2013-2014学年八年级下学期期中考 试数学试卷
2013-2014学年度第一学期初二期中考试数学试卷(含答案)
2013-2014学年度第一学期初二期中考试数学试卷一、选择题:(每题3分,共15分)1.如图所示,图中不是轴对称图形的是 ( ).2.如图,AB 与CD 交于点O ,OA =OC ,OD =OB ,∠A=50°,∠B=30°, 则∠AOD 的度数为 ( ). A .50° B .30°C .80°D .100°3.点M (3,5)关于X 轴对称的点的坐标为 ( ) A 、(-3,-5) B 、(-3,5) C 、(3,-5) D 、(5,-3)4.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上(如图),可以证明,得ED =AB ,因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是( )A 、“边角边”B 、“角边角”C 、“边边边”D 、“斜边、直角边”5.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为 ( )(A )50° (B )51° (C )61° (D )71°第5题二、填空题:(每题4分,共20分)6.等腰三角形的底角是70°,则它的顶角是___________. 7.正方形有 条对称轴,正五边形有 条对称轴.8.如图,在△ABC 中,BC=5,BC 边上的垂直平分线 DE 交BC 、AB 分别于点D 、E ,△AEC 的周长是11 则△ABC 的周长等于 。
O DCBA第2题ACED B第8题9.如图,等边△ABC 的边长为2 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长..为 cm .10.在直角坐标系中,已知A (-3,3),在x 轴上确定一点P ,使△AOP 为等腰三角形,符合条件的点P 共有_________个。
2023-2024学年河北省保定市竞秀区八年级下学期期中数学试卷及参考答案
2023-2024学年河北省保定市竞秀区第二学期期中试卷初二数学卷I (选择题,共38分)一、选择题(本大题有16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下图形既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个2.下列说法正确的是( ) A .0x =是不等式21x −<的解 B .不等式37x <的整数解只有1,2x x == C .不等式25x <的解集是2x =D .3x ≥是不等式39x ≥的解3.如图,在Rt ABC △中,90,30,2ACB A AB ∠=∠==,则AC =( )A .1B .3CD .44.对于①()()2236x x x x −+=+−,②()()3422x x x x x −=−+,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 5.用反证法证明命题:“等腰三角形的两个底角相等”的逆命题时,第一步( )A .假设三角形的两个底角不相等B .假设三角形的两个角不相等C .假设该三角形不是等腰三角形D .假设该三角形是等腰三角形6.下列命题为真命题的有( )(1)若a b >,则22a b −<− (2)若32a b −<−,则a b >(3)若a b <,则a b < (4)若22a b >,则a b >A .1个B .2个C .3个D .4个7.不等式组212,32x x x x −≥−⎧⎨>−⎩的解集在数轴上表示为( )A .B .C .D .8.如图,若ABC △的周长为17,且6,AB AB =边的垂直平分线DE 分别交,AB AC 于,D E ,则对BCE △的周长描述正确的是( )A .周长为17B .周长为11C .周长为11或17D .周长不可求9.如图,,5,AOB OA AD OB α∠==⊥于D ,且2AD =;将射线OB 绕点O 逆时针旋转2α角,至OB '位置,点P 为射线OB '上一点,则AP 的值不可能是( )A .1.5B .2C .5D .1610.为参加某机构组织的数学创新比赛,学校先进行了选拔.试卷共25道题,答对1道得4分,答错或不答者扣1分,得90分及以上者将获得参赛资格,要取得参赛资格至少答对( ) A .20道B .21道C .22道D :23道11.如图,在同一直角坐标系中,函数12y x a =+和22y x =−+的图象交于点(),3A m .则不等式12y y <的解集为( )A .1x =−B .1x >−C .1x <−D .1x ≤−12.关于x 的不等式组5x x m>⎧⎨<⎩无解,那么m 的取值范围为( )A .5m =B .5m >C .5m <D .5m ≤13.如图,将周长为9的ABC △沿BC 方向平移2个单位长度得到DEF △.则四边形ABFD 的周长为( )A .9B .11C .12D .1314.如图,在ABC △中,90,C AC BC ∠==,点D 为ABC △内一点,将DBC △绕点C 逆时针旋转到EAC △的位置.则AE 与BD 的位置关系( )A .AE BD ⊥B .AE 与BD 相交且交成的锐角为45C .//AE BDD .无法确定15.点()1,5P x x −−不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限16.等腰三角形一边上的高与一腰所夹的锐角是50,则该等腰三角形顶角是( ) (1)甲的结果是100;(2)乙的结果是40;(3)丙的结果是140. A .甲、乙的结果合起来才对 B .乙、丙的结果合起来才对 C .甲、乙、丙的结果合起来才对D .甲、乙、丙的结果合起来也不对卷II (非选择题,共82分)二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.点O 是边长分别为9,41,40的三角形的内角平分线的交点,则点O 到该三角形一边的距离是______. 18.(1)若1x =时,360x mx +−=,则m =______;(2)多项式2,6x k x +−分解因式后有()3x −因式,则k =______.19.如图,在Rt ABC △中,90,30,4C B AB ∠=∠==,将ABC △绕点C 逆时针旋转()090a a <<角,得到,A B C A B ''''△与BC 交于点D .(1)α=______度时,点A '落在AB 边上;(2)当A '在AB 边上时,B DC '△的面积=______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.解下列不等式(组)(本题共8分) (1)32123x x−−−≤ (2)321(1)937(2)x x x x +≤−⎧⎨−≥−+⎩.21.(本题共10分) (1)将下列多项式因式分解 ①()()4242xx x −+−,②()2222()2();x y x yx y −+−++(2)已知:230x y −−=,求代数式221222x xy y ⋅−+的值. 22.(本小题10分)如图是一个99⨯的网格图,网格中最小的正方形的边长为1个单位长度,网格中有一ABC △,顶点,,A B C 均在格点上,请你在网格中建立平面直角坐标系xOy ,点O 为坐标系的原点,且使点,A B 的坐标分别为()()3,3,4,1A B −−.(1)画出平面直角坐标系,并写出点C 的坐标______;(2)作出ABC △向上平移1个单位长度,再向右平移5个单位长度后的111A B C △;然后作111A B C △关于点O 中心对称的222A B C △,并写出点12,A C 的坐标; (3)直接写出122C B C △的面积.23.(本小题10分)如图,直线1:2l y x b =+,真线2:5l y kx =+过点()3,2A 与y 䌷交于点B . (1)求k 的值;(2)若1l 与线段AB 有公共点,试确定b 的取值范围;(3)若1l 、与线段AB 的效点为整数点(即点的横、纵坐标均为整数的点),直接写出b 的值.24.(本小题8分)如图,过射线EF 外一点D ,作DE EF ⊥,点A 为射线EF 上一点,在AF 上截取AC DE =,作MC EC ⊥,点,D M 位于EF 的同侧,连接AD ,以A 为圆心,以AD 的长为半径画弧,交MC 于B . 求证:(1)DAE ABC △≌△; (2)AD AB ⊥.25.(本小题12分)去年我市某县发生多轮降雨、造成多地发生较重洪涝灾害.某爱心机构将向该县捐赠的物资打包成件,据统计可知:帐篷和食品共480件,帐篷比食品多240件. (1)求打包成件的帐篷和食品各多少件?(2)现可以租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷60件和食品15件,乙种货车最多可装帐篷和食品各30件.安排甲、乙两种货车时有哪几种方案? (3)在第(2)问的条件下,如果甲种货车每辆需付运输费3000元,乙种货车每辆需付运输费2700元,应选择哪种方案可使运输费最少?最少运输费是多少元? 26.(本小题14分)在四边形OMNB 中,90,2M N OM ∠=∠==,作边OB 的垂直平分线AE ,分别交,OB MN 于点,E A ,连接,OA BA ,恰好,1AB OA AM ⊥=,再将OAB △绕点O 逆时针旋转90至OCD △位置,以O 为平面直角坐标系的原点,以OM 所在直线为x 轴,如图建立平面直角坐标系. (1)点B 的坐标是______,点D 的坐标是______; (2)问点D 是否在直线BC 上?并说明理由; (3)求AOD △的面积.2023-2024学年河北省保定市竞秀区第二学期期中试卷八年级数学试题答案一、选择题(本大题有16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 2 3 4 5 6 7 8 B ACDCBBB9 10 11 12 13 14 15 16 ADCDDACC二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17. 4 18.(1) 5 ;(2) -7 19.(1) 60 (2)332三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.解下列不等式(组)(本题8分)(1)32123x x−−−≤; 解: 3(x -3) -2(2-x)≤63x -9-4+2x ≤6 …………………………………………2分 5x ≤6+13 5x ≤19 195x ≤……………………………………………………4分 (2)321(1)937(2)x x x x ⎩+≤−≥−+⎧⎨−解:解不等式①,得 4x ≥.解不等式②,得 1x ≤. ………………………………2分∴原不等式组无解 ……………………………………………………4分 注:本题不借助数轴得出正确结论者,不扣分 21.(本题共10分) (1)将下列多项式因式分解①4(2)4(2)x x x −+−,解:原式=4(2)4(2)x x x −−− ………………………………1分 =4(2)(4)x x −− ………………………………2分4 5-11 2 3 0 -2=22(2)(2)(2)x x x −+− ………………………………………………3分 ② 2222()2()()x y x y x y −+−++;解:原式= 22()2()()()x y x y x y x y −+−+++………………………………1分 =2()x y x y −++ ………………………………2分 =2(2)x=24x ………………………………………………3分 (2)已知:230x y −−=,求代数式221222x xy y −+的值.解:∵230x y −−=,∴23x y −=. ………………………………………………1分 ∵221222x xy y −+221(44)2x xy y =−+ 21(2)2x y =− ………………………………………………3分 当23x y −=时,原式=21(2)2x y −=2132⨯=92 ………………………………4分注:其它正确解答,相应得分 22.(本小题10分) (1)画出平面直角坐标系,平面直角坐标系如图所示………………2分 并写出点C 的坐标 (-1,0) ;………………3分 (2)111A B C ∆即为所求 ……………5分222A B C ∆即为所求 ……………7分 1(24)A , ……………8分 2(41)C −−, ……………9分(3)△C 1B 2C 2的面积为7 ……………10分 23.(本小题10分)解:(1)∵点A (3,2)直线l 2:5y kx =+上 ∴235k =+.解得:1k =−. ……………2分xy ABC图8 A 1B 1C 1 A 2B 2C 21 2 3 4 5 1 2 34 -1 -2 -3 -4 -1-2 -3-4 -5O y AOBl 1xl 2 图9(2)∵1k =−,∴l 2的表达式为:5y x =−+ ………………………………3分 当x=0时,y =5∴B (0,5) ………………………………4分 当l 1过点B(0,5)时,5=2×0+b ,解得:b=5 ………………………………5分 当l 1过点A (3,2)时,2=3×2+b ,解得:b=-4………………………………6分 ∵l 1与线段AB 有公共点∴-4≤b ≤5 ……………………………………………………8分 (3)b=5或2或-1或-4 ……………………………………………………10分 注:本题答对2个得1分,答对4个得2分,答对1个不得分,答对3个得1分 24.(本小题8分)证明:(1)∵DE ⊥EF ,MC ⊥EC ,∴∠E=∠ACM=90°. 由画弧过程可知:AB=AD 在Rt △DAE 和Rt △ABC 中 AD ABDE AC=⎧⎨=⎩, ∴Rt △DAE ≌Rt △ABC (HL ).…………4分(2)∵△DAE ≌△ABC , ∴∠DAE=∠ABC . ∵∠ACB=90°, ∴∠ABC+∠BAC=90°. 又∵∠DAE=∠ABC , ∴∠DAE +∠BAC=90°.∴∠DAB =180°-(∠DAE +∠BAC )=90°.∴AD ⊥AB . ……………………………………………………8分 25.(本小题12分)解:(1)设打包成件的帐篷有x 件,食品有y 件. 根据题意,得480240x y x y +=⎧⎨−=⎩. 解,得 360120x y =⎧⎨=⎩.∴打包成件的帐篷有360件,食品有120件. ………………………………3分 (2)设安排甲货车a 辆,则安排乙货车(8-a )辆.根据题意,得6030(8)3601530(8)120a a a a +−≥⎧⎨+−≥⎩. 解,得 48a ≤≤. ∵a 为整数,图10M A EDCBF∴a=4,5,6,7,8. 则8-a=4,3,2,1,0.∴共有5种租车方案:方案一:租用甲货车4辆,乙货车4辆;方案二:租用甲货车5辆,乙货车3辆;方案三:租用甲货车6辆,乙货车2辆;方案四:租用甲货车7辆,乙货车1辆;方案五:租用甲货车8辆,乙货车0辆. …………8分 (3)设运输费是W 元.则W=3 000a+2 700(8-a)=300a+21 600; 即W=300a+21 600. ∵300>0,∴由一次函数性质可知,W 随a 增大而增大. ∴当a=4时,W 取最小值.此时,8-a=4,W=300×4+21 600=22 800(元).∴应租用甲货车4辆,乙货车4辆可使运输费最少,最少运输费是22 800元.…12分 26.(本题12分)(1)点B 的坐标是(1,3),点D 的坐标是 (-3,1);……………4分 (2)解:点D 在直线BC 上. ……………5分 理由:连接BC由旋转性质可知:OB=OD ,∠AOC=90°,∠AOB=∠COD ,∠BAO=∠DCO . ∵AB ⊥OA , ∴∠BAO=90°.∴∠AOB+∠OBA=90°,∠DCO=90°. 又AE 垂直平分OB , ∴AO=AB . ∴∠AOB=∠OBA=180902︒−︒=45°. ∵∠AOC=90°,∴∠BOC=∠AOC -∠AOB=45°. ∴∠AOB=∠BOC . 又∠AOB=∠COD , ∴∠COD=∠BOC . 在△BOC 和△DOC 中,BO DO BOC COD CO CO =⎧⎪∠=∠⎨⎪=⎩,∴△BOC ≌△DOC (SAS ). ∴∠BOC=∠OCD=90°.∴∠BCD=∠BOC+∠OCD=180°.∴点D 在直线BC 上. ……………11分 (3)解:连接AD 交y 轴于点F .xFNMyA CO BDE图11∵OM=2,AM=1,∴A(2,1).由(1)知D(-3,1),∴AD⊥y轴.AD=2-(-3)=5.∴11551222AODS AD OF∆=⋅=⨯⨯=.……………14分。
三明四中2012-2013学年期中考八年级数学试卷(答案)
