立体几何知识点总结(全)

合集下载

高中立体几何知识点总结

高中立体几何知识点总结

一、空间点、线、面的位置关系1.1 点与点•点的定义:空间中的任意一点。

•点的坐标表示:a⃗=(a x,a y,a z)。

1.2 直线与直线•直线的定义:无限延伸的平面内的所有点。

•直线的方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。

1.3 直线与平面•直线的平面方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。

•直线与平面的交点表示:设直线上的点为P(x0,y0,z0),则有Ax0+ By0+Cz0+D=0。

1.4 平面与平面•平面的定义:无限延伸的平面内的所有点。

•平面的方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。

1.5 平面与空间体•平面与空间体的交线表示:设空间体上的点为P(x0,y0,z0),则有Ax0+By0+Cz0+D=0。

二、空间几何体2.1 柱体•柱体的定义:底面为圆形或矩形,顶面与底面平行的空间几何体。

•柱体的体积公式:V=底面积×高。

2.2 锥体•锥体的定义:底面为圆形或三角形,顶点在底面内的空间几何体。

•锥体的体积公式:V=1底面积×高。

32.3 球体•球体的定义:所有点与球心等距的空间几何体。

•球体的体积公式:V=4πR3。

32.4 空间四边形•空间四边形的定义:四个顶点在空间中的四边形。

•空间四边形的面积公式:S=12|a⃗×b⃗⃗|,其中a⃗和b⃗⃗为四边形的两条对角线。

三、空间角的计算3.1 线线角•线线角的定义:两条直线之间的夹角。

•线线角的计算公式:θ=arccos(|a⃗⃗⋅b⃗⃗||a⃗⃗||b⃗⃗|),其中a⃗和b⃗⃗为两条直线的方向向量。

3.2 线面角•线面角的定义:直线与平面之间的夹角。

•线面角的计算公式:θ=arccos(|n⃗⃗⋅a⃗⃗||n⃗⃗||a⃗⃗|),其中n⃗⃗为平面的法向量,a⃗为直线的方向向量。

3.3 面面角•面面角的定义:两个平面之间的夹角。

•面面角的计算公式:θ=arccos(|n⃗⃗1⋅n⃗⃗2||n⃗⃗1||n⃗⃗2|),其中n⃗⃗1和n⃗⃗2为两个平面的法向量。

高考立体几何知识点总结(详细)

高考立体几何知识点总结(详细)

高考立体几何知识点总结(详细)高考立体几何知识点总结一、空间几何体一)空间几何体的类型1.多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形称为多面体的面,相邻两个面的公共边称为多面体的棱,棱与棱的公共点称为多面体的顶点。

2.旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

二)几种空间几何体的结构特征1.棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类底面是四边形,侧棱垂直于底面的棱柱称为直棱柱;底面是矩形的棱柱称为四棱柱;底面是正方形的棱柱称为正四棱柱;棱长都相等的直棱柱称为正方体,棱长都相等的正四棱柱称为正方锥。

1.3 棱柱的性质1)侧面都是平行四边形,且各侧棱互相平行且相等;2)两底面是全等多边形且互相平行;3)平行于底面的截面和底面全等;1.4 棱柱的面积和体积公式直棱柱的侧面积为底周长乘以高,表面积为底面积加上两倍的侧面积,体积为底面积乘以高;其他类型的棱柱的面积和体积公式与直棱柱类似。

2.棱锥的结构特征2.1 棱锥的定义1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征1)平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;2)正棱锥的各侧棱相等,各侧面是全等的等腰三角形。

2.3 棱锥的面积和体积公式正棱锥的侧面积为底周长乘以斜高,表面积为底面积加上侧面积,体积为底面积乘以高除以3;其他类型的棱锥的面积和体积公式与正棱锥类似。

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结一、点、线、面的基本概念在立体几何中,点是最基本的元素,没有长度、宽度和高度;线是由无数个点连成的,具有长度但没有宽度和高度;面是由无数个线段连成的,具有长度和宽度但没有高度。

