中考数学知识点总结(完整版)
中考数学复习知识点归纳总结7篇
中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
中考中可能会涉及自然数的连续性及自然数的个数等问题。
复习时需要注意对自然数概念的理解及运用。
2. 整数的认识:整数包括正整数、零和负整数。
在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。
(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。
在中考复习中,需要掌握代数式的简化、代入计算等知识点。
同时还需要加强对代数式在实际问题中应用的能力培养。
如与面积计算、路程问题等结合出题的情况很常见。
例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。
因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。
(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。
它们在日常生活中的应用非常广泛。
3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。
(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。
2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。
二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。
2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。
3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。
(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。
中考数学知识点总结完整版
第一讲 数与式第1课时 实数的有关概念考点一、实数的概念及分类 〔3分〕正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数〔π〕、开方开不尽的数 负无理数凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;考点二、实数的倒数、相反数和绝对值 〔3分〕2、数轴:数轴是规定了原点、正方向、单位长度的一条直线.3、相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 绝对值的问题经常分类讨论;5、倒数假设ab =1⇔ a 、b 互为倒数;假设ab =-1⇔a 、b 互为负倒数。
倒数等于本身的数是1和-1。
零没有倒数。
11a a-=考点三、平方根、算数平方根和立方根 〔3—10分〕 6、平方根①如果一个数的平方等于a ,那么这个数就叫做a 的平方根〔或二次方跟〕。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±〞。
②算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a 〞。
正数和零的算术平方根都只有一个,零的算术平a ,2a =;注意a 的双重非负性:0≥a a ≥07、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根〔或a 的三次方根〕。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
(完整版)中考数学知识点总结(完整版)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 —a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a(a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号. 4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示.实数和数轴上的点是一一对应的关系. 四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
中考数学知识点总结(最全)
中考数学知识点总结第一章实数考点一、实数的概念及分类(有理数、无理数)考点二、实数的倒数、相反数和绝对值考点三、平方根、算数平方根和立方根考点四、近似数、有效数字和科学记数法考点五、实数大小的比较考点六、实数的运算(做题的基础,分值相当大)考点七、实数的综合与创新第二章代数式考点一、整式的概念与运算考点二、分式考点三、多项式考点四、求代数式的值考点五、因式分解考点六、二次根式考点七、代数式的综合与创新第三章不等式与不等式组考点一、不等式的概念考点二、不等式基本性质考点三、一元一次不等式考点四、一元一次不等式组考点五、列不等式(组)解应用题考点六、不等式的综合与创新第四章方程与方程组考点一、一元一次方程的概念考点二、一元二次方程考点三、一元二次方程的解法考点四、一元二次方程根的判别式考点五、一元二次方程根与系数的关系考点六、分式方程考点七、二元一次方程组考点八、方程的综合与创新第五章函数及其图像考点一、平面直角坐标系考点二、不同位置的点的坐标的特征考点三、函数及其相关概念考点四、正比例函数和一次函数考点五、反比例函数考点六、二次函数的概念和图像考点七、二次函数的解析式考点八、二次函数的最值考点九、二次函数的性质考点十、函数的综合与创新第六章统计与概率考点一、平均数、众数、中位数考点二、统计学中的几个基本概念考点四、方差与极差考点五、频率分布考点六、确定事件和随机事件考点七、随机事件发生的可能性考点八、确定事件和随机事件的概率之间的关系考点九、古典概型考点十、列表法求概率考点十一、树状图法求概率考点十二、利用频率估计概率考点十三、统计图考点十四、调查方式与随机事件考点十五、概率的计算与实际应用考点十六、统计与概率的综合与创新第七章图形的初步认识与三角形考点一、角与线考点二、三角形的概念与全等三角形考点三、等腰三角形与直角三角形考点四、命题、定理、证明考点五、投影与视图考点六、三角形的综合与创新第八章全等与相似考点一、比例线段考点二、平行线分线段成比例定理考点三、相似三角形考点四、全等与相似的综合与创新第九章四边形考点一、四边形的相关概念考点二、平行四边形考点三、矩形考点四、菱形考点五、正方形考点六、梯形考点七、四边形的综合与创新第十章解直角三角形考点一、直角三角形的性质与判定考点二、勾股定理考点三、锐角三角函数的概念与解直角三角形考点四、解直角三角形的实际应用考点五、解直角三角形的综合与创新第十一章圆考点一、圆的概念与性质考点二、过三点的圆考点三、直线与圆的位置关系考点四、圆和圆的位置关系考点五、三角形的内切圆考点六、正多边形和圆考点七、与正多边形有关的概念(对称性)考点八、圆的弧长及扇形面积考点九、圆的综合与创新第十二章图形的变换考点一、对称考点二、平移与旋转考点三、中心对称考点四、位似的概念、性质、画法、判定考点五、图形变换的综合创新、。
