六年级奥数行程问题专题:二次相遇行程问题的要点及解题技巧
小学六年级奥数第34讲 行程问题(二)(含答案分析)
![小学六年级奥数第34讲 行程问题(二)(含答案分析)](https://img.taocdn.com/s3/m/742d7e73fe4733687e21aa6a.png)
第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114+334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。
图34——1BA图34-1图34——2图34-22、兄、妹2人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
兄每秒走1.3米。
妹每秒走1.2米。
他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
两次相遇行程问题的解法-(教学材料)
![两次相遇行程问题的解法-(教学材料)](https://img.taocdn.com/s3/m/98fe5443284ac850ac02421e.png)
两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。
有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。
其实此类应题只要掌握正确的方法,解答起来也十分方便。
例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程。
说明两车第二次相遇时甲车共行了:80×3=24O (千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
例3 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。
两次相遇行程问题的解法
![两次相遇行程问题的解法](https://img.taocdn.com/s3/m/10e95c9db307e87100f696a4.png)
两次相遇行程问题的解法(总15页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。
有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。
其实此类应题只要掌握正确的方法,解答起来也十分方便。
例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程。
说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
例3 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A 城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇相遇地点离A城多少千米分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。
「知识点汇总」小学奥数二次相遇行程问题,这5个题目把它讲透了
![「知识点汇总」小学奥数二次相遇行程问题,这5个题目把它讲透了](https://img.taocdn.com/s3/m/8824fae19f3143323968011ca300a6c30c22f13c.png)
「知识点汇总」小学奥数二次相遇行程问题,这5个题目把它讲透了小学奥数行程问题是学习掌握的难点,下面将行程问题中的二次相遇问题整理如下,分知识点攻克行程问题吧。
二次相遇行程问题知识点汇总行程问题练习1:求速度题目:甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地。
王叔叔8:25从乙地骑摩托车出发去甲地,在差5分不到9点时,他遇到了第一辆汽车,9:16遇到第二辆汽车,王叔叔骑摩托车的速度是多少?解析:根据题意,汽车40分和摩托车30分共行74千米,汽车31分和摩托车51分共行74千米。
可以知道汽车40-31=9分钟相当于摩托车51-30=21分钟行的。
可以得到摩托车行完需要40÷9×21+30=370/3分钟。
所以摩托车小时行74÷370/3×60=36千米。
行程问题练习2:两次相遇题目:快车与慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。
已知慢车从乙地到甲地用12.5小时,慢车到甲地停留半小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇共需多少时间?解析:快车每小时行1/5-1/12.5=3/25。
当慢车到达甲地并休息之后,快车行了12.5+0.5-1=12小时,此时快车和慢车相距2-3/25×12=14/25所以还需要14/25÷1/5=2.8小时相遇从第一次相遇到第二次相遇共用去13+2.8-5=10.8小时。
行程问题及答案3:改变方向行程问题及答案4:快车慢车行程问题及答案5:往返问题。
两次相遇行程问题的解法
![两次相遇行程问题的解法](https://img.taocdn.com/s3/m/0725f6f6915f804d2a16c1c3.png)
两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。
有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。
其实此类应题只要掌握正确的方法,解答起来也十分方便。
例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程。
说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
例1 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B 城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。
六年级下册数学试题-奥数专题:行程问题(2)相遇问题(含答案)全国通用
![六年级下册数学试题-奥数专题:行程问题(2)相遇问题(含答案)全国通用](https://img.taocdn.com/s3/m/9039229da76e58fafbb00341.png)