二、立体图形的分类1. 点、线、面组成的立体图形称为多面体,如正方体、长方体、正六面体等。

2. 圆柱体是由一个平面上的圆沿着一条与该平面不重合的直线滚动形成的,如圆柱、圆台等。

3. 圆锥体是由一个平面上的射线围绕一个与该平面不重合的点旋转形成的,如圆锥、圆台等。

4. 球体是由一个平面上的圆围绕其直径旋转形成的。

三、立体图形的性质1. 多面体的面数、边数和顶点数之间满足欧拉公式:面数+顶点数=边数+2。

2. 多面体的表面积可以通过计算各面的面积之和得到。

3. 多面体的体积可以通过计算底面积乘以高得到。

4. 圆柱体的侧面积可以通过计算侧面的长度乘以高得到。

5. 圆柱体的体积可以通过计算底面积乘以高得到。

6. 圆锥体的侧面积可以通过计算锥侧的长度乘以高得到。

7. 圆锥体的体积可以通过计算底面积乘以高再除以3得到。

8. 球体的表面积可以通过计算球的半径乘以4π得到。

9. 球体的体积可以通过计算球的半径的立方乘以4/3π得到。

四、立体图形的投影1. 平行投影是指物体与投影面平行,投影线平行于视线的投影方式。

2. 中心投影是指物体与投影面垂直,投影线经过视点的投影方式。

3. 斜投影是指物体与投影面不平行,投影线不垂直于视线的投影方式。

五、立体图形的相交关系1. 相交是指两个或多个立体图形的内部部分有重叠的部分。

2. 相切是指两个立体图形的边或面部分有公共点但没有内部有重叠的部分。

3. 相离是指两个立体图形的边和面之间没有公共点。

六、立体图形的旋转、平移和对称1. 旋转是指将一个立体图形绕着某个轴进行旋转,可以得到一个新的立体图形。

2. 平移是指将一个立体图形沿着某个方向进行平行移动,保持形状不变。

3. 对称是指将一个立体图形围绕某个中心进行对称,得到与原图形相似但位置对称的图形。

(完整版)立体几何知识点总结

(完整版)立体几何知识点总结

立体几何知识点总结1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''EDCBAABCDE-或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP-几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''EDCBAP-几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个扇环。

立体几何的全部知识点

立体几何的全部知识点

立体几何的全部知识点立体几何是九年级数学中常见的概念,属于几何学知识,包括三维空间中各种形状和投影,以及它们之间的关系,有助于我们研究物体的结构和代数运算,为物体的准确表达提供帮助。

立体几何的知识点包括:一、定义和符号:(1)体积:体积V是在某一时刻,某一物体的容积所表示的实际大小。

(2)表面积:Surface Area S 是在某一时刻,某一物体的整个表面的面积总和。

(3)立体角:立体角也称为穹顶角,它由三条相交的边组成,表示物体上某一点到其他三面所角度的总和。

(4)体积和表面积的符号分别为V和S。

二、投影:(1)正投影:正投影是指沿着平面对物体进行投影,显示物体的各面的立体效果,物体被投影到平面上,形成新的三维形体。

(2)侧投影:侧投影是把物体投影到平面上,只显示物体上与投影面垂直的一部分,不会显示其上斜角或斜面。

三、变换:(1)平移:平移是把物体移动到新位置,沿着一个给定的方向进行移动。

(2)旋转:旋转是把物体局部或整体移动到新位置,沿着一定角度和指定的锥形旋转。

(1)水平投影:水平投影指通过把物体置于水平平面上来进行投影,表达投影物作为物体的一部分的立体视觉效果。

(3)正交投影:正交投影是将物体的正面以一个给定的垂线作为视轴,把物体投影到一个直角坐标系上,以呈现其真实模样。

(4) 仿射投影:仿射投影是把物体投射到平面上,同时保留物体形状和位置的相对关系,物体经过一个仿射变换,可以在平面上表示一种实体的完整的立体形状。

五、三角形几何:(1)三角形的周长:三角形的周长是指给定三角形的三条边之和。

(3)余弦定理:余弦定理是指在一个三角形中,要么是给定三条边,要么是两条边和夹角之间存在性质,充分表示相应之间关系。

(4)余切定理:余切定理是指在一个三角形中,无论如何,两条边的余切值都是一定的。

(5)三角函数:三角函数是以这三个角的正弦、余弦和正切为变量表示的函数,三角函数可以用来求解复杂的三角形。

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结一、点、线、面的基本概念1. 点:在几何中,点是最基本的概念,它没有长度、宽度和高度,只有位置,可以用来确定物体的位置。

