《集成电路设计导论》PPT课件

合集下载

第1章 集成电路设计导论

第1章  集成电路设计导论
17
1.3 集成电路设计步骤
❖ “自底向上”(Bottom-up)
“自底向上”的设计路线,即自工艺开始,先进行单元设 计,在精心设计好各单元后逐步向上进行功能块、子系统 设计直至最终完成整个系统设计。在模拟IC和较简单的数 字IC设计中,大多仍采用“自底向上”的设计方法 。
❖ “自顶向下”(Top-down)
集成电路的历程:
1947-1948年: 世界上第一只晶体三极管面世。 1950年: 成功研制出结型晶体管 1952年: 英国皇家雷达研究所 第一次提出“集成电路”的设想
贝尔实验室的第一支晶体管
8
1.1 集成电路的发展
集成电路的历程:
1958年: 在美国德州仪器公司工作的Jacky Killby制造 出世界上第一块 集成电路—双极 型晶体管集成电路。
“或”矩阵 输出电路
可编程
固定
可编程
固定
固定
固定
固定 可由用户组态
四种简单PLD器件的比较
32
几种集成电路设计方法的比较
33
1.5 电子设计自动化技术概论
随着IC集成度的不断提高,IC规模越来越大、复杂度越来 越高,采用CAD辅助设计是必然趋势 。 ➢第一代IC设计CAD工具出现于20世纪60年代末70年代初, 但只能用于芯片的版图设计及版图设计规则的检查。 ➢第二代CAD系统随着工作站(Workstation)的推出出现于 80年代。其不仅具有图形处理能力,而且还具有原理图输入 和模拟能力 。 ➢如今CAD工具已进入了第三代,称之为EDA系统。其主要 标志是系统级设计工具的推出和逻辑设计工具的广泛应用。34
设计方法
20
1.4.1 全定制设计(Full-Custom Design)

《集成电路》课件

《集成电路》课件
《集成电路》ppt课 件
xx年xx月xx日
• 集成电路概述 • 集成电路的制造工艺 • 集成电路的种类与特点 • 集成电路的发展趋势与挑战 • 集成电路的实际应用案例
目录
01
集成电路概述
集成电路的定义
集成电路是将多个电子元件集成在一块衬底上,完成一定的电路或系统功能的微型电子部件。
它采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在 一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结 构。
超大规模集成电路(VLSI)
包含10万-100万个逻辑门或元件。
按结构分类的集成电路
单片集成电路
所有元件都在一个芯片上 。
多片集成电路
由多个芯片集成在一个封 装内。
模块化集成电路
由多个独立芯片通过线路 板连接而成。
按应用领域分类的集成电路
01
通信集成电路
用于通信设备中的信号处理和传输 。
消费电子集成电路
射频识别(RFID)技术的集成电路应用
总结词
射频识别技术是利用无线电波进行通信的一种非接触式识别技术,其集成电路应用主要涉及标签芯片和读写器芯 片。
详细描述
RFID标签芯片通常包含存储器、无线通信电路和天线等部分,用于存储和传输信息。而RFID读写器芯片则负责 与标签芯片进行通信,实现信息的读取和写入。RFID技术广泛应用于物流、供应链管理、身份识别等领域。
用于家电、数码产品等消费电子产 品中。
03
02
计算机集成电路
用于计算机硬件中的逻辑运算和数 据处理。
汽车电子集成电路
用于汽车控制系统和安全系统中。
04

第一章集成电路EDA设计概述PPT课件

第一章集成电路EDA设计概述PPT课件
优点:
➢ 效率高——所有这一切,几乎都是借助计算机利 用EDA软件自动完成!
➢ 容易检查错误,便于修改; ➢ 设计周期短、成功率很高 ; ➢ 产品体积小。
i- 7
数字系统的两种设计方法比较
特点 采用器件 设计对象 设计方法 仿真时期 主要设计文件
传统方法 通用型器件(如74系列)
电路板 自下而上 系统硬件设计后期 电路原理图
17
i- 17
EDA技术的发展方向
(1)将沿着智能化、高性能、高层次综合方向发展
(2)支持软硬件协同设计
芯片和芯片工作所需的应用软件同时设计,同时完成。 采用协同设计,可以及早发现问题,保证一次设计成功,缩
短开发周期,这在设计大系统时尤为重要。
(3)采用描述系统的新的设计语言
这种语言统一对硬件和软件进行描述和定义,从开始设计功 能参数的提出直至最终的验证。
➢ 标准化:随着设计数据格式标准化→EDA框架标准化,即在同一 个工作站上集成各具特色的多种EDA工具,它们能够协同工作。
i- 16
EDA技术的发展现状
EDA技术在进入21世纪后,得到了更大的发展,突出表现在以下几 个方面:
使电子设计成果以自主知识产权的方式得以明确表 达和确认成为可能;
在设计和仿真两方面支持标准硬件描述语言的功能 强大的EDA软件不断推出。
EDA软件 +
HDL +
(Verilog)
空白PLD 编程
数字系统
首先在计算机上安装EDA软件,它们能帮助设计者自动 完成几乎所有的设计过程;再选择合适的PLD芯片,可 以在一片芯片中实现整个数字系统。
6
i- 6
现代的数字系统设计方法
• 通常采用自上而下(Top Down)的设计方法 • 采用可编程逻辑器件 • 在系统硬件设计的早期进行仿真 • 主要设计文件是用硬件描述语言编写的源程序 • 降低了硬件电路设计难度

