直流升压变换器的MATLAB仿真

合集下载

直流交流变换电路MATLAB仿真实训教案

直流交流变换电路MATLAB仿真实训教案

实训一、交流-直流变换电路的MATLAB仿真研究一、MATLAB 介绍MATLAB 是一种科学计算软件。

由于它使用方便、输入便捷、运算高效、适应科技人员的思维方式,并且有绘图功能,有用户自行扩展的空间,因此受到用户的欢迎,使它成为在科技界广为使用的软件,也是国内外高校教学和科学研究的常用软件。

SIMULINK是基于框图的仿真平台,SIMULINK 挂接在 MATLAB环境上,以 MATLAB 的强大计算功能为基础,以直观的模块框图进行仿真和计算。

SIMULINK提供了各种仿真工具,在 SIMULINK 平台上,拖拉和连接典型模块就可以绘制仿真对象的模型框图,并对模型进行仿真。

在 SIMULINK 环境下用电力系统模块库的模块,可以方便地进行 RLC 电路、电力电子电路、电机控制系统和电力系统的仿真。

二、Simulink/Power System 工具箱简介(1)电力电子器件仿真模型的介绍(2)Simulink工具箱在 MATLAB 命令窗口中键人"Simulink''命令,或点击相应按钮,便可打开 Simulink 工具箱窗口.Simulink工具箱是由如下模块组构成的:连续模块组 (Continuous) 、离散模块组(Discrete)、函数与表模块组 (Function&Tables) 、数学运算模块组 (Math) 、非线性模块组 (Nonlinear) 、信号与系统模块组 (Signals&Systems)、输出模块组(Sinks)、信号源模块组(Sources)和子系统模块组(Subsystems)等。

各模块组的详细内容见课本P235~238(3)Power System工具箱在 MATLAB 命令窗口中键入"powerlib"命令,或点击相应按钮,便可打开Power System 工具箱窗口。

①电源(Electrical sources)模块组,直流电压源、交流电压源、交流电流源、三相电源、三相可编程电压源、受控电压源和受控电流源等基本模块。

电力电子课程设计matlab仿真实验

电力电子课程设计matlab仿真实验

一.课程设计目的(1)通过matlab的simulink工具箱,掌握DC-DC、DC-AC、AC-DC电路的仿真。

通过设置元器件不同的参数,观察输出波形并进行比较,进一步理解电路的工作原理;(2)掌握焊接的技能,对照原理图,了解工作原理;(3)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力;二.课程设计内容第一部分:simulink电力电子仿真/版本matlab7.0(1)DC-DC电路仿真(升降压(Buck-Boost)变换器)仿真电路参数:直流电压20V、开关管为MOSFET(内阻为0.001欧)、开关频率20KHz、电感L为133uH、电容为1.67mF、负载为电阻负载(20欧)、二极管导通压降0.7V(内阻为0.001欧)、占空比40%。

仿真时间0.3s,仿真算法为ode23tb。

图1-1占空比为40%的,降压后为12.12V。

触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-2占空比为60%的,升压后为28.25V。

触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-3•图1-4升降压变换电路(又称Buck-boost电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图1-4(a)所示。

它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源工作原理:①T导通,ton期间,二极管D反偏而关断,电感L储能,滤波电容C向负载提供能量。

②T关断,toff期间,当感应电动势大小超过输出电压U0时,二极管D导通,电感L经D向C和RL反向放电,使输出电压的极性与输入电压在ton期间电感电流的增加量等于toff期间的减少量,得:由的关系,求出输出电压的平均值为:上式中,D为占空比,负号表示输出与输入电压反相;当D=0.5时,U0=Ud;当0.5<D<1时,U0>Ud,为升压变换;当0≤D<0.5时,U0<Ud,为降压变换。

基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真引言本文将介绍如何利用MATLAB进行直流调压调速控制系统的仿真,并对系统的性能进行分析和优化。