2. 线:由无数个点组成,是一维的几何图形,没有宽度和高度,只有长度,可以用来表示物体的轨迹或连接两个点。

3. 面:由无数条线组成,是二维的几何图形,有长度和宽度,没有高度,可以用来表示物体的表面。

二、立体几何的基本元素1. 点、线、面的组合:在立体几何中,可以通过将点、线、面进行组合和运算得到更复杂的几何体,如球体、立方体等。

2. 立体体积:立体体积是指一个物体所占据的空间大小。

常见的表示立体体积的单位有立方米、立方厘米等。

3. 立体表面积:立体表面积是指一个物体外表面的总面积。

通常用平方米、平方厘米等单位来表示。

4. 立体的投影:立体的投影是指立体在不同平面上的投影图形。

常见的投影有正投影和斜投影两种。

三、常见的立体几何图形1. 球体:球体是由所有到一个点的距离相等的点组成的几何图形。

它具有无限个面,其中每个面都是一个圆。

2. 圆柱体:圆柱体是由两个平行的圆面和一个连接这两个圆面的侧面组成的。

它的底面和顶面是圆,侧面是矩形。

3. 圆锥体:圆锥体是由一个圆面和一个连接这个圆面和一个点的侧面组成的。

它的底面是圆,侧面是三角形。

4. 立方体:立方体是由六个相等的正方形组成的几何图形。

它的六个面都是正方形,每个面都有相同的边长。

5. 正四面体:正四面体是由四个相等的三角形组成的几何图形。

它的四个面都是等边三角形,每个面都有相同的边长。

四、常见的立体几何性质1. 对称性:立体几何中的许多图形具有对称性,即通过某个中心轴或中心点将图形分为两个相互对称的部分。

2. 平行性:立体几何中的平面和直线可以平行,即它们在空间中不相交,且永远保持相同的距离。

3. 垂直性:立体几何中的直线和平面可以垂直,即它们相互垂直交于一个点,形成直角。

4. 相似性:在立体几何中,如果两个图形的形状相似,则它们的对应边长比相等,对应角度相等。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

