数值分析大作业三四五六七完整版
北航数值分析大作业3
数值分析第三次作业1.设计方案对Fredholm积分方程,用迭代法进行求解:()'(())u x A u x=,其中11(())()(,)()A u x g x K x y u y dy-=-⋅⎰对于公式中的积分部分用数值积分方法。
复化梯形积分法,取2601个节点,取迭代次数上限为50次。
实际计算迭代次数为18次,最后算得误差为r= 0.97E-10。
复化Simpson积分法,取迭代次数上限为50次,取2*41+1,即83个节点时能满足精度要求。
实际计算迭代次数为17次,最后的误差为r= 0.97E-10。
Guass积分法选择的Gauss—Legendre法,取迭代次数上限为50次,直接选择8个节点,满足精度要求。
实际计算迭代次数为24次,最后算得误差为r= 0.87E-10。
2.全部源程序module integralimplicit nonecontains!//////////复化梯形subroutine trapezoid(m)implicit noneinteger :: i,j,k,mreal*8 :: x(m+1),u(m+1)real*8 :: sum,sum1,g,r,hreal*8 :: e=1.0e-10h=2./mdo i=1,m+1x(i)=-1.+(i-1)*hend dou=0.02do k=1,50do i=1,m+1sum1=0.g=dexp(x(i)*4.)+(dexp(x(i)+4.)-dexp(-4.-x(i)))/(x(i)+4.)do j=2,msum1=sum1+dexp(x(i)*x(j))*u(j)end dosum=h/2.*(dexp(x(i)*-1.)*u(1)+dexp(x(i)*1.)*u(m+1)+2*sum1)u(i)=g-sumend dor=h/2.*((dexp(x(1)*4)-u(1))**2+(dexp(x(m+1)*4)-u(m+1))**2) do i=2,mr=r+h*(dexp(x(i)*4)-u(i))**2end doif(dabs(r)<=e) exitend dowrite(*,*) kopen(1,file="trapezoid.txt")do i=1,m+1write(1,'(3(f18.12))') x(i),u(i),dexp(x(i)*4.)end dowrite(1,'(4x,a2,e9.2)') "r=",rclose(1)returnend subroutine trapezoid!///////////复化simpsonsubroutine simpson(m)implicit noneinteger :: i,j,k,mreal*8 :: x(2*m+1),u(2*m+1)real*8 :: sum,sum1,sum2,g,r,hreal*8 :: e=1.0e-10h=2./(2.*m)do i=1,2*m+1x(i)=-1.+(i-1)*hend dou=0.02do k=1,50do i=1,2*m+1sum1=0.sum2=0.g=dexp(x(i)*4.)+(dexp(x(i)+4.)-dexp(-4.-x(i)))/(x(i)+4.)do j=1,msum1=sum1+dexp(x(i)*x(2*j))*u(2*j)end dodo j=1,m-1sum2=sum2+dexp(x(i)*x(2*j+1))*u(2*j+1)sum=h/3.*(dexp(x(i)*-1.)*u(1)+dexp(x(i)*1.)*u(2*m+1)+4*sum1+2*sum2) u(i)=g-sumend dor=h/3.*((dexp(x(1)*4)-u(1))**2+(dexp(x(2*m+1)*4)-u(2*m+1))**2)do i=1,mr=r+4.*h/3.*(dexp(x(2*i)*4)-u(2*i))**2end dodo i=1,m-1r=r+2.*h/3.*(dexp(x(2*i+1)*4)-u(2*i+1))**2end doif(dabs(r)<=e) exitend dowrite(*,*) kopen(2,file="simpson.txt")do i=1,2*m+1write(2,'(3(f18.12))') x(i),u(i),dexp(x(i)*4.)end dowrite(2,'(4x,a2,e9.2)') "r=",rclose(2)returnend subroutine simpson!///////////Gauss_Legendre法subroutine Gaussimplicit noneinteger,parameter :: m=8integer :: i,j,kreal*8 :: x(m),u(m),a(m)real*8 :: sum,g,rreal*8 :: e=1.0e-10data x /-0.9602898565,-0.7966664774,-0.5255324099,-0.1834346425,&0.1834346425,0.5255324099,0.7966664774,0.9602898565/data a /0.1012285363,0.2223810345,0.3137066459,0.3626837834,&0.3626837834,0.3137066459,0.2223810345,0.1012285363/u=0.02do k=1,50do i=1,mg=dexp(x(i)*4.)+(dexp(x(i)+4.)-dexp(-4.-x(i)))/(x(i)+4.)do j=1,msum=sum+dexp(x(i)*x(j))*u(j)*a(j)end dou(i)=g-sumend dor=0.do i=1,mr=r+a(i)*(dexp(x(i)*4)-u(i))**2end doif(dabs(r)<=e) exitend dowrite(*,*) kopen(3,file="Gauss.txt")do i=1,mwrite(3,'(3(f18.12))') x(i),u(i),dexp(x(i)*4.)end dowrite(3,'(4x,a2,e9.2)') "r=",rclose(3)returnend subroutine Gaussend module!//////////主程序program mainuse integralimplicit noneinteger :: code1=2600integer :: code2=41call trapezoid(code1)call simpson(code2)call Gaussend program3.各种积分方法的节点和数值解(由于数据太多,在打印时用了较计算时少的有效数字)复化Simpson法4.各方法所得曲线(由于所取节点太多,且精度高,所以图中很难看出各曲线的区别。
数值分析作业(3,4,5,6)
数值分析作业(3)思考题:1:(a)仅当系数矩阵是病态或奇异的时候,不选主元的Gauss消元法才会失败。
(b) 系数矩阵是对称正定的线性方程组总是良态的;(c) 两个对称矩阵的乘积依然是对称的;(d) 如果一个矩阵的行列式值很小,则它很接近奇异;(e) 两个上三角矩阵的乘积仍然是上三角矩阵;(f) 一个非奇异上三角矩阵的逆仍然是上三角矩阵;(g) 一个奇异矩阵不可能有LU分解;(h) 奇异矩阵的范数一定是零;(i) 范数为零的矩阵一定是零矩阵;(j)一个非奇异的对称阵,如果不是正定的则不能有Cholesky分解。
2: 全主元Gauss消元法与列主元Gauss消元法的基本区别是什么?它们各有什么优点?3:满足下面是我什么条件,可以判定矩阵接近奇异?(a)矩阵的行列式小;(b)矩阵的条件数小;(c)矩阵的范数小;(d)矩阵的条件数大;(e )矩阵的范数大; (f )矩阵的元素小4: Jacobi 迭代法和Gauss-Seidel 迭代法相比(a) 两种的基本差别是什么?(b) 哪种方法更适合并行计算?(c )哪种方法更节省存储空间?(d )Jacobi 迭代法是否运算速度更快?习题:1.对矩阵2112112112A -⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥-⎣⎦,试求A 的Cholesky 分解。
2. 对矩阵12122211111,222221112A A --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦证明:(1)求解以1A 为系数矩阵的线性方程组,Jacobi 迭代是收敛的,而Gauss-Seidel 迭代发散;(2)求解以2A 为系数矩阵的线性方程组,Jacobi 迭代是发散的,而Gauss-Seidel 迭代收敛。
3.对矩阵11,1a a A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1) 参数a 取什么值时,矩阵是正定的?(2) a 取什么值,求解以A 为系数矩阵的线性方程组,Jacobi 迭代是收敛的。
北航数值分析大作业三
一、题目:关于x, y, t, u, v, w 的下列方程组0.5cos 2.670.5sin 1.070.5cos 3.740.5sin 0.79t u v w x t u v w y t u v w x t u v w y +++-=⎧⎪+++-=⎪⎨+++-=⎪⎪+++-=⎩1、试用数值方法求出f(x, y)在区域 {(,)|00.8,0.5 1.5}D x y x y =≤≤≤≤上的一个近似表达式,0(,)kr s rsr s p x y cx y ==∑要求(,)p x y 一最小的k 值达到以下的精度10202700((,)(,))10i j i j i j f x y p x y σ-===-≤∑∑其中,0.08,0.50.05i j x i y j ==+。
2、计算****(,),(,)i j i j f x y p x y (i = 1, 2, …,8;j = 1, 2,…,5)的值,以观察(,)p x y 逼近(,)f x y 的效果,其中,*i x =0.1i , *j y =0.5+0.2j 。
说明:1、用迭代方法求解非线性方程组时,要求近似解向量()k x 满足()(1)()12||||/||||10k k k x x x --∞∞-≤2、作二元插值时,要使用分片二次代数插值。
3、要由程序自动确定最小的k 值。
4、打印以下内容:●算法的设计方案。
●全部源程序(要求注明主程序和每个子程序的功能)。
●数表:,,i j x y (,)i j f x y (i = 0,1,2,…,10;j = 0,1,2,…,20)。
●选择过程的,k σ值。
●达到精度要求时的,k σ值以及(,)p x y 中的系数rs c (r = 0,1,…,k;s = 0,1,…,k )。
●数表:**,,i j x y ****(,),(,)i j i j f x y p x y (i = 1, 2, ...,8;j = 1, 2, (5)。
数值分析作业(完整版)
的逆阵 A ,用左除命令 A \ E 检验你的结果。
clc clear close all A=[1 1 1 1 1;1 2 3 4 5;1 3 6 10 15;1 4 10 20 35;1 5 15 35 70]; fprintf('对上述矩阵进行列主元素分解:\n') for i=1:1:r-1 [mx,ro]=max(abs(A(i:r,i))); % 寻找a阵第i列的最大值 [A(i,:),A(ro+i-1,:)]=exchange(A(i,:),A(ro+i-1,:)); % 进行行与行交换 for j=i+1:1:r A(j,:)=A(j,:)-A(j,i)/A(i,i)*A(i,:); end A End %--矩阵A的逆阵 A1=inv(A) %--左除验证 E=eye(5); A2=A\E % 5x5单位阵 % A阵的逆矩阵 % 输出每次交换后的A
第一章
1、计算积分 I n
Code: clc clear close all n=9; %--梯形积分法 x=0:0.01:1; y=(x.^n).*exp(x-1); In = trapz(x,y); In2=vpa(In,6) % 6位有效数字 %--高精度积分法 F = @(x1)(x1.^n).*exp(x1-1); s = quad(F,0,1); s1=vpa(s,6)
0
0, 0, 0, 0, 0 。
T
if abs(er(:,i-1))<=e fprintf('在迭代 %d 次之后,满足精度要求,x向量的值如下:\n',i); fprintf('x1=%.5f, x2=%.5f, x3=%.5f, x4=%.5f, x5=%.5f\n',x(1,i),x(2,i),x(3,i),x(4,i),x(5,i)); break end end %--绘图 figure(1) plot(1:1:i,x(1,:),'b',1:1:i,x(2,:),'k',1:1:i,x(3,:),'g',1:1:i,x(4,:), 'r',1:1:i,x(5,:),'c') legend('x1','x2','x3','x4','x5') grid on title('Jacobi迭代法——x值随迭代次数变化曲线') figure(2) plot(1:1:i-1,er(1,:),'b',1:1:i-1,er(2,:),'k',1:1:i-1,er(3,:),'g',1:1: i-1,er(4,:),'r',1:1:i-1,er(5,:),'c') legend('△x1','△x2','△x3','△x4','△x5') grid on title('Jacobi迭代法——△x值随迭代次数变化曲线') %% fprintf('\n-------------Gauss-Seidel迭代法---------------------\n'); U=-(A1-D); L=-(A2-D); DL_1=inv(D-L); M1=DL_1*U; b2=DL_1*b; x1(:,1)=M1*x0+b2; for j=2:1:100 x1(:,j)=M1*x1(:,j-1)+b2; er1(:,j-1)=x1(:,j)-x1(:,j-1); if abs(er1(:,j-1))<=e fprintf('在迭代 %d 次之后,满足精度要求,x向量的值如下:\n',j); fprintf('x1=%.5f, x2=%.5f, x3=%.5f, x4=%.5f, x5=%.5f\n',x1(1,j),x1(2,j),x1(3,j),x1(4,j),x1(5,j)); break end end %--绘图 figure(3) plot(1:1:j,x1(1,:),'b',1:1:j,x1(2,:),'k',1:1:j,x1(3,:),'g',1:1:j,x1(4 ,:),'r',1:1:j,x1(5,:),'c') legend('x1','x2','x3','x4','x5')
北航数值分析全部三次大作业
北航数值分析全部三次大作业第一次大作业是关于解线性方程组的数值方法。
我们被要求实现各种常用的线性方程组求解算法,例如高斯消元法、LU分解法和迭代法等。
我首先学习了这些算法的原理和实现方法,并借助Python编程语言编写了这些算法的代码。
在实验中,我们使用了不同规模和条件的线性方程组进行测试,并比较了不同算法的性能和精度。
通过这个作业,我深入了解了线性方程组求解的原理和方法,提高了我的编程和数值计算能力。
第二次大作业是关于数值积分的方法。
数值积分是数值分析中的重要内容,它可以用于计算曲线的长度、函数的面积以及求解微分方程等问题。
在这个作业中,我们需要实现不同的数值积分算法,例如矩形法、梯形法和辛普森法等。
我学习了这些算法的原理和实现方法,并使用Python编写了它们的代码。
在实验中,我们计算了不同函数的积分值,并对比了不同算法的精度和效率。
通过这个作业,我深入了解了数值积分的原理和方法,提高了我的编程和数学建模能力。
第三次大作业是关于常微分方程的数值解法。
常微分方程是数值分析中的核心内容之一,它可以用于描述众多物理、化学和生物现象。
在这个作业中,我们需要实现不同的常微分方程求解算法,例如欧拉法、龙格-库塔法和Adams法等。
我学习了这些算法的原理和实现方法,并使用Python编写了它们的代码。
在实验中,我们解决了一些具体的常微分方程问题,并比较了不同算法的精度和效率。
通过这个作业,我深入了解了常微分方程的原理和方法,提高了我的编程和问题求解能力。
总的来说,北航数值分析课程的三次大作业非常有挑战性,但也非常有意义。
通过这些作业,我在数值计算和编程方面得到了很大的提升,也更加深入地了解了数值分析的理论和方法。
虽然这些作业需要大量的时间和精力,但我相信这些努力将会对我未来的学习和工作产生积极的影响。
北航数值分析报告大作业第三题(fortran)