我们将对直流调压调速控制系统的原理进行简要介绍,然后利用MATLAB进行仿真分析,最后对仿真结果进行评估和优化。

直流调压调速控制系统原理直流调压调速控制系统通常由直流电源、整流器、电动机、控制器和负载组成。

整流器将交流电源转换为直流电源,控制器通过对电动机的电流和电压进行调节,实现对电动机的调压调速控制,从而达到满足负载的要求。

MATLAB仿真分析在MATLAB中,对直流调压调速控制系统进行仿真分析,可以使用Simulink工具箱来模拟实际系统的行为。

Simulink提供了丰富的模块和函数,用户可以方便地构建控制系统的模型,并对系统的性能进行仿真和优化。

我们需要建立直流调压调速控制系统的模型,包括直流电源、整流器、电动机、控制器和负载。

控制器的设计是关键,它需要根据负载要求和环境条件对电动机进行调压调速控制。

在Simulink中,用户可以通过对模块的连接和参数的设定,快速构建控制系统的模型,并对系统的性能进行仿真。

接下来,我们需要对仿真结果进行分析,包括电动机的输出转速、输出转矩和功率等性能指标。

通过对这些性能指标的分析,可以评估控制系统的稳定性和效率,并对系统的参数进行优化。

仿真结果评估和优化在仿真过程中,我们可以对控制系统的参数进行调节和优化,以提高系统的稳定性和效率。

可以对控制器的参数进行调节,以实现对电动机的更精准的调压调速控制;也可以对整流器和负载的参数进行调节,以提高系统的整体性能。

还可以通过引入反馈控制和预测控制等先进的控制策略,对控制系统进行优化。

可以根据负载的变化和环境的变化,动态调整控制器的参数,实现对系统的实时优化。

我们需要对优化后的控制系统进行再次仿真分析,以评估优化效果。

通过对优化后的系统性能的评估,可以确定控制系统是否满足负载的要求,并产生良好的控制效果。

《MATLAB工程应用》升降压(Buck-Boost)变换器仿真

《MATLAB工程应用》升降压(Buck-Boost)变换器仿真

《MATLAB工程应用》升降压(Buck-Boost)变换器仿真一、选题背景说明本课题应解决的主要问题及应达到的技术要求,简述本设计的指导思想。

升降压变换器通过调节直流侧电源的占空比来进行升压与降压,当占空比为1/3,输出电压为10v时,为降压,当占空比为2/3,输出电压为40v时,为升压。

通过二极管的单向导电性正向向负载充电,逆向二极管续流,大电感使得电流连续且脉动小,以及mosfet开关管的控制二、原理分析(设计理念)开关管T导通时,二极管阴极接电压源正极,承受反向电压而截止,输入电压Us直接加在电感L上,极性为上正下负,电流流过电感使之储能增加。

开关管工截止时,电感电流云有减小的趋势,电感线圈产生自感电势反向,为下正上负,二极管口受正向压降而导通,电感通过二极管对电容C 充电,C储能,以备下导通时对负载放电维持输出U0不变。

Buck- Boost 变换器的电压增益随占空比的变化可以降压也可以升压,这是它的主要优点,但是开关管和二极管关断时承受的最大电压为Us+U。

,但是开关管和二极管关断时承受的最大电压为Us+U。

,这显然对器件的要求比Buck 变换器和 Boost 变换器更苛刻。

同时 Buck -Boost 变换器的输入电流和输出电流都是脉动的,为了平波需要加入滤波器 , 结果使电路稍显复杂。

三、过程论述设计总图,器件的使用情况和布局连线脉冲发生器设置(占空比为1/3时,降压)电容c的参数设定Mosfet与diode的参数均为参省值电感l的参数设定电阻r的参数设定四、结果分析对研究过程中所获得的主要的数据、现象进行定性或定量分析,得出结论和推论。

从上到下依次为触发脉冲Ug,电感电压UL,电感电流iL,开关管电流iT,二极管电流iD,输出电压U0。

通过对二极管导通时对负载进行充电,关断时,二极管进行续流左右,而实现对直流电压的升压或降压(直流电压占空比的更改进行选择),并通过电感电容进行减小电流的脉动以及滤波。

基于matlab_simulink升压式变换器的仿真

基于matlab_simulink升压式变换器的仿真

升压式变换器的仿真一工作原理. (1)二仿真实例及结果 (1)三心得体会 (6)四参考文献 (6)一.工作原理根据电力电子技术的原理,升压式斩波器的输出电压0U 高于输入电源电压sU,控制开关与负载并联,与负载并联的滤波电容必须足够大,以保证输出电压恒定,储能电感也要很大,以保证向负载提供足够的能量。

若升压式斩波器的开关导通时间是on t ,关断时间是off t ,开关工作周期o ffon t t T +=。

定义占空比或导通比T t D on /=,定义升压比为s U U /0=α。

根据电力电子技术的原理,理论上电感储能与释放能量相等,有s s offU U t T U β10==,升压比的倒数Tt off ==αβ1。

还有,1=+βD 。

由此可见,当s U 一定时,改变β就可调节0U 。

当c on s t T =时,调β就是调off t ,或调on t 也是调β,也就改变了0U ,这就是升压式斩波器的升压工作原理。

二.仿真实例及结果以下用实例说明采用电力场效应管MOSFET 的升压式斩波器的仿真过程。

参数设置如下:电源电压100=s U v ,电阻负载Ω=10R ,滤波电容F C μ200=,升压储能电感mH L 1.0=,二极管Diode 用来阻断MOSFET 导通时的电容C 放电通路。

输出电压0U v 200=,MOSFET 的开关频率为KHZ 5。

脉冲信号发生器的脉冲幅值设置为1.1,周期设置为30.2e -,对应着MOSFET 的开关频率。

脉冲宽度设置为50,对应着输出电压。

相位延迟设置为3e 01.00-。

仿真模型如下图1所示:图1 采用MOSFET的升压式斩波器仿真模型仿真后通过示波器观察到如下图2,图3,图4,图5,图6:图2 脉冲发生器发出门极正脉冲的波形图3 升压变流输出电压的波形图4 流经电感电流的波形图5 MOSFET导通的电感储能电流的波形图6 流经二极管向负载供电的电流的波形由图可见,升压变流输出电压瞬时波形振荡走高后逐步趋近并等于200v,实现了升压。

