六年级奥数行程问题专题:二次相遇行程问题的要点及解题技巧

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数专题:二次相遇行程问题的要点及解题技巧

一、概念:

两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。

二、特点:

它的特点是两个运动物体共同走完整个路程。

小学数学教材中的行程问题,一般是指相遇问题。

三、类型:

相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。

四、三者的基本关系及公式:

它们的基本关系式如下:

总路程=(甲速+乙速)×相遇时间

相遇时间=总路程÷(甲速+乙速)

另一个速度=甲乙速度和-已知的一个速度

奥数行程:二次相遇例题及答案(一)

答题思路点拨:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例1。甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处

相遇。请问A、B两地相距多少千米?

A。120 B。100 C。90 D。80

【解答】A。解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

例2。两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。两城市相距()千米

A。200 B。150 C。120 D。100

【解答】D。解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

绕圈问题:

例3。在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()?

A.24分钟B.26分钟C.28分钟D.30分钟

【解答】C。解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。也就是说,两人16分钟走一圈。从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲

从A到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。也是一个倍数关系。

奥数行程:二次相遇例题及答案(二)

例1。两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。甲乙两地相距多少千米?(适于五年级程度)

【解答】两辆汽车从同时相对开出到相遇各行4小时。一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。两车行驶路程之和,就是两地距离。

56×4=224(千米)

63×4=252(千米)

224+252=476(千米)

综合算式:

56×4+63×4

=224+252

=476(千米)

答:甲乙两地相距476千米。

例2。两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。5小时后,两列火车相距多少千米?(适于五年级程度)

解:此题的答案不能直接求出,先求出两车5小时共行多远后,

从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。

480-(40+42)×5

=480-82×5

=480-410

=70(千米)

答:5小时后两列火车相距70千米。

例3。两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。两车相遇时,第一列火车比第二列火车多行了20千米。求甲、乙两地间的距离。(适于五年级程度)

解:两车相遇时,两车的路程差是20千米。出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。由此可求出两车相遇的时间,进而求出甲、乙两地间的距离。

(60+55)×[20÷(60-55)]

=115×[20÷5]

=460(千米)

答:甲、乙两地间的距离为460千米。

相关文档
最新文档