行程问题之相遇问题【题目1】两列货车从相距450 千米的两个城市相向开出,甲车每小时行40 千米,乙车每小时比甲车多行1/4,出发几小时后两车相遇?【解答】本题是计算相遇时间,知道计算方法——相遇时间=总路程÷速度和。
【解法一】乙车的速度是40×(1+1/4)=50 千米/小时,甲乙两车的速度和是40 +50=90 千米/小时,相遇的时间是450÷90=5 小时。
【解法二】甲车行了450÷(1+1+1/4)=200 千米,相遇的时间是200÷40=5 小时。
【解法三】甲车行完450÷40=45/4 小时,相遇时间是45/4÷(1+1+1/4)=5 小时。
【解法四】甲乙两车的速度比是1:(1+1/4)=4:5,乙车行的路程是450×=200 米,相遇时间是200÷40=5 小时。
4 4 + 5【题目2】甲乙两列客车同时由相距600 千米的两地相对出发,经过8 小时后相遇。
已知甲车的速度是乙车速度的2/3,乙车每小时行多少千米?【解答】本题让学生明确——速度和=总路程÷相遇时间。
【解法一】根据题意只要求出速度和就可以求得乙车的速度。
则有两车速度和是600÷8=75 千米/时,把乙车速度看作单位1,甲车速度是2/3,那么速度和就是乙车的1+2/3=5/3,则乙车的速度是75÷5/3=45 千米/时。
【解法二】乙车需要8×(1+2/3)=40/3 小时行完全程,乙车的速度是600÷40/3=45 千米/时。
【解法三】乙车8 小时行了600÷(1+2/3)=360 千米,则乙车的速度是360÷8=45 千米/时。
【题目3】甲乙两列火车同时从A、B 两个城市对面开来,甲火车每小时行36 千米,乙火车每小时比甲火车多行2/9,开出4 小时后两车相遇。
求A、B 两地之间的距离是多少千米?【解答】本题要让学生知道——总路程=速度和×相遇时间。
六年级行程问题的解题技巧
![六年级行程问题的解题技巧](https://img.taocdn.com/s3/m/99336973e3bd960590c69ec3d5bbfd0a7856d56f.png)
六年级行程问题的解题技巧一、基本公式1. 路程 = 速度×时间,即s = vt。
速度 = 路程÷时间,v=(s)/(t)。
时间 = 路程÷速度,t=(s)/(v)。
二、相遇问题1. 特点两个物体从两地同时出发,相向而行,最后相遇。
2. 公式总路程=(甲的速度 + 乙的速度)×相遇时间,即s=(v_1 + v_2)t。
3. 题目解析例:甲、乙两人分别从A、B两地同时出发,相向而行。
甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时两人相遇。
求A、B两地的距离。
解析:已知甲的速度v_1 = 5千米/小时,乙的速度v_2=4千米/小时,相遇时间t = 3小时。
根据相遇问题公式s=(v_1 + v_2)t=(5 + 4)×3=9×3 = 27千米,所以A、B 两地的距离是27千米。
三、追及问题1. 特点两个物体同向而行,速度快的物体追速度慢的物体。
2. 公式追及路程=(快的速度慢的速度)×追及时间,即s=(v_1 v_2)t(v_1> v_2)。
3. 题目解析例:甲、乙两人同向而行,甲的速度是每小时6千米,乙的速度是每小时4千米,开始时两人相距10千米。
问甲几小时能追上乙?解析:甲的速度v_1 = 6千米/小时,乙的速度v_2 = 4千米/小时,追及路程s=10千米。
根据追及问题公式t=(s)/(v_1 v_2)=(10)/(6 4)=(10)/(2)=5小时,所以甲5小时能追上乙。
四、环形跑道问题1. 相遇情况(同地反向出发)公式:环形跑道一圈的长度=(甲的速度+乙的速度)×相遇时间,即s=(v_1 +v_2)t。
题目解析:例:甲、乙两人在周长为400米的环形跑道上同时从同一点反向跑步,甲的速度是每秒5米,乙的速度是每秒3米,问经过多少秒两人第一次相遇?解析:已知环形跑道周长s = 400米,甲的速度v_1 = 5米/秒,乙的速度v_2 = 3米/秒。
两次相遇行程问题的解法
![两次相遇行程问题的解法](https://img.taocdn.com/s3/m/7936b4fac5da50e2534d7f41.png)
两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题〞。
有一种“行程问题〞中出现了第二次相遇〔即两次相遇〕的情况,较难理解。
其实此类应题只要掌握正确的方法,解答起来也十分方便。
例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240〔千米〕,从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180〔千米〕例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程。
说明两车第二次相遇时甲车共行了:80×3=24O〔千米〕,从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:〔24O+6O〕÷2=150〔千米〕可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
例1 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。
“中点相遇”及“两次相遇”命题原理和解题技巧
![“中点相遇”及“两次相遇”命题原理和解题技巧](https://img.taocdn.com/s3/m/ba2cf2295627a5e9856a561252d380eb62942326.png)
“中点相遇”及“两次相遇”命题原理和解题技巧本文通过举一反三,透析小升初奥数杯赛考试中的行程问题——“中点相遇”及“两次相遇”命题原理和解题技巧!第一篇:【透析杯赛“中点相遇”命题原理和解题技巧】是指在距离中点的某个地方相遇。
借助中点,可以帮我们找到两人的路程差(即‘多走的路程’是相遇地点距离中点路程的2倍),再结合速度差,可以求出相遇时间和总路程。
解题时,关键要把握两种情形:同时出发和不同时出发。
下面我们以几个典型试题为例进行具体分析和拓展,以便同学们熟练掌握这种题型的命题特点和答题技巧。
【举一】小花猫和小花狗是一对好朋友,它们分别从A、B两地同时出发,相向而行,小花猫每分钟行80米,小花狗每分钟行100米,它们在途中的C处相遇。
问:A、B两地之间的距离是多少米?考点透析:围绕中点找两人的路程差。