《集成电路设计》课件

《集成电路设计》课件
蒙特卡洛模拟法
通过随机抽样和概率统计的方法,模 拟系统或产品的失效过程,评估其可 靠性。
可靠性分析流程
确定分析目标
明确可靠性分析的目 的和要求,确定分析 的对象和范围。
进行需求分析
分析系统或产品的使 用环境和条件,确定 影响可靠性的因素和 条件。
进行失效分析
分析系统或产品中可 能出现的失效模式和 原因,确定失效对系 统性能和功能的影响 。
DRC/LVS验证
DRC/LVS验证概述
DRC/LVS验证是物理验证中的两个重要步骤,用于检查设计的物 理实现是否符合设计规则和电路图的要求。
DRC验证
DRC验证是对设计的物理实现进行规则检查的过程,以确保设计的 几何尺寸、线条宽度、间距等参数符合设计规则的要求。
LVS验证
LVS验证是检查设计的物理实现与电路图一致性的过程,以确保设 计的逻辑功能在物理实现中得到正确实现。
版图设计流程
确定设计规格
明确设计目标、性能指标和制造工艺要求 。
导出掩模版
将最终的版图导出为掩模版,用于集成电 路制造。
电路设计和模拟
进行电路设计和仿真,以验证电路功能和 性能。
物理验证和修改
进行DRC、LVS等物理验证,根据结果进 行版图修改和完善。
版图绘制
将电路设计转换为版图,使用专业软件进 行绘制。
集成电路设计工具
电路仿真工具
用于电路设计和仿真的软件, 如Cadence、Synopsys等。
版图编辑工具
用于绘制版图的软件,如Laker 、Virtuoso等。
物理验证工具
用于验证版图设计的正确性和 可靠性的软件,如DRC、LVS等 。
可靠性分析工具
用于进行可靠性分析和测试的 软件,如EERecalculator、 Calibre等。

《集成电路设计概述》PPT课件

《集成电路设计概述》PPT课件
9
集成电路的发明
• 平面工艺的发明 1959年7月, 美国Fairchild 公司的Noyce发明第一 块单片集成电路: 利用二氧化硅膜制成平面晶体管, 用淀积在二氧化硅膜上和二氧化硅膜密接在一起的 导电膜作为元器件间的电连接(布线)。 这是单片集成电路的雏形,是与现在的硅集成电路 直接有关的发明。将平面技术、照相腐蚀和布线技 术组合起来,获得大量生产集成电路的可能性。
工艺 元件数
门数 年代
典型 产品
SSI
<102
<10
1961 集成 门、 触发

MSI 102 ~ 10
3
10 ~ 102 1966
计数器 加法器
LSI 103 ~ 104 102 ~ 103
1971
8bMCU ROM RAM
VLSI 104 ~ 106 103 ~ 105
1980
16-32bit MCU
第一章 集成电路设计概述
1.1 集成电路(IC)的发展
芯片,现代社会的基石
内存条
PDA:掌上电脑
手机
数码相机
主板
计算机
集成电路
Integrated Circuit ,缩写IC IC是通过一系列特定的加工工艺,将晶体管 、二极管等有源器件和电阻、电容、电感等无源 器件,按照一定的电路互连,“集成”在一块半 导体晶片(如硅或砷化镓)上,封装在一个外壳 内,执行特定电路或系统功能的一种器件。
19
❖Intel 公司第一代CPU—4004
电路规模:2300个晶体管 生产工艺:10um 最快速度:108KHz
20
❖Intel 公司CPU—386TM
电路规模:275,000个晶体管 生产工艺:1.5um 最快速度:33MHz