行。

8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

立体几何初步知识点全总结

立体几何初步知识点全总结

立体几何初步知识点全总结一、空间几何体的结构。

1. 棱柱。

- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。

- 直棱柱:侧棱垂直于底面的棱柱。

正棱柱:底面是正多边形的直棱柱。

- 性质:- 侧棱都相等,侧面是平行四边形。

- 两个底面与平行于底面的截面是全等的多边形。

- 过不相邻的两条侧棱的截面(对角面)是平行四边形。

2. 棱锥。

- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。

- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。

- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

3. 棱台。

- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。

- 性质:- 棱台的各侧棱延长后交于一点。

- 棱台的上下底面是相似多边形,侧面是梯形。

4. 圆柱。

- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

- 性质:- 圆柱的轴截面是矩形。

- 平行于底面的截面是与底面全等的圆。

5. 圆锥。

- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。

- 性质:- 圆锥的轴截面是等腰三角形。

- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。

6. 圆台。

- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

立体几何知识点归纳

立体几何知识点归纳

一、空间几何体(一)空间几何体的结构:1、几何体:2、多面体:3、旋转体:4、棱柱:5、棱锥:6、棱台:7、圆柱:8、圆锥:9、圆台:10、球:(二)简单几何体的构成:1、2、(三)三视图:1、投影:2、投影类型:3、三视图:(1)正视图(2)侧视图:(3)俯视图:(三)直观图:(1)直观图:(2)斜二测画法规则:(四)体积面积公式:1、柱体体积:2、锥体体积:3、台体体积:4、球体体积:球体表面积:5、祖暅原理:二、平面的性质与直线的位置关系1、平面意义:(1)空间图形是由点、线、面组成的(2)平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形(3)平面的两个特征:①无限延展 ②平的(没有厚度) 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性一个平面把空间分成两部分,一条直线把平面分成两部分 2 平面的基本性质公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 应用:①判定直线在平面内;②判定点在平面内模式:a A A aαα⊂⎧⇒∈⎨∈⎩.公理2如果两个不重合平面有一个公共点,那么它们有且只有一条过该点的公共直线。

推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭ 如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈ 应用:①确定两相交平面的交线位置;②判定点在直线上公理3 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈.应用:①确定平面;②证明两个平面重合“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.推论1:推论2:推论3:3、 空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不同在任何..一个平面内,没有公共点; 4、平线直线:(1)公理4 :平行于同一条直线的两条直线互相平行(空间平行线的传递性)推理模式://,////a b b c a c ⇒.(2)空间四边形:顺次连结不共面的四点A,B,C,D 所组成的四边形叫空间四边形,相对顶点的连线AC,BD 叫空间四边形的对角线(3)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(4)等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.指出:等角定理及其推论,说明了空间角通过任意平行移动具有保值性,因而成为异面直线所成角的基础.5、异面直线:不同在任何..一个平面内,没有公共点 (1).空间两条异面直线的画法a b1A CA(2)异面直线判定定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:,,,A B l B l ααα∉∈⊂∉⇒AB 与l 是异面直线(3)异面直线判定方法:判定定理、反证法。

立体几何的全部知识点

立体几何的全部知识点

第二讲 空间图形的基本关系与公理一、知识梳理1.平面概述(1)平面的两个特征:①无限延展 ②平的(没有厚度) (2)平面的画法:通常画平行四边形来表示平面(3)平面的表示:用一个小写的希腊字母α、β、γ等表示,如平面α、平面β;用表示平行四边形的两个相对顶点的字母表示,如平面AC 。

2.三公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内:A l ∈,B l ∈,A α∈,B α∈⇒α⊂l公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

公理3:经过不在同一直线上的三点,有且只有一个平面。

推论一:经过一条直线和这条直线外的一点,有且只有一个平面。

推论二:经过两条相交直线,有且只有一个平面。

推论三:经过两条平行直线,有且只有一个平面。

3、直线与直线的位置关系 (1)位置关系的分类⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线平行直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b 是两条异面直线,经过空间中任一点O 作直线a ’∥a,b ’∥b,把a ’与b ’所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)②范围:02π⎛⎤ ⎥⎝⎦,6、平行公理平行于同一条直线的两条直线互相平行。

(但垂直于同一条直线的两直线的位置关系可能平行,可能相交,也可能异面)7、定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

二、直线、平面平行的判定及其性质1、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;2、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(完整版)高中数学必修二立体几何知识点总结

(完整版)高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理(3公理 L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

(完整版)立体几何知识点总结完整版

(完整版)立体几何知识点总结完整版

立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、 空间两条直线的三种位置关系,并会判定。

3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。

4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。

5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。

【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。

立体几何知识点总结高考

立体几何知识点总结高考

立体几何知识点总结高考1. 立体几何基本概念(1)点、线、面、体的概念立体几何中的基本概念有点、线、面、体等。

点是没有大小、只有位置的几何图形,用大写字母表示;线是由无限多个点连在一起形成的,具有长度的图形,用小写字母表示;面是由无限多个线构成的,具有面积的图形,用小写字母加上一个尖角字母表示;体是由无限多个面构成的,具有体积的图形,用大写字母加上一个倒三角字母表示。