由于小花猫先走9分钟,走了80×9=720米,结果小花猫先过中点。
解题核心是找出猫和狗在‘相遇时间’内的路程差。
相遇时,小花猫比小花狗多走280×2=560米,这560米是小花猫提前9分钟的结果,但为什么不是720米呢?即9分钟后,小花狗在‘相遇时间’内又追回了80×9-560=160米,进而可知‘相遇时间’是160÷(10 0-80)=8分钟。
解答:280×2=560(米)80×9-560=160(米)160÷(100-80)=8(分)80×9+(80+100)×8=2160(米)答:略。
【反三】1、甲、乙两人同时从两地相向跑步而行,甲每小时行12千米,乙每小时行10千米,两人刚好在距中点3千米处相遇,问两地相距多少千米?考点透析:同时出发,则相遇时间就是走完全程的时间。
路程差是相遇点距离中点的2倍,2×3=6千米,再根据甲乙的速度差可以求出相遇时间。
解答:3×2=6(千米)6÷(12-10)=3(小时)3×(12+10)=66(千米)答:略。
二次相遇问题的解题思路(附例题及答案)
![二次相遇问题的解题思路(附例题及答案)](https://img.taocdn.com/s3/m/9e6b2be1710abb68a98271fe910ef12d2af9a9d6.png)
二次相遇问题的解题思路(附例题及答案)知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。
例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。
请问A、B两地相距多少千米?A.120B.100C.90D.80【答案】A。
解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。
2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
两城市相距()千米A.200B.150C.120D.100【答案】D。
解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。
绕圈问题:3.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()?A.24分钟B.26分钟C.28分钟D.30分钟【答案】C。
解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。
也就是说,两人16分钟走一圈。
从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲从A 到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。
也是一个倍数关系。
小学六年级奥数-第34讲 行程问题(二)后附答案
![小学六年级奥数-第34讲 行程问题(二)后附答案](https://img.taocdn.com/s3/m/b015005a2af90242a895e596.png)
第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114 +334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。
2、兄、妹2人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
图34——1BA图34-1图34——2图34-2兄每秒走1.3米。
妹每秒走1.2米。
他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
六年级奥数行程问题专题:二次相遇行程问题的要点及解题技巧
![六年级奥数行程问题专题:二次相遇行程问题的要点及解题技巧](https://img.taocdn.com/s3/m/31347ae70b4c2e3f572763f8.png)
六年级奥数专题:二次相遇行程问题的要点及解题技巧一、概念:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
二、特点:它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
三、类型:相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
四、三者的基本关系及公式:它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度奥数行程:二次相遇例题及答案(一)答题思路点拨:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。
例1。
甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。
请问A、B两地相距多少千米?A。
120 B。
100 C。
90 D。
80【解答】A。
解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。
例2。
两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
两城市相距()千米A。
200 B。
150 C。
120 D。
100【解答】D。
解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。
绕圈问题:例3。
在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()?A.24分钟B.26分钟C.28分钟D.30分钟【解答】C。
两次相遇行程问题的解法-
![两次相遇行程问题的解法-](https://img.taocdn.com/s3/m/265773610b4c2e3f572763a5.png)
两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。
有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。
其实此类应题只要掌握正确的方法,解答起来也十分方便。
例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程。