三明四中2012-2013学年第二学期期中考试八年级数学模拟试卷姓名 班级 座号 成绩 一、选择题(每题3分,共30分) 1、下列不等式一定成立的是( B )A 、5a >4aB 、x +2<x +3C 、-a >-2aD 、aa24>2、如图,天平右盘中每个砝码的重量都是1g ,右图中显示出某药品A 重量的范围是( C )A 、大于2gB 、小于3gC 、大于2g 且小于3gD 、大于2g 或小于3g 3. 如果把分式ba ab +中的a 、b 都扩大2倍,那么分式的值一定( A )A 、是原来的2倍B 、是原来的4倍C 、是原来的21 D 、不变4、下列从左到右的变形,是因式分解的是( D )A 、()()9332-=-+a a aB 、()5152-+=-+x x x xC 、⎪⎭⎫ ⎝⎛+=+x x x x 112 D 、()22244+=++x x x 5、化简222a ba ab -+的结果为 ( B )A 、 b a -B 、a b a - C 、 a ba+ D 、 b - 6、、下列多项式能分解因式的是( D )A .y x -2B .12+xC .22y xy x ++D .442++x x7、完成某项工程,甲单独做需a 天,乙独做需b 天,甲乙两人合作完成这项工程的天数是 ( A )A 、ba ab + B 、ab ba + C 、2ba + D 、b a +18.若关于x 的方程1112-+=-+x m x x 产生增根,则m 是( D ) A 、-1 B 、-2 C 、1 D 、29. 把一盒苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( B )A 、3B 、4C 、5D 、6 10. 如果不等式组 ⎩⎨⎧>-<+mx x x 145 的解集是x>2,则m 的取值范围是( C )A 、m ≥2B 、m=2C 、m ≤2D 、m <2 二、填空题(每空3分,共18分)11、不等式2x -1<3的非负整数解是 0,1 ;12、分解因式: =+-122a a _____(a-1)2__________.13、当a___≠-1__ 时,分式112+-a a 有意义;14、若3=xy ,则=-+yx yx -2 ;15、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 x< -1 .16、(2009年厦门市)已知2ab =.若3-≤b ≤1-,则a 的取值范围 是____-2≤a ≤-2/3________.(若b= -3时a= -2/3,当b= -1时a= -2 , ∴_-2≤a ≤-2/3__)三、计算题(共24分)17、解下列不等式或不等式组,并把它们的解集分别表示在数轴上:(每题4分,共8分) (1)312-x x ≥ (2)⎩⎨⎧-<+>145321x x x x +x ≥-2 无解18、分解因式(每题4分,共8分)(1)、3222y xy y x +- (2)、()()x y y y x x ---=x(x-y)2= (x-y)(x+y)19、先化简,再求值(4分) 解方程:(共4分)211122x x x -⎛⎫÷- ⎪++⎝⎭, 其中x =13;125652=-+-x x x =1-x x=-1 =2/3四、解答题(20、21各6分,22、23各8分,共28分)20、某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的45倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?(6分) (1)(600/1.25x ) +30 =600/x 解得:x=4(2)(x-4)*150+(x-5)*120≥420 x ≥621、计算下列各式:(6分) (1)2211-= 3/4 ;(2)=--)311)(211(221/2*3/2*2/3*4/3=1/2*4/3=2/3 ; (3)=---)411)(311)(211(222 5/8 ;你能根据所学知识找到计算上面算式的简便方法吗?请你利用你找到的简便方法计算下式:)411)(311)(211(222---…)1011)(911(22--…)11(2n-=1/2*3/2*2/3*4/3*……..(n-1)/n*(n+1)/n =1/2*(n+1)/n =(n+1)/2n22、某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C .设购买甲种原料x 千克. (1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y 元,求y 与x 的函数关系式,并说明购买甲种原料多少千克时,总费用最少?(8分)【答案】解:(1)由题意可知,需购买甲种原料x 千克,则购买乙种原料为(20-x ),根据题意,可得20480)20(400600⨯≥-+x x .解得8≥x .所以至少需要甲种原料8千克.(2)由表中可知,购买甲种原料所需的费用为9x ,购买乙种原料所需的费用为5(20-x ),则1004)20(59+=-+=x x x y (208≤≤x ).故可得y 为关于x 的一次函数,且随着x 的增大而增大,故可知当x =8时,y 最小,最小值为132,即x =8时,所需费用最少,最小费用为132元.23、【问题】先阅读下列文字,再解答下列问题:(8分)初中数学课本中有这样一段叙述:“要比较a 与b 的大小,可先求出a 与b 的差,再看这个差是正数、负数还是零。
江苏省如皋市2013-2014学年八年级上期中考试数学试卷及答案
江苏省如皋市2013-2014学年度第一学期期中考试八年级数学试卷一、选择题(本大题共10小题,每小题2分,共20分) 1.下列交通标志图案是轴对称图形的是A B C D2.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是A .AB =AC B. BD =CD C. ∠B =∠C D . ∠BDA =∠CDA 3.等腰三角形的两条边长分别为3、6,那么它的周长为A. 15B. 12C. 12或15D. 不能确定 4.下列计算正确的是A. 532x x x =+ B. 632x x x =⋅ C. 532)(x x = D. 235x x x =÷第2题图 第7题图 第8题图5.下面的多项式中,能因式分解的是A.n m +2B. 12+-m mC. n m -2D.122+-m m 6.已知a b +=3,ab =2,则22a b +的值为A .8B .7C .6D .57.如图,在长方形纸片ABCD 中,AB =2,BC =1,点E 、F 分别在AB 、CD 上,将纸片沿EF 折叠,使点A 、D 分别落在点A 1、D 1处,则阴影部分图形的周长为 A .3 B .4 C .5 D .6 8.如图,△ABC 中,∠A=30°,AB =AC ,以B 为圆心,BC 长为半径画弧,分别交AC 、AB 于D 、E 两点,连接BD 和DE .则∠BDE 的度数为 A .45 B. 52.5 C. 67.5 D. 75 9.如图,在△ABC 中,∠B =36°,∠C =72°,AD 平分∠BAC 交BC 于点D 。
下列结论中错误的是A .图中共有三个等腰三角形; B. 点D 在AB 的垂直平分线上;C .AC +CD =AB D. BD =2CD1第9题图 第10题图10.如图,BD 是△ABC 的外角∠ABP 的角平分线,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,则BE 的长为A. 2B. 1.5C. 1D. 0.5二、填空题(本大题共8小题,每小题3分,共24分.) 11.计算(-2)0= .12.点P (1,-2)关于x 轴对称的点的坐标为 . 13.因式分解:x 2+5x +6= .14.已知a +b =3,a -b =4,则a 2-b 2值为________.15.在△ABC 中,AB =AC ,AD 是BC 边上的中线,E 是AD 上的一点,若点E 到AB 的距离为2,则点E 到AC 的距离为 .第16题图 第17题图 第18题图16.如图,在△ABC 中,AB =2,BC =3.6,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 .17.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有 种.18.如图,已知∠AOB =15°,点M 在边OB 上,且OM =4,点N 和点P 分别是OM 和OA 上的一个动点,则PM +PN 的最小值为 .三、解答题(本大题共8小题,共56分。
2013-2014学年度阳新县实验中学八年级下期中考试数学试卷【新课标人教版】
绝密★启用前2013-2014学年度阳新实中期中考试八(下)数学试卷满分:120分;考试时间:120分钟;命题人:邓峰注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(每小题3分,共30分)1.下列二次根式是最简二次根式的是( ) A.21B.2.0C. 3D. 8 2.下列命题中是真命题的是( )A .两边相等的平行四边形是菱形B .一组对边平行一组对边相等的四边形是平行四边形C .两条对角线相等的平行四边形是矩形D .对角线互相垂直且相等的四边形是正方形 3.把 ) A . B .. . 4.已知a 、b 、c 是三角形的三边长,如果满足(a -9)2c 15-=0,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形5.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 6.菱形的周长为16,且有一个内角为60°,则此菱形的面积为( ) A. 43B. 83C. 103 D. 1237.如图1,在矩形ABCD 中,对角线BD AC 、相交于点60,=∠AOB O 5=AB ,则AD 的长是( ) A .25B .35C .5D .108.如图2,在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ) .A 、15°B 、17°C 、16°D 、32°9.如图3,菱形ABCD 的边长为4cm,∠ABC=600,且M 为BC 的中点,P 是对角线BD 上的一动点,则PM+PC 的最小值为( ).A .4 cmB cmC .D .10.如图4所示,在正方形ABCD 的对角线上取点E ,使得∠BAE=︒15,连结AE ,CE .延长CE 到F ,连结BF ,使得BF = BC .若AB=1,则下列结论:①AE=CE ; ②F 到BC 的距离为22;③BE+EC=EF ;④8241+=∆A E D S ;⑤123=∆EBF S .其中正确的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.当x 满足 时,xx+1在实数范围内有意义. 12.如图5,数轴上A B ,两点表示的数分别为1-,点B 到A 的距离与点C 到A 的距离相等,则点C 所表示的数为___________A B C N DM D A D CPB MA FAEBDC图2 图3 图4图5第3页共8页◎第4页共8页13.如图6所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D、E、F分别是AB、BC、CA的中点,则△DEF的面积是 cm2.14.如图7,平行四边形ABCD中,A(3,2),B(5,-3)则点C的坐标为15.如图8,△ABC中,AB=10cm,AC=8cm,点E为是BC的中点,若AD平分∠BAC,C D⊥AD,线段DE的长为____________.16.按如图9方式作正方形和等腰直角三角形.若第一个正方形的边长AB=1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,…,则第n个正方形与第n个等腰直角三角形的面积和S n=.三、计算与化简题(第17题每小题5分,第18题6分,共16分)17.计算:⑴⎛÷⎝2+3a18.(本题6分)实数a、b、c在数轴上的位置如图所示,化简:四、解答题(共57分)19.(本题7分)已知,3232,3232+-=-+=yx求值:22232yxyx+-.20.(本题8分)如图10所示的一块地,已知mAD4=,mCD3=, AD⊥DC,mAB13=,mBC12=,求这块地的面积.21.(本题8分)如图11,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足AADECBAF EDBC图6图8图9图102a c b++-х分别为E ,F .(1)求证:△ABE ≌△CDF ;(2)若AC 与BD 交于点O ,求证:AO=CO .22.(本题6令人赏心悦目,它给我们以协调,匀称的美感.现将小明同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图12所示): 第一步:作一个正方形ABCD ;第二步:分别取AD ,BC 的中点M ,N ,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ; 第四步:过E 作EF ⊥AD ,交AD 的延长线于F 。
2013-2014学年辽宁省丹东市第七中学八年级下学期期中考试数学试卷(解析版)
………装……___________姓名:___………装……绝密★启用前2013-2014学年辽宁省丹东市第七中学八年级下学期期中考试数学试卷(解析版)题号 一 二 三 得分注意事项:1.本试卷共XX 页,三个大题,满分139分,考试时间为1分钟。
请用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
一、单选题(共45分)评卷人 得分1.以下各组数为三角形的三条边长,其中能作成直角三角形的是 ( )(5分) A. 2,3,4 B. 4,5,6 C. 1,,D. 2, , 42.把x2-y2-2y -1分解因式结果正确的是( )。
(5分) A. (x +y +1)(x -y -1) B. (x +y -1)(x -y -1) C. (x +y -1)(x +y +1) D. (x -y +1)(x +y +1)试卷第2页,总11页外…………○…………装……订…………○…………线…………○……※※请※※不※※要※※内※※答※※题※※内…………○…………装……订…………○…………线…………○……3.一次函数的图象如图所示,当-3<<3时,的取值范围是( )(5分)A. >4B. 0<<2C. 0<<4D. 2<<44.下列各式中能用平方差公式分解的是( )(5分) A. x2+4y2 B. -x2-4y2 C. x2-2y2+1 D. x2-4y25.使代数式的值不小于代数式的值,则应为( )(5分)A. >17B. ≥17C. <17D. ≥276.下列变形,是因式分解的是( )(5分) A. x(x-1)=x2-x B. x2-x+1 = x(x-1)+1 C. x2-x =" x(x-1)"……线…………○……线…………○ D. 2a(b+c)=2ab+2ac7.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB,过O 作DE∥BC,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为 ( ) (5分)A. 5B. 6C. 7D. 88.已知x >y ,下列不等式一定成立的是( )(5分) A. ax >ay B. 3x <3y C. -2x <-2y D. a2x >a2y9.如果不等式(m -2)x>2-m 的解集是x<-1, 则有( )(5分) A. m>2 B. m<2 C. m=2 D. m≠2二、填空题(共45分)评卷人 得分10.在⊿ABC 中,BC 的垂直平分线与AB 边所在的直线相交所得的锐角等于60°,则∠B 的度数为_____(5分)试卷第4页,总11页…外……………………………订…………○…………线…………○……※※在※※装※线※※内※※答※※题※※…内……………………………订…………○…………线…………○……11.已知方程组的解满足x +y <0,则m 的取值范围为_____(5分)12.已知关于的不等式组的整数解共有3个,则的取值范围_____________(5分) 13.已知点A(2- ,+1)在第四象限,则的取值范围是______(5分)14.若是一个完全平方式,则k=______(5分)15..如果不等式组的解集是 , 那么的值为______(5分)16.下列图形:①线段;②等边三角形;③平行四边形;④等腰梯形;⑤长方形;⑥圆。
广西壮族自治区百色市2023-2024学年八年级下学期期中数学试题
广西壮族自治区百色市2023-2024学年八年级下学期期中数学试题一、单选题1.下列二次根式中,是最简二次根式的是( )A B C D2 )A .7±B .7C .7-D .143.若方程()211a x x -+=是关于x 的一元二次方程,则a 的取值范围是( )A .1a ≠B .0a ≠C .0a ≥且1a ≠D .1a >4 )A .10B .C .D .5.一元二次方程()210x +=的根为( )A .121x x ==-B .121x x ==C .11x =,21x =-D .120x x == 6.下列计算正确的是( )A 13=±BC .2=D 2÷= 7.用配方法解方程2610x x --=时,配方结果正确的是( )A .()239x -=B .()2310x -=C .()238x +=D .()238x -=8.已知实数x ,y 20y -=,则x y +的值为( )A .3B .3-C .7D .7-9.习近平总书记高度重视粮食问题,他强调:“中国人的饭碗任何时候都要牢牢端在自己手上.我们的饭碗应该主要装中国粮,”他提醒我们:“保障国家粮食安全是一个永恒的课题,任何时候这根弦都不能松.”因此,某农科实验基地,大力开展种子实验,让农民能得到高产、易发芽的种子.该农科实验基地两年前有100种种子,经过两年不断的努力,现在有144种种子,若培育的种子平均每年的增长率为x ,则根据题意列出的符合题意的方程是( )A .()14412100x -=B .()10012144x +=C .()21441100x -=D .()21001144x += 10.一元二次方程2350x x +-=的两根为1x ,2x ,则12x x +的值为( )A .3B .3-C .5D .5-11.如图,数轴上A 、B 两点所表示的数是-C 是线段AB 的中点,则点C 所表示的数是( )A .-B .C .D .-12.若关于x 的方程()23210m x x -++=有实数根,则m 的取值范围是( )A .4m <B .4m ≥C .4m ≤且3m ≠D .4m ≤二、填空题13x 的取值范围是.14(填“>”“<”或“=”) 15.关于x 的一元二次方程231x x =+,化为一般形式是.16.若关于x 的一元二次方程220x ax ++=的一个根为1-,则=a .17.若2a =247a a -+的值为.18.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-,则小球从抛出到落地所用的时间是 s .三、解答题1920.已知关于x 的一元二次方程220x mx +-=.请判断方程根的情况.21.解方程:(1)217x x +=;(2)2450x x +-=.22的长方形空地.解答下面的问题:(1)求该空地的周长(结果化为最简二次根式);(2)现要在该空地上种植草坪进行绿化,若种植草坪的造价为20元/2m,求绿化该空地所需的总费用.23.小涵与小彤两位同学解方程()()2-=-的过程如下:x x x366(1)小涵和小彤的解法都不正确,小涵第一次出错在第_____步,小彤第一次出错在第_____步;(2)请你给出正确的解法,并结合你的经验提出一条解题注意事项.24.已知2b=a=2(1)求22-的值;a b(2)25.【综合与实践】摆钟的“滴答”声提醒着我们时光易逝,我们要珍惜当下,抓住每一秒,努力前行.某学习兴趣小组通过观察实验室的摆钟发现:摆钟的摆球的摆动快慢与秒针的走动,摆钟的“滴答”声,摆长都有关系.于是他们通过查阅资料知道:摆钟的摆球来回摆动一次的时间叫做一个T=T表示周期(单位:s),l表示摆线长(单位:m),周期.它的计算公式是:29.8m g =/2s ,π是圆周率.(π取3.14,摆线长精确到0.01米,周期精确到0.01s ,参考数据:1.73≈2.24)【思考填空】(1)通过上面的计算公式我们知道了:摆球的快慢只与摆线的长短有关,摆线越长,周期越______(填“长”或“短”),摆得越______;(填“快”或“慢”)【实践与计算】(2)若一个摆钟的摆线长为0.49m ,它每摆动一个周期发出一次“滴答”声,学习兴趣小组的2名同学数该摆钟1分钟发出“滴答”声的次数,其余成员计算摆钟1分钟发出“滴答”声次数,再对照是否一致.请你也计算该摆钟1分钟发出多少次“滴答”声;(3)对于一个确定的摆钟,其内部的机械结构决定了它每来回摆动一次记录的时间是一定的,如一个准确的摆钟的摆球的摆动周期为1s ,它每摆动一个周期发出一次“滴答”声,秒针就会走1格,显示的时间1s ,求该摆钟的摆线长.26.【阅读材料】一般地,我们把按一定顺序排列的一列数称为数列.如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,它通常用字母d 表示,我们可以用公式()12n n S na d -=+⨯来计算等差数列的和,公式中的n 表示数的个数,a 表示第一个数的值.例如:3,5,7,9,11,13,15,17,19,21.就是一个等差数列,公差2d =,10n =,3a =,所以()10101357911131517192110321202-+++++++++=⨯+⨯=. 用上面的知识解决下列问题【完成任务】(1)等差数列:1,4,7,10,13,16,19,22,25,28,31,34,37,40,43.则=a _____,d =_____,S =_____;【能力提升】(2)有一等差数列的和为450,用式子表示为:2610141822450p ++++++⋅⋅⋅+=,求这个数列中数的个数n ;【延伸拓展】(3)某县决定对坡荒地进行退耕还林.从2011年起在坡荒地上植树造林,以后每年植树后坡荒地的实际面积按一定规律减少,下表为2011、2012、2013、2014四年的坡荒地面积的统计数据.问到哪一年,可以将全县所有坡荒地全部种上树木.。