北航数值分析报告大作业第三题(fortran)“数值分析“计算实习大作业第三题——SY1415215孔维鹏一、计算说明1、将x i=0.08i,y j=0.5+0.05j分别代入方程组(A.3)得到关于t,u,v,w的的方程组,调用离散牛顿迭代子函数求出与x i,y j对应的t i,u j。
2、调用分片二次代数插值子函数在点(t i,u j)处插值得到z(x i,y j)=f(x i,y j),得到数表(x i,y j,f(x i,y j))。
3、对于k=1,2,3,4?,分别调用最小二乘拟合子函数计算系数矩阵c rs 及误差σ,直到满足精度,即求得最小的k值及系数矩阵c rs。
4、将x i?=0.1i,y j?=0.5+0.2j分别代入方程组(A.3)得到关于t?,u?,v?,w?的的方程组,调用离散牛顿迭代子函数求出与x i?,y j?对应的t i?,u j?,调用分片二次代数插值子函数在点(t i?,u j?)处插值得到z?(x i?,y j?)=f(x i?,y j?);调用步骤3中求得的系数矩阵c rs求得p(x i?,y j?),打印数表(x i?,y j?,f(x i?,y j?),p(x i?,y j?))。
二、源程序(FORTRAN)PROGRAM SY1415215DIMENSIONX(11),Y(21),T(6),U(6),Z(6,6),UX(11,21),TY(11,21),FXY(11,21), C(6,6) DIMENSIONX1(8),Y1(5),FXY1(8,5),PXY1(8,5),UX1(8,5),TY1(8,5)REAL(8) X,Y,T,U,Z,FXY,UX,TY,C,E,X1,Y1,FXY1,PXY1,UX1,TY1OPEN (1,FILE='第三题计算结果.TXT')DO I=1,11X(I)=0.08*(I-1)ENDDODO I=1,21Y(I)=0.5+0.05*(I-1)ENDDO!*****求解非线性方程组,得到z=f(t,u)的函数*******DO I=1,11DO J=1,21CALL DISNEWTON_NONLINEAR(X(I),Y(J),UX(I,J),TY(I,J)) ENDDO ENDDO!*************分片二次插值得到z=f(x,y)***********DO I=1,11DO J=1,21CALL INTERPOLATION(UX(I,J),TY(I,J),FXY(I,J))ENDDO ENDDOWRITE (1,"('数表(x,y,f(x,y)):')")WRITE (1,"(3X,'X',7X,'Y',10X,'F(X,Y)')")DO I=1,11DO J=1,21WRITE(1,'(1X,F5.2,2X,F5.3,2X,E20.13)') X(I),Y(J),FXY(I,J) ENDDOWRITE (1,"('')")ENDDO!***********最小二乘拟合得到P(x,y)**************N=11M=21WRITE (1,'(" ","K和σ分别为:")')DO K=1,20CALL LSFITTING(X,Y,FXY,C,N,M,K,K,E) WRITE (1,'(I3,2X,E20.13)') K-1,EIF(ETA).OR.(A(L,K)==TA)) THENTA=A(L,K)TL=LDO J=K,NT(K,J)=A(K,J)A(K,J)=A(TL,J)A(TL,J)=T(K,J)ENDDOTB(K)=B(K)B(K)=B(TL)B(TL)=TB(K)ENDIF ENDDODO I=K+1,NM(I,K)=A(I,K)/A(K,K)A(I,K)=0DO J=K+1,NA(I,J)=A(I,J)-M(I,K)*A(K,J) ENDDOB(I)=B(I)-M(I,K)*B(K)ENDDOENDDO!回代过程X(N)=B(N)/A(N,N)DO K=N-1,1,-1S=0.0DO J=K+1,NS=S+A(K,J)*X(J)ENDDOX(K)=(B(K)-S)/A(K,K)ENDDORETURNEND!***********求向量的无穷数************ SUBROUTINE NORM(X,N,A) DIMENSION X(N)REAL(8) X,AA=ABS(X(1))DO I=2,NIF(ABS(X(I))>ABS(X(I-1))) THENA=ABS(X(I)) ENDIFENDDORETURNEND!**************分片二次代数插值************** SUBROUTINE INTERPOLATION(U,V,W) PARAMETER (N=6,M=6)DIMENSION X(N),Y(M),Z(M,N),LK(3),LR(3)REAL(8) X,Y,Z,H,TREAL(8) U,V,W,LK,LR !U,V分别为插值点处的坐标,W为插值结果INTEGER R!**********************数据赋值********************** DATA Y/0.0,0.2,0.4,0.6,0.8,1.0/DATA X/0.0,0.4,0.8,1.2,1.6,2.0/DATA Z/-0.5,-0.42,-0.18,0.22,0.78,1.5,&&-0.34,-0.5,-0.5,-0.34,-0.02,0.46,&&0.14,-0.26,-0.5,-0.58,-0.5,-0.26,&&0.94,0.3,-0.18,-0.5,-0.66,-0.66,&&2.06,1.18,0.46,-0.1,-0.5,-0.74,&&3.5,2.38,1.42,0.62,-0.02,-0.5/H=0.4T=0.2!******************计算K,R************************* IF(UX(N-1)-H/2) THENK=N-1ELSEDO I=3,N-2IF((U>X(I)-H/2).AND.(UY(M-1)-T/2) THENR=M-1 ELSEDO J=3,M-2IF((V>Y(J)-T/2).AND.(VN) P=N IF(P>20) P=20IF(Q>M) Q=MIF(Q>20) Q=20XX=0YY=0D1=NAPX(1)=0.0DO I=1,NAPX(1)=APX(1)+X(I)ENDDOAPX(1)=APX(1)/D1DO J=1,MV(1,J)=0.0DO I=1,NV(1,J)=V(1,J)+Z(I,J)ENDDOV(1,J)=V(1,J)/D1ENDDOIF(P>1) THEND2=0.0APX(2)=0.0DO I=1,NG=X(I)-APX(1)D2=D2+G*GAPX(2)=APX(2)+(X(I)-XX)*G*G ENDDO APX(2)=APX(2)/D2BX(2)=D2/D1DO J=1,MV(2,J)=0.0DO I=1,NG=X(I)-APX(1)V(2,J)=V(2,J)+Z(I,J)*G ENDDOV(2,J)=V(2,J)/D2ENDDOD1=D2ENDIFDO K=3,PD2=0.0APX(K)=0.0DO J=1,MV(K,J)=0.0ENDDODO I=1,NG1=1.0G2=X(I)-APX(1)DO J=3,KG=(X(I)-APX(J-1))*G2-BX(J-1)*G1 G1=G2 G2=GENDDOD2=D2+G*GAPX(K)=APX(K)+X(I)*G*GDO J=1,M V(K,J)=V(K,J)+Z(I,J)*G ENDDOENDDODO J=1,MV(K,J)=V(K,J)/D2ENDDOAPX(K)=APX(K)/D2BX(K)=D2/D1D1=D2ENDDOD1=MAPY(1)=0.0DO I=1,MAPY(1)=APY(1)+Y(I)ENDDOAPY(1)=APY(1)/D1DO J=1,PU(J,1)=0.0DO I=1,MU(J,1)=U(J,1)+V(J,I) ENDDO U(J,1)=U(J,1)/D1ENDDOIF(Q>1)THEND2=0.0APY(2)=0.0DO I=1,MG=Y(I)-APY(1)D2=D2+G*G APY(2)=APY(2)+(Y(I))*G*G ENDDO APY(2)=APY(2)/D2BY(2)=D2/D1DO J=1,PU(J,2)=0.0DO I=1,MG=Y(I)-APY(1)U(J,2)=U(J,2)+V(J,I)*GENDDOU(J,2)=U(J,2)/D2ENDDOD1=D2ENDIFDO K=3,QD2=0.0APY(K)=0.0DO J=1,PU(J,K)=0.0ENDDODO I=1,MG1=1.0G2=Y(I)-APY(1)DO J=3,KG=(Y(I)-APY(J-1))*G2-BY(J-1)*G1 G1=G2 G2=GENDDOD2=D2+G*GAPY(K)=APY(K)+Y(I)*G*G DO J=1,PU(J,K)=U(J,K)+V(J,I)*G ENDDOENDDODO J=1,PU(J,K)=U(J,K)/D2ENDDOAPY(K)=APY(K)/D2BY(K)=D2/D1D1=D2ENDDOV(1,1)=1.0V(2,1)=-APY(1)V(2,2)=1.0DO I=1,PDO J=1,QA(I,J)=0.0ENDDOENDDODO I=3,QV(I,I)=V(I-1,I-1)V(I,I-1)=-APY(I-1)*V(I-1,I-1)+V(I-1,I-2)IF(I>=4) THENDO K=I-2,2,-1V(I,K)=-APY(I-1)*V(I-1,K)+V(I-1,K-1)-BY(I-1)*V(I-2,K) ENDDO ENDIFV(I,1)=-APY(I-1)*V(I-1,1)-BY(I-1)*V(I-2,1)ENDDO DO I=1,PIF(I==1) THENT(1)=1.0T1(1)=1.0ELSEIF(I==2) THENT(1)=-APX(1)T(2)=1.0T2(1)=T(1)T2(2)=T(2)ELSET(I)=T2(I-1)T(I-1)=-APX(I-1)*T2(I-1)+T2(I-2) IF(I>=4) THENDO K=I-2,2,-1T(K)=-APX(I-1)*T2(K)+T2(K-1)-BX(I-1)*T1(K) ENDDOENDIFT(1)=-APX(I-1)*T2(1)-BX(I-1)*T1(1)T2(I)=T(I)DO K=I-1,1,-1T1(K)=T2(K)T2(K)=T(K)ENDDOENDIFDO J=1,QDO K=I,1,-1DO L=J,1,-1A(K,L)=A(K,L)+U(I,J)*T(K)*V(J,L) ENDDOENDDOENDDOENDDODT1=0.0DO I=1,NX1=X(I)DO J=1,MY1=Y(J)X2=1.0DD=0.0DO K=1,PG=A(K,Q)DO KK=Q-1,1,-1G=G*Y1+A(K,KK)ENDDOG=G*X2DD=DD+GX2=X2*X1ENDDODT=DD-Z(I,J)DT1=DT1+DT*DTENDDOENDDORETURNEND三、计算结果数表(x,y,f(x,y)): X Y UX TY F(X,Y) 0.00 0.500 1.345 0.243 0.17E+000.00 0.550 1.322 0.269 0.66E+000.00 0.600 1.299 0.295 0.35E+000.00 0.650 1.277 0.322 0.94E+000.00 0.700 1.255 0.350 0.30E-020.00 0.750 1.235 0.377 -0.87E-010.00 0.800 1.215 0.406 -0.58E+000.00 0.850 1.196 0.434 -0.72E+000.00 0.900 1.177 0.463 -0.54E+000.00 0.950 1.159 0.492 -0.86E+000.00 1.050 1.125 0.550 -0.74E+00 0.00 1.100 1.109 0.580 -0.06E+00 0.00 1.150 1.093 0.609 -0.00E+00 0.00 1.200 1.0790.639 -0.18E+00 0.00 1.250 1.064 0.669 -0.52E+00 0.00 1.3001.050 0.699 -0.19E+00 0.00 1.350 1.037 0.729 -0.48E+00 0.001.400 1.024 0.759 -0.68E+00 0.00 1.450 1.011 0.790 -0.52E+00 0.00 1.500 1.000 0.820 -0.29E+000.08 0.500 1.415 0.228 0.67E+00 0.08 0.550 1.391 0.253 0.08E+00 0.08 0.600 1.368 0.279 0.02E+00 0.08 0.650 1.346 0.306 0.47E+00 0.08 0.700 1.325 0.333 0.57E+00 0.08 0.750 1.304 0.360 0.48E-01 0.08 0.800 1.284 0.388 -0.73E-01 0.08 0.850 1.265 0.416 -0.16E+00 0.08 0.900 1.246 0.444 -0.29E+00 0.08 0.950 1.229 0.473 -0.36E+00 0.08 1.000 1.211 0.502 -0.08E+00 0.08 1.050 1.194 0.531 -0.29E+00 0.08 1.100 1.178 0.560 -0.78E+00 0.08 1.150 1.163 0.589 -0.93E+00 0.08 1.200 1.148 0.619 -0.44E+00 0.08 1.250 1.133 0.649 -0.92E+00 0.08 1.300 1.119 0.679 -0.71E+000.08 1.400 1.093 0.739 -0.37E+00 0.08 1.450 1.080 0.769-0.83E+00 0.08 1.500 1.068 0.799 -0.92E+000.16 0.500 1.483 0.214 0.31E+00 0.16 0.550 1.460 0.239 0.64E+00 0.16 0.600 1.437 0.264 0.91E+00 0.16 0.650 1.414 0.290 0.06E+00 0.16 0.700 1.393 0.316 0.70E+00 0.16 0.750 1.372 0.343 0.59E+00 0.16 0.800 1.352 0.370 0.12E+00 0.16 0.850 1.333 0.398 0.77E-02 0.16 0.900 1.315 0.426 -0.83E-01 0.16 0.950 1.297 0.454-0.58E+00 0.16 1.000 1.279 0.483 -0.20E+00 0.16 1.050 1.2620.512 -0.11E+00 0.16 1.100 1.246 0.541 -0.74E+00 0.16 1.1501.231 0.570 -0.09E+00 0.16 1.200 1.216 0.600 -0.59E+00 0.16 1.250 1.201 0.629 -0.66E+00 0.16 1.300 1.187 0.659 -0.71E+00 0.16 1.350 1.174 0.689 -0.32E+00 0.16 1.400 1.161 0.718-0.56E+00 0.16 1.450 1.148 0.748 -0.31E+00 0.16 1.500 1.136 0.778 -0.75E+000.24 0.500 1.551 0.201 0.66E+01 0.24 0.550 1.527 0.2250.03E+000.24 0.650 1.482 0.275 0.64E+00 0.24 0.700 1.460 0.3010.47E+00 0.24 0.750 1.439 0.327 0.34E+00 0.24 0.800 1.419 0.354 0.24E+00 0.24 0.850 1.400 0.381 0.69E+00 0.24 0.900 1.381 0.409 0.04E-01 0.24 0.950 1.363 0.437 -0.42E-01 0.24 1.000 1.346 0.465 -0.06E+00 0.24 1.050 1.329 0.494 -0.59E+00 0.24 1.100 1.313 0.523 -0.83E+00 0.24 1.150 1.297 0.552 -0.15E+00 0.24 1.200 1.282 0.581 -0.19E+00 0.24 1.250 1.267 0.610 -0.84E+00 0.24 1.300 1.253 0.640 -0.66E+00 0.24 1.350 1.240 0.669 -0.30E+00 0.24 1.400 1.227 0.699 -0.86E+00 0.24 1.450 1.214 0.729 -0.84E+00 0.24 1.500 1.202 