中考数学必考知识点及总结
中考数学必考知识点及总结一、代数1.整数运算:加减乘除,整数的乘方、乘方根、分式等的运算。
2.一元一次方程:解一元一次方程的方法,如用等式的性质、加减消元法、加法逆元素法、代入法等。
3.一元一次方程组:联立一元一次方程组的解法,如代入法、消元法等。
4.二元一次方程:通过解方程组方法以及用递推法。
5.实数的性质:包括有理数和无理数的性质、实数的数轴表示、实数的大小比较、实数的运算律等。
6.整式运算:包括多项式的加减乘除、综合运算等。
7.分式运算:包括分式的加减乘除、分式的化简、分式方程的解等。
8.二次根式:二次根式的概念、性质以及二次根式的加减乘除、化简等相关运算。
9.二次根式方程:涉及到解二次根式方程以及二次根式的应用等。
10.不等式:包括一元一次不等式、一元一次绝对值不等式、一元一次分式不等式、二元一次不等式等的解法。
11.初步函数:包括函数的概念、函数的表示、函数的对应法则、函数的性质等。
12.函数的图像:初步了解一元一次函数、一元二次函数的图像以及通过解题的方法掌握一元一次函数、一元二次函数的图像。
13.数列与等差数列:了解数列的概念、等差数列的概念、等差数列的通项公式、前n项和公式等。
二、平面几何1.线段的中点:中点的性质,中点的坐标,中点的应用。
2.线段的分点:分点的概念,分点的坐标,分点的共线性等相关知识。
3.三角形:三角形的性质、三角形的分类、三角形的周长、面积等相关知识。
4.多边形:包括正多边形的边数、对角、内角和外角等相关知识。
5.圆的相关性质:包括圆周率π、圆的面积、周长、内切外切相切线等相关知识。
6.平行线与相交线:包括平行线的性质、相交线的性质、平行线的判定等相关知识。
7.三角形的相似:了解相似三角形的性质、相似三角形的判定等相关知识。
8.勾股定理:了解勾股定理的概念、勾股定理的应用等相关知识。
9.平面直角坐标系:了解平面直角坐标系的概念、直角坐标系的应用等相关知识。
10.直角三角形:包括直角三角形的性质、勾股定理及其应用等相关知识。
最新中考数学知识点总结完整版
第一讲 数与式 1第1课时 实数的有关概念 2考点一、实数的概念及分类 (3分) 3正有理数 4有理数 零 有限小数和无限循环小数 5实数 负有理数 6正无理数 7无理数 无限不循环小数(π)、开方开不尽的数 8负无理数 9 凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负10分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 11也不一定是正数;不是有理数; 12考点二、实数的倒数、相反数和绝对值 (3分) 132、数轴:数轴是规定了原点、正方向、单位长度的一条直线. 143、相反数: 15(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; 16 (2)相反数的和为0 a+b=0 a 、b 互为相反数.174、绝对值: 18(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意19义是数轴上表示某数的点离开原点的距离; 20(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 绝对值的问题经常分类讨论;21 5、倒数 22若ab =1 a 、b 互为倒数;若ab =-1 a 、b 互为负倒数。
倒数等于本身的数是1和-1。
零没有23倒数。
11a a -= 24考点三、平方根、算数平方根和立方根 (3—10分) 256、平方根 26①如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方27 根,他们互为相反数;零的平方根是零;负数没有平方根。
28正数a 的平方根记做“a ±”。
29②算术平方根 30正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,312a a ,(2a a =;注意a 的双重非负性:0≥a a ≥0 327、立方根 33如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
中考数学复习知识点归纳总结6篇
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
中考数学知识点总结(优秀4篇)
中考数学知识点总结(优秀4篇)一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。
2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。
二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。
在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
三、直角三角形和勾股定理有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。
初中数学中考知识点总结归纳完整版