直流升压变换器的MATLAB仿真

直流升压变换器的MATLAB仿真

直流升压变换器的MATLAB仿真学号天津城建大学控制系统仿真大作业直流升压变换器的MATLAB仿真学生姓名班级成绩控制与机械工程学院2014年6 月20 日目录一、绪论 0二、仿真电路原理图及原理 0三、所使用的Matlab工具箱与模块库 (2)四、模块参数设定 (2)五、模块封装与仿真框图搭建 (2)六、仿真结果 (7)七、结论 (7)八、参考文献 (8)一、绪论在电力电子技术中,将直流电的一种电压值通过电力电子变换装置变换为另一种固定或可调电压值的变换,成为直流-直流变换。

直流变换的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其它领域的交直流电源。

根据电力电子技术原理,升压式(Boost )斩波器的输出电压0u 高于输入电源电压s u ,控制开关与负载并联连接,与负载并联的滤波电容必须足够大,以保证输出电压恒定,储能电感也要很大,以保证向负载提供足够的能量。

若升压式斩波器的开关导通时间on t ,关断时间off t ,开关工作周期off on t t T +=。

定义占空比或导通比/T t D on =,定义升压比S o /U U =α。

根据电力电子技术的原理,理论上电感储能与释放能量相等,有s s offo u 1u t T β==U ,升压比的倒数Tt 1off==αβ。

还有,1D =+β。

由此可见,当s u 一定时,改变β就可以调节0u 。

当const T =时,调β就是调off t ,或调on t 也是调β,也就改变了0u ,这就是升压式斩波器的升压工作原理。

二、仿真电路原理图及原理原理图如图1所示:假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为1 I ,同时C 的电压向负载供电,因C 值很大,输出电压0u 为恒值,记为0u 。

设V 通的时间为on t ,此阶段L 上积蓄的能量为on 1t EI 。

图1V 断时,E 和L 共同向C 充电并向负载R 供电。

基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析

基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析

基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析本文以MATLAB软件的SIMULINK仿真软件包为平台,对桥式直流PWM 变换电路进行仿真分析文章对每个电路首先进行原理分析,进而建立相应的仿真模型,经过详细计算确定并设置仿真参数进行仿真,对于每次仿真结果均采用可视化波形图的方式直接输出。

在对仿真结果分析的基础上,不断优化仿真参数,使其最大化再现实际物理过程,并根据各个电路的性能进行参数改变从而观察结果的异同。

标签:SIMULINK;PWM;电路仿真1 桥式直流PWM变换电路简介桥式直流PWM变流器仿真实验是对全控型器件的应用。

实验电路中,前端为不可控整流、后端为开关型逆变器,此结构形式应用最为广泛。

逆变器的控制采用PWM方式。

对这个实验有所掌握的话,对后续课程设计直流调速系统也会有很大启发。

因为直流PWM-M调速系统近年来发展很快,直流PWM-M调速系统采用全控型电力电子器件,调制频率高,与晶闸管直流调速系统相比动态响应速度快,电动机转矩平稳脉动小,有很大优越性,因此在小功率调速系统和伺服系统中的应用越来越广泛。

2 桥式直流PWM变换电路的工作原理本实验系统的主电路采用双极性PWM控制方式,其中主电路由四个MOSFET(VT1~VT4)构成H桥。

Ub1~Ub4分别由PWM调制电路产生后经过驱动电路放大,再送到MOSFET相应的栅极,用以控制MOSFET的通断。

在双极性的控制方式中,VT1和VT4的栅极由一路信号驱动,VT2和VT3的栅极由另一路信号驱动,它们成对导通。

控制开关器件的通断时间可以调节输出电压的大小,若VT1和VT4的导通时间大于VT2和VT3的导通时问,输出电压的平均值为正,VT2和VT3的导通时间大于VT1和VT4的导通时间,则输出电压的平均值为负,所以可以用于直流电动机的可逆运行。

3 计算机仿真实验(1)桥式直流PWM变换电路仿真模型的建立。

根据所要仿真的电路,在SIMULINK窗口的仿真平台上构建仿真模型。

基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真直流调压调速控制系统是一种常见的工业控制系统,广泛用于电力系统、电机驱动系统等领域。

MATLAB是一种功能强大的数学软件,可以用于建立系统的数学模型,进行仿真和控制算法的设计。

在直流调压调速控制系统中,主要包括两个部分:调压环节和调速环节。

调压环节用于控制直流电压的大小,而调速环节则用于控制直流电机的转速。

需要建立直流调压调速系统的数学模型。

以调压环节为例,可以根据直流调压系统的电路特性,建立其数学模型。

假设直流调压调速系统的输入电压为Vin,输出电压为Vout,输入电流为Iin,输出电流为Iout,则可以得到以下数学模型:Vout = K1 * Vin - K2 * IoutK1和K2分别为系统的增益参数。