0.759 -0.77E+000.32 0.500 1.617 0.188 0.28E+01 0.32 0.550 1.593 0.212 0.49E+01 0.32 0.600 1.570 0.236 0.68E+00 0.32 0.650 1.547 0.261 0.75E+00 0.32 0.700 1.526 0.286 0.60E+00 0.32 0.750 1.505 0.312 0.77E+00 0.32 0.800 1.485 0.339 0.05E+00 0.32 0.850 1.466 0.365 0.99E+00 0.32 0.900 1.447 0.393 0.27E+00 0.32 1.000 1.411 0.448 -0.01E-02 0.32 1.050 1.395 0.477-0.41E-01 0.32 1.100 1.378 0.505 -0.18E+00 0.32 1.150 1.3630.534 -0.25E+00 0.32 1.200 1.347 0.563 -0.29E+00 0.32 1.2501.333 0.592 -0.90E+00 0.32 1.300 1.319 0.621 -0.00E+00 0.32 1.350 1.305 0.650 -0.40E+00 0.32 1.400 1.292 0.680 -0.54E+00 0.32 1.450 1.279 0.710 -0.79E+00 0.32 1.500 1.267 0.739-0.91E+000.40 0.500 1.681 0.177 0.91E+01 0.40 0.550 1.658 0.1990.00E+01 0.40 0.600 1.634 0.223 0.83E+01 0.40 0.650 1.612 0.247 0.02E+01 0.40 0.700 1.591 0.272 0.94E+00 0.40 0.750 1.570 0.298 0.49E+00 0.40 0.800 1.550 0.324 0.94E+00 0.40 0.850 1.530 0.350 0.40E+00 0.40 0.900 1.512 0.377 0.33E+00 0.40 0.950 1.493 0.405 0.99E+00 0.40 1.000 1.476 0.432 0.68E+00 0.40 1.050 1.459 0.460 0.08E-01 0.40 1.100 1.443 0.488 -0.84E-01 0.40 1.150 1.427 0.517-0.98E+00 0.40 1.200 1.412 0.545 -0.27E+00 0.40 1.250 1.397 0.574 -0.06E+000.40 1.350 1.369 0.632 -0.66E+00 0.40 1.400 1.356 0.662-0.37E+00 0.40 1.450 1.343 0.691 -0.43E+00 0.40 1.500 1.331 0.721 -0.12E+000.48 0.500 1.745 0.166 0.69E+01 0.48 0.550 1.721 0.188 0.02E+01 0.48 0.600 1.698 0.211 0.74E+01 0.48 0.650 1.676 0.235 0.40E+01 0.48 0.700 1.654 0.259 0.23E+01 0.48 0.750 1.634 0.284 0.56E+00 0.48 0.800 1.613 0.310 0.28E+00 0.48 0.850 1.594 0.336 0.49E+00 0.48 0.900 1.575 0.363 0.31E+00 0.48 0.950 1.557 0.390 0.66E+00 0.48 1.000 1.539 0.417 0.30E+00 0.48 1.050 1.522 0.444 0.34E+00 0.48 1.100 1.506 0.472 0.07E-01 0.48 1.150 1.490 0.500 -0.62E-01 0.48 1.200 1.475 0.529 -0.45E+00 0.48 1.250 1.460 0.557 -0.86E+00 0.48 1.300 1.446 0.586 -0.39E+00 0.48 1.350 1.432 0.615 -0.22E+00 0.48 1.400 1.419 0.644 -0.67E+00 0.48 1.450 1.406 0.674-0.55E+00 0.48 1.500 1.394 0.703 -0.14E+000.56 0.500 1.808 0.156 0.48E+010.56 0.600 1.761 0.200 0.10E+01 0.56 0.650 1.739 0.2230.68E+01 0.56 0.700 1.717 0.247 0.94E+01 0.56 0.750 1.696 0.272 0.33E+01 0.56 0.800 1.676 0.297 0.11E+00 0.56 0.850 1.657 0.323 0.63E+00 0.56 0.900 1.638 0.349 0.97E+00 0.56 0.950 1.620 0.375 0.52E+00 0.56 1.000 1.602 0.402 0.56E+00 0.56 1.050 1.585 0.429 0.47E+00 0.56 1.100 1.568 0.457 0.20E+00 0.56 1.150 1.552 0.485 0.13E+00 0.56 1.200 1.537 0.513 0.09E-01 0.56 1.250 1.522 0.541 -0.47E-01 0.56 1.300 1.508 0.570 -0.99E+00 0.56 1.350 1.4940.599 -0.82E+00 0.56 1.400 1.481 0.627 -0.26E+00 0.56 1.4501.468 0.657 -0.71E+00 0.56 1.500 1.455 0.686 -0.98E+000.64 0.500 1.870 0.147 0.74E+01 0.64 0.550 1.846 0.1680.10E+01 0.64 0.600 1.823 0.190 0.54E+01 0.64 0.650 1.801 0.213 0.42E+01 0.64 0.700 1.779 0.236 0.56E+01 0.64 0.750 1.758 0.260 0.03E+01 0.64 0.800 1.738 0.285 0.42E+01 0.64 0.850 1.718 0.310 0.41E+010.64 0.950 1.681 0.362 0.36E+00 0.64 1.000 1.664 0.388 0.18E+00 0.64 1.050 1.646 0.415 0.28E+00 0.64 1.100 1.630 0.443 0.07E+00 0.64 1.150 1.614 0.470 0.66E+00 0.64 1.200 1.598 0.498 0.09E+00 0.64 1.250 1.584 0.526 0.50E-01 0.64 1.300 1.569 0.554 -0.88E-01 0.64 1.350 1.555 0.583 -0.76E+00 0.64 1.400 1.542 0.611 -0.66E+00 0.64 1.450 1.529 0.640 -0.33E+00 0.64 1.500 1.516 0.669 -0.56E+00 0.72 0.500 1.931 0.139 0.94E+01 0.72 0.550 1.907 0.159 0.84E+01 0.72 0.600 1.884 0.181 0.36E+01 0.72 0.650 1.862 0.203 0.40E+01 0.72 0.700 1.840 0.226 0.47E+01 0.72 0.750 1.819 0.249 0.56E+01 0.72 0.800 1.799 0.273 0.19E+01 0.72 0.850 1.779 0.298 0.37E+01 0.72 0.900 1.760 0.323 0.86E+01 0.72 0.950 1.742 0.349 0.76E+00 0.72 1.000 1.724 0.375 0.24E+00 0.72 1.050 1.707 0.402 0.55E+00 0.72 1.100 1.691 0.429 0.97E+00 0.72 1.150 1.675 0.456 0.27E+00 0.72 1.200 1.659 0.484 0.31E+000.72 1.300 1.630 0.539 0.49E+00 0.72 1.350 1.616 0.5680.72E-02 0.72 1.400 1.602 0.596 -0.69E-01 0.72 1.450 1.589 0.625 -0.67E+00 0.72 1.500 1.576 0.653 -0.20E+000.80 0.500 1.992 0.131 0.31E+01 0.80 0.550 1.968 0.1510.44E+01 0.80 0.600 1.945 0.172 0.41E+01 0.80 0.650 1.922 0.193 0.45E+01 0.80 0.700 1.900 0.216 0.00E+01 0.80 0.750 1.879 0.239 0.10E+01 0.80 0.800 1.859 0.263 0.16E+01 0.80 0.850 1.840 0.287 0.52E+01 0.80 0.900 1.821 0.312 0.02E+01 0.80 0.950 1.802 0.337 0.38E+01 0.80 1.000 1.784 0.363 0.89E+01 0.80 1.050 1.767 0.389 0.28E+00 0.80 1.100 1.751 0.416 0.09E+00 0.80 1.150 1.734 0.4430.23E+00 0.80 1.200 1.719 0.470 0.93E+00 0.80 1.250 1.704 0.498 0.15E+00 0.80 1.300 1.689 0.525 0.86E+00 0.80 1.350 1.675 0.553 0.64E+00 0.80 1.400 1.662 0.582 0.74E-01 0.80 1.450 1.649 0.610 -0.37E-01 0.80 1.500 1.636 0.638 -0.81E+00K和σ分别为:0 0.93E+031 0.61E+012 0.92E-023 0.53E-034 0.16E-055 0.77E-07系数矩阵Crs(按行)为:0.00E+01 -0.83E+01 0.56E+00 0.97E+00 -0.03E+00 0.70E-010.91E+01 -0.99E+00 -0.96E+01 0.17E+01 -0.66E+00 0.10E-01 0.77E+00 0.42E+01 -0.10E+00 -0.81E+00 0.81E+00 -0.62E-01-0.25E+00 -0.21E+00 0.97E+00 -0.18E+00 0.49E+00 -0.63E-010.34E+00 -0.56E+00 0.69E-01 0.51E+00 -0.77E-01 0.27E-01-0.94E-01 0.94E+00 -0.58E+00 0.69E-01 -0.50E-01 0.53E-02 数表(x,y,f(x,y),p(x,y)):X Y F(X,Y) P(X,Y)0.100 0.700 0.58E+00 0.05E+000.100 1.100 -0.66E+00 -0.26E+00 0.100 1.300 -0.68E+00-0.31E+00 0.100 1.500 -0.52E+00 -0.49E+000.200 0.700 0.54E+00 0.19E+00 0.200 0.900 -0.63E-01 -0.65E-01 0.200 1.100 -0.90E+00 -0.90E+00 0.200 1.300 -0.84E+00 -0.90E+00 0.200 1.500 -0.03E+00 -0.04E+000.300 0.700 0.82E+00 0.09E+00 0.300 0.900 0.48E+00 0.11E+00 0.300 1.100 -0.63E+00 -0.88E+00 0.300 1.300 -0.72E+00 -0.96E+00 0.300 1.500 -0.34E+00 -0.84E+000.400 0.700 0.79E+00 0.89E+00 0.400 0.900 0.56E+00 0.63E+00 0.400 1.100 -0.83E-01 -0.04E-01 0.400 1.300 -0.72E+00 -0.71E+00 0.400 1.500 -0.85E+00 -0.07E+000.500 0.700 0.56E+01 0.92E+01 0.500 0.900 0.51E+00 0.23E+00 0.500 1.100 0.59E+00 0.27E+00 0.500 1.300 -0.53E+00 -0.11E+00 0.500 1.500 -0.67E+00 -0.33E+000.600 0.900 0.14E+00 0.75E+00 0.600 1.100 0.19E+00 0.32E+00 0.600 1.300 -0.70E-01 -0.82E-01 0.600 1.500 -0.08E+00 -0.75E+00 0.700 0.700 0.89E+01 0.29E+01 0.700 0.900 0.91E+01 0.11E+010.700 1.100 0.60E+00 0.97E+00 0.700 1.300 0.22E-01 0.06E-01 0.7001.500 -0.53E+00 -0.80E+00 0.800 0.700 0.09E+01 0.06E+01 0.800 0.900 0.32E+01 0.50E+01 0.800 1.100 0.03E+00 0.79E+00 0.800 1.300 0.25E+00 0.50E+00 0.800 1.500 -0.14E+00 -0.28E+00。
BUAA数值分析大作业三
北京航空航天大学2020届研究生《数值分析》实验作业第九题院系:xx学院学号:姓名:2020年11月Q9:方程组A.4一、 算法设计方案(一)总体思路1.题目要求∑∑===k i kj s r rsy x cy x p 00),(对f(x, y) 进行拟合,可选用乘积型最小二乘拟合。
),(i i y x 与),(i i y x f 的数表由方程组与表A-1得到。
2.),(**j i y x f 与1使用相同方法求得,),(**j i y x p 由计算得出的p(x,y)直接带入),(**j i y x 求得。
1. ),(i i y x 与),(i i y x f 的数表的获得对区域D ={ (x,y)|1≤x ≤1.24,1.0≤y ≤1.16}上的f (x , y )值可通过xi=1+0.008i ,yj=1+0.008j ,得到),(i i y x 共31×21组。
将每组带入A4方程组,即可获得五个二元函数组,通过简单牛顿迭代法求解这五个二元数组可获得z1~z5有关x,y 的表达式。
再将),(i i y x 分别带入z1~z5表达式即可获得f(x,y)值。
2.乘积型最小二乘曲面拟合2.1使用乘积型最小二乘拟合,根据k 值不用,有基函数矩阵如下:⎪⎪⎪⎭⎫ ⎝⎛=k i i k x x x x B 0000 , ⎪⎪⎪⎭⎫ ⎝⎛=k j jk y y y y G 0000数表矩阵如下:⎪⎪⎪⎭⎫⎝⎛=),(),(),(),(0000j i i j y x f y x f y x f y x f U记C=[rs c ],则系数rs c 的表达式矩阵为:11-)(-=G G UG B B B C T TT )(通过求解如下线性方程,即可得到系数矩阵C 。
UG B G G C B B T T T =)()(2.2计算),(),,(****j i j i y x p y x f (i =1,2,…,31 ; j =1,2,…,21) 的值),(**j i y x f 的计算与),(j i y x f 相同。
数值分析大作业