人教版江苏省泰州市泰兴市八年级下学期期中数学试卷【解析版】
江苏省泰州市泰兴市洋思中学八年级(下)期中数学试卷一、选择题(每题3分,共18分)1.菱形具有而矩形不一定具有的性质是( )A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补2.以下问题,不适合用普查的是( )A.了解全班同学每周体育锻炼的时间B.为了了解“嫦娥二号”卫星零部件的状况C.学校招聘教师,对应聘人员面试D.为了解小强的血型进行抽血化验3.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )A.B.C.D.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值( )A.不变B.扩大为原来的5倍C.扩大为原来的10倍[来源:学科网]D.缩小为原来的5.在平行四边形ABCD中,AC=4cm,BD=6cm,对角线AC,BD相交于点O,则AB的取值范围是( )A.2cm<AB<10cmB.1cm<AB<5cmC.4cm<AB<6cm[来源:]D.2cm<AB<5cm6.如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1cm的速度从A 向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有( )次平行于AB.A.1B.2C.3D.4二、填空题(每题3分,共30分)7.分式有意义的条件是__________.8.一组数据1,2,3,1,2中,“2”出现的频率是__________.9.某中学要了解初二学生的视力情况,在全校初二年级中抽取了25名学生进行检测,在这个问题中,总体是__________,样本是__________.10.已知菱形的两条对角线长分别为3cm,4cm,则它的面积是__________cm2.11.化简:=__________.12.一个口袋中装有4个白色球,1个红色球,5个黄色球,搅匀后随机从袋中摸出1个球是黑色球的概率是__________.13.如果△ABC的三条中位线分别为3cm,4cm,5cm,那么△ABC的面积为__________cm2.[来源:学科网]14.如图把一个矩形的纸片对折两次(折痕互相垂直且交点为O),然后剪下一个角,为了得到一个锐角为50°的菱形,剪口与折痕所成角α的度数为__________.15.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=__________.16.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:(1)△EPF是等腰直角三角形;(2)S四边形AEPF=S△ABC;(3)2EF≥BC;(4)BE2+CF2=EF2,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有__________(填序号)三、解答题:(共102分)17.计算(1)+(2).18.已知=3,求分式的值.(提示:分式的分子与分母同除以a,b).[来源:学科网]19.先化简,再求值:÷(﹣x﹣2),请选一个你喜欢的数代入求值.20.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.[来源:学+科+网]21.某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)该县共调查了__________名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若该县2013年初三毕业生共有5×103人,请估计该县今年的初三毕业生中读普通高中的学生人数.22.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:摸球的次数s 150 200 500 900 1000 1200摸到白球的频数n 51 64 156 275 303 361 摸到白球的频率0.34 0.32 0.312 0.306 0303 0.301(1)请估计:当次数s很大时,摸到白球的频率将会接近__________;假如你去摸一次,你摸到红球的概率是__________(精确到0.1).(2)试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.23.如图的正方形格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△AB1C1.若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为__________.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,﹣2),则旋转中心坐标为__________.24.如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,且EG、FH交于点O.(1)求证:四边形EFGH是菱形;(2)若AC=4,求EG2+FH2的值.25.如图,平面直角坐标系中,矩形OABC的两条邻边分别在x轴、y轴上,对角线AC=4,边OA=4.(1)求C点的坐标;(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求直线DE的函数关系式;(3)若点M是y轴上一点,点N是坐标平面内一点,问能否找到合适的点M和点N使以点M、A、D、N为顶点的四边形是菱形?如果能找到,请直接写出点M的坐标;如果找不到,请说明原因.26.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E从D向C,点F从C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置和数量关系,并说明理由;(2)如图②和图③,当E,F分别移动到边DC,CB的延长线及反向延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“成立”或“不成立”,不需证明)(3)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,因此CP的大小也在变化.如果AD=2,试求出线段CP的最小值.[来源:]2014-2015学年江苏省泰州市泰兴市洋思中学八年级(下)期中数学试卷一、选择题(每题3分,共18分)1.菱形具有而矩形不一定具有的性质是( )A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补考点:矩形的性质;菱形的性质.专题:推理填空题.分析:根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.解答:解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.点评:此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.2.以下问题,不适合用普查的是( )A.了解全班同学每周体育锻炼的时间B.为了了解“嫦娥二号”卫星零部件的状况C.学校招聘教师,对应聘人员面试D.为了解小强的血型进行抽血化验考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、人数较多,不适合普查,故本选项正确.B、必须普查,故本选项错误;C、必须普查,故本选项错误;D、必须普查,故本选项错误;故选A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )A.B.[来源:学.科.网]C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故选项错误;B、不是轴对称图形,不是中心对称图形.故选项错误;C、不是轴对称图形,也不是中心对称图形.故选项错误;D、是轴对称图形,也是中心对称图形.故选项正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值( )A.不变B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为零的数或整式,分式的值不变,可得答案.解答:解:把中的x与y都扩大为原来的10倍,那么这个代数式的值不变.故选:A.点评:本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或整式,分式的值不变.5.在平行四边形ABCD中,AC=4cm,BD=6cm,对角线AC,BD相交于点O,则AB的取值范围是( )A.2cm<AB<10cmB.1cm<AB<5cmC.4cm<AB<6cmD.2cm<AB<5cm考点:平行四边形的性质;三角形三边关系.分析:由在平行四边形ABCD中,AC=4cm,BD=6cm,根据平四边形的性质,可求得OA 与OB的长,再由三角形的三边关系,求得答案.解答:解:∵在平行四边形ABCD中,AC=4cm,BD=6cm,∴OA=AC=2cm,OB=BD=3cm,∴边AB的长的取范围是:1cm<AB<5cm.故选B.点评:此题考查了平行四边形的性质以及三角形的三边关系.注意平行四边形的对角线互相平分.6.如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1cm的速度从A 向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有( )次平行于AB.A.1B.2C.3D.4考点:一元一次方程的应用.专题:几何动点问题;压轴题.分析:易得两点运动的时间为12s,PQ∥AB,那么四边形ABQP是平行四边形,则AP=BQ,列式可求得一次平行,算出Q在BC上往返运动的次数可得平行的次数.解答:解:∵矩形ABCD,AD=12cm,∴AD=BC=12cm,∵PQ∥AB,AP∥BQ,∴四边形ABQP是平行四边形,∴AP=BQ,∴Q走完BC一次就可以得到一次平行,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,∴线段PQ有4次平行于AB,故选D.点评:解决本题的关键是理解平行的次数就是Q在BC上往返运动的次数.二、填空题(每题3分,共30分)7.分式有意义的条件是x≠1.考点:分式有意义的条件.专题:存在型.分析:根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵分式有意义,∴x﹣1≠0,即x≠1.故答案为:x≠1.点评:本题考查的是分式有意义的条件,即分式的分母不等于零.8.一组数据1,2,3,1,2中,“2”出现的频率是0.4.考点:频数与频率.分析:根据频率=,求解即可.解答:解:“2”出现的频数是2,数据总数为5,则,“2”出现的频率=2÷5=0.4.故答案为:0.4.点评:本题考查了频数与频率的知识,注意掌握频率=.9.某中学要了解初二学生的视力情况,在全校初二年级中抽取了25名学生进行检测,在这个问题中,总体是某中学初二学生的视力情况的全体,样本是25名学生的视力情况.考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,样本是总体中所抽取的一部分个体.我们在区分总体、样本这两个概念时,首先找出考查的对象.从而找出总体.再根据被收集数据的这一部分对象找出样本.解答:解:本题考察的对象是某中学初二学生的视力情况,故总体是某中学初二学生的视力情况的全体,样本是25名学生的视力情况.点评:解题要分清具体问题中的总体与样本,关键是明确考查的对象.总体与样本的考查对象是相同的,所不同的是范围的大小.10.已知菱形的两条对角线长分别为3cm,4cm,则它的面积是6cm2.考点:菱形的性质.分析:根据菱形的面积等于两对角线乘积的一半求得其面积即可.解答:解:由已知得,菱形的面积为3×4÷2=6cm2.故答案为6cm2.点评:此题主要考查菱形的性质,难度一般,注意掌握菱形面积等于两条对角线的积的一半.11.化简:=1.考点:分式的加减法.专题:计算题.分析:先将第二项变形,使之分母与第一项分母相同,然后再进行计算.解答:解:原式=.故答案为1.点评:本题考查了分式的加减运算,要注意将结果化为最简分式.12.一个口袋中装有4个白色球,1个红色球,5个黄色球,搅匀后随机从袋中摸出1个球是黑色球的概率是0.考点:概率公式.分析:由一个口袋中装有4个白色球,1个红色球,5个黄色球,直接利用概率公式求解即可求得答案.解答:解:∵一个口袋中装有4个白色球,1个红色球,5个黄色球,∴搅匀后随机从袋中摸出1个球是黑色球的概率是:0.故答案为:0.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.13.如果△ABC的三条中位线分别为3cm,4cm,5cm,那么△ABC的面积为24cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:先根据三角形中位线定理分别求出△ABC的各边的长,再利用勾股定理的逆定理推导出△ABC是直角三角形,然后代入三角形面积公式即可直接得出答案.解答:解:∵△ABC的三条中位线长分别为3cm,4cm,5cm,∴△ABC的各边分别是6cm,8cm,10cm,∵62+82=102,∴△ABC是直角三角形,∴S△ABC=×6×8=24cm2.故答案为:24.点评:此题主要考查学生对勾股定理的逆定理和三角形中位线定理的理解和掌握,此题的突破点是利用勾股定理的逆定理推导出△ABC是直角三角形,此题难度不大,属于基础题.14.如图把一个矩形的纸片对折两次(折痕互相垂直且交点为O),然后剪下一个角,为了得到一个锐角为50°的菱形,剪口与折痕所成角α的度数为25°或50°.考点:剪纸问题.分析:根据菱形对角线平分每一组对角可得两种情况:①若∠ABC=50°,②若∠BAD=50°分别计算.解答:解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,①若∠ABC=50°,∴∠ABD=25°,∴α=25°,②若∠BAD=50°,则∠ABC=100°,∴∠ABD=50°,∴剪口与折痕所成的角a的度数应为25°或50°.故答案为:25°或50°.点评:此题主要考查了剪纸问题,关键是掌握菱形对角线平分每一组对角.15.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=5.考点:轴对称-最短路线问题;菱形的性质.专题:压轴题.分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.解答:解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.点评:本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.16.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:(1)△EPF是等腰直角三角形;(2)S四边形AEPF=S△ABC;(3)2EF≥BC;(4)BE2+CF2=EF2,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有(1)(2)(3)(4)(填序号)考点:全等三角形的判定与性质;等腰直角三角形.分析:通过证明△AFP≌△BEP就可以得出AF=BE,EP=PF,得出AE=CF,得出△EPF是等腰直角三角形,由S四边形AEPF=S△APE+S△APF.就可以得出S四边形AEPF=S△CPF+S△APF,就可以得出结论,由AF=BE,AE=CF得出EF2=BE2+CF2;求得当EP⊥AB时,EP取最小值,此时EP=AB,则EF最小值=AB=BC,进一步得出结论.解答:解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠PAF=45°,BP=AP,∵∠APE+∠BPE=90°,∠APE+∠APF=90°,∴∠BPE=∠APF.在△BPE和△APF中,,∴△AFP≌△BEP(ASA),∴BE=AF,PE=PF,故(1)△EPF是等腰直角三角形正确;∵EPF=90°,在Rt△EPF中,由勾股定理,得EF2=PE2+PF2,∴EF2=BE2+CF2.故(4)正确;∵S四边形AEPF=S△APE+S△APF.∴S四边形AEPF=S△CPF+S△APF=S△FAE=S△ABC.故(2)正确.由(1)知,△EPF是等腰直角三角形,则EF=EP.当EP⊥AB时,EP取最小值,此时EP=AB,则EF最小值=AB=BC,则2EF≥BC.故(3)正确;故答案为:(1)(2)(3)(4).点评:本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,中位线的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.三、解答题:(共102分)17.计算(1)+(2).考点:分式的混合运算.专题:计算题.分析:(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式约分即可得到结果.解答:解:(1)原式===;(2)原式==﹣.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.[来源:学.科.网Z.X.X.K]18.已知=3,求分式的值.(提示:分式的分子与分母同除以a,b).考点:分式的基本性质.专题:计算题.分析:根据分式的基本性质,分式的分子分母都除以ab,分式的值不变,再把换成3计算即可.