接下来,需要设计调压环节的控制算法。

常见的控制算法包括比例控制、积分控制和PID控制。

假设调压环节的控制信号为U,设定电压为Vref,则可以得到以下控制算法:U = Kp * (Vref - Vout) + Ki * ∫(Vref - Vout)dt + Kd * d(Vref - Vout)/dtKp、Ki和Kd分别为比例、积分和微分参数。

然后,可以使用MATLAB进行系统仿真。

需要在MATLAB中定义系统的参数和控制算法。

然后,可以使用SIMULINK工具箱来建立系统的模型,连接各个模块,并设置输入电压和负载。

可以运行模型,观察系统的输出结果,评估系统的性能。

在仿真过程中,可以根据不同的需求和控制策略,调整系统的参数和控制算法,进行参数优化和性能改进。

基于MATLAB的直流调压调速控制系统的仿真可以帮助工程师和研究人员进行系统设计和性能评估,提高系统的稳定性和可靠性。

通过仿真还可以节省成本和时间,快速验证和优化控制算法。

《MATLAB工程应用》---升降压(Buck-Boost)变换器仿真一

《MATLAB工程应用》---升降压(Buck-Boost)变换器仿真一

《MATLAB工程应用》升降压(Buck-Boost)变换器仿真一、选题背景升降压变换器在目前各类智能电子设备中广泛运用,其效率高,静态电流小,高效,节能,便宜。

通过调节直流侧电源的占空比来进行升压与降压,当占空比为1/3,输出电压为10v时,为降压,当占空比为2/3,输出电压为40v时,为升压。

二、原理分析(设计理念)Buck变换器输出侧都带有滤波电容,但是严格地说,如果 Buck变换器的电感做得足够大,即使没有附加电容滤波器,也能减小负载电流纹波幅值,实际中加上一个输出滤波电容能使电感值做得小一些。

而 Boost变换器即使它的电感做得如何的大,输出电流总是脉动的,所以Boost变换器的输出电容是必需的。

将Buck变换器与Boost变换器二者的拓扑组合在一起,除去 Buck中的无源开关,除去Boost中的有源开关,便构成了一种新的变换器拓扑,如图所示,称为升降压(Buck-Boost)变换器。

它是由电压源、电流转换器、电压负载组成的一种拓扑,中间部分含有一级电感储能电流转换器。

它是一种输出电压既可以高于也可以低于输入电压的单管非隔离直流变换器。

Buck-Boost变换器和前二.者最大的不同就是输出电压Uo的极性和输入电压Us的极性相反,输入电流和输出电流都是脉动的,但是由于滤波电容的作用,负载电流应该是连续的。

三、过程论述Buck-Boost变换器仿真模型步长和算法设置降压时的输入脉冲设置升压时的输入脉冲设置电感L电容C和电阻R降压时输出波形升压是输出波形1.触发脉冲2.电感电压3.电感电流4.开关管电流5.二极管电流6.输出电压四、结果分析这个仿真中的降压和升压都是工作在电感电流连续的模式下,选择不同的开关占空比,Buck-Boost变换器的输出电压可以低于输入电压也可以高于输入电压。

仿真结果与理论计算不完全符合原因是半导体器件导通时存在管压降,会使输出电压小于理想情况。

器件的设置尽量使之接近理想,比如导通压降为O,导通电阻为很小,在本例中二极管和MOSFET的参数保持为缺省值,即二极管导通压降为0.8V.电路中的二极管存在导通压降和电阻,当电流流经二极管时,会产生电压降,但由于导通压降和二级管的电阻很小,所以影响有限,故仿真结果比理论值略小,平均电压基本与预期的电压等级相等。

03、电力电子技术matlab仿真_基本DC-DC变换电路

03、电力电子技术matlab仿真_基本DC-DC变换电路
西南交通大学
Buck-Boost电路的建模
32
buck_boost.mdl
西南交通大学
Buck-Boost电路的仿真结果
33
西南交通大学
Modeling and Simulation of Power Electronics System
DC Voltage Control
直流电压控制
34
西南交通大学
Modeling and Simulation of Power Electronics System —— Basic DC-DC Converters
Zeliang Shu Department of Electronic Engineering, Southwest Jiaotong University
iL + Ui L D
+
uL
S is
ic C
io + R Uo
(a)工作状态 1 (S 接通)
+
us
iL + Ui L
-
D iD ic C io + R Uo
+
uL
S
+
us
L
-
D
(b)工作状态 2 (S 断开)
+
+ Ui
uL
S is
ic C
io + R Uo
+
us
-
-
(c)工作状态 3 (电感电流为零)
-
ILmin
t
t
ILmin
t
西南交通大学
Buck电感电流临界工作模式
每个开关周期开始和结束的时刻,电感电流正好为零 临界工作条件