《集成电路设计导论》PPT课件

《集成电路设计导论》PPT课件
7
Foundry
设计中心
寄存器传输 级行为描述
单元库
布局布线
向 Foundry 提供 网表
行为仿真 综合
逻辑网表 逻辑模拟
掩膜版图
生成 延迟 版图检查 / 网表和参数提取 文 件
/ 网表一致性检查
后仿真 产生测试向量
制版 / 流片 /测试/封装
8
门阵列法设计流程图
门阵列方法的设计特点:设计周期短,设计成本低,适 合设计适当规模、中等性能、要求设计时间短、数量相 对较少的电路。 不足:设计灵活性较低;门利用率低;芯片面积浪费。
10
SC法设计流程与门阵列法相似,但有若干基本的不同点:
(1) 在门阵列法中逻辑图是转换成门阵列所具有的单元或宏单元,而标准单 元法则转换成标准单元库中所具有的标准单元。
(2) 门阵列设计时首先要选定某一种门复杂度的基片,因而门阵列的布局和 布线是在最大的门数目、最大的压焊块数目、布线通道的间距都确定的 前提下进行的。标准单元法则不同,它的单元数、压焊块数取决于具体 设计的要求,而且布线通道的间距是可变的,当布线发生困难时,通道 间距可以随时加大,因而布局和布线是在一种不太受约束的条件下进行 的。
时钟产生 单元
A/D

通用单元法示意图
13
BB单元:
较大规模的功能块(如ROM、RAM、ALU或模拟电路单元等),单元可 以用GA、SC、PLD或全定制方法设计。
BB布图特点:
任意形状的单元(一般为矩形或“L”型)、任意位置、无布线通道。
BB方法特点:
较大的设计自由度,可以在版图和性能上得到最佳的优化。
1、微电子(集成电路)技术概述 2、集成电路设计步骤及方法
1
集成电路设计步骤

《集成电路设计导论》课件

《集成电路设计导论》课件

IC设计的测试和验证
探讨IC设计的测试和验证技术, 以确保设计的正确性和可靠性。
总结与展望
集成电路设计的现状与未来趋势
总结集成电路设计的现状并展望未来的发展趋 势,如人工智能芯片和物联网应用。
集成电路设计中的挑战与机遇
探讨集成电路设计中面临的挑战和机遇,如功 耗优化和设计验证等。
《集成电路设计导论》 PPT课件
这是一套《集成电路设计导论》的PPT课件,针对集成电路的概念、分类和历 史发展等主题进行介绍,通过丰富的内容和精美的图片,让学习更加生动有 趣。
第一章:集成电路概述
集成电路的定义
介绍集成电路的基本概念和定义,以及其在电子领域中的重要作用。
集成电路的分类
分析不同类型的集成电路,包括数字集成电路、模拟集成电路和混合集成电路。
探讨集成电路设计中常用的仿真 技术,如时序仿真、噪声仿真和 功耗仿真等。
CMOS工艺的基本原理和特点,以及其在集成电路设计中的应用。
2
CMOS电路设计基础
讨论CMOS电路设计的基本原则和技巧,包括逻辑门设计和布局。
3
CMOS电路的布局与布线
解释CMOS电路布局与布线的重要性,以及如何进行最佳布局和布线。
第五章:模拟电路设计
模拟电路设计基础
介绍模拟电路设计的基本原理和 技术,包括信号放大、滤波和稳 压等。
模拟电路的建模与仿真
讨论模拟电路的建模方法和仿真 技术,以验证电路设计的准确性 和性能。
模拟电路的测试和调试
探讨模拟电路的测试和调试方法, 以保证电路的可靠性和稳定性。
第六章:数字电路设计
1
数字电路的逻辑设计
第四章:数模转换电路设计
数模转换电路的种类