解答:解:分式的分子分母都除以ab,得==,∵=3,∴=﹣3,所以原式==.点评:本题利用分式的基本性质,分子分母都除以ab,巧妙运用已知条件是解本题的关键,也是解本题的突破口.19.先化简,再求值:÷(﹣x﹣2),请选一个你喜欢的数代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.解答:解:原式=÷=•=﹣,当x=1时,原式=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.解答:证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,[来源:学_科_网]在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.点评:此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.21.某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)该县共调查了100名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若该县2013年初三毕业生共有5×103人,请估计该县今年的初三毕业生中读普通高中的学生人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用类别A的人数除以类别A所占的百分比即可求出总数,(2)用总数乘以类别为B的人数所占的百分比,用类别为C的人数除以总数,再画图即可,(3)用该县2013年初三毕业生总数乘以读普通高中的学生所占的百分比即可.解答:解;(1)该县共调查了40÷40%=100名初中毕业生;故答案为:100;(2)类别为B的人数是100×30%=30(人),类别为C的人数所占的百分比是×100%=25%,画图如下;(3)若该县2013年初三毕业生共有5×103人,则该县今年的初三毕业生中读普通高中的学生人数是5×103×40%=2000(人),答;该县今年的初三毕业生中读普通高中的学生人数是2000人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:摸球的次数s 150 200 500 900 1000 1200摸到白球的频数n 51 64 156 275 303 361 摸到白球的频率0.34 0.32 0.312 0.306 0303 0.301(1)请估计:当次数s很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是0.7(精确到0.1).(2)试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.考点:利用频率估计概率.专题:应用题.分析:(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1﹣0.3=0.7;(2)根据红球的概率公式得到相应方程求解即可;(3)言之有理即可.解答:解:(1)0.3,1﹣0.3=0.7;(2)估算口袋中红球有x只,由题意得0.7=,解之得x=70,∴估计口袋中红球有70只;(3)用概率可以估计未知物体的数目.(或者试验次数很大时事件发生的频率作为概率的近似值)(只要能从概率方面说的合理即可)点评:考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.23.如图的正方形格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△AB1C1.若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为(a+1,﹣b).(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,﹣2),则旋转中心坐标为(0,2).考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于x轴对称并向右平移1个单位后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据轴对称和平移的性质的性质写出点P的对应点的坐标;(2)根据网格结构找出点A、B、C关于原点O成中心对称的点A2、B2、C2的位置,然后顺次连接即可;(3)根据网格结构找出点A3、B3、C3的位置,再根据旋转的性质找出旋转中心并写出坐标.解答:解:(1)△A1B1C1如图所示;P(a+1,﹣b);(2)△A2B2C2如图所示;(3)旋转中心(0,2).故答案为:(a+1,﹣b);(0,2).点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,且EG、FH交于点O.(1)求证:四边形EFGH是菱形;(2)若AC=4,求EG2+FH2的值.考点:中点四边形.分析:(1)根据三角形的中位线定理和菱形的判定,可得顺次连接对角线相等的四边形各边中点所得四边形是菱形;(2)根据菱形的性质得到EG⊥HF,且EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得到OE2+OH2=EH2=4,再根据等式的性质,在等式的两边同时乘以4,根据4=22,把等式进行变形,并把EG=2OE,FH=2OH代入变形后的等式中,即可求出EG2+FH2的值.解答:(1)证明:∵E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,又∵AC=BD,∴EH=FG=EF=HG,∴四边形EFGH是菱形;(2)解:由(1)知,四边形EFGH是菱形,则EG⊥FH,EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=4,等式两边同时乘以4得:4OE2+4OH2=4×4=16,∴(2OE)2+(2OH)2=16,即EG2+FH2=16.点评:此题主要考查了三角形中位线定理和菱形的判定方法,题目比较典型,又有综合性,难度不大.25.如图,平面直角坐标系中,矩形OABC的两条邻边分别在x轴、y轴上,对角线AC=4,边OA=4.(1)求C点的坐标;(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求直线DE的函数关系式;(3)若点M是y轴上一点,点N是坐标平面内一点,问能否找到合适的点M和点N使以点M、A、D、N为顶点的四边形是菱形?如果能找到,请直接写出点M的坐标;如果找不到,请说明原因.考点:一次函数综合题.分析:(1)由四边形AOCB为矩形,得到∠AOC为直角,在直角三角形AOC中,利用勾股定理求出OC的长,即可确定出C的坐标;(2)根据矩形OABC沿直线DE对折使点C落在点A处,所以DE、AC互相垂直平分,得到AD=CD=AE=CE,设OD=x,则AD=CD=8﹣x,利用勾股定理在Rt△AOD中:AD2=OA2+OD2,即(8﹣x)2=x2+16,解得:x=3,从而确定D(3,0),E(5,4),利用待定系数法求直线DE的解析式,即可解答;(3)设M(0,m),根据勾股定理可得AD==5,分两种情况考虑:①当AD是菱形的一条边是,②当AD是菱形的对角线时,求出点M的坐标即可.解答:解:(1)∵AC=4,边OA=4.∴OC==8,∴C(8,0).(2)如图1所示,连接AD,CE,。
辽宁省凌海市石山初级中学2013-2014学年下学期初中八年级期中考试数学试卷
辽宁省凌海市石山初级中学2013-2014学年下学期初中八年级期中考试数学试卷 有答案满分:100分,考试时间:90分钟一.选择题(每小题2,分共16分) 1.若a >b ,则下列式子正确的是 ( ) A. —4a >—4bB.b a 2121C. a -4>b -4D. 4-a >4-b2.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个 B .3个 C.2个 D.1个3.已知函数y =(m +2)x -2,要使函数值y 随x 的增大而增大,则m 的取值范围是( )A.m ≥-2B.m >-2C.m ≤-2D.m <-24.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A . △ABC 的三条中线的交点B . △ABC 三条角平分线的交点 C . △ABC 三条高所在直线的交点D . △ABC 三边的中垂线的交点5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).A 、a <0B 、a >-1C 、a <-1D 、a <16.下列从左到右的变形:(1)15x 2y =3x ·5xy ; ( 2)(a +b )(a -b )=a 2-b 2; (3)a 2-2a +1=(a -1)2; ( 4)x 2+3x +1=x (x +3+x1) 其中是因式分解的个数是 ( )A.0个B.1个C.2个D.3个7. 如图∠BOP=∠AOP=15°,PC ∥OB ,PD ⊥PB 于D ,PC=2,则PD 的长度为( )A .4B .3C .2D .18.如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=600,则∠EFD 的度数为( )A 、150B 、100C 、200D 、250二、填空题(每小题2分,共16分)9、a 的3倍与b 的2倍的差不大于5,用不等式表示为 . 10、不等式2)2(2-≤-x x 的非负整数解的个数为 .11、等腰三角形的一边长为4cm ,另一边长为9cm ,则它的周长为__________。
2013-2014学年八年级(下)期中数学试卷参考答案与试题解析
2013-2014学年八年级(下)期中数学试卷参考答案与试题解析一、精心选一选.(每小题给出的4个选项中只有一个符合题意,请将答案填入答案卡)1.(3分)代数式中,分式有()解:分式有,+b2.(3分)使分式有意义的x的值是()B.;B.(=+,此选项错误;=﹣4.(3分)(2010•桂林)若反比例函数的图象经过点(﹣3,2),则k的值为()5.(3分)(2010•宁德)反比例函数y=(x>0)的图象如图所示,随着x值的增大,y值(),当6.(3分)已知反比例函数,下列结论不正确的是()的图象上,故本选项正确;y=y=BC===.,,2 ))9.(3分)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()AB===10AE=BE=×10.(3分)(2005•长沙)已知长方形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为图中B.,y=二、细心填一填(本大题共5个小题,共15分.请将正确答案填写在相应的位置)11.(3分)(2013•吉安模拟)化简的结果是a+b.12.(3分)(2010•温州)当x=5时,分式的值等于2.解:由题意得13.(3分)(2010•长沙)已知反比例函数的图象如图,则m的取值范围是m<1.,当14.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=12,则S3=16.15.(3分)观察给定的分式…猜想并探究规律,那么第7个分式是,第n个分式是(﹣1)n﹣1.•个分式为三、专心解一解.(本大题共10个小题,共55分..请认真读题,冷静思考.解答题应写出文字说明、理由过程或演算步骤.)16.(6分)(2012•湛江模拟)计算:+2﹣1.=3+﹣17.(5分)计算:(3x2yz﹣1)2•(2x﹣1y﹣2)3(结果写成含正整数指数幂的形式).18.(6分)先化简再求值:(﹣)÷+2x,其中x=﹣2.•+2x19.(4分)三角形的三边长分别为3,4,5,求这个三角形的面积.×20.(5分)已知一个反比例函数的图象经过点(2,﹣6).(1)求这个函数的解析式;(2)当y=﹣4时,求自变量x的值.y=,;21.(5分)我国是一个水资源贫乏的国家,节约用水,人人有责.为提高水资源的利用率,某住宅小区安装了循环用水装置,现在每天比原来少用水10吨.经测算,原来400吨水的使用时间现在只需240吨水就可以了,求这个小区现在每天用水多少吨?=,22.(6分)已知:如图,AB=3,AC=4,AB⊥AC,BD=12,CD=13.(1)求BC的长度;(2)线段BC与线段BD的位置关系是什么?说明理由.BC=23.(6分)如图,长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,求AE的长.24.(5分)在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.AB BCAB CD=25.(7分)如图,已知反比例函数的图象经过点C(﹣3,8),一次函数的图象过点C且与x轴、y轴分别交于点A、B,若OA=3,且AB=BC.(1)求反比例函数的解析式;(2)求AC和OB的长.)根据题意,反比例函数的图象经过点(∴反比例函数的解析式(.。
2013-2014学年下学期期中考试八年级数学试卷(华师大版)
2013-2014学年下学期期中考试八年级数学试卷考生注意:1.本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.一.选择题(以下每小题均有A ,B ,C ,D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1.如果m<n<0,那么下列结论错误的是 ( ▲ )A 、m -9<n -9;B 、—m>—n ;C 、n 1>m 1;D 、nm >1. 2.已知(x+3) 2+m y x ++3=0中,y 为负数,则m 的取值范围是 ( ▲ )A 、m<9B 、m>9C 、m>-9D 、m<-93.如果二次三项式12-+ax x 可分解为()()b x x +-2,则b a +的值为 ( ▲ )A.-1B.1C.-2D.24.如图,一张矩形报纸ABCD 的长AB=a cm ,宽BC=b cm ,E 、F 分别是AB 、CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长 与宽之比,则a ∶b 等于( ▲ )A 、2∶1B 、1∶2C 、3∶1D 、1∶35..如果把分式abb a +中的a 、b 都扩大2倍,那么分式的值一定(▲ ) A 、是原来的2倍 B 、是原来的4倍 C 、是原来的21 D 、不变 6.若关于x 的方程2121--=-+x m x x 产生增根,则m 是( ▲ ) A 、1 B 、2 C 、3 D 、47.如图,AB 是斜靠在墙上的一个梯子,梯脚B 距墙1.4m ,梯上点D 距墙1.2m ,BD 长0.5m ,则梯子的长为( ▲ )A 、3.5mB 、3.85mC 、4mD 、4.2m8.在比例尺为1:n 的某市地图上,规划出一块长为5cm ,宽为2cm 的矩形工业园区,则该园区的实际面积为( ▲ )A.n/1000 平方米B.n 2/1000平方米C.10n 平方米D.10n 2平方米9.下列分式是最简分式的( ▲ ) A 、ba a 232 B 、a a a 32- C 、22b a b a ++ D 、222b a ab a --10.如图,测量小玻璃管口径的量具ABC ,AB 的长为12cm,AC 被分为60等份.如果小玻璃管口D E 正好对着量具上20等份处(DE ∥AB),那么小玻璃管口径DE 是( ▲ )A 、8 cmB 、10 cmC 、20 cmD 、 60cm二.填空题(每小题4分,共20分)11.不等式6-2x >0的解集是 ▲ ;12.24m 2n +18n 的公因式是 ▲ ;13. 若k bc a a c b c b a =+=+=+。
2013-2014学年第二学期期中考试八年级数学试卷(沪科版)
2013-2014学年第二学期期中考试八年级数学试卷(沪科版)考号________ 姓名________ 班级________ 得分________一、选择题(每题4分)1.下列各式属于最简二次根式的是 ( )A .2.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是 ( )A .(x -1)2=2B .(x -1)2=4C .(x -1)2=1D .(x -1)2=73.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是 ( )A .B .C .D .4.已知(m ⎛=⨯- ⎝⎭,则有 ( ) A .5<m <6 B .4<m <5 C .﹣5<m <﹣4 D .﹣6<m <﹣55.下列一元二次方程两实数根和为﹣4的是 ( )A .x 2+2x ﹣4=0B .x 2﹣4x+4=0C .x 2+4x+10=0D .x 2+4x ﹣5=06.已知三组数据:①2,3,4;②3,4,5;③12.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( ) A .② B .①② C .①③ D .②③7. 当x ≤2时,下列等式一定成立的是 ( )A 2x =-B 3x =-C 、==8. 已知m 、n 是方程x 2+22x +1=0的两根,则代数式m 2+n 2+3mn 的值为( )A .9B .±3C .3D .59.在三角形ABC 中, ∠C =90°,两直角边AC =6,BC =8,在三角形内有一点P ,它到各边的距离相等,则这个距离是 ( )A.1B.2C.3D.无法确定10. 如果关于x 的一元二次方程2kx 10+=有两个不相等的实数根,那么k 的取值范围是 ( )A .k <12B .k <12且k≠0C .﹣12≤k <12D .﹣12≤k <12且k≠0 二、填空题(每题5分)11. 已知x 2y=2400,xy 2=5760,则 .12. 在平面直角坐标系中,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .13. 若化简|1|x -25x -,则x 的取值范围是 .14.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为 .三、解答题15(8分). 已知:x y 、为实数,,求3x+4y 的值。
2014-2015学年湖北省武汉市青山区八年级下学期期中考试数学试卷(含答案)
D
C
E
F
A
图2
B
22.(本小题满分 10 分)有 5 个边长为 1 的正方形,排列成形式如图 1-1 的矩形将该矩形以
图 1 一 2 的方式分割后拼接成正方形,并在正方形网格中,以格点为顶点画出该正方形
ABCD
(1) 正方形 ABCD的边长为 ____;
D
A
C
图 1-1
图 1-2
B
(2)现有 10 个边长为 1 的正方形排列成形式如图 2-1 的矩形将矩形重新分割后拼接成正方形 EFGH,请你在图 2-2 中画出分割的方法,并在图 2-3 的正方形网格中,以格点为顶点画出该正 方形 EFGH.