直流升压变换器的MATLAB仿真综述

直流升压变换器的MATLAB仿真综述

学号天津城建大学控制系统仿真大作业直流升压变换器的MATLAB仿真学生姓名班级成绩控制与机械工程学院2014年6 月20 日目录一、绪论 (1)二、仿真电路原理图及原理 (1)三、所使用的Matlab工具箱与模块库 (2)四、模块参数设定 (2)五、模块封装与仿真框图搭建 (2)六、仿真结果 (6)七、结论 (6)八、参考文献 (7)一、绪论在电力电子技术中,将直流电的一种电压值通过电力电子变换装置变换为另一种固定或可调电压值的变换,成为直流-直流变换。

直流变换的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其它领域的交直流电源。

根据电力电子技术原理,升压式(Boost )斩波器的输出电压0u 高于输入电源电压s u ,控制开关与负载并联连接,与负载并联的滤波电容必须足够大,以保证输出电压恒定,储能电感也要很大,以保证向负载提供足够的能量。

若升压式斩波器的开关导通时间on t ,关断时间off t ,开关工作周期off on t t T +=。

定义占空比或导通比/T t D on =,定义升压比S o /U U =α。

根据电力电子技术的原理,理论上电感储能与释放能量相等,有s s off o u 1u t T β==U ,升压比的倒数Tt 1off ==αβ。

还有,1D =+β。

由此可见,当s u 一定时,改变β就可以调节0u 。

当const T =时,调β就是调off t ,或调on t 也是调β,也就改变了0u ,这就是升压式斩波器的升压工作原理。

二、仿真电路原理图及原理原理图如图1所示:假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为1 I ,同时C 的电压向负载供电,因C 值很大,输出电压0u 为恒值,记为0u 。

设V 通的时间为on t ,此阶段L 上积蓄的能量为on 1t EI 。

图1V 断时,E 和L 共同向C 充电并向负载R 供电。

设V 断的时间为off t ,则此期间电感L 释放能量为()off 10t I E -u ,稳态时,一个周期T 中L 积蓄能量与释放能量能量相等。

巧用Matlab仿真DC―DC变换器

巧用Matlab仿真DC―DC变换器

巧用Matlab仿真DC-DC变换器一、引言案例学习法是选择合适、恰当、典型的案例进行讲授的,可极大地调动起学生强烈的求知欲[1-2] 。

而Matlab 软件有强大的仿真功能,可直观地再现电路的基本定律、定理,以及电路的响应曲线、特性分析,效果非常动态、形象。

比较难理解的推导过程,通过Matlab 仿真,即可轻松掌握[3] 。

因此可将Matlab 与所学课程融合起来,尽量减少理论推导,着重培养学生利用Matlab 去分析解决问题,加强实践锻炼,开拓思路,开阔思维,全面锻炼其能力。

二、案例学习法的应用实践在课堂学习中采用案例学习法,一上课,老师就抛出一个精心挑选的具体案例,提出需要解决的问题,一下就抓住学生的眼球,激发起学生的认知兴趣和情感,充分调动起学生的积极性和兴趣;然后由师生共同分析讨论,层层剖析需要解决的问题,启发学生的思维,让学生用最短的时间和精力投入到学习最佳状态中;接下来找出合适的方法,解决问题。

下面列举一个实际案例讲解。

1. 提出问题,引入案例。

试设计一个变换器电路,要求输入电压为3〜6V的不稳定直流电压,输出为稳定的15V直流电压。

要求纹波电压低于0.2%,负载电阻为10Q。

2. 分析讨论,剖析案例。

师生共同就提出的问题进行讨论、分析,得知该电路是一个DC-DC升压变换器。

师生共同设计电路如图1所示。

Us为输入电压,大小为3〜6V, Uo为输出电压。

通过开关管T的控制作用,来实现升压变换。

输入侧电压串接大电感,是电流源性质,输出侧负载电阻上并联大电容,是电压源性质。

开关管选用MOSFET开关频率选为40KHN电路中其他元件参数如下:占空比调节范围:Uo/Us=15/6=1/(1-DCmin)DCmin=0.6 (1)Uo/Us=15/3=1/(1-DCmax)DCmax=0.8 (2)临界电感值:Lc=R/2*DCmin(1-DCmin)2*Ts=10/2*0.6(1-0.6 )2*1/4000=12 卩H (3)实际电感值取临界值的1.2倍,因此L取15卩Ho 根据纹波要求计算电容值:C=Vo*Dcmax*Ts/R^ Vo=15*0.8/10*0.002*15*4000=1mF (4)实际中所取电容值应该有一个裕量,在本例中不再留裕量,电容就直接取1mF o3. 巧用Matlab仿真案例,解决问题。

基于MATLAB的升压-降压式变换器的仿真

基于MATLAB的升压-降压式变换器的仿真

基于MATLAB的升压-降压式变换器的仿真自动0703 祁婕一、摘要(150-250字)直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器( DC/DC Converter)。