数值分析大作业数值分析大作业姓名:黄晨晨学号:S1*******学院:储运与建筑工程学院学院班级:储建研17-2实验3.1 Gauss消去法的数值稳定性实验实验目的:理解高斯消元过程中出现小主元即很小时引起方程组解数值不定性实验内容:求解方程组Ax=b,其中(1)A1=0.3×10?1559.14315.291?6.130?1211.29521211,b1=59.1746.7812;(2)A2=10?7013 2.099999999999625?15?10102,b2=85.90000000000151;实验要求:(1)计算矩阵的条件数,判断系数矩阵是良态的还是病态的(2)用Gauss列主元消去法求得L和U及解向量x1,x2∈R4(3)用不选主元的高斯消去法求得L和U及解向量x1,x2∈R4(4)观察小主元并分析对计算结果的影响(1)计算矩阵的条件数,判断系数矩阵是良态的还是病态的代码:format longeformat compactA1=[0.3*10^-15,59.14,3,1;5.291,-6.130,-1,2;11.2,9,5,2;1,2,1,1] b1=[59.17;46.78;1;2]n=4C1=cond(A1,1) %C1为A1矩阵1范数下的条件数C2=cond(A1,2) %C2为A1矩阵2范数下的条件数C3=cond(A1,inf) %C3为1矩阵谱范数下的条件数结果:C1 =1.362944708720448e+02C2 =6.842955771253409e+01C3 =8.431146*********e+01显然A1矩阵为病态矩阵将矩阵A2,b2输入上述代码中求得A2矩阵的条件数为:C1 =1.928316831682894e+01C2 =8.993938090170119e+00C3 =1.835643564356072e+01显然A2矩阵也为病态矩阵(2)用Gauss列主元消去法求得L和U及解向量x1,x2∈R4代码:for k=1:n-1a=max(abs(A1(k:n,k)))if a==0returnendfor i=k:nif abs(A1(i,k))==ay=A1(i,:)A1(i,:)=A1(k,:)A1(k,:)=yx=b1(i,:)b1(i,:)=b1(k,:)b1(k,:)=xbreakendendif A1(k,k)~=0A1(k+1:n,k)=A1(k+1:n,k)/A1(k,k)A1(k+1:n,k+1:n)=A1(k+1:n,k+1:n)-A1(k+1:n,k)*A1(k,k+1:n) elsebreakendendL=tril(A1,0);for i=1:nL(i,i)=1;endLU=triu(A1,0)y1=L\b1x1=U\y1得到如下结果:x1 =3.845714853511634e+001.609517394778522e+00-1.547605454206655e+011.041130489899787e+01将A2=[10,-7,0,1;-3,2.0999********,6,2;5,-1,5,-1;0,1,0,2]b2=[8;5.900000000001;5;1]代入上述代码求得结果如下:X2 =4.440892098500626e-16-9.999999999999993e-019.999999999999997e-011.000000000000000e+00(3)用不选主元的高斯消去法求得L和U及解向量x1,x2∈R4代码:format longeformat compactA1=[0.3*10^-15,59.14,3,1;5.291,-6.130,-1,2;11.2,9,5,2;1,2,1,1] b1=[59.17;46.78;1;2][L,U]=lu(A1)y1=L\b1x1=U\y1求得如下结果:x1=3.845714853511634e+001.609517394778522e+00-1.547605454206655e+011.041130489899787e+01将A2=[10,-7,0,1;-3,2.0999********,6,2;5,-1,5,-1;0,1,0,2] b2=[8;5.900000000001;5;1]代入上述代码,求得结果如下:x 2 =4.440892098500626e-16 -9.999999999999993e-01 9.999999999999997e-01 9.999999999999999e-01(2)(3)求得结果相同,可验证结果正确。
数值分析作业
数值分析作业及答案Chap11、写出下列语句的运行结果。
在MA TLAB 上执行它们以验证所得解答。
a=[1 2 3 ;4 5 6 ]’ b=[9;7;5;3;1] c=b(2:4) d=b(4:-1:1) e=sort(b) f=[3,b ’]解:a=635241 b=13579c=357d=9753 e=97531F=[3 9 7 5 3 1] 3、给定一向量:a=[4 -1 2 -8 4 5 -3 -1 6 -7]写一段程序计算a 中正数的和。
运行程序并显示结果。
解:a=[4 -1 2 -8 4 5 -3 -1 6 -7]; s=0;for i=1:length(a) if a(i)>0s=s+a(i); end end s6、编写一个函数M 文件fun_es(x),计算如下函数:230.5sin x y e x x =-其中参数可以为标量,也可以为向量。
在MA TLAB 里键入如下命令检验此函数:fun_es(3) fun_es([1 2 3])解:function y=fun_es(x) y=0.5*exp(x/3)-x.^2.*sin(x);chap21、设0x >,x 的相对误差为δ,求L nx 的误差。
解:Lnx-Lnx*=dLnx=dx/x=δ2、设x 的相对误差为2%,求2x 的相对误差。
解:dLnf(x)=xf ’(x)/f(x)dLnx=4%5、计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?解:dLnf(x)=xf ’(x)/f(x)dLnx=3dLnx=1% dLnx=0.33%9、正方形的边长大约为100cm ,应怎样测量才能使其面积误差不超过1cm 2? 解:s=x 2s-s*=2x(x-x*)=1x-x*=1/(2x)=1/200=0.5*10-2 即测量边的误差不超过0.005cm 10、设212S gt =,假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减少。
数值分析大作业(牛顿下山法,拉格朗日法,切比雪夫法)及Matlab程序
课程设计课程名称:数值分析设计题目:学号:姓名:完成时间:2014.11.18题目一: 解线性方程组的直接法 设方程组Ax b =,其中250002511125555111x x x x x x A x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 矩阵中10.1(0,1,,5)k x k k =+=,b 由相应的矩阵元素计算,使解向量(1,1,,1)T x =。
(1) A 不变,对b 的元素6b 加一个扰动410-,求解方程组;(2) b 不变,对A 的元素22a 和66a 分别加一个扰动610-,求解方程组; (3) 对上述两种扰动方程组的解做误差分析。
一.数学原理:本计算采用直接法中的列主元高斯消元法,高斯列主元消元法原理如下: 1、设有n 元线性方程组如下:1111n n nn a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭1nx x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=1nb b ⎛⎫ ⎪ ⎪ ⎪⎝⎭2、第一步:如果a11!=0, 令l i1= ai1/a11, I= 2,3,……,n用(-li1)乘第一个方程加到第i 个方程上,得同解方程组:a (1)11 a (1)12 . . . a (1)1nx 1 b (1)1 a (1)21 a (1)22 . . . a (1)2n x 2 b (1)2 . . . . . . . = . a (1)n-11 a (1)n-12 . . a (1)n-1n x n-1 b (1)n-1 a (1)n1 a (1)n2 . . . a (1)nn x n b (1)n简记为:A (2) x = b (2) 其中a (2)ij = a (1)ij – l i1 * a (1)1j , I ,j = 2,3,..,nb (2)I = b (1)I – l i1 * b (1)1 , I = 2,3,...,n 第二步:如果a (2)22 != 0,令l i2= a (2)i2/a (2)22, I= 3,……,n依据同样的原理,对矩阵进行化间(省略),依次下去,直到完成!最后,得到上三角方程组:a(1)11 a(1)12. . . a(1)1nx1b(1)10 a(1)22 . . . a(1)2nx2b(1)2. . . . . . . = .0 0 . . a(n-1)n-1n xn-1b(n-1)n-10 0 . . . a(n)nn xnb(n)n简记为:A(n) x = b(n)最后从方程组的最后一个方程进行回代求解为:Xn = b(n) / a(n)nnXi = ( b(k)k- ∑ a(k)kj x j ) / a(k)kk二.解题过程:1.由题中所给条件可求出b。
北理工数值分析大作业
数值分析上机作业第 1 章1.1计算积分,n=9。
(要求计算结果具有6位有效数字)程序:n=1:19;I=zeros(1,19);I(19)=1/2*((exp(-1)/20)+(1/20));I(18)=1/2*((exp(-1)/19)+(1/19));for i=2:10I(19-i)=1/(20-i)*(1-I(20-i));endformat longdisp(I(1:19))结果截图及分析:在MATLAB中运行以上代码,得到结果如下图所示:当计算到数列的第10项时,所得的结果即为n=9时的准确积分值。
取6位有效数字可得.1.2分别将区间[-10.10]分为100,200,400等份,利用mesh或surf命令画出二元函数z=的三维图形。
程序:>> x = -10:0.1:10;y = -10:0.1:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长0.1')>> x = -10:0.2:10;y = -10:0.2:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长 0.2')>>x = -10:0.05:10;y = -10:0.05:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长0.05')结果截图及分析:由图可知,步长越小时,绘得的图形越精确。
数值分析期末大作业
一、问题提出设方程f(x)=x 3-3x-1=0有三个实根 x *1=1.8793 , x *2=-0.34727 ,x *3=-1.53209现采用下面六种不同计算格式,求 f(x)=0的根 x *1 或x *2 。
1、 x = 213xx + 2、x = 313-x3、 x = 313+x4、 x = 312-x 5、 x = x13+6、 x = x - ()1133123---x x x二、目的和意义1、通过实验进一步了解方程求根的算法;2、认识选择计算格式的重要性;3、掌握迭代算法和精度控制;4、明确迭代收敛性与初值选取的关系。
三、结构程序设计本程序实在matlab 软件上进行操作的。
首先建立一个空白的M-文件。
在编辑器中输入以下内容,并保存。
function [X1,m,n,q]=shizi1(p) x=zeros(100,1); x=double(x);x(1,1)=p;i=1;deltax=100;while (i<100 & deltax > 0.000001)x(i+1,1)=(3*x(i,1)+1)/x(i,1)^2deltax=abs(x(i+1,1)-x(i,1));i=i+1;endX1=x(1,1);m=i;n=x(i,1);q=deltax;以上是运行函数,下一步在建立一个执行M-文件,输入以下内容,并保存。
其中X1为初始值,m为迭代次数,n为最后得到的值,q为|x k+1-x k|。
clear all;clc;p=1.8;[X1,m,n,q]=shizi1(p)1、对第一个迭代公式,在执行文件中输入p=1.8;[X1,m,n,q]=shizi1(p)。
得到如下结果如下:初值为1.8,迭代100次,精度为10-6。
可见该迭代公式是发散的,将初值改为-1.5,其他均条件不变。
p=-1.5;[X1,m,n,q]=shizi1(p)改变初值后可以得到一个接近真值的结果x*3的结果ans=-1.5321。
数值分析大作业四
《数值分析》大作业四一、算法设计方案:复化梯形积分法,选取步长为1/500=0.002,迭代误差控制在E ≤1.0e-10①复化梯形积分法:11()[()()2()]2n b ak h f x dx f a f b f a kh -=⎰≈+++∑,截断误差为:322()''()''(),[,]1212Tb a b a R f h f a b nηηη--=-=-∈其中。
复化Simpson 积分法,选取步长为1/50=0.02,迭代误差控制在E ≤1.0e-10②Simpson 积分法:121211()[()()4()2()]3m m bi i ai i h f x dx f a f b f x f x --==≈+++∑∑⎰,截断误差为:4(4)(),[,]180sb a R h fa b ηη-=-∈。
③Guass 积分法选用Gauss-Legendre 求积公式:111()()ni i i f x dx A f x -=≈∑⎰截断误差为:R=()()n 2n 422n !2×(2[2!]2n 1fn n ⨯(2)η())+ η∈(1,1)。
选择9个节点:-0.9681602395,-0.8360311073,-0.6133714327,-0.3242534234,0,0.3242534234,0.6133714327,0.8360311073,0.9681602395, 对应的求积系数依次为:0.0812743884,0.1806481607,0.2606106964,0.3123470770,0.3302393550,0.3123470770,0.2606106964,0.1806481607,0.0812743884。
二、程序源代码:#include<stdio.h>#include<math.h>#include<stdlib.h>#define E 1.0e-10/****定义函数g和K*****/double g(double a){double b;b=exp(4*a)+(exp(a+4)-exp(-a-4))/(a+4);return b;}double K(double a,double b){double c;c=exp(a*b);return c;}/******复化梯形法******/void Tixing( ){double u[1001],x[1001],h,c[1001],e;int i,j,k;FILE *fp;fp=fopen("f:/result0. xls ","w");h=1.0/1500;for(i=0;i<3001;i++){x[i]=i*h-1;u[i]=g(x[i]);}for(k=0;k<100;k++){e=0;for(i=0;i<1001;i++){for(j=1,c[i]=0;j<N-1;j++)c[i]+=K(x[i],x[j])*u[j];u[i]=g(x[i])-h*c[i]-h/2*(K(x[i],x[0])*u[0]+K(x[i],x[N-1])*u[N-1]);e+=h*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<1001;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******复化Simpson法******/void simpson( ){double u[101],x[101],h,c[101],d[101],e;int i,j,k;FILE *fp;fp=fopen("f:/result1.xls","w");h=1.0/50;for(i=0;i<101;i++){x[i]=i*h-1;u[i]=g(x[i]);}for(k=0;k<50;k++){e=0;for(i=0;i<101;i++){for(j=1,c[i]=0,d[i]=0;j<51;j++){c[i]+=K(x[i],x[2*j-1])*u[2*j-1];if(j<50)d[i]+=K(x[i],x[2*j])*u[2*j];}u[i]=g(x[i])-4*h/3*c[i]-2*h/3*d[i]-h/3*(K(x[i],x[0])*u[0]+K(x[i],x[M-1])*u[M-1]);e+=h*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<101;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******Gauss积分法******/void