20.(本小题满分 8 分)如图,某港口 P 位于东西方向的海岸线上“远航”号、 “海天”号轮船 同时离开港口,各自沿同定方向航行, “远航”号每小时航行 16 n mile ,“海天”号每小时 航行 12 n mile 它们离开港口一个半小时后分别位于点 Q, R 处 ,且相距 30 n mile
( 2分 )
= 4 3 3 2 ,,,,
( 4分)
( 2)解:原式 =4- 3 6 2 ,,,,
( 6 分)
=4- 3 3
,,,, ( 8分)
18.证:在 □ABCD中,
AB∥ CD, AB=CD ,,,, ∵ AE=CF
(2 分)
∴ AB-AE=CD-CF ,,,,
(3 分)
∴BE=DF
,,,,
( 5 分)
A. 12 8 16 C. 16 或 24 D 12 或 20
n=1
n=2
n=3
二、填空题(本大题共有 6 小题,每小题 3 分,共 18 分)
2014年春泉州市东海中学八年级期中考数学试卷 2
相信自己一定行!2012年春泉州市东海中学八年级期中考数学试卷(满分:150分,考试时间:120分钟) 一、选择题(每小题3分,共21分) 1. 下列代数式中,是分式的是( )A.32-B.πxy 2C.7x D.x + 652.在平面直角坐标系中,点P (-1,3)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.方程12=x的解是( ) A .=x 1 B .=x 2 C .=x 21D .=x -2 4.双曲线6y x=-经过点A (m ,3),则m 的值为( ) A .3 B .-3 C .2 D .-2 5.如果把分式yx x-2中的x 、y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 6.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( )7.如图,坐标平面内一点A (2,-1),O 是原点,P 是x 轴上一个动点,如果以点P 、O 、A 为顶点的等腰三角形,那么符合条件的动点P 的个数为(A .2B . 3C .4D .5二、填空题(每小题4分,共40分)8.当x = 时,分式21-x 无意义;9.某种感冒病毒的直径是0.00 000 012米,用科学记数法表示为_____________ 米; 10.正比例函数x y 3=的图象经过第一象限与第 象限;11.计算:=⋅ab b a 2.2422---x x x =_________; 12.直线12-=x y 向上平移4个单位得到的直线的解析式为_____ ____; 13.若解分式方程441+=+-x mx x 产生增根,则=m ________; 14.点(4,-3)关于原点对称的点的坐标是 _____________;15.已知等腰△ABC 的周长为12,设它的腰长为x ,底边长为y ,则y 与x 的函数关系式为___________________,自变量x 的取值范围为______ ________; 16.如图:根据图象回答问题:当x 时,0<y ; 17.如图,已知点A 在双曲线xy 6=上,且4=OA ,过A 作x AC ⊥轴于C ,OA 的垂直平分线交OC 于B . (1)则AOC ∆的面积= ,(2)ABC ∆的周长为 .第16题一.选择题(每小题3分,共21分)8.________ 9.________ 10.________ 11.__ ______ ________ 12._____ ___ 13._____ ___ 14.____ ___ 15._______ ______ __ 16.____ 17.(1)_____ _ (2)____ ____ 三.解答题(本大题共9小题,共89分)18.(9分)计算:421|3|)13(2+⎪⎭⎫ ⎝⎛--+--19.(9分)先化简1)111(2-÷-+x xx ,然后选择一个合适的你最喜欢的x 的值,代入求值.20.(9分)解分式方程:23222x x x -=+-21.(9分)已知一次函数3+=kx y 的图象经过点(2,7) (1)求k 的值;(2)判断点(-2,1)是否在所给函数图象上。
2013-2014学年扬州中学教育集团树人学校八年级第二学期期中考试数学试卷及答案【苏科版】
扬州中学教育集团树人学校2013–2014学年第二学期期中考试八年级数学试卷 2014.4(满分:150分 时间:120分钟)1.下列调查中,适合用普查方式的是A.了解一批炮弹的杀伤半径B.了解扬州电视台《关注》栏目的收视率C.了解长江中鱼的种类D.了解某班学生对“扬州精神”的知晓率2.在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是 A .51 B .31 C .83 D .85 3.下列式子是分式的是 A.2x B.1+x x C. y x +2 D. 3x 4.计算1a -1 – aa -1的结果为 A.1+aa -1B. -a a -1C.-1 D.1-a5.菱形具有而矩形不一定具有的性质是A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补 6.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是A.12cm2B.24cm 2C.48cm 2D.96cm 27.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上, 若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是 A.S 1>S 2 B.S 1=S 2 C.S 1<S 2 D.3S 1=2S 2 8.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论中正确结论的个数是①△ABG ≌△AFG ; ②BG =GC ; ③AG ∥CF ; ④S △FGC =3. A.1B.2C.3D.4二、填空题(每题3分,共30分) 9.当x 时,分式1有意义.10.一组按规律排列的式子:, (7),5,3,18642a a a a 则第n 个式子是 . 11.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .12.顺次连接对角线相等的四边形的四边中点,所得的四边形一定是 . 13.若关于x 的分式方程2+=mx 有增根,则m = . 第16题 第17题 的解是正数,则m 的取值范围是 上的点,沿CE 折叠后,点第18题南门街校区 初二( )班 姓名___________________ 学号____________21.(本题6分)先化简,再求值:)211(342--⋅--a a a ,其中3-=a22.(本题8分)孙老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题: (1)此次调查的总体是 . (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?23.(本题10分)如图,在平行四边形ABCD 中,对角线AC,BD交于点O,经过点O 的直线交AB 于E ,交CD 于F. 求证:OE=OF.24.(本题8分)某商场进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据: ⑴完成上述表格; ⑵请估计当n 很大时,频率将会接近 ,假如你去转动该转盘一次,你获得“可乐”的概率约是 ;(结果精确到0.1) ⑶转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?25.(本题12分)用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅ (1) 计算11111++++= . 南门街校区 初二( )班 姓名___________________ 学号____________28.(本题14分)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠A BC=60°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(4分)(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在给出的网格图上找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并.画出..相应的和谐四边形;(4分)(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.(6分)参考答案二、填空题9. x≠3 10. 11. 12. 菱形 13. 8 14. 9 15.16. 17. 5 18.三、解答下列各题19. (1) (2) x+620. (1) x=3 (2) 原方程无解21. 原式=a+2=-122. (1)该班学生上学路上花费时间的全体。
河北省石家庄市石家庄外国语教育集团2023-2024学年八年级下学期期中数学试题(解析版)
2023—2024学年第二学期八年级期中考试 数学 学科试卷(满分120分,考试时间120分钟)一.选择题(共16小题,1-10小题各3分,11-16小题各2分,共42分)1. 在平面直角坐标系中,所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】本题主要考查了各象限内点的坐标的符号特征,熟记各象限内点的坐标的符号特征是解答的关键.根据各象限内的点坐标的符号特征:在第三象限即可解答.【详解】解:∵,∴点所在的象限是第三象限.故选:C .2. 下面的多边形中,内角和等于外角和的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查多边形的内角和,外角和,三角形内角和,任意多边形的外角和都等于,所以当内角和等于外角和时,内角和等于,利用公式求出多边形内角和即可.【详解】解:A 、三角形的内角和等于,任意多边形的外角和等于,故三角形的内角和与外角和不相等,那么A 不符合题意;B 、四边形的内角和等于,任意多边形的外角和等于,故四边形的内角和和外角和相等,那么B 符合题意;C 、五边形的内角和等于,任意多边形的外角和等于,故五边形的内角和与外角和不相等,那么C 不符合题意;D 、六边形的内角和等于,任意多边形的外角和等于,故六边形的内角和与外角和不相等,那么D不符合题意;()2,1--(),--20-<-1<0,360︒360︒180︒360︒()42180360-⨯︒=︒360︒()52180540-⨯︒=︒360︒()62180720-⨯︒=︒360︒故选:B .3. 如图,货船与港口相距35海里,货船相对港口的位置用有序数对(南偏西,35海里)来描述,那么港口相对货船的位置可描述为( )A. (南偏西,35海里)B. (北偏西,35海里)C. (北偏东,35海里)D. (北偏东,35海里)【答案】D【解析】【分析】本题考查坐标确定位置,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.以点B 为中心点,来描述点A 的方向及距离即可.【详解】解:由题意知货船A 相对港口B 的位置可描述为北偏东,35海里.故选:D .4. 某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花树,A ,B 两处桂花树的位置关于小路对称.在如图所示的平面直角坐标系内,若点A 的坐标为,则点B 的坐标为( )A. B. C. D. 【答案】D【解析】【分析】本题考查关于y 轴对称点坐标特点.根据题意可知A ,B 关于y 轴对称,纵坐标不变,横坐标互为相反数,继而得到本题答案.B A B A 40︒A B 50︒40︒50︒40︒40︒(82)-,(28),(2,8)-(8,2)--(8),2【详解】解:∵A ,B 关于y 轴对称,点A 的坐标为,∴点B 的坐标为,故选:D .5. 在平行四边形中,,则等于( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,先根据平行四边形对边平行推出,再由已知条件得到,则.【详解】解;∵四边形是平行四边形,∴,∴,∴,∵,∴,∴,故选;D .6. 已知正比例函数的图象如图所示,则这个函数的关系式为( )A. y =xB. y =﹣xC. y =﹣3xD. y =﹣x/3【答案】B【解析】【分析】根据正比例函数的待定系数法,即可求解.(82)-,(8),2ABCD 100A C ∠+∠=︒D ∠50︒80︒100︒130︒A C ∠=∠50A C ∠=∠=︒130D ∠=︒ABCD AB CD AD BC ∥,∥180AD C D +=︒=+∠∠∠∠A C ∠=∠100A C ∠+∠=︒50A C ∠=∠=︒130D ∠=︒【详解】设函数解析式为:y =kx (k≠0),∵图象经过(3,﹣3),∴﹣3=k×3,解得:k =﹣1,∴这个函数的关系式为:y =﹣x ,故选:B .【点睛】本题主要考查正比例函数的待定系数法,掌握待定系数法,是解题的关键.7. 如图,是边长为6的等边三角形,则A 点的坐标是( ).A. B. C. D. 【答案】C【解析】【分析】本题主要考查了等边三角形性质、勾股定理等知识点,灵活运用等边三角形的性质成为解题的关键.如图,过点A 作轴,根据等边三角形的性质可得,,再根据勾股定理求得,然后根据坐标系即可确定点A 的坐标.【详解】解:如图,过点A 作轴,∵是边长为6的等边三角形,∴,,∴,∴点A 的坐标是.的AOB ()3,4()3,4-(-(AD x ⊥6O A O B ==132BD OD AO ===AD =AD x ⊥AOB 6O A O B ==132BD OD AO ===AD ==(-8. 如图,在平行四边形中,,,将线段水平向右平移a 个单位长度得到线段,若四边形为菱形时,则a 的值为( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】首先根据平行四边形的性质得到,然后根据菱形的性质得到,然后求解即可.【详解】∵四边形是平行四边形,∴,∵四边形为菱形,∴,∵,∴,∴.故选:B .【点睛】此题考查了平行四边形和菱形的性质,平移的性质等知识,解题的关键是熟练掌握以上知识点.9. 如图,在平面直角坐标系中,已知点A (2,1),点B (3,﹣1),平移线段AB ,使点A 落在点(0,2)处,则点B 的对应点的坐标为( )A. (﹣1,﹣1)B. (1,0)C. (﹣1,0)D. (3,0)【答案】B ABCD 4AB =6BC =AB EF ECDF 4CD AB ==4EC CD ==ABCD 4CD AB ==ECDF 4EC CD ==6BC =2BE BC CE =-=2a =1A 1B【分析】由点A (2,1)平移后(0,2)可得坐标的平移方式,由此可得点B 的对应点的坐标.【详解】解:由点A (2,1)平移后(0,2)可得坐标的平移方式是:横坐标−2,纵坐标+1,∴点B (3,−1)的对应点的坐标(1,0).故选:B .【点睛】本题考查了图形与平移,关键是由点A (2,1)平移后(0,2)可得坐标的平移方式,由此可得点B 的对应点的坐标.10. 依据所标数据,下列一定为平行四边形的是( )A. B. C. D.【答案】C【解析】【分析】本题考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.根据平行四边形的判定定理判断即可.【详解】解:A .∵,,∴一组对边平行,另一组对边不平行,∴图中的四边形不可能是平行四边形,故A 不符合题意;B .由图中数据只能得到一组对边平行,不能判断四边形是平行四边形,故B 不符合题意;C .由图中数据可得两组对边分别相等,能判断四边形是平行四边形,故C 符合题意;D .由图中数据只能得到一组对边相等,不能判断四边形是平行四边形,故D 不符合题意.故选:C .11. 关于一次函数,下列说法正确的是( )A. 图象经过点B. 图象向上平移1个单位长度后得到函数解析式为C. 图象不经过第二象限D. 若两点在该函数图象上,则【答案】D的1A 1B 1A 1B 1A 1B 10080180︒+︒=︒11080190︒+︒=︒6y x =-+()2,15y x =-+()()121,,1,A y B y -12y y <【分析】本题考查了一次函数的几何变换,一次函数的性质,掌握函数的性质是解题的关键.把代入求出y 的值,即可判断A ;根据平移的性质即可判断B ;由,利用一次函数图象与系数的关系,可得出一次函数的图象经过第一、二、四象限,可判断C ;由,利用一次函数的性质,可得出y 随x 的增大而减小,即可判断D .【详解】解:A 、当时,,∴图象不经过点,故A 错误,不符合题意;B 、图象向上平移1个单位长度后得到的函数解析式为,故B 错误,不符合题意;C 、解:∵,∴一次函数的图象经过第一、二、四象限,∴一次函数的图象不经过第三象限,故C 错误,不符合题意;D 、∵,∴y 随x 的增大而减小,又∵点都在该函数图象上,∴,故D 正确,符合题意.故选:D .12. 如图,在矩形中,对角线,相交于点O ,,则矩形的周长为( )A. 12B. 16C.D. 2x =6y x =-+1060k b =-<=>,6y x =-+1060k b =-<=>,2x =2641y =-+=≠()2,17y x =-+1060k b =-<=>,6y x =-+6y x =-+1060k b =-<=>,()()121,,1,A y B y -12y y <ABCD AC BD 304ACB BD ∠=︒=,ABCD 2+4【解析】【分析】本题考查了矩形的性质、含的直角三角形的性质、勾股定理及矩形的周长,解题的关键是求得矩形的长和宽.先根据矩形的对角线相等可求得的长,然后再根据含角的直角三角形的性质求得矩形的宽,进一步根据勾股定理求得矩形的长,最后求得矩形的周长.【详解】∵矩形,∴,∵,∴,由勾股定理得:∴矩形的周长为:.故选:D .13. 若用图象法解二元一次方程组时所画的图象如图所示,则该方程组的解是()A. B. C. D. 【答案】A【解析】【分析】根据一次函数图象的交点写出方程组的解即可.【详解】解:∵解二元一次方程组时所画的图象交点为,∴方程组的解为,故选:A 30︒AC 30︒ABCD 90,4ABC AC BD ∠=︒==30ACB ∠=︒114222AB AC ==⨯=BC ===ABCD ()(2224AB BC +=⨯+=+y kx by mx n =+⎧⎨=+⎩12x y =-⎧⎨=⎩21x y =⎧⎨=-⎩13x y =-⎧⎨=⎩22x y =⎧⎨=⎩y kx by mx n =+⎧⎨=+⎩()1,2-y kx by mx n =+⎧⎨=+⎩12x y =-⎧⎨=⎩【点睛】此题考查了图象法解二元一次方程组,熟知根据图象交点即可得到方程组的解是解题的关键.14. 如图将正方形B 的一个顶点与正方形A 的对角线交点重合放置,已知正方形A 的边长为4,正方形B 的边长为3,则阴影部分面积是( )A. 3B. C. 4 D. 8【答案】C【解析】【分析】根据正方形的性质可得,,,再利用等量代换可得,从而可证,可得,再由求解即可.【详解】解:如图,∵四边形A 、B 是正方形,∴,,,∵,,∴,∴,∴,∴,∵,∴,故选:C.94==90DOE MON ∠∠︒OD OE ===45CDO FEO ∠∠︒=COD FOE ∠∠()COD FOE ASA ≌COD FOE S S = DOE S S = 阴影==90DOE MON ∠∠︒OD OE ===45CDO FEO ∠∠︒90COD DOF ∠+∠=︒=90FOE DOF ∠+∠︒=COD FOE ∠∠()COD FOE ASA ≌COD FOE S S = COD DOF DOF FOE DOE S S S S S S =+=+= 阴影4416A S =⨯=144DOE A S S S === 阴影15. 