(2)平行线、垂直线平行线是在同一个平面内,既不相交也不相交的直线,用平行线符号“||”表示;垂直线是两条直线相交的两条线段的夹角为90度。

(3)平面与直线的位置关系平面与直线的位置关系有相交、平行、重合等。

2. 空间几何图形的性质(1)点、线、面、体的性质点没有面积,没有长度;线有长度,但没有面积;面有面积,但体积为零;体有体积,具有长度、宽度和高度。

(2)平行线的性质平行线的性质包括对顶角相等,内错角相等等。

3. 空间几何图形的计算(1)立体图形的表面积和体积立体图形的表面积和体积是对立体几何知识点的重点掌握内容。

包括长方体、正方体、圆柱体、圆锥体、球体等的表面积和体积的计算方法。

(2)空间几何图形的相似性空间几何图形的相似性是指两个或两个以上的几何图形的形状和大小都相同,称为相似图形。

在计算中,可利用相似三角形的性质进行计算。

4. 空间几何图形的展开(1)立体图形的展开立体图形的展开是将一个立体图形展开成平面图形的过程。

对不同的立体图形有不同的展开方式和规则,需要灵活运用。

5. 线段和角的表示(1)线段的表示线段是由两个端点所确定的一段直线。

用两个大写字母表示。

(2)角的表示角是由两条射线分界的平面角色,用三个字母表示,其中中间字母是角的顶点。

6. 平面几何图形和立体几何图形的关系平面几何图形和立体几何图形在空间中是相互联系、相互影响的。

在图形的计算和应用中,需要注意两者之间的转化和联系。

以上就是对高考立体几何知识点的总结,掌握这些知识可以帮助学生在高考数学中取得更好的成绩。

立体几何知识点详细总结

立体几何知识点详细总结

立体几何专题汇编、空间几何体1.柱、锥、台、球的结构特征1)柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。

圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

棱柱与圆柱统称为柱体;2)锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。

正四面体:对于棱长为 a 正四面体的问题可将它补成一个边长为孕的正方体问题。

2(=31正方体体对角线)3(=—1正方体体对角线:—1正方体体对角线)6 2乎a (是正方体的外接球'则半径—21正方体体对角线)则半径=丄1正方体体对角线)6圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋 转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底 面;斜边旋转形成的曲面叫做圆锥的侧面。

棱锥与圆锥统称为锥体。

(3)台棱台:用一个平行于底面的平面去截棱锥,底面和截面之对棱间的距离为 的边长)正四面体正四面体的体积为 72 3 ——a 12(V 正方体一4V 小三棱锥=V 正方体)3正四面体的中心到底面与顶点的距离之比为1:3内切球的半径为— a (是正四面体中心到四个面的距离, 12的间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。

圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。

立体几何知识点总结(全)

立体几何知识点总结(全)

立体几何知识点总结(全)垂直直线:相交成直角的直线。

三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:只有在三维空间中才有,点在平面上方或下方的判断需要借助向量的概念。

四.直线与平面的位置关系直线在平面上:直线的每一个点都在平面上;直线与平面相交:有且只有一个交点;直线与平面平行:没有交点,且方向与平面的法向量垂直;直线与平面垂直:直线方向与平面的法向量相同或相反。

五.平面与平面的位置关系两个平面相交:有且只有一条公共直线;两个平面平行:没有公共直线;两个平面重合:所有点都相同。

改写:一。

空间几何体的三视图在空间几何体中,正视图是指光线从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度。

侧视图是指光线从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度。

俯视图是指光线从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。

三视图中反应的长、宽、高的特点有“长对正”,“高平齐”,“宽相等”。

二。

空间几何体的直观图斜二测画法的基本步骤包括建立适当的直角坐标系xOy (尽可能使更多的点在坐标轴上)、建立斜坐标系x'O'y',使x'O'y'=45(或135)以及画对应图形。

在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半。

直观图与原图形的面积关系为S直观图= S原图/4.三。

空间几何体的表面积与体积圆柱侧面积为S侧面=2πr×l,圆锥侧面积为S侧面=πr×l,圆台侧面积为S侧面=πr×l+πR×l。

柱体的体积为V柱体=S×h,锥体的体积为V锥体=S×h/3,台体的体积为V台体=S上+S下+√S上×S下×h/3.球的表面积和体积分别为S=4πR2和V球=4πR3/3.正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥,正四面体是每个面都是全等的等边三角形的三棱锥。