gauss( ){double x[9]={-0.9681602395,-0.8360311073,-0.6133714327,-0.3242534234,0,\0.3242534234,0.6133714327,0.8360311073,0.9681602395},A[9]={0.0812743884,0.1806481607,0.2606106964,0.3123470770,0.3302393550,\0.3123470770,0.2606106964,0.1806481607,0.0812743884},u[9],c[9],e;int i,j,k;FILE *fp;fp=fopen("f:/result2. xls ","w");for(i=0;i<9;i++)u[i]=g(x[i]);for(k=0;k<50;k++){e=0;for(i=0;i<9;i++){for(j=0,c[i]=0;j<9;j++)c[i]+=A[j]*K(x[i],x[j])*u[j];u[i]=g(x[i])-c[i];e+=A[i]*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<9;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******主函数******/main(){Tixing ( );Simpson( );Gauss( );return 0;}三、运算结果复化梯形数据-10.018323-0.920.02523-0.9980.018471-0.9180.025433-0.9960.018619-0.9160.025637-0.9940.018768-0.9140.025843-0.9920.018919-0.9120.026051-0.990.019071-0.910.02626-0.9880.019224-0.9080.026471-0.9860.019378-0.9060.026683-0.9840.019534-0.9040.026897-0.9820.019691-0.9020.027113-0.980.019849-0.90.027331-0.9780.020008-0.8980.02755-0.9760.020169-0.8960.027772-0.9740.020331-0.8940.027995-0.9720.020494-0.8920.028219-0.970.020658-0.890.028446-0.9680.020824-0.8880.028674-0.9660.020992-0.8860.028905-0.9640.02116-0.8840.029137-0.9620.02133-0.8820.029371-0.960.021501-0.880.029607-0.9580.021674-0.8780.029844-0.9560.021848-0.8760.030084-0.9540.022023-0.8740.030326-0.9520.0222-0.8720.030569-0.950.022378-0.870.030815-0.9480.022558-0.8680.031062-0.9460.022739-0.8660.031311-0.9440.022922-0.8640.031563-0.9420.023106-0.8620.031816-0.940.023291-0.860.032072-0.9380.023478-0.8580.032329-0.9360.023667-0.8560.032589-0.9340.023857-0.8540.032851-0.9320.024048-0.8520.033114-0.930.024241-0.850.03338-0.9280.024436-0.8480.033648-0.9260.024632-0.8460.033918-0.9240.02483-0.8440.034191-0.9220.025029-0.8420.034465-0.840.034742-0.760.047841-0.8380.035021-0.7580.048225-0.8360.035302-0.7560.048613 -0.8340.035586-0.7540.049003 -0.8320.035872-0.7520.049396 -0.830.03616-0.750.049793 -0.8280.03645-0.7480.050193 -0.8260.036743-0.7460.050596 -0.8240.037038-0.7440.051002 -0.8220.037335-0.7420.051412 -0.820.037635-0.740.051825 -0.8180.037937-0.7380.052241 -0.8160.038242-0.7360.052661 -0.8140.038549-0.7340.053084 -0.8120.038858-0.7320.05351 -0.810.039171-0.730.05394 -0.8080.039485-0.7280.054373 -0.8060.039802-0.7260.054809 -0.8040.040122-0.7240.05525 -0.8020.040444-0.7220.055693 -0.80.040769-0.720.056141 -0.7980.041096-0.7180.056591 -0.7960.041426-0.7160.057046 -0.7940.041759-0.7140.057504 -0.7920.042094-0.7120.057966 -0.790.042432-0.710.058431 -0.7880.042773-0.7080.058901 -0.7860.043116-0.7060.059374 -0.7840.043463-0.7040.05985 -0.7820.043812-0.7020.060331 -0.780.044164-0.70.060816 -0.7780.044518-0.6980.061304 -0.7760.044876-0.6960.061796 -0.7740.045236-0.6940.062293 -0.7720.045599-0.6920.062793 -0.770.045966-0.690.063297 -0.7680.046335-0.6880.063805 -0.7660.046707-0.6860.064318 -0.7640.047082-0.6840.064834 -0.7620.04746-0.6820.065355-0.680.06588-0.60.090722 -0.6780.066409-0.5980.091451-0.6760.066942-0.5960.092185 -0.6740.06748-0.5940.092926 -0.6720.068022-0.5920.093672 -0.670.068568-0.590.094424 -0.6680.069119-0.5880.095183 -0.6660.069674-0.5860.095947 -0.6640.070234-0.5840.096718 -0.6620.070798-0.5820.097494 -0.660.071366-0.580.098277 -0.6580.071939-0.5780.099067 -0.6560.072517-0.5760.099862 -0.6540.0731-0.5740.100664 -0.6520.073687-0.5720.101473 -0.650.074278-0.570.102288 -0.6480.074875-0.5680.103109 -0.6460.075476-0.5660.103937 -0.6440.076082-0.5640.104772 -0.6420.076694-0.5620.105614 -0.640.077309-0.560.106462 -0.6380.07793-0.5580.107317 -0.6360.078556-0.5560.108179 -0.6340.079187-0.5540.109048 -0.6320.079823-0.5520.109924 -0.630.080464-0.550.110806 -0.6280.08111-0.5480.111696 -0.6260.081762-0.5460.112593 -0.6240.082418-0.5440.113498 -0.6220.08308-0.5420.114409 -0.620.083748-0.540.115328 -0.6180.08442-0.5380.116254 -0.6160.085098-0.5360.117188 -0.6140.085782-0.5340.118129 -0.6120.086471-0.5320.119078 -0.610.087165-0.530.120035 -0.6080.087865-0.5280.120999 -0.6060.088571-0.5260.12197 -0.6040.089282-0.5240.12295 -0.6020.089999-0.5220.123938-0.550.110806-0.470.152592 -0.5480.111696-0.4680.153817-0.5460.112593-0.4660.155053-0.5440.113498-0.4640.156298-0.5420.114409-0.4620.157553-0.540.115328-0.460.158819-0.5380.116254-0.4580.160095-0.5360.117188-0.4560.16138-0.5340.118129-0.4540.162677-0.5320.119078-0.4520.163983-0.530.120035-0.450.1653-0.5280.120999-0.4480.166628-0.5260.12197-0.4460.167966-0.5240.12295-0.4440.169315-0.5220.123938-0.4420.170675-0.520.124933-0.440.172046-0.5180.125936-0.4380.173428-0.5160.126948-0.4360.174821-0.5140.127967-0.4340.176225-0.5120.128995-0.4320.17764-0.510.130031-0.430.179067-0.5080.131076-0.4280.180505-0.5060.132128-0.4260.181955-0.5040.13319-0.4240.183416-0.5020.134259-0.4220.18489-0.50.135338-0.420.186375-0.4980.136425-0.4180.187871-0.4960.13752-0.4160.18938-0.4940.138625-0.4140.190901-0.4920.139738-0.4120.192435-0.490.140861-0.410.19398-0.4880.141992-0.4080.195538-0.4860.143132-0.4060.197109-0.4840.144282-0.4040.198692-0.4820.145441-0.4020.200288-0.480.146609-0.40.201897-0.4780.147786-0.3980.203518-0.4760.148973-0.3960.205153-0.4740.15017-0.3940.206801-0.4720.151376-0.3920.208462-0.390.210136-0.310.289382 -0.3880.211824-0.3080.291706-0.3860.213525-0.3060.294049 -0.3840.21524-0.3040.296411 -0.3820.216969-0.3020.298792 -0.380.218711-0.30.301192 -0.3780.220468-0.2980.303611 -0.3760.222239-0.2960.306049 -0.3740.224024-0.2940.308508 -0.3720.225823-0.2920.310985 -0.370.227637-0.290.313483 -0.3680.229465-0.2880.316001 -0.3660.231308-0.2860.318539 -0.3640.233166-0.2840.321098 -0.3620.235039-0.2820.323677 -0.360.236927-0.280.326277 -0.3580.23883-0.2780.328897 -0.3560.240748-0.2760.331539 -0.3540.242682-0.2740.334202 -0.3520.244631-0.2720.336886 -0.350.246596-0.270.339592 -0.3480.248576-0.2680.34232 -0.3460.250573-0.2660.345069 -0.3440.252586-0.2640.347841 -0.3420.254614-0.2620.350635 -0.340.256659-0.260.353451 -0.3380.258721-0.2580.35629 -0.3360.260799-0.2560.359151 -0.3340.262894-0.2540.362036 -0.3320.265005-0.2520.364944 -0.330.267134-0.250.367875 -0.3280.269279-0.2480.37083 -0.3260.271442-0.2460.373809 -0.3240.273622-0.2440.376811 -0.3220.27582-0.2420.379838 -0.320.278035-0.240.382888 -0.3180.280268-0.2380.385964 -0.3160.28252-0.2360.389064 -0.3140.284789-0.2340.392189 -0.3120.287076-0.2320.395339-0.230.398514-0.150.548804-0.2280.401715-0.1480.553212-0.2260.404942-0.1460.557655 -0.2240.408194-0.1440.562134 -0.2220.411473-0.1420.56665 -0.220.414778-0.140.571201 -0.2180.418109-0.1380.575789 -0.2160.421467-0.1360.580414 -0.2140.424853-0.1340.585076 -0.2120.428265-0.1320.589775 -0.210.431705-0.130.594512 -0.2080.435172-0.1280.599287 -0.2060.438668-0.1260.604101 -0.2040.442191-0.1240.608953 -0.2020.445743-0.1220.613844 -0.20.449323-0.120.618774 -0.1980.452932-0.1180.623744 -0.1960.45657-0.1160.628754 -0.1940.460237-0.1140.633805 -0.1920.463934-0.1120.638895 -0.190.46766-0.110.644027 -0.1880.471416-0.1080.6492 -0.1860.475203-0.1060.654414 -0.1840.47902-0.1040.659671 -0.1820.482867-0.1020.664969 -0.180.486746-0.10.67031 -0.1780.490655-0.0980.675694 -0.1760.494596-0.0960.681121 -0.1740.498569-0.0940.686592 -0.1720.502573-0.0920.692107 -0.170.50661-0.090.697666 -0.1680.510679-0.0880.70327 -0.1660.514781-0.0860.708919 -0.1640.518916-0.0840.714613 -0.1620.523084-0.0820.720352 -0.160.527285-0.080.726138 -0.1580.53152-0.0780.731971 -0.1560.535789-0.0760.73785 -0.1540.540093-0.0740.743776 -0.1520.544431-0.0720.749751-0.070.7557730.01 1.040796 -0.0680.7618430.012 1.049156-0.0660.7679620.014 1.057583 -0.0640.7741310.016 1.066077 -0.0620.7803480.018 1.07464 -0.060.7866160.02 1.083272 -0.0580.7929340.022 1.091973 -0.0560.7993030.024 1.100743 -0.0540.8057230.026 1.109585 -0.0520.8121950.028 1.118497 -0.050.8187190.03 1.127481 -0.0480.8252950.032 1.136537 -0.0460.8319240.034 1.145666 -0.0440.8386060.036 1.154868 -0.0420.8453410.038 1.164144 -0.040.8521310.04 1.173494 -0.0380.8589760.042 1.18292 -0.0360.8658750.044 1.192421 -0.0340.872830.046 1.201999 -0.0320.879840.048 1.211654 -0.030.8869070.05 1.221386 -0.0280.8940310.052 1.231196 -0.0260.9012120.054 1.241085 -0.0240.9084510.056 1.251054 -0.0220.9157480.058 1.261102 -0.020.9231030.06 1.271232 -0.0180.9305170.062 1.281442 -0.0160.9379910.064 1.291735 -0.0140.9455250.066 1.30211 -0.0120.953120.068 1.312569 -0.010.9607750.07 1.323112 -0.0080.9684930.072 1.333739 -0.0060.9762720.074 1.344452 -0.0040.9841130.076 1.355251 -0.0020.9920180.078 1.366136 00.9999860.08 1.377109 0.002 1.0080180.082 1.38817 0.004 1.0161140.084 1.39932 0.006 1.0242760.086 1.41056 0.008 1.0325030.088 1.4218890.09 1.433310.17 1.973853 0.092 1.4448230.172 1.9897080.094 1.4564280.174 2.005689 0.096 1.4681260.176 2.021799 0.098 1.4799180.178 2.038039 0.1 1.4918050.18 2.054408 0.102 1.5037870.182 2.07091 0.104 1.5158660.184 2.087543 0.106 1.5280410.186 2.104311 0.108 1.5403150.188 2.121213 0.11 1.5526870.19 2.138251 0.112 1.5651580.192 2.155425 0.114 1.577730.194 2.172738 0.116 1.5904020.196 2.19019 0.118 1.6031760.198 2.207781 0.12 1.6160530.2 2.225515 0.122 1.6290340.202 2.24339 0.124 1.6421180.204 2.261409 0.126 1.6553080.206 2.279573 0.128 1.6686040.208 2.297883 0.13 1.6820060.21 2.31634 0.132 1.6955160.212 2.334945 0.134 1.7091350.214 2.3537 0.136 1.7228630.216 2.372605 0.138 1.7367010.218 2.391662 0.14 1.750650.22 2.410872 0.142 1.7647120.222 2.430236 0.144 1.7788860.224 2.449756 0.146 1.7931740.226 2.469433 0.148 1.8075770.228 2.489268 0.15 1.8220960.23 2.509262 0.152 1.8367310.232 2.529417 0.154 1.8514840.234 2.549733 0.156 1.8663550.236 2.570213 0.158 1.8813460.238 2.590857 0.16 1.8964570.24 2.611667 0.162 1.911690.242 2.632645 0.164 1.9270450.244 2.65379 0.166 1.9425230.246 2.675106 0.168 1.9581260.248 2.6965930.25 2.7182520.33 3.743385 0.252 2.7400850.332 3.7734530.254 2.7620940.334 3.803761 0.256 2.7842790.336 3.834314 0.258 2.8066430.338 3.865111 0.26 2.8291860.34 3.896156 0.262 2.8519110.342 3.927451 0.264 2.8748180.344 3.958996 0.266 2.8979090.346 3.990796 0.268 2.9211850.348 4.02285 0.27 2.9446480.35 4.055162 0.272 2.96830.352 4.087734 0.274 2.9921420.354 4.120567 0.276 3.0161750.356 4.153664 0.278 3.0404010.358 4.187026 0.28 3.0648220.36 4.220657 0.282 3.0894390.362 4.254558 0.284 3.1142540.364 4.288731 0.286 3.1392680.366 4.323179 0.288 3.1644830.368 4.357903 0.29 3.18990.37 4.392906 0.292 3.2155220.372 4.42819 0.294 3.2413490.374 4.463758 0.296 3.2673840.376 4.499612 0.298 3.2936280.378 4.535753 0.3 3.3200830.38 4.572185 0.302 3.346750.382 4.608909 0.304 3.3736320.384 4.645928 0.306 3.4007290.386 4.683245 0.308 3.4280440.388 4.720861 0.31 3.4555790.39 4.75878 0.312 3.4833350.392 4.797003 0.314 3.5113130.394 4.835533 0.316 3.5395160.396 4.874373 0.318 3.5679460.398 4.913524 0.32 3.5966040.4 4.95299 0.322 3.6254930.402 4.992773 0.324 3.6546130.404 5.032876 0.326 3.6839670.406 5.0733 0.328 3.7135570.408 5.114050.41 5.1551260.497.099276 0.412 5.1965330.4927.1562980.414 5.2382720.4947.213778 0.416 5.2803460.4967.27172 0.418 5.3227590.4987.330127 0.42 5.3655120.57.389004 0.422 5.4086080.5027.448353 0.424 5.4520510.5047.508179 0.426 5.4958420.5067.568486 0.428 5.5399850.5087.629277 0.43 5.5844830.517.690556 0.432 5.6293380.5127.752327 0.434 5.6745540.5147.814595 0.436 5.7201330.5167.877362 0.438 5.7660770.5187.940634 0.44 5.8123910.528.004414 0.442 5.8590770.5228.068707 0.444 5.9061380.5248.133516 0.446 5.9535770.5268.198845 0.448 6.0013960.5288.264699 0.45 6.04960.538.331082 0.452 6.0981910.5328.397998 0.454 6.1471730.5348.465452 0.456 6.1965480.5368.533447 0.458 6.2463190.5388.601989 0.46 6.296490.548.671081 0.462 6.3470640.5428.740728 0.464 6.3980450.5448.810935 0.466 6.4494340.5468.881705 0.468 6.5012370.5488.953044 0.47 6.5534560.559.024956 0.472 6.6060940.5529.097445 0.474 6.6591550.5549.170517 0.476 6.7126420.5569.244175 0.478 6.7665580.5589.318426 0.48 6.8209080.569.393272 0.482 6.8756950.5629.46872 0.484 6.9309210.5649.544774 0.486 6.9865910.5669.621439 0.4887.0427080.5689.6987190.579.776620.6513.46367 0.5729.8551470.65213.571810.5749.9343050.65413.68082 0.57610.01410.65613.79071 0.57810.094530.65813.90147 0.5810.175610.6614.01313 0.58210.257340.66214.12569 0.58410.339730.66414.23915 0.58610.422780.66614.35352 0.58810.50650.66814.46881 0.5910.590890.6714.58502 0.59210.675960.67214.70217 0.59410.761710.67414.82026 0.59610.848150.67614.9393 0.59810.935280.67815.05929 0.611.023110.6815.18025 0.60211.111650.68215.30218 0.60411.20090.68415.42509 0.60611.290870.68615.54898 0.60811.381560.68815.67387 0.6111.472980.6915.79977 0.61211.565130.69215.92667 0.61411.658020.69416.0546 0.61611.751660.69616.18355 0.61811.846050.69816.31354 0.6211.94120.716.44457 0.62212.037110.70216.57665 0.62412.133790.70416.7098 0.62612.231250.70616.84401 0.62812.32950.70816.97931 0.6312.428530.7117.11569 0.63212.528360.71217.25316 0.63412.628990.71417.39174 0.63612.730420.71617.53143 0.63812.832680.71817.67225 0.6412.935750.7217.81419 0.64213.039650.72217.95728 0.64413.144390.72418.10151 0.64613.249960.72618.24691 0.64813.356390.72818.393470.7318.541210.8125.53363 0.73218.690130.81225.738720.73418.840250.81425.94545 0.73618.991580.81626.15385 0.73819.144120.81826.36392 0.7419.297890.8226.57568 0.74219.452890.82226.78914 0.74419.609140.82427.00431 0.74619.766640.82627.22121 0.74819.925410.82827.43985 0.7520.085450.8327.66025 0.75220.246780.83227.88242 0.75420.409410.83428.10638 0.75620.573340.83628.33213 0.75820.738580.83828.5597 0.7620.905160.8428.78909 0.76221.073070.84229.02033 0.76421.242330.84429.25342 0.76621.412950.84629.48839 0.76821.584940.84829.72524 0.7721.758310.8529.964 0.77221.933080.85230.20467 0.77422.109250.85430.44728 0.77622.286830.85630.69184 0.77822.465840.85830.93836 0.7822.646290.8631.18686 0.78222.828190.86231.43735 0.78423.011550.86431.68986 0.78623.196380.86631.9444 0.78823.382690.86832.20098 0.7923.570510.8732.45962 0.79223.759830.87232.72034 0.79423.950670.87432.98315 0.79624.143040.87633.24807 0.79824.336960.87833.51513 0.824.532440.8833.78432 0.80224.729490.88234.05568 0.80424.928110.88434.32922 0.80625.128340.88634.60496 0.80825.330170.88834.882910.8935.163090.94643.99154 0.89235.445520.94844.344880.89435.730220.9544.701070.89636.017210.95245.060110.89836.306510.95445.422040.936.598120.95645.786870.90236.892080.95846.154630.90437.188410.9646.525350.90637.487110.96246.899050.90837.788210.96447.275750.9138.091730.96647.655470.91238.397680.96848.038240.91438.70610.9748.424090.91639.016990.97248.813040.91839.330380.97449.205110.9239.646280.97649.600330.92239.964720.97849.998720.92440.285720.9850.400320.92640.60930.98250.805140.92840.935480.98451.213210.9341.264280.98651.624560.93241.595720.98852.039210.93441.929820.9952.45720.93642.26660.99252.878540.93842.606090.99453.303270.9442.948310.99653.73140.94243.293270.99854.162980.94443.64101154.59802复化Simpson数据:-1 