国内航空规定,乘坐飞机经济舱旅客所携带行李的重量x 与其运费y (元)之间是一次函数关系,其图象如图所示,那么旅客可携带的免费行李的最大重量为( )A. 20kgB. 25kgC. 28kgD. 30kg【答案】A【解析】【详解】试题分析:设携带行李的重量x 与其运费y (元)之间的函数关系式为y=kx+b ,由题意,得,解得:,∴y=30x-600.当y=0时,30x-600=0,∴x=20.故选A.考点:一次函数的应用.16. 如图,有六根长度相同的木条,小明先用四根木条制作了能够活动的菱形学具,他先将该活动学具调成图1所示菱形,测得,对角线,接着将该活动学具调成图2所示正方形,最后用剩下的两根木条搭成了如图3所示的图形,连接,则图3中的面积为( )30300{40600k b k b +=+=30{600k b ==-=60B ∠︒10cm AC =BE BCE ∆A. B. 50 C. D. 25【答案】D【解析】【分析】根据菱形的性质可知,过点作,交的延长线于点,根据等边三角形的性质可知,根据含角的直角三角形的性质可得的长,再根据的面积求解即可.【详解】解:图1连接,菱形中,,,是等边三角形,对角线,,,图3过点作,交的延长线于点,是等边三角形,,,,的面积,2cm 2cm 2cm 2cm 10cm BC =E EH BC ⊥BC H 30ECH ∠=︒30︒EH BCE 12BC EH =⋅AC ABCD AB BC =60B ∠=︒ ABC ∴ 10cm AC =10cm BC ∴=10cm CE BC ∴==E EH BC ⊥BC H DCE 60DCE ∴∠=︒30ECH ∴∠=︒15cm 2EH CE ∴==BCE ∴△21110525(cm )22BC EH =⋅=⨯⨯=故选:D【点睛】本题考查了正方形的性质,菱形的性质,等边三角形的性质,含30°角的直角三角形的性质,三角形的面积等,熟练掌握这些性质是解题的关键.二.填空题(共4小题,每小题3分,共12分)17. 函数 中,自变量x 的取值范围是__________.【答案】【解析】【分析】本题考查了二次根式有意义的条件,可得,解不等式即可,熟知根号下需要大于等于0,是解题的关键.【详解】解:根据二次根式的意义,有,解得,故自变量x 的取值范围是,故答案为:.18. 在周长为600米的三角形地块中修建如图所示的三条水渠,则水渠的总长为______米.【答案】300【解析】【分析】本题考查三角形中位线的的应用,根据“三角形中位线等于第三边的一半”即可求解.【详解】解:如图,周长为600米,分别为的中点,则均为的中位线,(米),即水渠的总长为300米,y =1x ≥10x -≥10x -≥1x ≥1x ≥1x ≥ABC ,,D E F ,,AB AC BC ,,DE EF DF ABC ∴()1160030022DE EF DF BC AB AC ++=++=⨯=故答案为:300.19. 已知y 与成正比例,当时,,则当时,y 的值是________.【答案】6【解析】【分析】设,把,代入,求出k 的值,确定x ,y 的关系式,然后把,代入解析式求对应的函数值即可.【详解】解:∵y 与成正比例,∴设,把,代入,可得∴,∴.则当时,.故答案为:6.【点睛】本题考查了正比例函数关系式为:,只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.20. 如图,在平面直角坐标系中,放置一平面镜,其中点的坐标分别为,,从点发射光线,其图象对应的函数解析式为.(1)若入射光线与平面镜有公共点,的取值范围是______.(2)规定横坐标与纵坐标均为整数的点是整点,光线经过镜面反射后,反射光1x +1x =4y =2x =()1y k x =+1x =4y =2x =1x +()1y k x =+1x =4y =()411k =+2k =()2122y x x =+=+2x =2226y =⨯+=()0y kx k =≠AB ,A B ()4,2()4,6()1,0C -()0,1y nx n n x =+≠≥-()0,1y nx n n x =+≠≥-AB n ()0,1y nx n n x =+≠≥-线与轴相交于点,点是整点的个数是______.【答案】①. ②. 7【解析】【分析】本题考查待定系数法求函数解析式,一次函数图象及性质,熟练掌握一次函数的性质是解答本题的关键.(1)先求出直线解析式,再求出直线解析式,即可求出本题答案;(2)作出点关于对称点,可知的坐标,作直线,,分别求出这两条直线与轴交点,则点坐标即在范围内,即可得到整数点的个数.【详解】(1)解:当入射光线经过时,则,解得,当入射光线经过时,则,,解得,入射光线与平面镜有公共点,的取值范围:;故答案为:.(2)作出点关于对称点,则,作直线,分别交轴于,,,设直线的直线解析式为,代入得:,y E E 2655n ≤≤CA CB C AB C 'C 'AC 'BC 'y E (0,1)y nx n n x =+≠≥-(4,2)A 42n n +=25n =(0,1)y nx n n x =+≠≥-(4,6)B 46n n +=65n = (0,1)y nx n n x =+≠≥-AB n ∴2655n ≤≤2655n ≤≤C AB C '(9,0)C 'AC 'BC 'y 1E 2E BC '()0y ax c a =+≠()()9,0,4,64690a c a c +=⎧⎨+=⎩解得:,设直线的直线解析式为,代入得:,解得:,反射光线与轴相交于点,点纵坐标的取值范围为:,点整点有:4,5,6,7,8,9,10,共7个.故答案为:7.三、解答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)21. 已知一次函数的图象经过,两点,如图所示.(1)求这个函数的表达式;(2)求这条直线与坐标轴围成的的面积;(3)当时,的取值范围是______.【答案】(1)(2)(3)65545a c ⎧=-⎪⎪⎨⎪=⎪⎩AC '111(0)y a x c a =+≠()()9,0,4,211114290a c a c +=⎧⎨+=⎩1125185a c ⎧=-⎪⎪⎨⎪=⎪⎩y E ∴E 185455y ≤≤∴E ()0,2A ()3,4B -AOC 0x ≥y 22y x =-+12y ≤【解析】【分析】本题考查了待定系数法求一次函数解析式:求一次函数,则需要两组,值.也考查了一次函数图象和性质.(1)利用待定系数法求一次函数解析式;(2)先求出点C 坐标,然后根据三角形面积公式计算;(3)根据一次函数的图象与性质求解.【小问1详解】设一次函数表达式为将,分别代入解得函数表达式为【小问2详解】中令;则,,,,,【小问3详解】当时,的取值范围是.22. 小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是小红离家的距离与所用时间的关系示意图.根据图中提供的信息回答下列问题:的y kx b =+x y y kx b=+()0,2A ()3,4B -0234k b k b +=⎧⎨+=-⎩22k b =-⎧⎨=⎩∴22y x =-+22y x =-+0y =1x =()1,0C ∴1OC ∴=()0,2A 2OA ∴=1121122AOC S OA OC ∴=⋅=⨯⨯=△0x ≥y 2y ≤(1)小红在商店停留了______分钟,由于途中返回给表弟买礼物比直接去舅舅家多走了______米;(2)小红在整个骑车去舅舅家的途中,最快速度是______米分钟;(3)小红在骑车______分钟时,距离舅舅家300米.【答案】(1)4,1200(2)(3)4或【解析】【分析】本题主要考查了函数的图像、函数图像的应用等知识点,从函数图像上获取所需信息成为解题的关键.(1)根据题意以及图像可知,小红在商店停留了4分钟,小红途中返回给表弟买礼物多走了两个600米;(2)根据图像中的数据用路程除以所用的时间即可;(3)分开始去时和离开商店去时,两种情况分别根据图像解答即可.【小问1详解】解:小红在商店停留了的时间为分钟,小红途中返回给表弟买礼物多走了两个600米,即1200米.故答案为:4,1200.【小问2详解】解:在分钟时,速度为:(米/分钟);在分钟时,速度为:(米/分钟);在分钟时,速度为:0(米/分钟);在分钟时,(米/分钟),所以,小红在整个骑车去舅舅家的途中,最快速度是450米分钟.故答案为:450./45011331284-=02-12004300÷=48-()()120060084150-÷-=810-1214-()()15006001412450-÷-=【小问3详解】解:由函数图像可知小红4分钟时距离家1200米,即距离舅舅家300米;由函数图像可得:当小红再次离开商店时速度为米分钟,∴当小红再次离开商店后距离舅舅家距离300米的时间为:;故答案为:4或.23. 如图,把一些相同规格的碗整齐地叠放在水平桌面上,这摞碗的高度随着碗的数量变化而变化的情况如表格所示:碗的数量(只)12345…高度4 5.2 6.47.68.8…(1)用表示这摞碗的高度,用x (只)表示这摞碗的数量,求出h 与x 的函数关系式;(2)求10个碗总高度;(3)若这摞碗的高度为,求这摞碗的数量.【答案】(1)(2)10个碗的总高度为(3)这摞碗有7个【解析】【分析】本题考查了一次函数的实际应用问题,考查学生对常量与变量的理解,根据表格中变量的变化规律得出函数关系式是解决问题的关键.(1)根据表格列出这摞碗的高度和碗的数量的关系式;(2)利用关系式求出当时,y 的值即可;(3)利用关系式求出当时吗,x 值即可.【小问1详解】由表格可知,x 每个1只,h 个的的450600112134503+=1133()cm ()cm h 11.2cm 1.2 2.8h x =+14.8cm 10x =11.2h = 1.2cm【小问2详解】当时答:10个碗的总高度为.【小问3详解】当时答:这摞碗有7个.24. 如图,在中,是的中点,是的中点,过点作,与的延长线相交于点,连接.(1)求证:四边形是平行四边形;(2)填空:①当满足条件时,四边形是______形;②如果,,,则四边形的面积是______.【答案】(1)详见解析(2)①矩形;②【解析】【分析】(1)证明,由全等三角形的性质得出,得出,由平行四边形的判定可得出结论;(2)①由矩形的判定方法可得出答案;②先判断出四边形的面积就是的面积,再利用三角形的面积公式求解即可.【小问1详解】证明:为的中点,为中点,14 1.21x h -∴=+⨯1.2 2.8h x ∴=+10x =()1.2102.814.8cm h =⨯+=14.8cm 11.2h =1.2 2.811.2x +=7x =ABC D BC E AD A AF BC ∥AF CE F BF AFBD ABC AB AC =AFBD AB AC =90BAC ∠=︒1AD =AFBD 1()AAS AFE DCE ≌AF CD =AF BD =AFBD ABC E AD D BC,,∵,,,在和中,,,,,,∵,四边形为平行四边形;【小问2详解】解:①当时,四边形是矩形,证明:,为中点,即为边上的中线,,即,四边形为平行四边形,四边形为矩形;②由①知,四边形为矩形,∴,∵,∴,∴,∴,∵,,∴,∴.故答案为:.【点睛】本题主要考查了矩形的判定与性质,平行四边形的判定,等腰三角形的判定和性质以及全等三角形的判定与性质、直角三角形斜边中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.25. 某中学举行校庆活动,使用了两架小型无人机进行现场拍摄,1号机所在高度与上升时间AE DE ∴=BD CD =AF CD ∥AFE DCE ∴∠=∠FAE CDE ∠=∠AFE △DCE △AFE DCE ∠=∠FAE CDE ∠=∠AE DE=()AAS AFE DCE ∴ ≌AF CD ∴=AF BD ∴=∥A F B D ∴AFBD AB AC =AFBD AB AC = D BC AD BC AD BC ∴⊥90ADB ∠=︒ AFBD ∴AFBD AFBD AD BC ⊥AB AC =BD CD =ABD ACD ABD S S S ==ABC AFBD S S =四边形90BAC ∠=︒1AD =22BC AD ==1121122ABC S BC AD =´´=´=1()1m y ()s x的函数图象如图所示;2号机从高度,以的速度上升,两架无人机同时起飞,设2号机所在高度为.(1)求1号机所在高度与上升时间之间的函数表达式(不必写出的取值范围);(2)2号机所在高度与上升时间之间的函数表达式为______,并在图中画出该函数图象(描两点画图象);(3)在某时刻两架无人机能否位于同一高度?如果能,求此时两架无人机的高度;如果不能,请说明理由.【答案】(1)(2),见解析(3)两架无人机可以位于同一高度.高度为9米【解析】【分析】本题考查一次函数的图象及性质,待定系数法求函数解析式,(1)设,函数的图象经过,两点,运用待定系数法求解即可;(2)根据题意可以直接写出函数的解析式,根据图象过点,,即可得到函数图象;(3)令,求出x 的值,即可解答.【小问1详解】设,由图象知,函数的图象经过,两点.将,分别代入得:,解得:.6m 0.5m /s ()2m y 1y x x 2y x 13y x =+20.56y x =+1y kx b =+1y (0,3)(9,12)2y (0,6)(6,9)12y y =1y kx b =+1y (0,3)(9,12)(0,3)(9,12)3912b k b =⎧⎨+=⎩13k b =⎧⎨=⎩.【小问2详解】由题意得:.当,,∴在直角坐标系中描点,,画得函数的图象如图.【小问3详解】在某时刻两架无人机能位于同一高度,理由如下:当时,,解得.此时.答:此时两架无人机高度为.26. 某专卖店购进两种礼盒进行销售,两种礼盒的进价、售价如表所示.现计划购进两种礼盒共100个,其中种礼盒不少于60个.设购进种礼盒个,两种礼盒全部售完,该专卖店获利元.进价(元/个)售价(元/个)160220120160(1)求与之间的函数关系式;(2)若购进100个礼盒的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该专卖店对种礼盒以每个优惠元的价格进行优惠促销活动,B 种礼盒每个进价、售价保持不变,若最大利润为4900元,则m 的值为______.【答案】(1)(2)(元)13y x ∴=+20.56y x =+6x =9y =(0,6)(6,9)2y 12y y =30.56x x +=+6x =()13639m y x =+=+=9m ,A B A A x y A B y x A ()020m m <<204000y x =+max 5500y =(3)【解析】【分析】本题主要考查了列一次函数关系式、一次函数的应用、一次函数的增减性,一元一次不等式组的应用,等知识点,根据题意建立函数关系式是解答本题的关键.(1)设购进种服装x 件,则购进种服装件,然后根据进价、售价和利润之间的关系列出函数关系式即可;(2)根据不等关系“购进100件服装的总费用不超过15000元”和“种服装不少于60件”列不等式组求得x 的取值范围,再根据一次函数的增减性即可解答;(3)由题意可得,由,,当时,y 最大值,再根据最大利润为4900元,列出关于m 的方程分别求解即可.【小问1详解】解:设购进种服装x 件,则购进种服装件,由题意得:,【小问2详解】解:由题意得:,∴,∵中,,∴y 随x 的增大而增大,∴当时,y 最大(元).【小问3详解】解:由题意得:.∵,,∴y 随x 的增大而增大,∴当时,y 最大为:,8A B ()100x -A ()204000y m x =-+6075x ≤≤020m <<75x =A B ()100x -()()()220160160120100204000y x x x =-+-⨯-=+()6016012010015000x x x ≥⎧⎨+⨯-≤⎩6075x ≤≤204000y x =+200>75x =207540005500=⨯+=()()()220160*********y m x x =--+--()60400040m x x=-+-()204000m x =-+6075x ≤≤020m <<200m ∴->75x =()207540004900m -⨯+=∴,故答案为:8.27. 如图,在中,,,.动点从点出发沿以速度向终点运动,同时点从点出发,以速度沿射线运动,当点到达终点时,点也随之停止运动,设点的运动时间为秒.(1)的长为______.(2)当时,用含的代数式表示线段的长______.(3)连接.是否存在的值,使得与互相平分?若存在,求出的值;若不存在,请说明理由.(4)若点关于直线对称的点恰好落在直线上,请直接写出的值.【答案】(1)10(2) (3)存在, (4)或【解析】【分析】(1)根据平行四边形的性质得,再根据勾股定理即可求解;(2)根据题意可得,先求出当点Q 与点B 重合时,所花费的时间,再根据题意可知当时,点Q 在线段的延长线上,得,即可求解;(3)连接, ,假设与互相平分,则可得四边形是平行四边形,进而可得,解得即可到答案;(4)根据题意分两种情况讨论即可:当点P 关于直线对称的点落在点A 下方时和当点P 关于直线对称的点落在点A 上方时.8m =ABCD Y 90BAC ∠=︒6cm CD =8cm AC =P A AD 2cm D Q C 8cm CB P Q P t ()0t >CB cm 54t >t BQ PQ t PQ AB t P AQ AB t 810t -53t =12t =2t =6AB DC ==8CQ t =54t >CB 810QB CQ BC t =-=-PB AQ PQ AB AP BQ =AQ AQ【小问1详解】解:∵四边形是平行四边形,∴,∵,∴;【小问2详解】在中,,,由题意得,,当点Q 与点B 重合时,,∴,当时,点Q 在线段的延长线上,,故答案为:;【小问3详解】存在,理由如下:如图,连接,,若与互相平分,则四边形是平行四边形,∴,∴,∴,∴当时,与互相平分;【小问4详解】当点P 关于直线对称的点落在点A 下方时,如图,ABCD 6AB DC ==90BAC ∠=︒10BC ===ABCD Y AD BC =AD BC ∥8CQ t =810t =5s 4t =54t >CB 810QB CQ BC t =-=-810t -PB AQ PQ AB APBQ AP BQ =2810t t =-5s 3t =5s 3t =PQ AB AQ由对称得,,∵,∴,∴,即,∴,∴,∴,解得;当点P 关于直线对称的点落在点A 上方时,如图,由对称得,,∵,∴,∵∴,∴,∴,∴,解得,PAQ P AQ '∠=∠AD BC ∥PAQ AQB ∠=∠P AQ AQB '∠=∠BAQ AQB ∠=∠6BQ AB ==4CQ BC BQ =-=84t =12t =AQ 12∠=∠AD BC ∥13∠=∠24∠∠=3=4∠∠6BQ AB ==16CQ BC BQ =+=816t =2t =综上所述,t 的值为或2.【点睛】本题考查了平行四边形的判定和性质、勾股定理的应用和动点问题,轴对称的性质,等腰三角形的判定与性质,灵活运用所学知识求解是解决本题的关键.12。
山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试题(含解析)