集成电路介绍ppt课件

集成电路介绍ppt课件

11.TQFP 扁平簿片方形封装 12.TSOP 微型簿片式封装 13.CBGA 陶瓷焊球阵列封装 14.CPGA 陶瓷针栅阵列封装 15.CQFP 陶瓷四边引线扁平 16.CERDIP 陶瓷熔封双列 17.PBGA 塑料焊球阵列封装 18.SSOP 窄间距小外型塑封 19.WLCSP 晶圆片级芯片规 模封装 20.FCOB 板上倒装片
CSP封装具有以下特点: (1)满足了LSI芯片引出脚不断增加的需要; (2)解决丁IC裸芯片不能进行交流参数测 试和老化筛选的问题; (3)封装面积缩小,延迟时间大大缩小。
5.3 发展趋势
• 1、MCM封装 • 2、三维封装
1、MCM组装 Multi chip module
芯片 封装体
芯片
封装外壳
五、集成电路封装技术
• 1、直插式 • 2、表面贴装式 • 3、芯片尺寸封装 • 4、发展趋势
5.1 直插式
• To封装:
• DIP封装
5.1 直插式
DIP封装特点: • (1)适合PCB的穿孔安装,操作方便; • (2)比TO型封装易于对PCB布线; • (3)芯片面积与封装面积之间的比值较大,故体积
二、集成电路特点
• 集成电路具有体积小,重量轻,引出线和焊接点 少,寿命长,可靠性高,性能好等优点,同时成 本低,便于大规模生产。它不仅在工、民用电子 设备如收录机、电视机、计算机等方面得到广泛 的应用,同时在军事、通讯、遥控等方面也得到 广泛的应用。用集成电路来装配电子设备,其装 配密度比晶体管可提高几十倍至几千倍,设备的 稳定工作 时间也可大大提高。
1959年仙童公司制造的IC
诺伊斯
三、集成电路发展
• 第一阶段:1962年制造出集成了12个晶体管的小规模集成 电路(SSI)芯片。

《集成电路》PPT课件

《集成电路》PPT课件
单击鼠标请看演示
从位线输出的每组二进制代码称为一个字。一个 字中含有的存储单元数称为字长,即字长 = 位数。
2. 存储容量及其表2示. 存储容量及其表示
一般用“字数 字长(即位数)”表示 指存储器中存储单元的数量
例如,一个 32 8 的 ROM,表示它有 32 个字, 字长为 8 位,存储容量是 32 8 = 256。
计成功的电路可方便地下载到 PLD,因而研制周期短、 成本低、效率高,使产品能在极短时间内推出。

● 用 PLD 实现的电路容易被修改。这种修改通过对 P
LD 重新编程实现,可以不影响其外围电路。因此,其产
点 品的维护、更新都很方便。 PLD 使硬件也能象软件一样
实现升级,因而被认为是硬件革命。
● 较复杂的数字系统能用1片或数片 PLD 实现,因而, 应用 PLD 生产的产品轻小可靠。此外,PLD 还具有硬件 加密功能。
3. 存储单元结构 (1) 固定 ROM 的存3.储单存元储结单构元结构
Wi
Dj 二极管 ROM
Wi VCC
Dj TTL - ROM
+VDD Wi
1 Dj MOS - ROM
接半导体管后成为储 1 单元;若 不接半导体管,则为储 0 单元。
(2) PROM 的存储单元结构
Wi 熔丝
Dj 二极管 ROM


An-1

存储矩阵
R/W 读/ 写控制电路
CS

I/O0 I/O1 … I/Om-1
2n m RAM 的结构图
RAM 与 ROM 的比较
相 ★ 都含有地址译码器和存储矩阵 同 处 ★ 寻址原理相同
★ ROM 的存储矩阵是或阵列,是组合逻辑电路。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
2)积木块法(BB)
又称通用单元设计法。与标准单元不同之处是:第一,它既不要求每个 单元(或称积木块)等高,也不要求等宽。每个单元可根据最合理的情 况单独进行版图设计,因而可获得最佳性能。设计好的单元存入库中备 调用。第二,它没有统一的布线通道,而是根据需要加以分配 。
引脚
ROM
ALU、寄存器等 引
5
半定制方法
半定制的设计方法分为: 门阵列(GA:Gate Array)法; 门海(GS:Sea of Gates)法; 标准单元(SC: Standard Cell)法; 积木块(BB:Building Block Layout); 可编程逻辑器件(PLD:Programmable Logic Device)设计法。
10
SC法设计流程与门阵列法相似,但有若干基本的不同点:
(1) 在门阵列法中逻辑图是转换成门阵列所具有的单元或宏单元,而标准单 元法则转换成标准单元库中所具有的标准单元。
(2) 门阵列设计时首先要选定某一种门复杂度的基片,因而门阵列的布局和 布线是在最大的门数目、最大的压焊块数目、布线通道的间距都确定的 前提下进行的。标准单元法则不同,它的单元数、压焊块数取决于具体 设计的要求,而且布线通道的间距是可变的,当布线发生困难时,通道 间距可以随时加大,因而布局和布线是在一种不太受约束的条件下进行 的。
7
Foundry
设计中心
寄存器传输 级行为描述
单元库
布局布线
向 Foundry 提供 网表
行为仿真 综合
逻辑网表 逻辑模拟
掩膜版图
生成 延迟 版图检查 / 网表和参数提取 文 件
/ 网表一致性检查
后仿真 产生测试向量
制版 / 流片 /测试/封装
8
门阵列法设计流程图
门阵列方法的设计特点:设计周期短,设计成本低,适 合设计适当规模、中等性能、要求设计时间短、数量相 对较少的电路。 不足:设计灵活性较低;门利用率低;芯片面积浪费。
第1章 集成电路设计导论
1、微电子(集成电路)技术概述 2、集成电路设计步骤及方法
1
集成电路设计步骤
➢ “自底向上”(Bottom-up)
“自底向上”的设计路线,即自工艺开始,先进行单元设 计,在精心设计好各单元后逐步向上进行功能块、子系统 设计直至最终完成整个系统设计。在模拟IC和较简单的数 字IC设计中,大多仍采用“自底向上”的设计方法 。
不满足 后仿真
满足
VLS流I数片、字封I装C、的测设试 计流图
3
功能要求
系统建模 (Matlab等)
不满足 电路仿真
满足 手工设计
版图 不满足
后仿真 满足
模流拟片、IC封的装、设测计试 流图
集成电路设计方法
➢ 全定制方法(Full-Custom Design Approach) ➢ 半定制方法(Semi-Custom Design Approach)
(3) 门阵列设计时只需要定制部分掩膜版,而标准单元设计后需要定制所有 的各层掩膜版。
11
与门阵列法相比,标准单元法有明显的优点:
(1) 芯片面积的利用率比门阵列法要高。芯片中没有无用的单元,也没有无 用的晶体管。 (2) 可以保证100%的连续布通率。 (3) 单元能根据设计要求临时加以特殊设计并加入库内,因而可得到较佳的 电路性能。 (4) 可以与全定制设计法相结合。在芯片内放入经编译得到的宏单元或人工 设计的功能块。
时钟产生 单元
A/D