0.018319929 -0.34 0.256658088 0.32 3.596641805 -0.98 0.0198445 -0.32 0.278035042 0.34 3.896195298-0.96 0.021494322 -0.3 0.301192133 0.36 4.220697765-0.94 0.023283225 -0.28 0.326278124 0.38 4.572227037-0.92 0.025220379 -0.26 0.353453177 0.4 4.95303418-0.9 0.027320224 -0.24 0.382891765 0.42 5.365557596-0.88 0.029594431 -0.22 0.41478194 0.44 5.812438891-0.86 0.032059069 -0.16 0.527292277 0.54 8.671138204-0.84 0.034728638 -0.14 0.571209036 0.56 9.39333156-0.82 0.037621263 -0.12 0.61878367 0.58 10.17567433-0.8 0.040754615 -0.1 0.670320427 0.6 11.02317608-0.78 0.044149394 -0.08 0.726149698 0.62 11.94126383-0.76 0.047826844 -0.06 0.78662861 0.64 12.93581634-0.74 0.051810827 -0.04 0.85214479 0.66 14.01320231-0.72 0.056126648 -0.02 0.92311742 0.68 15.1803205-0.7 0.060802006 0 1.0000013 0.7 16.44464467 -0.68 0.065866854 0.02 1.083288424 0.72 17.81427057 -0.66 0.071353499 0.04 1.173512427 0.74 19.29796874 -0.64 0.077297255 0.06 1.271250748 0.76 20.90523965 -0.62 0.083735917 0.08 1.377129533 0.78 22.64637562 -0.6 0.090711017 0.1 1.491826493 0.8 24.53252554 -0.58 0.098266855 0.12 1.616076341 0.82 26.57576756 -0.56 0.106452202 0.14 1.750674449 0.84 28.78918506 -0.54 0.11531904 0.16 1.896482943 0.86 31.18695183 -0.52 0.12492459 0.18 2.054435268 0.88 33.78442141 -0.5 0.135329888 0.2 2.225543071 0.9 36.59822683 -0.48 0.14660204 0.22 2.410901825 0.92 39.64638571 -0.46 0.158812728 0.24 2.611698647 0.94 42.94841704 -0.44 0.17204064 0.26 2.829219145 0.96 46.52546475 -0.42 0.18636997 0.28 3.064856356 0.98 50.40043451 -0.4 0.201892977 0.3 3.320119013 1 54.59813904 -0.38 0.218708553 0.46 6.296539601-0.36 0.236924875 0.48 6.820959636-0.2 0.449328351 0.5 7.389057081-0.18 0.486751777 0.52 8.004469675Gauss积分数据:0102030405060四、讨论①在满足相同精度要求的情况下复化梯形积分法比复化Simpson 积分法计算所需节点数多,计算量大。
数值分析课程设计大作业
课程设计2013年07月20日设计题目 《数值分析》课程设计学生姓名 ****学 号 ####专业班级指导教师1.1水手、猴子和椰子问题算法分析:设椰子起初的数目为0p ,第一至第五次猴子在夜里藏椰子后,椰子的数目分别为0p ,1p ,2p ,3p ,4p ,再设最后每个人分得x 个椰子,由题意得:15541(1),0,1,2,3,4.(1)=5155k k p p k x p p x +=-==-+所以利用逆向递推方法求解:n=input('n='); for x=1:n p=5*x+1; for k=1:5 p=5*p/4+1; endif p==fix(p) break end enddisp([x,p])执行代码后得: n= 1023 15621 (输入n=1000000) 即最后每个人分得1023个椰子,椰子总数为156211.2当0,1,2,,100n = 时,选择稳定的算法计算积分10d 10nxn xe I x e --=+⎰ 由1100(1)1110010101,1010110(1)10x x n x nxnxn n n x e I I dx e e e I I dx e dx e e n---+---+-++==+++===-+⎰⎰⎰ 得0111(1)1011[(1)],100,99,...,1.10n n n I I I e I n n -+⎧=-⎪⎪⎨⎪=--=⎪⎩由上式可知求n I 时,1n I +的误差的影响被缩小了。
n=100时100I 的近似值为0。
matlab 代码为fprintf('稳定算法:\n')y0=0;n=100;plot(n,y0,'r*');hold onfprintf('y[100]=%10.6f',y0);while(1)y1=1/10*[(1-exp(-n))/n-y0];fprintf('y[%10.0f]=%10.6f',n-1,y1);plot(n-1,y1,'r*') if(n<=1) break;endy0=y1;n=n-1;if mod(n,3)==0,fprintf('\n'),end,end(具体值已省略)编程实现得下图。
北航数值分析A大作业3
北航数值分析A大作业3-CAL-FENGHAI.-(YICAI)-Company One1一、算法设计方案1、解非线性方程组将各拟合节点(x i ,y j )分别带入非线性方程组,求出与(,)i i x y 相对应的数组te[i][j],ue[i][j],求解非线性方程组选择Newton 迭代法,迭代过程中需要求解线性方程组,选择选主元的Doolittle 分解法。
2、二元二次分偏插值对数表z(t,u)进行分片二次代数插值,求得对应(t ij ,u ij )处的值,即为),(j i y x f 的值。
根据给定的数表,可将整个插值区域分成 16 个小 的区域,故先判断t ij , u i j 所在,的区域,再作此区域的插值,计算 z i j ,相应的Lagrange 形式的插值多项式为:112211(,)()()(,)m n k r k r k m r n p t u l t l u f t u ++=-=-=∑∑ 其中11()m w k w m k w w k t t l t t t +=-≠-=-∏ (k=m-1, m, m+1)11()n w r w n r w w r y y l u y y +=-≠-=-∏ (r=n-1, n, n+1)3、曲面拟合从k=1开始逐渐增大k 的值,使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,当710-<σ时结束计算。
拟合基函数φr (x)ψs (y)选择为φr (x)=x r ,ψs (y)=y s 。
拟合系数矩阵c 通过连续两次解线性方程组求得。
[]rsc *=C ,11()()T T T --=C B B B UG G G 其中0011101011[()]1k k r i k x x x x x x x ϕ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦B ,0011101011[()]1k k s j k y y y y G y y y ψ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦[(,)]i j f x y =U4、观察比较计算)5,,2,1,8,,2,1)(,(),,(****⋅⋅⋅=⋅⋅⋅=j i y x p y x f j i j i 的值并输出结果,以观察),(y x p 逼近),(y x f 的效果。
数值分析大作业(利用MATLAB软件)
实验报告课程名称:数值分析实验项目:曲线拟合/数值积分专业班级:姓名:学号:实验室号:实验组号:实验时间:20.10.24 批阅时间:指导教师:成绩:工业大学实验报告(适用计算机程序设计类)专业班级:学号:姓名:实验名称:曲线拟合与函数插值附件A 工业大学实验报告(适用计算机程序设计类)专业班级:学号:姓名:实验步骤或程序:附录一:1.利用二次,三次,四次多项式进行拟合:1.1 MATLAB代码如下:clear;clc;close allt=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24];y=[14 13 13 13 13 14 15 17 19 21 22 24 27 30 31 30 28 26 24 23 21 19 17 16 15];%输入数据hold on[p2 s2]=polyfit(t,y,2);%对于上面的数据进行2次多项式拟合,其中s2包括R(系数矩阵的QR分解的上三角阵),%df(自由度),normr(拟合误差平方和的算术平方根)。
y2=polyval(p2,t);%返回多项式拟合曲线在t处的值[p3 s3]=polyfit(t,y,3);y3=polyval(p3,t);[p4 s4]=polyfit(t,y,4);y4=polyval(p4,t);plot(t,y,'ro')%画图plot(t,y2,'g-')plot(t,y3,'m^-')plot(t,y4,'bs-')xlabel('t')ylabel('y')legend('原始数据','2次多项式拟合','3次多项式拟合','4次多项式拟合')1.2 二次,三次,四次多项式拟合的结果分别如下:(1)总的拟合结果在工作区的显示如下:(2)其次二次多项式拟合的结果为:(3)其中三次多项式拟合的结果:(4)其中四次多项式拟合的结果为:1.3 拟合的图像为:1.4 拟合的多项式为:根据工作区得出的数据列出最后的拟合多项式为:(1)y=7.416+2.594t-0.094t^2(2)y=12.251-0.102t+0.193t^2-0.008t^3(3)y=15.604-3.526t+0.866t^2-0.052t^3+0.0009t^42.形如2()()b t c y t ae--=的函数,其中,,a b c 为待定常数。
数值分析大作业三、四、五、六、七
大作业 三1. 给定初值0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用程序.解:Matlab 程序如下:函数m 文件:function Fu=fu(x)Fu=x^3/3-x;end函数m 文件:function Fu=dfu(x)Fu=x^2-1;end用Newton 法求根的通用程序clear;x0=input('请输入初值x0:');ep=input('请输入容许误差:');flag=1;while flag==1x1=x0-fu(x0)/dfu(x0);if abs(x1-x0)<epflag=0;endx0=x1;endfprintf('方程的一个近似解为:%f\n',x0);寻找最大δ值的程序:cleareps=input('请输入搜索精度:');ep=input('请输入容许误差:');flag=1;k=0;x0=0;while flag==1sigma=k*eps;x0=sigma;k=k+1;m=0;flag1=1;while flag1==1 && m<=10^3x1=x0-fu(x0)/dfu(x0);if abs(x1-x0)<epflag1=0;endm=m+1;x0=x1;endif flag1==1||abs(x0)>=epflag=0;endend fprintf('最大的sigma 值为:%f\n',sigma);2.求下列方程的非零根5130.6651()ln 05130.665114000.0918x x f x x +⎛⎫=-= ⎪-⨯⎝⎭解:Matlab 程序为:(1)主程序clearclcformat longx0=765;N=100;errorlim=10^(-5);x=x0-f(x0)/subs(df(),x0);n=1;while n<Nx=x0-f(x0)/subs(df(),x0);if abs(x-x0)>errorlimn=n+1;elsebreak ;endx0=x;enddisp(['迭代次数: n=',num2str(n)])disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)])(2)子函数非线性函数ffunction y=f(x)y=log((513+*x)/*x))-x/(1400*;end(3)子函数非线性函数的一阶导数dffunction y=df()syms x1y=log((513+*x1)/*x1))-x1/(1400*;y=diff(y);end运行结果如下:迭代次数: n=5所求非零根: 正根x1= 负根x2=大作业 四试编写MATLAB 函数实现Newton 插值,要求能输出插值多项式. 对函数21()14f x x=+在区间[-5,5]上实现10次多项式插值.分析:(1)输出插值多项式。
数值分析大作业
数值分析大作业数值分析大作业学号:*********专业:机械工程学生姓名:***2014年10月摘要:在自然科学与工程技术中,很多问题的解决常常归结为求解线性方程组Ax=b 。
随着计算机的发展,利用计算机这个强有力的计算工具去求解线性方程组是一个非常实用的问题。
在求解大型线性方程组时,直接法在多次消元,回代的过程中,四则运算的误差累计与传播无法控制,致使计算结果的精度就无法保证,特别是求解大型稀松矩阵时,还要对系数矩阵进行分解。
而迭代法相对于直接法而言,具有保持迭代矩阵不变的特点,计算程序一般也比较简单,且对于许多问题收敛速度比较快。
比较常用的迭代法有雅克比迭代法、高斯一塞德尔迭代法和逐次超松弛迭代法等,本次研究目的是通过求解一个线性方程组来比较它们的迭代效果,验证一些已有的结论。
1.数学原理1.1雅可比迭代法将线性方程组的系数矩n n ij R a A ?∈=)(分解为A=D+L+U ,其中D 是由A 的主对角元素构成的对角矩阵,L 是由A 的严格下三角部分构成的严格下三角矩阵, U 是由A 的严格上三角部分构成的严格上三角矩阵,即,2211=nn a a a D.0000,0000,1223113121,21323121==--n n n n n n n n a a a a a a U a a a a a a L若系数矩阵A 的对角元素),,2,1(0n i a ii =≠,则矩阵D 非奇异,取M=D ,N=-(L+U),则J J g x G b D x U L D x +=++-=--11)(,因而,构造的迭代法为:.),(,11)()1(b D g U L D G g x G x J J J k J k --+=+-=+=1.2高斯-赛得尔迭代法将线性方程组的系数矩n n ij R a A ?∈=)(分解为A=D+L+U 。
若系数矩阵A 的对角元素不等于0,则矩阵D 非奇异,取M=L+D ,N=-U ,则()()G G g x G b D L Ux D L x +=+++-=--11因而,构造的迭代法为:()().,,11)()1(b D L g U D L G g x G x G G G k G k --++=+-=+=1.3逐次超松弛迭代法线性方程组的系数矩n n ij R a A ?∈=)(分解为A=D+L+U 。
数值分析参考答案