山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中是中心对称图形的是( )A.B.C.D.2.如图,屋顶钢架外框是等腰三角形,其中AB=AC,工人师傅在焊接立柱时,只用找到BC的中点D,这就可以说明竖梁AD垂直于横梁BC了,工人师傅这种操作方法的依据是( )A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”3.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标态.则通过该桥洞的车高x(m)的范围在数轴上可表示为( )A.B.C.D.4.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B′的坐( )A.(﹣4,0)B.(2,0)C.(﹣4,2)D.(2,2)5.若a<b,则下列不等式一定成立的是( )A.a﹣6>b﹣6B.3a>3b C.﹣2a<﹣2b D.a﹣b<06.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°7.已知点A(a﹣2,2a+6)在第二象限,则a的取值范围是( )A.a<﹣3或a>2B.﹣3<a<2C.a<2D.a>﹣38.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数( )A.35°B.75°C.55°D.65°9.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足( )A.a<0B.a≤1C.a>﹣1D.a<﹣110.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )A.B.C.D.二.填空题(本大题共6小题,每小题3分,共18分)11.如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 .12.某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 道题.13.如图,在△ABC中,∠ABC的平分线与BC的垂直平分线交于点P,连接CP.若∠A=75°,∠ABC=62°,则∠ACP的度数为 °.14.若不等式组的解集是x>3,则m的取值范围是 .15.如图,已知在四边形ABCD中,AD∥BC,AM平分∠BAD交BC于点M,BE⊥AM于点E,EF⊥AD 于点F,AB=7,EF=3,则△ABM的面积为 .16.如图,函数y=kx+b(k,b为常数,k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,下列结论:①点A的横坐标为2;②关于x的不等式kx+b<0的解集为x>2;③关于x的方程kx+b=2x的解为x=2;④关于x的不等式组0<kx+b<2x的解集为1<x<2.其中正确的是 (只填写序号).三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.17.(4分)已知:如图,四边形ABCD;求作:点P,使点P在四边形ABCD内部,PD=PC,且点P到∠BAD两边的距离相等.四.解答题(本大题共7小题,共68分)18.(20分)计算:(1)解不等式x﹣1≥2x;(2)解不等式,并把解集表示在数轴上;(3)求不等式3(x﹣3)﹣6<2x﹣10的非负整数解;(4)解不等式组:;(5)解不等式组:.19.(6分)如图,BD,CE是△ABC的高,且BD=CE.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,AB=2,求△ABC的高BD.20.(6分)△ABC的各顶点坐标分别为A(1,4),B(3,4),C(3,1),将△ABC先向下平移2个单位长度,再向左平移4个单位长度,得到△A1B1C1.(1)如果将△A1B1C1看成是由△ABC经过一次平移得到的,则平移的距离是 个单位长度;(2)在y轴上有点D,则AD+CD的最小值为 个单位长度;(3)作出△ABC绕点O顺时针旋转90°后的△A2B2C2.21.(8分)如图,已知△ABC,以AC为边构造等边△ACD,连接BD,在BD上取一点O,使∠AOD=60°,在OD上取一点E,使AO=AE,连接OC.(1)求证:△AOC≌△AED;(2)OA,OB,OC三条线段长度之和与图中哪条线段的长度相等?请说明理由.22.(9分)两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到30张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共30人,估计儿童8至16人.导游选择哪种购票方式花费较少?23.(9分)【问题情境】如图①,△ABC的内角∠ABC,∠ACB的平分线BD,CD交于点D.【建立模型】(1)如图②,过点D作BC的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.(2)如图③,在图①的基础上,过点A作直线l∥BC,延长BD和CD,分别交l于点E,F,若AB=4,AC=3,请你直接写出EF的长度(不需要证明).【类比探究】如图④,△ABC的内角∠ABC的平分线BD,与它的外角∠ACG的平分线CD交于点D,过点D作BC 的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.24.(10分)如图,在长方形ABCD中,DC=3cm,AD=6cm,延长BC至点E,使CE=4cm,连接DE.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s;连接PQ,DQ.当点Q停止运动时,点P也停止运动.设运动时间为t(s)(0<t≤3),解答下列问题:(1)当t为何值时,使点Q在∠PDC的平分线上?(2)当t为何值时,△DQE为等腰三角形?(3)设四边形PQED的面积为y(cm2),求y与t之间的关系式及四边形PQED面积的最大值.山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中是中心对称图形的是( )A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此即可得到答案.【解答】解:选项A、B、C中的图形都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D中的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.【点评】本题考查中心对称图形,关键是掌握中心对称图形的定义.2.如图,屋顶钢架外框是等腰三角形,其中AB=AC,工人师傅在焊接立柱时,只用找到BC的中点D,这就可以说明竖梁AD垂直于横梁BC了,工人师傅这种操作方法的依据是( )A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”【分析】根据等腰三角形的性质解答即可.【解答】解:∵AB=AC,BD=CD,∴AD⊥BC,故工人师傅这种操作方法的依据是等腰三角形“三线合一”,故选:D.【点评】本题考查等腰三角形的性质,熟知等腰三角形“三线合一”性质是解答的关键.3.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标态.则通过该桥洞的车高x(m)的范围在数轴上可表示为( )A.B.C.D.【分析】利用已知图表直接得出该桥洞的车高x(m)的取值范围.【解答】解:由题意可得:通过该桥洞的车高x(m)的取值范围是:0<x≤4.5.在数轴上表示如图:.故选:D.【点评】此题主要考查了在数轴上表示不等式的解集.根据图表理解题意是解题的关键.4.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B′的坐( )A.(﹣4,0)B.(2,0)C.(﹣4,2)D.(2,2)【分析】根据左减右加,上加下减的规律解决问题即可.【解答】解:∵将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,∴点B的对应点B'的坐标是(﹣1﹣3,1+1),即(﹣4,2).故选:C.【点评】本题考查坐标与图形变化﹣平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.5.若a<b,则下列不等式一定成立的是( )A.a﹣6>b﹣6B.3a>3b C.﹣2a<﹣2b D.a﹣b<0【分析】根据不等式的性质分析判断.【解答】解:A、已知a<b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,所以a﹣6>b﹣6错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,所以3a>3b错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b错误;D、a﹣b<0即a<b两边同时减去b,不等号方向不变.不等式一定成立的是a﹣b<0.故选:D.【点评】此题主要考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.已知点A(a﹣2,2a+6)在第二象限,则a的取值范围是( )A.a<﹣3或a>2B.﹣3<a<2C.a<2D.a>﹣3【分析】根据题意列出不等式组,解之即可得出答案.【解答】解:由题意知,,解得﹣3<a<2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数( )A.35°B.75°C.55°D.65°【分析】根据旋转的性质可得∠ACA′=35,∠A=∠A′,结合∠A′DC=90°,可求得∠A′,即可获得答案.【解答】解:根据题意,把△ABC绕C点顺时针旋转35°,得到△A′B′C,由旋转的性质,可得∠ACA′=35,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣∠ADA′=55°,∴∠A=∠A′=55°.故选:C.【点评】本题主要考查旋转的性质、直角三角形两锐角互余等知识,熟练掌握旋转的性质是解题关键.9.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足( )A.a<0B.a≤1C.a>﹣1D.a<﹣1【分析】根据不等式的解集,得到不等号方向改变,即a+1小于0,即可求出a的范围.【解答】解:∵不等式(a+1)x>(a+1)的解为x<1,∴a+1<0,解得:a<﹣1.故选:D.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.10.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )A.B.C.D.【分析】由角平分线的性质定理推出CD=MD,由勾股定理求出AC的长,由△ABC的面积=△ACD的面积+△ABD的面积,得到AC•BC=AC•CD+AB•MD,因此4×3=4CD+5CD,即可求出CD的长,得到DB的长.【解答】解:作DM⊥AB于M,由题意知AD平分∠BAC,∵DC⊥AC,∴CD=DM,∵∠C=90°,AB=5,BC=3,∴AC==4,∵△ABC的面积=△ACD的面积+△ABD的面积,∴AC•BC=AC•CD+AB•MD,∴4×3=4CD+5CD,∴CD=,∴BD=BC﹣CD=3﹣=.故选:D.【点评】本题考查勾股定理,角平分线的性质,作图—基本作图,三角形的面积,关键是由角平分线的性质得到CD=MD,由三角形面积公式得到AC•BC=AC•CD+AB•MD.二.填空题(本大题共6小题,每小题3分,共18分)11.如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 120° .【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故答案为:120°.【点评】本题考查了利用旋转设计图案,仔细观察图形求出旋转角是120°的整数倍是解题的关键.12.某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 12 道题.【分析】设这个队答对了x道题,则答错或放弃(20﹣x)道题,利用得分=10×答对题目数﹣4×答错或放弃题目数,结合得分不低于88分,可列出关于x的一元一次不等式,解之取其中的最小值,即可得出结论.【解答】解:设这个队答对了x道题,则答错或放弃(20﹣x)道题,根据题意得:10x﹣4(20﹣x)≥88,解得:x≥12,∴x的最小值为12,即这个队至少答对12道题.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.如图,在△ABC中,∠ABC的平分线与BC的垂直平分线交于点P,连接CP.若∠A=75°,∠ABC=62°,则∠ACP的度数为 12 °.【分析】根据线段的垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义、三角形内角和定理及角的和差求解即可.【解答】解:∵BP是∠ABC的平分线,∠ABC=62°,∴∠ABP=∠CBP=∠ABC=31°,∵P是线段BC的垂直平分线上一点,∴PB=PC,∴∠PBC=∠PCB,∴∠ABP=∠CBP=∠PCB=31°,∵∠A=75°,∠ABC=62°,∠A+∠ABC+∠ACB=180°,∴∠ACP=∠ACB﹣∠PCB=12°,故答案为:12.【点评】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.若不等式组的解集是x>3,则m的取值范围是 m≤3 .【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,根据同大取大得到m≤3.【解答】解:,解①得x>3,∵不等式组的解集为x>3,∴m≤3.故答案为m≤3.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.15.如图,已知在四边形ABCD中,AD∥BC,AM平分∠BAD交BC于点M,BE⊥AM于点E,EF⊥AD 于点F,AB=7,EF=3,则△ABM的面积为 21 .【分析】过E作EG⊥AB于G,则EG=EF=3,即可求出△ABE的面积,证明BE是△ABM的中线,由三角形中线的性质即可得出答案.【解答】解:过E作EG⊥AB于G,如图:∵AM平分∠BAD,∴EG=EF=3,∠DAM=∠BAM,∴S△ABE=×7×3=,∵AD∥BC,∴∠BAM=∠AMB,∴AB=BM,∵BE⊥AM,∴BE是△ABM边AM上的中线,∴S△ABM=2S△ABE=2×=21.故答案为:21.【点评】本题考查了角平分线的性质,平行线的性质、等腰三角形的判定与性质、三角形中线的性质等知识;熟练掌握角平分线的性质是解题的关键.16.如图,函数y=kx+b(k,b为常数,k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,下列结论:①点A的横坐标为2;②关于x的不等式kx+b<0的解集为x>2;③关于x的方程kx+b=2x的解为x=2;④关于x的不等式组0<kx+b<2x的解集为1<x<2.其中正确的是 ②④ (只填写序号).【分析】根据所给函数图象,利用数形结合的思想及一次函数与一元一次不等式的关系,对所给结论依次进行判断即可.【解答】解:由所给函数图象可知,A点的纵坐标为2,则2x=2,解得x=1,所以点A的横坐标为1.故①错误.因为点B坐标为(2,0),所以当x>2时,函数y=kx+b的图象在x轴下方,即kx+b<0,则不等式kx+b<0的解集为x>2.故②正确.因为函数y=2x和函数y=kx+b交点的横坐标为1,所以方程kx+b=2x的解为x=1.故③错误.由函数图象可知,当x>1时,函数y=kx+b的图象在函数y=2x图象的下方,即kx+b<2x,当x<2时,函数y=kx+b的图象在x轴上方,即kx+b>0,所以关于x的不等式组0<kx+b<2x的解集为1<x<2.故④正确.故答案为:②④.【点评】本题考查一次函数与一元一次不等式及一次函数与一元一次方程,数形结合思想的巧妙运用是解题的关键.三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.17.(4分)已知:如图,四边形ABCD;求作:点P,使点P在四边形ABCD内部,PD=PC,且点P到∠BAD两边的距离相等.【分析】作∠BAD的角平分线,作CD的垂直平分线,两条线交于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查了作图﹣复杂作图,角平分线的性质,线段垂直平分线的性质,解决本题的关键是掌握角平分线和线段垂直平分线的作法.四.解答题(本大题共7小题,共68分)18.(20分)计算:(1)解不等式x﹣1≥2x;(2)解不等式,并把解集表示在数轴上;(3)求不等式3(x﹣3)﹣6<2x﹣10的非负整数解;(4)解不等式组:;(5)解不等式组:.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1,并把解集表示在数轴上即可;(3)先求出不等式的解集,再求出其非负整数解即可;(4)(5)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)移项得,x﹣2x≥1,合并同类项得,﹣x≥1,x的系数化为1得,x≤﹣1;(2)去分母得,4+3x≤2(1+2x),去括号得,4+3x≤2+4x,移项得,3x﹣4x≤2﹣4,合并同类项得,﹣x≤﹣2,x的系数化为1得,x≥2,在数轴上表示为:;(3)去括号得,3x﹣9﹣6<2x﹣10,移项得,3x﹣2x<﹣10+9+6,合并同类项得,x<5,故其非负整数解为:0,1,2,3,4;(4),由①得,x≤1,由②得,x<3,故不等式组的解集为:x≤1;(5),由①得,x<,由②得,x≥1.故不等式组的解集为:1≤x<.【点评】本题考查的是解一元一次不等式组,解一元一次不等式及在数轴上表示不等式的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.19.(6分)如图,BD,CE是△ABC的高,且BD=CE.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,AB=2,求△ABC的高BD.【分析】(1)由“HL”可证Rt△CDB≌Rt△BEC,可得∠ABC=∠ACB,即可求解;(2)由直角三角形的性质可求AD的长,由勾股定理可求解.【解答】(1)证明:∵BD,CE是△ABC的高,∴∠ADB=∠AEC=90°,在Rt△CDB和Rt△BEC中,,∴Rt△CDB≌Rt△BEC(HL),∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)解:∵∠A=60°,∠BDA=90°,∴∠ABD=30°,∴AD=AB=1,∴BD===.【点评】本题考查了全等三角形的判定和性质,直角三角形的性质,证明三角形全等是解题的关键.20.(6分)△ABC的各顶点坐标分别为A(1,4),B(3,4),C(3,1),将△ABC先向下平移2个单位长度,再向左平移4个单位长度,得到△A1B1C1.(1)如果将△A1B1C1看成是由△ABC经过一次平移得到的,则平移的距离是 2 个单位长度;(2)在y轴上有点D,则AD+CD的最小值为 5 个单位长度;(3)作出△ABC绕点O顺时针旋转90°后的△A2B2C2.【分析】(1)利用网格根据勾股定理计算即可;(2)取点A关于y轴的对称点A′,连接A′C交y轴于点D,可得AD+CD的最小值即为A′C的长度;(3)根据旋转的性质即可作出△ABC绕点O顺时针旋转90°后的△A2B2C2.【解答】解:(1)∵将△A1B1C1看成是由△ABC经过一次平移得到的,∴平移的距离是=2个单位长度;故答案为:2;(2)如图点D为所求,∴AD+CD的最小值为=5个单位长度;故答案为:5;(3)如图,△A2B2C2即为所求.【点评】本题考查了作图﹣旋转变换,平移变换,轴对称﹣最短路线问题,解决本题的关键是掌握旋转和平移的性质.21.(8分)如图,已知△ABC,以AC为边构造等边△ACD,连接BD,在BD上取一点O,使∠AOD=60°,在OD上取一点E,使AO=AE,连接OC.(1)求证:△AOC≌△AED;(2)OA,OB,OC三条线段长度之和与图中哪条线段的长度相等?请说明理由.【分析】(1)根据SAS证明三角形全等即可;(2)结论:BD=OA+OB+OC,理由全等三角形的性质证明.【解答】(1)证明:∵∠AOE=60°,AO=AE,∴△AOE是等边三角形,∴∠OAE=60°,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°=∠OAE,∴∠OAC=∠EAD,在△OAC和△EAD中,,∴△AOC≌△AED(SAS);(2)解:结论:BD=OA+OB+OC.理由:∵△AOE是等边三角形,∴OA=OE,∵△AOC≌△AED,∴OC=DE,∴BD=OB+OE+ED=OB+OA+OC.