直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。

应用Matlab的可视化仿真工具Simulink建立了电路的仿真模型,在此基础上对升降压斩波Boost—Buck电路进行了较详细的仿真分析。

本文先分析了降压斩波电路,升压斩波电路,升降压斩波电路的工作原理,又用Matlab 对升压-降压变换器进行了仿真建模,最后对仿真结果进行了分析总结。

二、设计目的和意义通过本次设计,希望达到以下目的:1、理解直流斩波电路中:降压斩波电路、升压斩波电路、升降压斩波电路的工作原理,熟悉其原理图及工作时的波形图,掌握着两种电路的输入输出关系、电路解析方法、工作特点,并在理解的基础上会对直流斩波电路进行分析计算,加深对直流斩波电路的掌握及应用。

2、掌握应用Matlab的可视化仿真工具Simulink建立电路的仿真模型的方法,在此基础上对升降压斩波Boost—Buck电路进行详细的仿真分析,以提高设计建模的能力及加强对Matlab/Simulink软件的熟练程度。

3、认真分析总结仿真结果,将仿真波形与常规分析方法得到的结果进行比较,总结结论,体会Matlab软件在电力电子技术学习和研究中的应用价值。

三、设计原理1、降压斩波电路(Buck Chopper)工作原理(1)t=0时刻驱动V导通,电源E向负载供电,负载电压uo=E,负载电流io按指数曲线上升。

(2)t=t1时控制V关断,二极管VD续流,负载电压uo近似为零,负载电流呈指数曲线下降。

通常串接较大电感L使负载电流连续且脉动小。

《MATLAB工程应用》---升降压(Buck-Boost)变换器仿真

《MATLAB工程应用》---升降压(Buck-Boost)变换器仿真

《MATLAB工程应用》升降压(Buck-Boost)变换器仿真一、选题背景Buck-Boost变换器在目前的各类计算机等各类智能电子设备中广泛应用,其优点在于效率高,可以输出大电流,且静态电流小。

其高效节能的优点也带来了很大的收益,随着科技在进步,变换器技术也在进步。

二、原理分析BOOST电路中,主电路由开关管、二极管VD、储能滤波电感L 、输出滤波电容C等组成。

它是DC-DC变换器中最常用的电路’因为输出电压大于输入电压的非隔离型变压电路,所以又叫作升压型变换器。

其可看作是Buck变换器与Boost变换器串联而成。

Buck-Boost 型开关电源以其电路结构简洁,输入电压范围宽,可升降压,输入输出电压极性相反,被广泛应用于中小功率DC/DC变换场合。

电感影响输出纹波大小,电压的调整率。

电容起到滤波的作用,可根据输出脉动电压峰峰值来确定。

三、过程论述Simulink Library Browser先找出R、L、C并将R设为10Ω,L 设为133e-6H,C设为1.67e-3F。

其次Simulink Library Browser 中找到示波器scope,并设置为6个通道。

接着设置DC直流电源,设置电压为20V。

在Power electronics中找到Mosfet以及Diode 参数不动。

找到Pulse Generator及Multimeter将其与示波器连接。

最后找出powergui放入连线图,连线如图一。

四、结果分析仿真时间为0.1s,连线图如图一所示,波形图如图二所示。

图1 设计连线图图二波形图图四 C赋值图三 L赋值图五 R赋值五、课程设计总结通过这次课程设计,我学会了如何利用matlab实现各种实验仿真,熟练学会了升压降压变换器的原理,对我的专业知识有了很大提升。

在设计中,对RLC的值计算算是卡的比较久的但还是解决了。

参考文献[1]周建兴.MATLAB从入门到精通.北京:人民邮电出版社,2008[2]龚纯,王正林.MA TLAB最优化计算.北京:电子工业出版社, 2009.。

基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真直流调压调速系统是一种常见的电气控制系统,广泛应用于工业领域中。

在直流调压调速系统中,直流电机作为执行器,通过对电机的电压进行调节,可以实现对电机的速度、扭矩等参数的控制。

本文基于MATLAB平台对直流调压调速系统进行了仿真分析,包括建立系统模型、设计控制系统、进行性能分析等方面。

一、直流调压调速系统模型的建立直流调压调速系统可以简化为如下模型:e(t)--->u(t)--->Gv(s)---->X(s)----->e(t)是输入信号,表示期望电机速度;u(t)是输出信号,表示电机输出的转矩;Gv(s)是电机的传递函数,表示电机的速度与输入电压的关系;X(s)是控制系统的输出信号,表示根据输入信号e(t)和反馈信号u(t)计算得出的输出。

电机的传递函数Gv(s)可以通过实验测定或者理论计算得到,其具体形式为:Gv(s) = K / (Js+b)K是电机的增益;J是电机的惯性矩;b是电机的摩擦系数。

二、直流调压调速系统的控制器设计对于直流调压调速系统,可以采用比例-积分-微分(PID)控制器来控制电机的速度。

PID控制器的输出计算式为:u(t) = Kp * e(t) + Ki * ∫e(t) * dt + Kd * de(t)/dtKp、Ki、Kd分别是比例、积分、微分控制器的参数,e(t)是输入信号与输出信号之差,de(t)/dt是e(t)的导数。