高考数学立体几何知识点总结精选全文完整版

高考数学立体几何知识点总结精选全文完整版

可编辑修改精选全文完整版高考数学立体几何知识点总结(1)棱柱:定义:有两个面互相平行,别的各面都是四边形,且每相邻两个四边形的大众边都互相平行,由这些面所围成的几多体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各极点字母,如五棱柱或用对角线的端点字母,如五棱柱几多特性:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,别的各面都是有一个大众极点的三角形,由这些面所围成的几多体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各极点字母,如五棱锥几多特性:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比即是极点到截面隔断与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各极点字母,如五棱台几多特性:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的极点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,别的三边旋转所成的曲面所围成的几多体几多特性:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几多体几多特性:①底面是一个圆;②母线交于圆锥的极点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几多特性:①上下底面是两个圆;②侧面母线交于原圆锥的极点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几多体几多特性:①球的截面是圆;②球面上恣意一点到球心的隔断即是半径。

立体几何的知识点总结

立体几何的知识点总结

立体几何的知识点总结1. 三维几何常用的图形在立体几何中,我们经常接触到的几何图形包括:点、直线、平面、三角形、四边形、圆柱、圆锥、圆台、球体等。

下面分别介绍这些几何图形的特点及相关知识点。

1.1 点、直线、平面- 点:点是空间中没有长度、宽度和高度的几何图形,可以用来表示位置。

- 直线:直线是由一系列相邻点组成的几何图形,具有方向和长度。

- 平面:平面是由无数个点组成的, 恰好可以确定一次中画, 无终止点, 无法测量, 无体积的二维图形, 平面分为有界无界两类, 有界平面是指由一定个点所组成的平面, 无界平面是指由无数个点组成的平面。

1.2 三角形、四边形- 三角形:三角形是一个有三条边的多边形,具有三个顶点和三条边。

- 四边形:四边形是一个有四条边的多边形,具有四个顶点和四条边。

1.3 圆柱、圆锥、圆台、球体- 圆柱:圆柱是由两个平行圆面包围的几何图形,具有一个侧面和两个底面。

- 圆锥:圆锥是由一个圆锥面和一个顶点组成的几何图形。

- 圆台:圆台是由一个圆台面和一个底面组成的几何图形。

- 球体:球体是由无数个点组成的三维图形,所有点到球心的距离相等。

2. 立体的表面积和体积在立体几何中,我们经常需要计算物体的表面积和体积。

下面分别介绍立体的表面积和体积的计算公式及相关知识点。

2.1 立体的表面积- 点、直线、平面:这些几何图形没有表面积。

- 三角形:三角形的表面积可以通过计算三条边的长度和三个内角的大小来求得。

- 四边形:四边形的表面积可以通过计算四条边的长度和四个内角的大小来求得。

- 圆柱:圆柱的表面积等于两个底面的面积和侧面的面积之和,即S=2πr^2+2πrh。

- 圆锥:圆锥的表面积等于底面的面积加上一个生成圆的面积,即S=πr^2+πrl,其中l为斜高。

- 圆台:圆台的表面积等于底面的面积加上一个上面的面积和侧面的面积之和,即S=πr1^2+πr2^2+πr1l,其中r1和r2为上下底面的半径,l为斜高。

高中立体几何基础知识点全集(图文并茂)

高中立体几何基础知识点全集(图文并茂)