说明两车第二次相遇时甲车共行了:80×3=24O (千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
例3 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。
两次相遇行程问题的解法
![两次相遇行程问题的解法](https://img.taocdn.com/s3/m/2b1a26d551e79b89680226bd.png)
两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。
有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。
其实此类应题只要掌握正确的方法,解答起来也十分方便。
例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程。
说明两车第二次相遇时甲车共行了:80×3=24O (千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
例3 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。
六年级数学奥数培优教案(下册)行程问题之二次相遇
![六年级数学奥数培优教案(下册)行程问题之二次相遇](https://img.taocdn.com/s3/m/15f2a10a647d27284b735199.png)
1二次相遇答题思路:甲从 A 地出发,乙从 B 地出发相向而行两人在 C 地相遇,相遇后甲继续走到 B 地后返回,乙继续走到 A 地后返回,第二次在 D 地相遇。
一般知道 AC 和 AD 的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。
【例1】甲、乙两车同时从 A 、B 两站相对开出,第一次相遇在离 A 站 120 千米处,然后各自按原速度继续行驶,分别到达对方车站后立即返回,第二次相遇时离 A 站的距离占 A 、B 两站距离的 40%。
A 、B 两站相距多少千米?【例2】快、慢两车同时从甲、乙两站相对开出,6 小时相遇,这时快车离乙站还有 240 千米,已知慢车从乙站到甲站需行 15 小时,两车到站后,快车停留半小时,慢车停留 1 小时返回,从第一次相遇到返回途中再相遇,经过多少小时?【例3】上午 8 点 8 分,小明骑自行车从家里出发,8 分钟后,爸爸骑摩托车去追他,在离家 4 千米的地方追上小明。
然后爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是 8 千米。
问这时是几点几分?1、甲、乙两辆汽车分别从 A、B 两地同时相向而行,速度比是 7:11.相遇后两车继续行驶,分别达到 B、A 两地后立即返回,当第二次相遇时,甲车距 B 地 80km,A、B 两地相距多少米?2、A、B 两地间有条公路,甲从 A 地出发,步行到 B 地,乙骑摩托车从 B 地出发,不停地往返于A、B 两地之间,他们同时出发,80 分钟后两人第一次相遇,100 分钟后乙第一次追上甲,问:当甲到达 B 地时,乙追上甲几次?3、A 的速度为每小时 30 千米,B 的速度为每小时 20 千米,A 和 B 同时从甲地出发到乙地,他们先后到乙地后又返回甲地……如此往返来回运动。
已经 A 与 B 第二次迎面相遇与 A 第二次追上 B 的两点相距 45 千米,甲、乙两地相距多少千米?4、甲、乙两地相距 720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶 1 小时后,快车才开始行驶.已知快车的速度是 120km/h,慢车的速度是 80km/h,快车到达乙地后,停留了20min,由于有新的任务,于是立即按原速返回甲地.在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是多少?2。
两次相遇行程问题的解法 (1)讲解
![两次相遇行程问题的解法 (1)讲解](https://img.taocdn.com/s3/m/1201e1663c1ec5da50e27039.png)
两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。
有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。
其实此类应题只要掌握正确的方法,解答起来也十分方便。
例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程。
说明两车第二次相遇时甲车共行了:80×3=24O (千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
例1 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A 城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。
两次相遇行程问题的解法
![两次相遇行程问题的解法](https://img.taocdn.com/s3/m/04c23a47a5e9856a57126058.png)
两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。
有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。
其实此类应题只要掌握正确的方法,解答起来也十分方便。
例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程.说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
例1 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程.然后甲乙两人到达对方城市后立即以原速沿原路返回,当小华和小明第二次相遇时,共行了3个全程,这时甲乙共行了多少个小时呢?可以用两城全长的3倍除以甲乙速度和就可以了.解:(1)甲乙出发到第二次相遇时共行了多少千米?240×3=720(千米)(2)甲乙两人的速度和是多少?45+35=80(千米)(3)甲乙两人从出发到第二次相遇共用了多少小时? 720÷80=9(小时)(4)相遇地点离A城多少千米?35×9-240=75(千米)答:9小时后,两车在途中第二次相遇,相遇地点离A城75千米。