在MATLAB中,可以使用pid函数设计PID控制器,并使用feedback函数将控制器与直流调压调速系统进行连接。

具体步骤如下:1. 建立直流调压调速系统的模型;2. 调用pid函数,设计PID控制器,并设置控制器的参数;3. 调用feedback函数,将控制器与直流调压调速系统进行连接;4. 设计输入信号e(t);5. 运行模拟程序,观察系统的输出信号u(t)。

三、直流调压调速系统的性能分析在直流调压调速系统的仿真中,可以通过观察系统的输出信号u(t)来评估系统的性能。

基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真一、引言直流调压调速控制系统是工业领域中常见的电力控制系统,其主要功能是对直流电动机进行调速和调压。

通过对电机的调速和调压,可以实现对生产过程中机械设备的精确控制,提高生产效率和质量。

对直流调压调速控制系统的研究和仿真具有重要的意义。

二、直流调压调速控制系统的基本原理和数学模型1. 直流电动机直流电动机是直流调压调速控制系统的关键部件,其工作原理是利用电磁感应原理实现电能与动能之间的转换。

直流电动机由定子、转子、电刷和电枢等部件组成,根据控制电流的大小和方向可以实现对电机的调速和调压。

直流调压调速控制系统可以使用数学模型描述其动态特性,其数学模型可以表示为以下方程:电动机转矩方程:\[T = K_{t} * Ia\]电动机电压方程:\[Va = Ri + L\frac{di}{dt} + Eb\]T表示电动机转矩,\(K_{t}\)为电动机转矩常数,Ia为电动机电流,Va为电动机电压,R为电动机电阻,L为电动机电感,\(di/dt\)为电动机电流的变化率,Eb为电动机的反电动势。

控制系统中的调速环节可以描述为:\[Eb = K_{e} * \Omega_m\]\(K_{e}\)为电动机转速常数,\(\Omega_m\)表示电动机的转速。

\(K_{c}\)为调压系数,Vr为调节电压。

以上方程描述了直流调压调速控制系统的基本动态特性,可以通过模拟仿真研究系统在不同工况下的调速和调压表现。

1. 模型参数设定首先需要确定直流电动机的参数,包括转矩常数\(K_{t}\)、转速常数\(K_{e}\)、电阻R、电感L等参数,以及控制系统的参数,包括调压系数\(K_{c}\)等参数。

2. 模型搭建利用MATLAB的Simulink工具箱进行模型搭建。

首先建立直流电动机的数学模型,包括转矩方程和电压方程。

然后建立控制系统的数学模型,包括调速环节和调压环节。

最后将直流电动机模型和控制系统模型进行组合,构建直流调压调速控制系统的整体仿真模型。

(完整word版)BOOST电路设计及matlab仿真

(完整word版)BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2。

输出电压(VO):18V3.输出电流(IN):5A4。

电压纹波:0。

1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V .根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高.其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加.打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学号
天津城建大学
控制系统仿真
大作业
直流升压变换器的MATLAB仿真
学生姓名
班级
成绩
控制与机械工程学院
2014年6 月20 日
目录
一、绪论1
二、仿真电路原理图及原理1
三、所使用的Matlab工具箱与模块库2
四、模块参数设定2
五、模块封装与仿真框图搭建2
六、仿真结果6
七、结论6
八、参考文献7
一、绪论
在电力电子技术中,将直流电的一种电压值通过电力电子变换装置变换为另一种固定或可调电压值的变换,成为直流-直流变换。

直流变换的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其它领域的交直流电源。

根据电力电子技术原理,升压式(Boost )斩波器的输出电压0u 高于输入电源电压s u ,控制开关与负载并联连接,与负载并联的滤波电容必须足够大,以保证输出电压恒定,储能电感也要很大,以保证向负载提供足够的能量。

若升压式斩波器的开关导通时间on t ,关断时间off t ,开关工作周期off on t t T +=。

定义占空比或导通比/T t D on =,定义升压比S o /U U =α。

根据电力电子技术的原理,理论上电感储能与释放能量相等,有s s off o u 1u t T β==U ,升压比的倒数T
t 1
off ==αβ。

还有,1D =+β。

由此可见,当s u 一定时,改变β就可以调节0u 。

当const T =时,调β就是调off t ,或调on t 也是调β,也就改变了0u ,这就是升压式斩波器的升压工作原理。

二、仿真电路原理图及原理
原理图如图1所示:假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为1 I ,同时C 的电压向负载供电,因C 值很大,输出电压0u 为恒值,记为0u 。

设V 通的时间为on t ,此阶段L 上积蓄的能量为on 1t EI 。

图1
V 断时,E 和L 共同向C 充电并向负载R 供电。

设V 断的时间为off t ,则此期间电感L 释放能量为()off 10t I E -u ,稳态时,一个周期T 中L 积蓄能量与释放能量能量相等。

化简得
()off 10on 1t I E -u t EI =,E t T E t t t off off off on o =+=U ,1T/t off ≥,输出电压高于电源电
压,故称为升压斩波电路。