高中立体几何基础知识点全集(图文并茂)立体几何知识点整理 2. 线面平行:姓名: 方法一:用线线平行实现。

一、直线和平面的三种位置关系:1.线面平行lim lm⊂aI=a}⇒IBa符号表示:2.线面相交方法二:用面面平行实现。

α//βI⊂β⇒Iα符号表示:3.线在面内符号表示:方法三:用平面法向量实现。

若n为平面α的一个法向量。

⃗⃗且/ɑα.则111α. 3. 面面平行:二. 平行关系:方法一:用线线平行实现。

1. 线线平行:方法一:用线面平行实现。

lIIaI ⇒lIm方法二:用面面平行实现。

方法三:用线面垂直实现。

1//rm∥m'l. m=β且相交 ⇒α∥βl',m'cα且相交方法二:用线面平行实现。

1/1am//α ⇒α∥β 1. m ⊂β且相交)三.垂直关系:1.线面垂直:若/⊥α,m⊥α,则|∥m.方法四:用向量方法:若向量i 和向量 ⃗共线且1. m 不重合,则|//m 。

方法一:用线线垂直实现。

IA方法二:用面面垂直实现。

2.面面垂直:方法一:用线面垂直实现。

方法二:计算所成二面角为直角。

3. 线线重直:方法一:用线面垂直实现。

方法二:三重线定理及其逆定理。

方法三:用向量方法:若向量/和向量⃗的数量积为0,则/⊥m.三.夹角问题。

(一)异面直线所成的角:(1) 范围: (0°,90°](2)求法:方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理)(计算结果可能是其补角)方法二:向量法。

转化为向量的夹角(二)线面角(1)定义:直线/ 上任取一点P(交点除外),作PO⊥α于O,连结AO,则AO为斜线PA 在面α内的射影,∠PAO(图中θ)为直线t与面α所成的角。

(2)范围: [0°.90°]当θ=0°时, 1cα或1//α当θ=90°时, 1⊥α(3)求法:方法一:定义法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2 第一章 空间几何体知识点总结
一.空间几何体的三视图
正视图:光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度 侧视图:光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度 俯视图:光线从几何体的上面向下面正投影得到的投影图。

反映了物体的长度和宽度 三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 二.空间几何体的直观图
斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''x O y ∠=450
(或1350

③画对应图形
在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘
轴,且长度保持不变;
在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘
轴,且长度变为原来的一半; 直观图与原图形的面积关系:4
2S ⋅=原图形直观图S 三.空间几何体的表面积与体积
⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 h S V ⋅=柱体h S V ⋅=3
1锥体
()
1
3
V h S S S S =+⋅+下下
台体上上
球的表面积和体积 3
2
3
44R V R S ππ=
=球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。

正四面体是每个面都是全等的等边三角形的三棱锥。

第二章 点、直线、平面之间的位置关系知识点总结
一. 平面基本性质即三条公理
公理1
公理2
公理3
图形语言
文字
语言
如果一条直线上的两点在
一个平面内,那么这条直线
在此平面内. 过不在一条直线上的三点,有且只有一个平面.
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
符号
语言 ,,A l B l l A B ααα∈∈⎫⇒⊂⎬∈∈⎭
,,,,A B C A B C α
⇒不共线确定平面
,l
P P P l αβαβ=⎧∈∈⇒⎨∈⎩
作用 判断线在面内
确定一个平面
证明多点共线
公理2的三条推论:
推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面; 推论3 经过两条平行直线,有且只有一个平面.
二.直线与直线的位置关系
共面直线: 相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。

(既不平行,也不相交) 三.直线与平面的位置关系有三种情况:
在平面内——有无数个公共点 . 符号 a α 相交——有且只有一个公共点 符号 a ∩α= A 平行——没有公共点 符号 a ∥α
说明:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 1.直线和平面平行的判定
(1)定义:直线和平面没有公共点,则称直线平行于平面;
(2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号: ////a b a a b ααα⊄⎫
⎪⊂⇒⎬⎪⎭
2.直线和平面平行的性质定理:
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行,则线线平行.
符号: a a a b
b α
βαβ⊂⇒=⎫
⎪⎬
⎪⎭
3.直线与平面垂直
⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。

⑵判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

简记为:线线垂直,则线面垂直.
符号:,,m n m n A l l m l n αα⊂⎫⎪
=⇒⊥⎬⎪⊥⊥⎭
4.直线与平面垂直
性质Ⅰ:垂直于同一个平面的两条直线平行。