初中数学中考知识点总结归纳完整版一、数的基本运算1.整数的加减乘除运算及应用2.分数的加减乘除运算及应用3.小数的加减乘除运算及应用二、数的性质与计算1.数的整除关系与最大公约数、最小公倍数2.约分与通分3.数的相反数、绝对值及其性质三、代数式与方程式1.字母代数式与值的计算2.解方程与方程的应用3.利用代数式解决实际问题的能力四、平面图形的认识与计算1.平面图形的名称与性质2.几何体的名称与性质3.平移、旋转、对称变换的认识与应用五、分析与统计1.折线图与旋转对称图形2.数据的收集与整理3.数据的分析与应用六、空间与三维图形1.几何体与其中特殊点的认识2.几何体间的位置关系及刻画3.解决空间问题的应用能力七、比例、百分数与利率1.比例与比例的应用2.百分数与百分数的应用3.利率与利率的应用总结:初中数学中考要求学生掌握数的基本运算、数的性质与计算、代数式与方程式、平面图形的认识与计算、分析与统计、空间与三维图形、比例、百分数与利率等知识点。
在数的基本运算方面,要熟练掌握整数、分数和小数的四则运算及其应用;在数的性质与计算方面,要理解数的整除关系,掌握最大公约数和最小公倍数的求解方法;在代数式与方程式方面,要能够理解字母代数式的含义,掌握解方程和利用代数式解决实际问题的能力;在平面图形的认识与计算方面,要了解各种平面图形的名称和性质,掌握平移、旋转和对称变换的应用;在分析与统计方面,要能够收集和整理数据,分析并应用数据解决问题;在空间与三维图形方面,要熟悉几何体的名称和性质,掌握解决空间问题的应用能力;在比例、百分数与利率方面,要理解比例和百分数的概念,能够应用比例和百分数解决问题。
中考数学知识点总结(完整版)
中考数学知识点总结(完整版)一、实数的分类:1、有理数:任何一个有理数总可以写成的形式,其中p、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如、;特定结构的不限环无限小数,如1、0001……;特定意义的数,如π、等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a的相反数是20%)x元,方程容易得出。
例6、某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降低成本措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
若商场平均每天要盈利1200元,每件衬衫应降价多少元?分析:设每件衬衫应该降价x元,则每件衬衫的利润为(40-x)元,平均每天的销售量为(20+2x)件,由关系式:总利润=每件的利润售出商品的叫量,可列出方程解:略代数部分第五章:不等式及不等式组知识点:一、不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l)不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a> b, c为实数a+c>b+c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a>b, c>0ac>bc。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a>b,c<0ac<bc、注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a,b的大小关系(三种):(1)a – b >0 a>b (2)a – b=0a=b (3)a–b<0a<b4、(1)a>b>0 (2)a>b>0二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
数学中考知识点归纳2024
数学中考知识点归纳2024一、数与代数。
(一)有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 能准确区分有理数和无理数,无理数是无限不循环小数,如π、√(2)等。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 减法:减去一个数,等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。
- 除法:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n中,a 叫做底数,n叫做指数。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
- 运算顺序:先算乘方,再算乘除,最后算加减;有括号的先算括号里面的。
(二)实数。
1. 平方根、算术平方根、立方根。
- 平方根:如果x^2 = a(a≥slant0),那么x叫做a的平方根,记作x=±√(a)。
- 算术平方根:正数a的正的平方根叫做a的算术平方根,记作√(a),0的算术平方根是0。
- 立方根:如果x^3 = a,那么x叫做a的立方根,记作x = sqrt[3]{a}。
2. 实数的大小比较。
- 正数大于0,0大于负数,正数大于负数。
- 两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
- 还可以通过数轴比较实数大小,数轴上右边的数总比左边的数大。
(三)代数式。
1. 代数式的概念。
- 用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
中考数学知识点总结归纳完整版
中考数学知识点总结归纳完整版
数学是一门重要的科学学科,对于我们的学习和生活都有着重要的作用。
而中考数学则是衡量学生数学水平的重要指标。
下面是对中考数学知识点的总结归纳:
一、整数和分数
1.整数的四则运算和混合运算
2.分数的四则运算和混合运算
3.整数与分数之间的互换
4.带分数的化简与计算
二、代数式和方程
1.代数式的定义和求值
2.合并同类项和提取公因式
3.一元一次方程和一元一次不等式
4.一元一次方程组的解法
5.一元一次不等式组的解法
三、几何
1.几何图形的基本概念和性质
2.平行线和三角形的性质
3.相似与全等的判定
4.三角形的面积和勾股定理
5.弧长和扇形的面积
6.圆的性质和相关定理
7.正多边形的性质和圆周角的证明
四、函数
1.函数的基本概念和表示方法
2.常用函数的图象和性质(线性函数、二次函数、绝对值函数等)
3.函数的增减性和最值的求解方法
4.函数的复合和反函数
5.解直接变比例和反比例的问题
五、统计与概率
1.统计图表的制作和分析
2.随机事件和概率的定义
3.事件间的关系和计算方法
4.排列和组合的计算方法
5.抽样调查和样本误差的计算
六、数与式的计算
1.取正负有理数的方法