也称为boost chooper 变换器。

off T/t 为升压比,调节其即可改变0u 。

将升压比的倒数记为β,即T
t off
=β,和导通占空比,有如下关系:1D =+β,因此E D
-11E 1
o ==βU 。

升压斩波电路能使输出电压高于电源电压的原因是:L 储能之后具有使电压升高的作用与电容C 可将输出电压保持住。

三、所使用的Matlab 工具箱与模块库
本次设计利用Simulink 仿真,所使用的Matlab 工具箱与模块库主要有:直流电源Dc 、场效应管MOSFET 、脉冲发生器(Pulse Generator )、电流测量(current Measurement )、电感(series RLC Branch )、阻抗负载(Parallel RLC Branch )、二极管Diode 、电压测量(Voltage Measurement )、示波器scope 以及powergui 模块等。

四、模块参数设定
(1)直流电压源100v s u =,MOSFET 与Diode 、电压测量、电流测量等均采用默认设置。

(2)电感设置为1e-4,阻抗负载设置为:R=5;C=1e-4。

(3)脉冲发生器的参数设置至关重要:
“Pulse type ”脉冲类型,设置为Time based (时间基准);
“Time (t )”时间,设置为Use simulation time (用仿真时间);
“Amplitude ”脉冲幅值,设置为1.1;
“Period (secs )”周期(s ),设置为0.2e-3,对应着MOSFET 的开关频率为5kHz ; “Pulse Width (% of Period )”脉冲宽度(周期的百分数),根据MOSFET 的开关特性,设置为50;
“Phase delay (secs )”相位延迟(s ),设置为0.001e-3。

五、模块封装与仿真框图搭建
利用Simulink 软件对升压式直流斩波电路(Boost )进行仿真,如图2所示:
(1)仿真参数,算法(solver)ode23tb,相对误差(relative tolerance)为1e-3,开始时间为0,结束时间为0.003,如图3所示:
图3
(2)电源参数,电压为100v,如图4所示:
图4
(3)电感参数,如图5所示:
(4)阻抗负载参数,如图6所示:
图6 (5)二极管参数设置,如图7所示:
(6)MOSFET参数设置,如图8所示:
图8 (7)脉冲发生器参数设置,如图9所示:
六、仿真结果
触发脉冲占空比为50%时的波形,如图10所示:
图10
设g u 为门极正脉冲(脉冲发生器Pulse 发出)、d u 为升压便留输出电压(分压器o u 发出)、M i 为MOSFET 导通的电感储能电流(分流器A1发出)、D i 为电感反电势与s u 串联叠加流经二极管向负载供电的电流(分流器A2发出)、i 为流经电感电流(分流器A 发出),显然,D M i i i +=。

仿真波形如上图9所示,自上而下依次为g u 、d u 、i 、M i 、D i 。

由图可见,g u 波形对应脉冲发生器的脉冲宽度(周期的百分数),设置为50;升压变流输出电压瞬时波形d u 振荡走高后逐步趋近并等于200v (直流);i 为流经电感电流(分流器A 发出)由两个分量组成,从波形图看到,D M i i i +=。

七、结论
(1)直流斩波电路可将直流电压变换成固定的或可调的直流电压,使用直流斩波技术,不仅可以实现调压的功能,而且还可以达到改善网侧谐波和提高功率因数的目的。

直流斩波技术主要应用于已具有直流电源需要调节直流电压的场合。

(2)直流变换电路主要以全控型电力电子器件作为开关器件,通过控制主电路的接通与断开,将恒定的直流斩成断续的方波,经滤波后变为电压可调的直流输出电压。

利用Simulink 对升压斩波的仿真结果进行了详细分析,与采用常规电路分析方法所得到的输出电压波形进行比较,进一步验证了仿真结果的正确性。

(3)采用Matlab/Simulink 对直流斩波电路进行仿真分析,避免了常规分析方法中繁琐的绘图和计算过程,得到了一种较为直观、快捷分析斩波电路的新方法。

同时其建模方法也适用于其他斩波电路的方针,只需对电路结构稍作改变即可实现,因此实用性较强。

(4)应用Matlab/Simulink 进行仿真,在仿真过程中可以灵活改变仿真参数,并且能直
观的观察到仿真结果随参数的变化情况,方便学习与研究。

八、参考文献
[1]王兆安,黄俊.电力电子技术(第四版).[]:机械工业出版社,2000
[2]康华光,陈大钦.电子技术基础(第四版)[]:高等教育出版社,1998
[3] 陈桂明,张明照.应用MATLAB建模与仿真[M].:科学出版社,2001.
[4]王忠礼,段慧达,高玉峰.MATLAB应用技术在电气工程与自动化专业中的应用.清华大学出版社,2007
[5]李国勇,谢克明,杨丽娟.计算机仿真技术与CAD-基于MOSFET的控制系统(第二版).[]:电子工业出版社,2008。

相关文档
最新文档