数值分析参考答案1.4 习题解答或提示1、解:(1)>> a=[1 2 3 ;4 5 6 ]'a =1 42 53 6(2)>> b=[9;7;5;3;1]b =97531(3)>> c=b(2:4)c =753(4)>> d=b(4:-1:1)d =3579(5)>> e=sort(b)e =13579(6)>> f=[3:b']f =3 4 5 6 7 8 92、解:>> x=[7 4 3 ];y=[-1 -2 -3];(1)>> u=[y,x]u =-1 -2 -3 7 4 3 (2)>> u=[x,y]u =7 4 3 -1 -2 -33、解:sum=0;a=[4 -1 2 -8 4 5 -3 -1 6 -7]; for i=1 : length(a)if a(i)>0, sum=sum+a(i); endendsumsum =214、解:m=input('input an array:')input an array:[1 2 5;3 1 2;4 1 3]m =1 2 53 1 24 1 35、解:sum(m)ans =8 4 10>> max(m)ans =4 2 5>> min(m)ans =1 1 26、解:function y=fun_es(x)y=0.5.*exp(x./3)-x.^2.*sin(x);>> fun_es(3)ans =0.0891>> fun_es([1 2 3])ans =-0.1437 -2.6633 0.08917、提示:本题主要考查的是随机数生成函数rand的使用方法,以及选取种子数的方法之一:使用clock命令。
可以参照课本的例1.5来编写函数。
8、解:function y=fun_xa()x=input('input the value of x:');n=input('input the value of n:');y=1;for i=1:1:ny=y+x^i/factorial(i); end>> fun_xa()input the value of x :1 input the value of n :4ans =2.70832.4 习题解答1 解:E(lnx)=(ln ’E(x)=)(1x E x =xδ=Er(x) 2. 解 Er(x 2)=)(22x Er x xx ⨯=4% 3. 解:123451.1021,0.031,385.6,56.430,7 1.0x x x x x *****=====⨯分别有5 位,2位,4位,5位,2位有效数字4 解 4*1105.0)(-⨯=x E3*2105.0)(-⨯=x E1*3105.0)(-⨯=x E3*4105.0)(-⨯=x E=++)(*4*2*1x x x E +)(*1x E +)(*2x E )(*4x E =0.00105))()((*4*2x E x E E =)()()(*42*4*2*4*2x E x x x x E -5. 解 V=334r π Er(v)=)(//x Er V x dx dV ⨯⨯=3Er(x)%1)(3≤x Er%33.0)(≤x Er6. 解 7830100-=Y Y)783()(100E Y E ==0.00057.解 x 1,2=24561122-±=56783±21,2105.0)x (-⨯=E 2105.0)783(-⨯=E98.27783≈x 1,2=83.98 或 28.02 8.略。
【免费下载】数值分析第05次作业
3
4
4
4
5
2
求一代数多项式曲线,使其最好地拟合这组给定数据。若指定用指数模型方程
y axb 拟合这组数据,求出参数 a,b 的值。
编程:
编写程序:1) xi=[1 3 4 5 6 7 8 9 10]; yi=[10 5 4 2 1 1 2 3 4]; A=zeros(3,3); b=zeros(3,1); for i=1:3
for j=1:4 for k=1:7 A(i,j)=A(i,j)+x(k)^(i+j-2); end
end end for i=1:4
for k=1:7 b(i)=b(i)+x(k)^(i-1)*y(k);
end end a=A\b %inv(A)*b; aa=a' ; for n=1:4
aa1(5-n)=aa(n); end yi=poly2str(aa1,'x'); %写出对应的多次的代数多项式 f3=polyval(flipud(a),x); %计算 3 次多项式在 xi 上对应的值 plot(x,y,'gx',x,f3,'r--') %在同一直角坐标系画出图像
程序 2)结果: aa =
2.1257 -0.6913 图像:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析大作业三四五六七HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】大作业 三1.给定初值0x 及容许误差,编制牛顿法解方程f (x )=0的通用程序.解:Matlab 程序如下:函数m 文件:function Fu=fu(x) Fu=x^3/3-x; end函数m 文件:function Fu=dfu(x) Fu=x^2-1; end用Newton 法求根的通用程序 clear;x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1;while flag==1x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)<ep flag=0; end x0=x1; endfprintf('方程的一个近似解为:%f\n',x0); 寻找最大δ值的程序: cleareps=input('请输入搜索精度:'); ep=input('请输入容许误差:'); flag=1; k=0; x0=0; while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1;while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0);if abs(x1-x0)<epend m=m+1; x0=x1; endif flag1==1||abs(x0)>=ep flag=0; end endfprintf('最大的sigma 值为:%f\n',sigma);2.求下列方程的非零根5130.6651()ln 05130.665114000.0918x x f x x +⎛⎫=-= ⎪-⨯⎝⎭解:Matlab 程序为:(1)主程序 clear clc format long x0=765; N=100;errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while n<Nx=x0-f(x0)/subs(df(),x0); if abs(x-x0)>errorlim n=n+1; else break ; end x0=x; enddisp(['迭代次数: n=',num2str(n)])disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x)y=log((513+*x)/*x))-x/(1400*; end(3)子函数 非线性函数的一阶导数df function y=df() syms x1y=log((513+*x1)/*x1))-x1/(1400*; y=diff(y);运行结果如下:迭代次数: n=5所求非零根: 正根x1= 负根x2=大作业 四试编写MATLAB 函数实现Newton 插值,要求能输出插值多项式. 对函数21()14f x x =+在区间[-5,5]上实现10次多项式插值.分析:(1)输出插值多项式。
(2)在区间[-5,5]内均匀插入99个节点,计算这些节点上函数f (x )的近似值,并在同一张图上画出原函数和插值多项式的图形。
(3)观察龙格现象,计算插值函数在各节点处的误差,并画出误差图。
解:Matlab 程序代码如下:%此函数实现y=1/(1+4*x^2)的n 次Newton 插值,n 由调用函数时指定 %函数输出为插值结果的系数向量(行向量)和插值多项式 function [t y]=func5(n) x0=linspace(-5,5,n+1)'; y0=1./(1.+4.*x0.^2); b=zeros(1,n+1); for i=1:n+1 s=0; for j=1:i t=1; for k=1:i if k~=jt=(x0(j)-x0(k))*t; end ; end ; s=s+y0(j)/t; end ; b(i)=s; end ;t=linspace(0,0,n+1); for i=1:ns=linspace(0,0,n+1);s(n+1-i:n+1)=b(i+1).*poly(x0(1:i)); t=t+s; end ;t(n+1)=t(n+1)+b(1); y=poly2sym(t);10次插值运行结果: [b Y]=func5(10)Columns 1 through 4Columns 5 through 8Columns 9 through 11Y =b为插值多项式系数向量,Y为插值多项式。
插值近似值:x1=linspace(-5,5,101);x=x1(2:100);y=polyval(b,x)y =Columns 1 through 12Columns 13 through 24Columns 25 through 36Columns 37 through 48Columns 49 through 60Columns 61 through 72Columns 73 through 84Columns 85 through 96Columns 97 through 99绘制原函数和拟合多项式的图形代码:plot(x,1./(1+4.*x.^2))hold allplot(x,y,'r')xlabel('X')ylabel('Y')title('Runge现象')gtext('原函数')gtext('十次牛顿插值多项式')绘制结果:误差计数并绘制误差图:hold offey=1./(1+4.*x.^2)-yey =Columns 13 through 24Columns 25 through 36Columns 37 through 48Columns 49 through 60Columns 61 through 72Columns 73 through 84Columns 85 through 96Columns 97 through 99plot(x,ey)xlabel('X')ylabel('ey')title('Runge现象误差图')输出结果为:大作业五解:Matlab程序为:x = [-520,-280,,-78,,,0,,,78,,280,520]';y = [0,-30,-36,-35,,,0,,,35,36,30,0]';n = 13;%求解Mfor i = 1:1:n-1h(i) = x(i+1)-x(i);endfor i = 2:1:n-1a(i) = h(i-1)/(h(i-1)+h(i));b(i) = 1-a(i);c(i) = 6*((y(i+1)-y(i))/h(i)-(y(i)-y(i-1))/h(i-1))/(h(i-1)+h(i)); enda(n) = h(n-1)/(h(1)+h(n-1));b(n) = h(1)/(h(1)+h(n-1));c(n) = 6/(h(1)+h(n-1))*((y(2)-y(1))/h(1)-(y(n)-y(n-1))/h(n-1));A(1,1) = 2;A(1,2) = b(2);A(1,n-1) = a(2);A(n-1,n-2) = a(n);A(n-1,n-1) = 2;for i = 2:1:n-2A(i,i) = 2;A(i,i+1) = b(i+1);A(i,i-1) = a(i+1);endC = c(2:n);C = C';m = A\C;M(1) = m(n-1);M(2:n) = m;xx = -520::520;for i = 1:51for j = 1:1:n-1if x(j) <= xx(i) && xx(i) < x(j+1)break;endendyy(i) = M(j+1)*(xx(i)-x(j))^3/(6*h(j))-M(j)*(xx(i)-x(j+1))^3/(6*h(j))+(y(j+1)-M(j+1)*h(j)^2/6)*(xx(i)-x(j))/h(j)-(y(j)-M(j)*h(j)^2/6)*(xx(i)-x(j+1))/h(j); end;for i = 52:101yy(i) = -yy(102-i);end;for i = 1:50xx(i) = -xx(i);endplot(xx,yy);hold on;for i = 1:1:n/2x(i) = -x(i);endplot(x,y,'bd');title('机翼外形曲线');输出结果:运行文件,得到2. (1)编制求第一型3 次样条插值函数的通用程序;(2)已知汽车门曲线型值点的数据如下:解:(1)Matlab编制求第一型3 次样条插值函数的通用程序:function [Sx] = Threch(X,Y,dy0,dyn)%X为输入变量x的数值%Y为函数值y的数值%dy0为左端一阶导数值%dyn为右端一阶导数值%Sx为输出的函数表达式n = length(X)-1;h = zeros(1,n-1);f1 = zeros(1,n-1);f2 = zeros(1,n-2);for i = 1:n %求函数的一阶差商h(i) = X(i+1)-X(i);f1(i) = (Y(i+1)-Y(i))/h(i);endfor i = 2:n %求函数的二阶差商f2(i) = (f1(i)-f1(i-1))/(X(i+1)-X(i-1));d(i) = 6*f2(i);endd(1) = 6*(f1(1)-dy0)/h(1);d(n+1) = 6*(dyn-f1(n-1))/h(n-1);%赋初值A = zeros(n+1,n+1);B = zeros(1,n-1);C = zeros(1,n-1);for i = 1:n-1B(i) = h(i)/(h(i)+h(i+1));C(i) = 1-B(i);endA(1,2) = 1;A(n+1,n) = 1;for i = 1:n+1A(i,i) = 2;endfor i = 2:nA(i,i-1) = B(i-1);A(i,i+1) = C(i-1);endM = A\d;syms x;for i = 1:nSx(i) = collect(Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))+M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3);digits(4);Sx(i) = vpa(Sx(i));endfor i = 1:ndisp('S(x)=');fprintf(' %s (%d,%d)\n',char(Sx(i)),X(i),X(i+1));endS = zeros(1,n);for i = 1:nx = X(i)+;S(i) = Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))+M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3;enddisp('S(i+');disp(' i X(i+ S(i+ ');for i = 1:nfprintf(' %d %.4f %.4f\n',i,X(i)+,S(i));endend输出结果:>> X = [0 1 2 3 4 5 6 7 8 9 10];>> Y = [ ];>> Threch(X,Y,,S(x)=*x - *x^2 - *x^3 + (0,1)S(x)=*x - *x^2 - *x^3 + (1,2)S(x)=*x - *x^2 - *x^3 + (2,3)S(x)=*x^2 - *x - *x^3 + (3,4)S(x)=*x - *x^2 + *x^3 - (4,5)S(x)=*x^2 - *x - *x^3 + (5,6)S(x)=*x - *x^2 + *x^3 - (6,7)S(x)=*x^2 - *x - *x^3 + (7,8)S(x)=*x - *x^2 + *x^3 - (8,9)S(x)=*x - *x^2 + *x^3 - (9,10)S(i+i X(i+ S(i+12345678910[ - *x^3 - *x^2 + *x + , - *x^3 - *x^2 + *x + , - *x^3 - *x^2 + *x + , - *x^3 + *x^2 - *x + , *x^3 - *x^2 + *x - , - *x^3 + *x^2 - *x + , *x^3 - *x^2 + *x - , - *x^3 + *x^2 - *x + , *x^3 - *x^2 + *x - , *x^3 - *x^2 + *x - ]大作业六1、炼钢厂出钢时所用的圣刚睡的钢包,在使用过程中由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,经试验,钢包的容积与相应的使用次数的数据如下:(使用次数x,容积y)选用线1=ya对使用最小二乘法数据进行拟合。