通用单元法示意图
13
BB单元:
较大规模的功能块(如ROM、RAM、ALU或模拟电路单元等),单元可 以用GA、SC、PLD或全定制方法设计。
BB布图特点:
任意形状的单元(一般为矩形或“L”型)、任意位置、无布线通道。
BB方法特点:
较大的设计自由度,可以在版图和性能上得到最佳的优化。
布图算法发展中:
通道不规则,连线端口在单元四周,位置不规则。
14
The end!
15
➢ “自顶向下”(Top-down)
其设计步骤与“自底向上”步骤相反。设计者首先进行行 为设计;其次进行结构设计;接着把各子单元转换成逻辑 图或电路图;最后将电路图转换成版图。
2
功能要求
行为设计 (Verilog/VHDL)
不满足 行为仿真
满足 综合、优化
网表 不满足
时序仿真 满足
版图自动 布局、布线
门海方法的设计特点:门利用率高,集成密度大,布线 灵活,保证布线布通率。 不足:仍有布线通道,增加通道是单元高度的整数倍, 布线通道下的晶体管不可用。
9
பைடு நூலகம்
标准单元法和积木块法
1)标准单元法 概念:从标准单元库中调用事先经过精心设计的逻辑单元,并排 列成行,行间留有可调整的布线通道,再按功能要求将各内部单 元以及输入/输出单元连接起来,形成所需的专用电路。 芯片布局:芯片中心是单元区,输入/输出单元和压焊块在芯片四 周,基本单元具有等高不等宽的结构,布线通道区没有宽度的限 制,利于实现优化布线。
4
全定制方法
➢ 全定制IC:硅片没有经过加工,其各掩模层都要按特 定电路的要求进行专门设计
➢ 适用于要求得到最高速度、最低功耗和最省面积的芯 片设计
➢ 版图设计时采用人工设计,对每个器件进行优化,芯 片性能获得最佳,芯片尺寸最小
➢ 设计周期长,设计成本高,适用于性能要求极高或批 量很大的产品,模拟电路
标准单元法也存在不足:
(1) 原始投资大:单元库的开发需要投入大量的人力物力;当工艺变化时, 单元的修改工作需要付出相当大的代价,因而如何建立一个在比较长的时 间内能适应技术发展的单元库是一个突出问题。 (2) 成本较高:由于掩膜版需要全部定制,芯片的加工也要经过全过程,因 而成本较高。只有芯片产量达到某一定额(几万至十几万),其成本才可接受。
6
门阵列法和门海
➢ 门阵列是指在一个芯片上把形状和尺寸完全相同的单元排列成阵列,每个单元 内部含有若干器件,单元之间留有高度固定的布线通道。
➢ 门海设计技术是把由一对不共栅的P管和N管组成的基本单元铺满整个芯片 (除I/O区外),基本单元之间无氧化隔离区,布线通道不确定,宏单元连线 在无用器件区上进行。
相关文档
最新文档