2.科学记数法的转换和计算
3.根式的定义和运算
4.多项式的加减乘除运算
5.代数式的乘法和因式分解
七、解决实际问题
1.信息的理解和抽象
2.利用数学知识解决实际问题的方法
3.分析问题和建立模型
4.计算结果的验证和解释
5.问题的探究和拓展。
中考数学知识点归纳必看2023
中考数学知识点归纳必看2023初中数学公式知识点大全1.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
2.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
3.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
4. 一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
5.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
6.分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
7.分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
8.最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
9.特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
10.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
11.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
12.对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反, Y轴对称,x前面添负号;原点对称记,横纵坐标变符号。
13.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
14.函数图像的移动规律: 若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
中考数学知识点归纳总结
中考数学知识点归纳总结一、数与代数1. 有理数- 有理数的定义- 有理数的分类(正数、负数、整数、分数)- 有理数的运算(加、减、乘、除、乘方、开方)2. 整数- 整数的性质- 整数的四则运算- 整数的比较和排序3. 分数与小数- 分数的基本性质- 分数与小数的互化- 分数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘除运算5. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)- 不等式的性质和解集表示- 一元一次不等式及其解集6. 函数- 函数的概念- 线性函数和二次函数的图像及性质- 函数的基本运算(函数的和、差、积、商)二、几何1. 平面几何- 点、线、面的基本性质- 角的定义和分类(邻角、对角、同位角等)- 三角形的性质(等边、等腰、直角三角形)- 四边形的性质(矩形、菱形、正方形、平行四边形、梯形) - 圆的基本性质和圆的有关计算2. 立体几何- 立体图形的基本概念(体积、表面积)- 常见立体图形的性质(长方体、正方体、圆柱、圆锥、球)3. 图形的变换- 平移、旋转、轴对称、中心对称- 相似图形和全等图形的性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 计算简单事件的概率- 用树状图解决概率问题四、解题技巧与策略1. 解题方法- 列方程解应用题- 利用图形解决几何问题- 分类讨论法2. 考试策略- 时间管理- 题目审题- 检查与复核五、重要公式与定理- 面积公式(三角形、四边形、圆、梯形等)- 体积公式(长方体、正方体、圆柱、圆锥、球)- 勾股定理及其应用- 相似三角形定理- 圆周角定理- 百分比和利润计算以上是中考数学的主要知识点归纳总结。
在实际应用中,学生应根据具体的教学大纲和考试要求,对每个知识点进行深入学习和练习,以确保在考试中能够熟练运用。
中考数学知识点总结(完整版)
中考数学知识点总结(完整版)中考数学知识点总结一、整数及其运算1. 整数的概念:包括正整数、负整数和零。
2. 整数的比较:根据绝对值的大小进行比较,绝对值越大的整数越小。
3. 整数的加法和减法:- 同号相加,取相同符号,数值相加;- 异号相加,取绝对值较大的符号,数值取较大的减去较小的;- 整数减法可以转换为加法运算。
二、分数及其运算1. 分数的概念:由分子和分母组成,表示部分与整体的比例关系。
2. 分数的比较:可以先通分,再比较分子的大小。
3. 分数的加法和减法:- 分母相同,分子相加或相减;- 分母不同,先通分,再进行加减运算。
4. 分数的乘法和除法:- 分子相乘,分母相乘;- 除法转换为乘法,将除数倒数乘以被除数。
三、代数式及其运算1. 代数式的概念:由数字、字母和算符组成,可表示一个或多个数的和、差、积、商。
2. 代数式的加法和减法:将同类项相加或相减,并合并同类项。
3. 代数式的乘法:使用分配律,将每一项与其他项相乘。
4. 代数式的除法:将除法转换为乘法,将除数的倒数乘以被除数。
四、方程与方程组1. 方程的概念:由等号连接的两个代数式构成,表示两个量相等的关系。
2. 解一元一次方程:通过逆运算,使得未知数单独在一边,求出未知数的值。
3. 解一元一次不等式:通过运算规则,求出不等式的解集。
4. 方程组的概念:由多个方程组成,表示多个变量之间的关系。
5. 解二元一次方程组:通过消元法或代入法,求出方程组的解。
五、几何图形与计算1. 平面图形:包括点、线、线段、射线、角、三角形、四边形等。
2. 空间图形:包括立体图形如球体、长方体、正方体等。
3. 相似与全等:相似图形的对应边比值相等,全等图形各边和角相等。
4. 长度、面积、体积的计算公式:根据几何图形的特点,计算对应的量。
六、统计与概率1. 统计图表的读取与分析:理解直方图、折线图、饼图等的含义。
2. 平均数的计算:包括算术平均数、加权平均数等。
中考数学必背知识点(完整版)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的,分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的,形式,其中p 、q 是互质的,整数,这是有理数的,重要特征。