【点评】本题考查全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22.(9分)两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到30张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共30人,估计儿童8至16人.导游选择哪种购票方式花费较少?【分析】(1)设成人票的单价是x元,儿童票的单价是y元,根据“小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设该团儿童有m人,则该团成人有(30﹣m)人,购买团体票所需费用为2400元,不购买团体票所需费用为(﹣50m+3000)元,分2400<﹣50m+3000,2400=﹣50m+3000及2400>﹣50m+3000三种情况,求出x的取值范围或x的值,再结合“估计儿童8至16人”,即可得出结论.【解答】解:(1)设成人票的单价是x元,儿童票的单价是y元,根据题意得:,解得:.答:成人票的单价是100元,儿童票的单价是50元;(2)设该团儿童有m人,则该团成人有(30﹣m)人,购买团体票所需费用为100×0.8×30=2400(元),不购买团体票所需费用为100(30﹣m)+50m=(﹣50m+3000)元,当2400<﹣50m+3000时,m<12,∴当8≤m<12时,购买团体票花费较少;当2400=﹣50m+3000时,m=12,∴当m=12时,两种购票方式花费一样多;当2400>﹣50m+3000时,m>12,∴当12<m≤16时,不购买团体票花费较少.答:当8≤m<12时,购买团体票花费较少;当m=12时,两种购票方式花费一样多;当12<m≤16时,不购买团体票花费较少.【点评】本题考查了二元一次方程组的应用、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).23.(9分)【问题情境】如图①,△ABC的内角∠ABC,∠ACB的平分线BD,CD交于点D.【建立模型】(1)如图②,过点D作BC的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.(2)如图③,在图①的基础上,过点A作直线l∥BC,延长BD和CD,分别交l于点E,F,若AB=4,AC=3,请你直接写出EF的长度(不需要证明).【类比探究】如图④,△ABC的内角∠ABC的平分线BD,与它的外角∠ACG的平分线CD交于点D,过点D作BC 的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.【分析】(1)先由角平分线定义得∠DBC=∠DBE,∠DCB=∠DCF,再由平行线的性质得∠BDE=∠DBC,∠CDF=∠DCB,则∠DBE=∠BDE,∠CDF=∠DCF,证出BE=DE,CF=DF,进而得出结论;(2)同(1)证出AE=AB,AF=AC,进而得出结论;(3)同(1)证出DE=BE,DF=CF,进而得出结论.【解答】解:(1)EF=BE+CF,理由如下:如图②,∵∠ABC和∠ACB的平分线相交于点D,∴∠DBC=∠DBE,∠DCB=∠DCF,∵EF∥BC,∴∠BDE=∠DBC,∠CDF=∠DCB,∴∠DBE=∠BDE,∠CDF=∠DCF,∴BE=DE,CF=DF,∴DE+DF=BE+CF,即EF=BE+CF;(2)EF=7;理由如下:如图③,∵∠ABC和∠ACB的平分线相交于点D,∴∠EBC=∠ABE,∠FCB=∠ACF,∵EF∥BC,∴∠AEB=∠EBC,∠FCB=∠AFC,∴∠ABE=∠AEB,∠ACF=∠AFC,∴AE=AB,AF=AC,∵AB=4,AC=3,∴EF=AE+AF=4+3=7;(3)EF=BE﹣CF,理由如下:如图④,∵∠ABC的平分线BD与∠ACG的平分线CD交于点D,∴∠DBC=∠ABD,∠ACD=∠DCG,∵DE∥BC,∴∠DBC=∠BDE,∠CDF=∠DCG,∴∠ABD=∠BDE,∠ACD=∠CDF,∴DE=BE,DF=CF,∵EF=DE﹣DF,∴EF=BE﹣CF.【点评】本题是三角形综合题,考查了等腰三角形的判定、角平分线定义、平行线的性质等知识;本题综合性强,熟练掌握平行线的性质和角平分线定义,证明三角形为等腰三角形是解题的关键,属于中考常考题型.24.(10分)如图,在长方形ABCD中,DC=3cm,AD=6cm,延长BC至点E,使CE=4cm,连接DE.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s;连接PQ,DQ.当点Q停止运动时,点P也停止运动.设运动时间为t(s)(0<t≤3),解答下列问题:(1)当t为何值时,使点Q在∠PDC的平分线上?(2)当t为何值时,△DQE为等腰三角形?(3)设四边形PQED的面积为y(cm2),求y与t之间的关系式及四边形PQED面积的最大值.【分析】(1)由题意得:AP=t cm,CQ=2t cm,利用平行线的性质,角平分线的定义和等腰三角形的判定定理解答即可;(2)利用分类讨论的思想方法解答,分三种情形,利用等腰三角形的性质列出关于t的方程,解方程即可求得结论;(3)利用t的代数式表示出线段PD,EQ,利用图形的面积公式解答即可得出y与t之间的关系式,再利用一次函数的性质解答即可得出结论.【解答】解:(1)由题意得:AP=t cm,CQ=2t cm.∵点Q在∠PDC的平分线上,∴∠ADQ=∠CDQ,∵四边形ABCD为矩形,∴AD∥BC,∴∠ADQ=∠CQD,∴∠CQD=∠CDQ,∴CQ=CD,∴2t=3,∴t=.∴当t为s时,使点Q在∠PDC的平分线上.(2)①当ED=EQ时,如图,∵DC=3cm,CE=4cm,DC⊥CE,∴DE==5(cm),∴EQ=ED=5cm∴CQ=1cm.∴2t=1,∴t=.②当ED=DQ时,如图,∵ED=DQ,DC⊥CE,∴CQ=CE=4 cm,∴2t=4,∴t=2.③由于点Q在线段BC上,不存在QD=QE的情形.综上,当t为s或2s时,△DQE为等腰三角形.(3)由题意得:AP=t cm,CQ=2t cm,∴PD=AD﹣AP=(6﹣t)cm,QE=CQ+CE=(4+2t)cm,∴y=(PD+QE)•CD=3(6﹣t+4+2t)=t+15.∵>0,∴y随t的增大而增大,∵0<t≤3,∴当t=3时,y的最大值=3+15=19.5(cm2).【点评】本题主要考查了矩形的性质,角平分线的定义,平行线的性质,等腰三角形的性质,分类讨论的思想方法,梯形的面积,熟练掌握矩形的性质和应用分类讨论的思想方法解得是解题的关键.。
江苏省南通市通州区2023-2024学年八年级下学期期中数学试题(含答案)
2023~2024学年(下)初二期中学业水平质量监测数学试卷注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟。
2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.已知中,,则的度数为()A .60°B .80°C .100°D .120°2.下列各点在函数图象上的是()A .B .C .D .3.如图,D ,E 分别是AC ,BC 的中点,测得,则池塘两端A ,B 的距离为()A .45m B .30m C .22.5m D .7.5m4.若直线(k 是常数,)经过第一、三象限,则k 的值可以是()A .B .C .D .25.如图,在中,对角线AC 与BD 交于点O ,则下列结论一定正确的是()A .B .C .D .6.如图,四边形ABCD 中,E ,F ,G ,H 分别是AD ,BC ,BD ,AC 的中点.若四边形EGFH 是菱形,则四边形ABCD 需满足的条件是()ABCD 60A ∠=︒C ∠21y x =-()0,1()1,1-()1,3--()2,515m DE =y kx =0k ≠2-1-12-ABCD AC BD =OA OC =AC BD⊥ADC BCD ∠=∠A .B .C .D .7.“漏壶”是一种古代计时器,在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x 表示漏水时间,y 表示壶底到水面的高度.不考虑水量变化对压力的影响,下列图象最适合表示y 与x 对应关系的是( )A .B .C .D .8.两张全等的矩形纸片ABCD ,AECF 按如图所示的方式交叉叠放,,AE 与BC 交于点G ,AD 与CF 交于点H .若,则四边形AGCH 的面积为()A .4B .C .8D .169.如图,中,以点B 为圆心,适当长为半径作弧,交BA ,BC 于F ,G ,分别以点F ,G 为圆心,大于长为半径作弧,两弧交于点H ,作射线BH 交AD 于点E ,连接CE .若,则AB 的长为()A.1.5B C.2D AB DC =AB DC ⊥AC BD =AC BD⊥,AB AF AE BC ==30,2AGB AB ∠=︒=ABCD 12FG ,3,CE AD AD BE ⊥==10.对于一次函数,其自变量和函数的两组对应值如表所示,则的值为()x4k y c A .B .C .2D .7二、填空题(本大题共8小题,第11~12小题每小题3分,第13~18小题每小题4分,共30分.不需要写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.函数中,自变量x 的取值范围是______.12.若正比例函数的图象经过点,则______.13.如图,平面直角坐标系xOy 中,四边形AOBC 是菱形.若点A 的坐标是,则菱形的周长为______.14.将函数的图象向下平移2个单位长度,所得图象对应的函数表达式是______.15.我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s (单位:步)关于善行者的行走时间t 的函数图象,则两图象交点P 的纵坐标是______.16.如图,在中,于点D ,E 是斜边AB 的中点,则线段DE 的长为______.17.如图,直线分别交x 轴、y 轴于A,B 两点,C 是线段OA 上一点,,则点C 的坐标为______.y kx b =+b c -4c -8-2-y =y kx =()1,2-k =()6,823y x =+Rt ABC △90,67.5,8,ACB B AB CD AB ∠=︒∠=︒=⊥122y x =+45ABC ∠=︒18.如图,在矩形ABCD 中,,点E ,F 分别是边AD ,BC 上的动点,且,过点B 作直线EF 的垂线,垂足为H ,则线段BH 长的最大值为______.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)19.(本小题满分10分)已知y 是x 的一次函数,且当时,;当时,.(1)求这个一次函数的解析式;(2)若点在该一次函数的图象上,求a 的值.20.(本小题满分8分)如图,在中,E 是BC 上一点,,点F 在DE 上,.求证:.21.(本小题满分10分)如图,在平面直角坐标系中,点在直线上,直线l 经过点A ,交y 轴于点.2,3AB BC ==AE CF =2x =4y =1x =-1y =(),1a a -ABCD DE DA =DAF EDC ∠=∠DF EC =()2,A m -22y x =--()0,4B(1)求m 的值和直线l 的函数表达式;(2)若点在直线l 上,点在直线上.若,求t 的取值范围.22.(本小题满分11分)如图,在菱形ABCD 中,过点A 作于点E ,延长BC 至点F ,使,连接DF .(1)求证:四边形AEFD 是矩形;(2)若,求AD 的长.23.(本小题满分12分)如图,有两个全等的直角三角形,直角边长分别为2和4,我们知道,用这样的两个直角三角形可以拼成平行四边形.(1)请画出所有可能拼成的平行四边形:(要求:用直尺画图,并在图上标出平行四边形每一条边的长度.)(2)在所有拼成的平行四边形中,求最长对角线的长度.24、(本小题满分12分)家电超市出售某品牌手机充电器,每个进价50元,了解到有A ,B 两个厂家可供选择,为了促销、两个厂家给出了不同的优惠方案:A 厂家:一律打8折出售;B 厂家:20个以内(含20个)不打折,超过20个后,超过的部分打7折。
江西省南昌市第三中学教育集团2023-2024学年八年级下学期期中数学试卷(含答案)
江西省南昌市第三中学教育集团2023-2024学年八年级(下)期中数学试卷一、单选题(18分。
每小题3分,共6小题)1.(3分)若是二次根式,则a的值可以是( )A.0B.﹣1C.﹣2D.﹣32.(3分)下列各式中,属于最简二次根式的是( )A.B.C.D.3.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是( )A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c24.(3分)五根小棒,其长度(单位:cm)分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是( )A.B.C.D.5.(3分)如图,在平行四边形ABCD中,AE平分∠BAD交BC于点E,若平行四边形ABCD的周长为24,EC=2,则CD的长为( )A.5B.6C.7D.86.(3分)如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件能判定这个四边形是平行四边形的是( )A.AB∥DC,AD=BC B.AB=BC,AD=CDC.AB∥DC,AB=DC D.AD=BC,AO=CO二、填空题(18分。
每小题3分,共6小题)7.(3分)比较大小: .(填“>、<、或=”)8.(3分)已知,那么x y= .9.(3分)如图,在平行四边形ABCD中,∠A=125°,则∠1= .10.(3分)如图:AB∥CD,AD∥BC,AD=5,BE=8,△DCE的面积为6,则四边形ABCD的面积为 .11.(3分)如图,以直角△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1<S2<S3,若S1=9,S3=25,则S2为 .12.(3分)将两个直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AC=DE=6.∠E=30°,∠B=45°.若点C在线段EF上运动(不与E,F重合),在运动的过程中,AC始终经过点D,当CD的长为整数时,则B,D之间的距离为 .三、解答题(30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014学年八年级下学期期中考试数学试卷
一、精心选一选(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填入答题表中,每小题3分,共27分) 1、在(3)5,,,2a b x x x a b x a b π-+++-,9 x +y
10 中,是分式的有( ) A 、1个 B 、2个 C 、3个 D 、4个
2、下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )
A 、a=1.5,b=2, c=3
B 、a=7, b=24, c=25
C 、a=6, b=8, c=10
D 、a=3, b=4, c=5
3、分式
x
x 1-的值为0,则x 的值为( ) A 、1-=x B 、0=x C 、1=x D 、0≠x
4、计算⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-⋅2438234
2y x y x y x 的结果是( ) A 、x 3- B 、x 3 C 、x 12- D 、x 12
5、若分式方程4
24-+=-x a x x 有增根,则a 的值为( ) A 、4 B 、2 C 、1 D 、0
6、 下列命题的逆命题不成立...
的是( ) A 、同旁内角互补,两直线平行; B 、对顶角相等;
C 、全等三角形的对应边相等;
D 、 直角三角形两直角边的平方和等于斜边的平方.
7、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
8、已知x 、y 为正数,且│x-4│+(y-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )
A 、5
B 、25
C 、7
D 、15
9、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数1y x
=
的图象上,则下列结论中正确的是( )
A 、123y y y >>
B 、213y y y >>
C 、312y y y >>
D 、321y y y >>
二.填空题(每小题3分,共39分)
10、计算: 16-= 。
11、用科学记数法表示: 0.00002006= 。
12、当x 时,分式
x -13有意义。
13、如果函数2-=k kx
y 是反比例函数,那么k = ; 14、计算:a
b b b a a -+-= . 15、当x 为 时,分式2
122++-x x 的值为正数。
16、如果点(2,3)和(-3,a )都在反比例函数x
k y =的图象上,则a = 。
17、在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=_______。
18、如下图,已知OA =OB ,那么数轴上点A 所表示的数是____________。
19、已知311=-x y ,则分式y
xy x y xy x ---+2232的值为 。
20、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
……
第n 个图案中有白色地面砖_____________块;
21、如图,一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。
22、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
三、解答题 (共67分))
21、计算:(每题4分,共16分)
(1)4
22-a a +a -21 . (2))()()(32
22
a b a b b a -÷-⋅-.
(4
)先化简再求值:2211(
),121x x x x x x x +-÷+--+其中。
22.(本题5分)解方程:223-x +x
-11 =3.
23、(6分)A 、B 两种机器人都被用来搬运化工材料,A 型机器人比B 型机器人每小时多搬运
30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?
24、(6分)如图,在Rt △ABC 中,∠BAC=90o ,点D 在AC 边上,且△ABD 是等边三角形,若AB=2,求△ABC 的周长。
(结果保留根号)
2009011(1)()3
--+-+(3)
25、(6分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A 、
李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km .
(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置P ;
(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最
节省的铺设水管的费用为多少元?
26、(9分)如图, 已知反比例函数y =x k
的图象与一次函数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点。
(1)求这两个函数的解析式;
(2)求△MON 的面积;
(3) 根椐函数图象直接写出一次函数的值大于反比例函数的值的x 的取值范围。
27、(本题6分)如图,等腰梯形ABCD 放置在平面直角坐标系中,已知A (-2,0)、B (6,0)、D (0,3),反比例函数的图象经过点C 。
(1)求点C 的坐标和反比例函数的解析式;
(2)将等腰梯形ABCD 向上平移2个单位,问点B 是否落在双曲线上?
A 河边。