(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展含答案
![(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展含答案](https://img.taocdn.com/s3/m/f0cce774a4e9856a561252d380eb6294dc882216.png)
(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展第8讲行程问题【知识点归纳】1.、速度:指单位时间内所行的路程。
因为速度=路程÷时间,所以速度的单位名称是路程单位/时间单位,即千米/时,米/分,米/秒,千米/分……2、路程、时间与速度的关系:(1)已知路程和时间,求速度:速度=路程÷时间;(2)已知路程和速度,求时间:时间=路程÷速度;(3)已知速度和时间,求路程:路程=速度×时间。
在路程、时间和速度三个量中,知道其中的任何两个量,都能求出第三个量。
【方法总结】1、路程、时间和速度之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间1.客车和货车分别从甲、乙两地同时出发,相向而行,3h相遇,相遇后客车又行驶2h到达乙地,已知货车每时行驶50km,问甲、乙两地相距多少千米?2.甲乙两列火车分别从南、北两地同时相对开出,6小时后相遇。
甲车的速度是120千米/时,乙车的速度是130千米/时。
求南、北两地的路程。
(先画图整理条件和问题,再解答。
)3.客、货两车同时从甲乙两地相对开出在离乙地80千米的地方第一次相遇,相遇后继续行驶,到达对方出发点后立即返回,第二次在距离甲地50千米的地方相遇。
求甲、乙两地间相距多少千米?(画图可以帮助理解!)4.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
5.从电车总站每隔一定时间开出一辆电车。
甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。
则电车总站每隔多少分钟开出一辆电车?6.甲乙两地相距1200千米。
一辆大客车和一辆小客车分别从两地同时出发,相向而行,6小时相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数专题:二次相遇行程问题的要点及解题技巧
一、概念:
两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
二、特点:
它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
三、类型:
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
四、三者的基本关系及公式:
它们的基本关系式如下:
总路程=(甲速+乙速)×相遇时间
相遇时间=总路程÷(甲速+乙速)
另一个速度=甲乙速度和-已知的一个速度
奥数行程:二次相遇例题及答案(一)
答题思路点拨:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。
例1。
甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处
相遇。
请问A、B两地相距多少千米?
A。
120 B。
100 C。
90 D。
80
【解答】A。
解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。
例2。
两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
两城市相距()千米
A。
200 B。
150 C。
120 D。
100
【解答】D。
解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。
绕圈问题:
例3。
在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()?
A.24分钟B.26分钟C.28分钟D.30分钟
【解答】C。
解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。
也就是说,两人16分钟走一圈。
从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲
从A到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。
也是一个倍数关系。
奥数行程:二次相遇例题及答案(二)
例1。
两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?(适于五年级程度)
【解答】两辆汽车从同时相对开出到相遇各行4小时。
一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。
两车行驶路程之和,就是两地距离。
56×4=224(千米)
63×4=252(千米)
224+252=476(千米)
综合算式:
56×4+63×4
=224+252
=476(千米)
答:甲乙两地相距476千米。
例2。
两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?(适于五年级程度)
解:此题的答案不能直接求出,先求出两车5小时共行多远后,
从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。
480-(40+42)×5
=480-82×5
=480-410
=70(千米)
答:5小时后两列火车相距70千米。
例3。
两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米。
求甲、乙两地间的距离。
(适于五年级程度)
解:两车相遇时,两车的路程差是20千米。
出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。
由此可求出两车相遇的时间,进而求出甲、乙两地间的距离。
(60+55)×[20÷(60-55)]
=115×[20÷5]
=460(千米)
答:甲、乙两地间的距离为460千米。