2、无理数:初中遇到的,无理数有三种:开不尽的,方根,如2、34;特定结构的,不限环无限小数,如1.101001000100001……;特定意义的,数,如π、45sin °等。
3、判断一个实数的,数性不能仅凭表面上的,感觉,往往要经过整理化简后才下结论。
二、实数中的,几个概念1、相反数:只有符号不同的,两个数叫做互为相反数。
(1)实数a 的,相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的,倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的,绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的,绝对值是一个非负数,从数轴上看,一个实数的,绝对值,就是数轴上表示这个数的,点到原点的,距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的,实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的,平方根,a 叫a 的,算术平方根。
(2)正数的,平方根有两个,它们互为相反数;0的,平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的,立方根。
(4)一个正数有一个正的,立方根;0的,立方根是0;一个负数有一个负的,立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的,直线称为数轴。
原点、正方向、单位长度是数轴的,三要素。
初中数学中考知识点总结归纳完整版
初中数学中考知识点总结归纳完整版中考数学知识点总结归纳一、数与式(100字)1.自然数、整数、有理数、实数等的概念和性质;2.分数、百分数、比例等的概念和运算规则;3.代数式的概念、运算规则与计算。
二、代数式的化简与计算(200字)1.代数式的加减法、乘法及相关的方法;2.分配律、结合律、交换律等运算法则;3.整式的因式分解与提公因式;4.代数式的合并同类项、合并同类项的计算。
三、方程与不等式(200字)1.一元一次方程与一元一次不等式;2.图解法、等式法、代入法等解方程和不等式的方法;3.解二元一次方程组。
四、几何基本概念和运算(200字)1.点、直线、线段、角、平行线、垂线等的基本概念;2.各种平行线间的性质和判定方法;3.同位角、内错角、同旁内角等角的性质;4.各种角的度量与角平分线、角的外角等概念;5.直角、钝角、锐角、双曲线的概念;6.垂心、外心、内心、重心等的概念和特点。
五、三角形的性质与计算(200字)1.三角形的周长、面积的计算;2.等腰三角形、等边三角形、直角三角形的特征;3.角平分线、中线、高线的性质和作图;4.同弧对应角、同旁内角等角的性质;5.正弦定理、余弦定理的应用。
六、比例与相似(200字)1.比例、比例尺及比例的性质与应用;2.相似三角形的性质、判定及应用;3.黄金比例及其应用。
七、数列的概念与运算(150字)1.等差数列与等比数列的概念及性质;2.数列的通项公式、求和公式的推导与应用;3.递推求解与递推数列。
八、平面坐标系与坐标计算(150字)1.平面直角坐标系的建立与性质;2.平面图形的坐标及其变化;3.坐标中点、斜率计算与应用。
九、统计与概率(150字)1.统计数据的整理、分析与表示;2.概率的基本概念与计算;3.实际问题的统计与概率应用。
总结起来,中考数学涉及的知识点主要包括:数与式、代数式的化简与计算、方程与不等式、几何基本概念和运算、三角形的性质与计算、比例与相似、数列的概念与运算、平面坐标系与坐标计算、统计与概率。
中考数学知识点总结(超全)
专题一数与式一,数的分类:【自然数】表示物体个数的1、2、3、4···等都称为自然数。
【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。
一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。
【绝对值】:一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
【倒数】1除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
二。
代数式【代数式的分类】【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式【无理式】根号下含有字母的代数式叫做无理式【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式。
三,有理数的运算律专题二方程(组)与不等式(组)【一元一次方程】一元一次方程:只含有一个未知数且未知数的次数是一次的整式方程叫做一元一次方程1.等式两边同时加或减一个相同数,等式两边相等。
(如果a=b,那么a±c=b±c。
)2.等式两边同时乘或除以一个相同数(0除外),或一个整式,等式两边相等。
(如果a=b,那么ac=bc。
如果a=b,c≠0,那么a/c=b/c。
)解法是通过移项将未知数移到一边,再把常数移到一边(等式基本性质1,注意符号!),然后两边同时除以未知数系数(化系数为1,等式基本性质2),即可得到未知数的值。
【一元二次方程】【等式的性质】【乘法公式】【因式分解】不等式与不等式组(1)不等式概念:用不等号(“≠”、“<”、“>”)表示的不等关系的式子叫做不等式(2)不等式的基本性质,性质1:如果a>b,b>c,那么a>c(不等式的传递性).性质2:如果a>b,那么a+c>b+c(不等式的可加性).性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.性质5:如果a>b>0,c>d>0,那么ac>bd.性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.专题三 函数平面直角坐标系(1) 平面直角坐标系的构成:四个象限、两条坐标轴(2) 点的坐标的建立,坐标平面的点与有序实数对的一一对应; (3) 点的坐标在各象限内及坐标轴上的符号;第一象限内坐标符号(a,b) (a>0,b>0) 第二象限内坐标符号(-a,b) (a>0,b>0) 第三象限内坐标符号(-a,-b) (a>0,b>0) 第四象限内坐标符号(a,-b) (a>0,b>0) 原点上坐标符号(0,0)X 轴上坐标符号(a,0) (a ≠0) Y 轴上坐标符号(0,a) (a ≠0) (4) 对称点的坐标规律;关于x 轴对称:横坐标不变,纵坐标变为原数相反数; 关于y 轴对称:纵坐标不变,横坐标变为原数相反数; 关于原点对称:横纵坐标均变为原数相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n 个实数相乘,有一个因数为0,积就为0;若n 个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。