符号: a a b b αα⊥⎫
⇒⎬⊥⎭
性质Ⅱ:垂直于同一直线的两平面平行
符号:l l ααββ⊥⎫⇒⎬⊥⎭
推论:如果两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.
符号语言:a ∥b, a ⊥α,⇒b ⊥α
四.平面与平面的位置关系:
平行——没有公共点: 符号 α∥β 相交——有一条公共直线: 符号 α∩β=a 1.平面与平面平行的判定
(1)定义:两个平面没有公共点,称这两个平面平行;
(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

简记为:线面平行,则面面平行.
符号:,,a b a b A a b αααβββ⊂⊂⎫
⎪=⇒⎬⎪⎭
2.平面与平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。

简记为:面面平行,则线线平行.
符号:a a b b αβ
αγβγ=⇒=⎫

⎬⎪⎭
补充:平行于同一平面的两平面平行; 夹在两平行平面间的平行线段相等;
两平面平行,一平面上的任一条直线与另一个平面平行;
3.平面与平面垂直的判定
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

⑵判定定理:一个平面经过另一个平面的一条垂线,则这两个平面垂直。

简记为:线面面垂直,则面面垂直. 符号:
l l βαβα⊥⇒⊥⊂⎫
⎬⎭
推论:如果一个平面平行于另一个平面的一条垂线,则这个平面与另一个平面垂直。

4.平面与平面垂直的性质定理:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。

简记为:面面垂直,则线面垂直.
证明线线平行的方法
①三角形中位线 ②平行四边形 ③线面平行的性质 ④平行线的传递性 ⑤面面平行的性质 ⑥垂直于同一平面的两直线平行; 证明线线垂直的方法
①定义:两条直线所成的角为90°;(特别是证明异面直线垂直); ②线面垂直的性质 ③利用勾股定理证明两相交直线垂直;
④利用等腰三角形三线合一证明两相交直线垂直; 五:三种成角 1.异面直线成角
步骤:1、平移,转化为相交直线所成角;2、找锐角(或直角)作为夹角;3、求解
注意:取值范围:(0。

,90。

].
2.线面成角:斜线与它在平面上的射影成的角,取值范围:(0。

,90。

].
如图:PA 是平面α的一条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面α上射影,PAO ∠为线面角。

3.二面角:从一条直线出发的两个半平面形成的图形 取值范围:(0。

,180。


六.点到平面的距离:定义法和等体积法
----,,l OA OB l OA
l OB l AOB αβαβαβ⊂⊂⊥⊥∠如图:在二面角中,O 棱上一点,,,的平面角。

且则为二面角
空间向量与立体几何知识点总结
一.向量基本运算:设()111,,a x y z =,()222,,b x y z =
1.12121200a b a b x x y y z z ⊥⇔⋅=⇔++= 2.121212//,,a b a b x x y y z z λλλλ⇔=⇔=== 3.21a a a x =
⋅=+21
cos ,a b a b a b
x ⋅〈〉=
=
+
一、直线与平面、平面与平面的平行与垂直的向量方法
1.若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1// l 2⇔1u //2u ,l 1⊥l 2⇔1u ⊥2u .
2.若两平面α、β的法向量分别是1v 、2v ,则有α//β⇔1v //2v ,α⊥β⇔1v ⊥2v .
3.若直线l 的方向向量是u ,平面的法向量是v ,则有l //α⇔u ⊥v ,l ⊥α⇔u //v 二、空间角的计算
1.两条异面直线所成角的求法
设直线a 、b 的方向向量为a 、b ,其夹角为ϕ,则有 cos |cos |a b a b
θϕ⋅==

2.直线和平面所成角的求法
设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ,则有
sin |cos |cos sin a u a u
θϕθϕ
⋅==
=⋅或
3.二面角的求法
设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212
cos n n n n θ⋅=.
三. 点P 到平面α的距离
如果令平面α的法向量为n ,考虑到法向量的方向,可以得到B 点到平面α的距离为
AB n BO n
⋅=
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

相关文档
最新文档