面→清洗→淡磷扩散→热氧化钝化→开槽→槽区腐蚀→清洗→槽区浓磷扩散→背面蒸铝→烧制背场→化学镀埋栅→制作背面电极→蒸镀减反射膜→去边烧结→测试硅衬底表面的沟槽一般通过激光或机械切割进行,现在也有人尝试采用化学腐蚀方法。

p-n结的制作至关重要,采用淡磷、浓磷分区扩散分别形成p-n+和p-n++结,这既防止形成“死层”,又加大对周围光生载流子的收集。

埋栅电极分别通过化学镀镍、镀铜后浸银完成,这种方法比丝网印刷所制的电极其导电性和接触电阻等电学性能都要优越,并且成本更低。

埋栅电池具有高效的原因是[35~36]:(1)绒面、减反射膜和背面反射器的结合使太阳光充分被利用;(2)栅指电极只占电池表面积2~4%,遮光率很小,提高短路电流密度;(3)栅指电极排列紧密减小发射极电阻;(4)淡磷扩散避免形成“死层”,增加对短波的吸收;(5)埋栅电极处实行重掺杂使接触电阻降低,有利于欧姆接触;(6)埋栅电极深入到硅衬底内部增加对基区光生电子的收集;(7)浓磷扩散降低浓磷区电阻功耗和栅指电极与衬底的接触电阻功耗,提高电池的开路电压。

刻槽埋栅电池既保留了高效电池的特点,又省去了高效电池制作中一些复杂工艺,很适合利用低成本、大面积的硅片进行大规模生产。

高效晶体硅太阳电池简介(4)背电极接触硅太阳电池是美国的Sunpower公司独特产品。

该电池完全采用背电极接触方式,正负极交叉排列在背面,前表面没有任何遮挡,p-n结位于背面,效率可达20%以上。

该电池在研发初期采用了高质量的n型FZ硅片和多步光刻技术,虽然最高效率可以达到23%,但是成本很高,只是满足一些特殊需要,如太阳能飞机和太阳能汽车等。

为了降低成本、扩大市场,在美国塞浦路斯半导体公司帮助下,Sunpower公司做了大量的研究,如尝试采用丝网印刷和激光刻槽技术代替光刻,改进扩散炉、湿化学腐蚀和清洁设备等。

2003年Sunpower公司终于推出最新的低成本高效太阳电池A-300,它的面积是148.8 cm2,开路电压为0.665 V,短路电流为5.75 A,功率为3.0 W,效率为20.0%以上[37]。

随后在菲律宾马尼拉市进行大规模投产,2004年产能为25 MW,2005年预计产能达到50 MW,并准备继续扩大生产线,使其年生产能力达到100 MW。

A-300电池是采用n型硅片做衬底,载流子的寿命在1 ms以上;电池的前表面采用优良的金字塔结构和减反射膜,并且由于没有任何电极的遮挡,从而使太阳光能尽量被太阳电池所吸收,提高电流密度;电池的前后表面都采用了热氧钝化技术,这对减少载流子的表面复合和增加长波响应非常有利,从而使开路电压得以提高;在前表面的钝化层下又进行了浅磷扩散,既形成了前表面场,提高短波响应,又避免了像在传统电池中进行重掺杂形成死层现象;电极和硅片是采用定点接触,减少了金属电极与硅片的接触面积,从而使载流子在电极表面复合的几率大为减少,进一步提高了开路电压[37]。

相关文档
最新文档