无论何种运算,都要注意先定符号后运算。
六、有效数字和科学记数法1、科学记数法:设N >0,则N= a ×n10(其中1≤a <10,n 为整数)。
2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。
精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。
例题:例1、已知实数a 、b 在数轴上的对应点的位置如图所示,且b a 。
化简:a b b a a --+-分析:从数轴上a 、b 两点的位置可以看到:a <0,b >0且b a所以可得:解:a a b b a a =+-++-=原式例2、若333)43(,)43(,)43(--=-=-=c b a ,比较a 、b 、c 的大小。
分析:1)34(3--= a ;01433 b b 且-⎪⎭⎫ ⎝⎛-=;c >0;所以容易得出: a <b <c 。
解:略例3、若22+-b a 与互为相反数,求a+b 的值分析:由绝对值非负特性,可知02,02≥+≥-b a ,又由题意可知:022=++-b a 所以只能是:a –2=0,b+2=0,即a=2,b= –2 ,所以a+b=0解:略例4、已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,求2m cd mb a +-+的值。
解:原式=0110=+- 例5、计算:(1)199********.08⨯ (2)222121⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛+e e e e 解:(1)原式=11)125.08(19941994==⨯(2)原式=⎪⎪⎪⎪⎭⎫ ⎝⎛--+⋅⎪⎪⎪⎪⎭⎫ ⎝⎛-++21212121e e e e e e e e =11=⋅e e代数部分第二章:代数式基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。
单独一个数或者一个字母也是代数式。
2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。
3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。
单独一个数或字母也是单项式。
单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。
单项式的系数:单项式中的数字因数叫单项式的系数。
(2)多项式:几个单项式的和叫做多项式。
多项式的项:多项式中每一个单项式都叫多项式的项。
一个多项式含有几项,就叫几项式。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。
不含字母的项叫常数项。
升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。
添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。
整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。
单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。
多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。
乘法公式:平方差公式:22))((b a b a b a -=-+;完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-三、因式分解1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。
2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有: ))((212x x x x a c bx ax --=++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
四、分式1、分式定义:形如BA 的式子叫分式,其中A 、B 是整式,且B 中含有字母。
(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。
(2)分式的值为0:A=0,B ≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质:(1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
五、二次根式1、二次根式的概念:式子)0(≥a a 叫做二次根式。
(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。
(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。
(3)分母有理化:把分母中的根号化去叫做分母有理化。
(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a 与a ;d c b a +与d c b a -)2、二次根式的性质:(1) )0()(2≥=a a a ;(2)⎩⎨⎧<-≥==)0()0(2a a a aa a ;(3)b a ab ⋅=(a≥0,b ≥0);(4))0,0(≥≥=b a ba b a 3、运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。