2018北京市高考理科数学试题与答案

合集下载

2018年普通高等学校招生全国统一考试 理科数学(北京卷)word版(含答案)

2018年普通高等学校招生全国统一考试 理科数学(北京卷)word版(含答案)

2018年普通高等学校招生全国统一考试数 学(理)(北京卷)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A{x ||x |<2},B{-2,0,1,2},则AB(A ){0,1} (B ){-1,0,1}(C ){-2,0,1,2} (D ){-1,0,1,2} (2)在复平面内,复数的共轭复数对应的点位于(A )第一象限 (B )第二象限(C )第三象限 (D )第四象限(3)执行如图所示的程序框图,输出的S 值为 (A ) (B )(C )(D )(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第一个单音的频率为,则第八个单音的频率为(A ) (B ) (C )(D )(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A ) 1 (B ) 2(C ) 3(D ) 4 此卷只装订不密封班级 姓名 准考证号 考场号 座位号(6)设a,b 均为单位向量,则“”是“a”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在平面直角坐标系中,记d 为点到直线x 的距离,当m变化时,d的最大值为(A)1(B)2(C)3(D)4(8)设集合A,则(A)对任意实数a ,(B)对任意实数a ,(C)当且仅当a 时,(D)当且仅当a 时,第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2018年高考北京卷理科数学(含问题详解)

2018年高考北京卷理科数学(含问题详解)

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为(A )32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年北京高考卷数学(理科)试题附详细标准答案

2018年北京高考卷数学(理科)试题附详细标准答案

2018年北京高考卷数学(理科)试题附详细标准答案一、选择题(本大题共8小题,每小题5分,共40分)1. 设集合A={x|2<x<3},集合B={x|x²3x+2=0},则A∩B=()A. {1}B. {2}C. {1, 2}D. ∅2. 若复数z满足|z|=1,则|z1|的最大值为()A. 0B. 1C. √2D. 23. 在等差数列{an}中,若a1=3,a3+a5=18,则数列的前5项和为()A. 25B. 35C. 45D. 554. 已知函数f(x)=x²+2ax+a²+2(a为常数),若f(x)在区间(∞,1)上单调递减,则a的取值范围为()A. a≤0C. a≤1D. a≥15. 设平面直角坐标系xOy中,点A(2,3),点B在直线y=3上,则线段AB的中点轨迹方程为()A. y=3B. x=2C. y=3xD. x=3y6. 若sinθ+cosθ=1/2,则sinθ·cosθ的值为()A. 3/4B. 1/4C. 1/4D. 3/47. 在三角形ABC中,a=3,b=4,cosB=3/5,则三角形ABC的面积为()A. 2√6B. 3√6C. 4√6D. 5√68. 设函数f(x)=x²2ax+a²+1(a为常数),若f(x)在区间[1,+∞)上单调递增,则a的取值范围为()A. a≤1B. a≥1D. a≥0二、填空题(本大题共6小题,每小题5分,共30分)9. 已知数列{an}是等差数列,若a1=1,a3+a5=10,则a4的值为______。

10. 若复数z满足|z|=1,则|z1|+|z+1|的最大值为______。

11. 在等比数列{bn}中,b1=2,b3=16,则数列的公比为______。

12. 已知函数f(x)=x²+2x+a(a为常数),若f(x)在区间(∞,1)上单调递减,则a的取值范围为______。

2018年北京理数高考试题版含答案(供参考)

2018年北京理数高考试题版含答案(供参考)

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 (A )32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(精校版)2018年北京理数高考试题文档版(含答案)

(精校版)2018年北京理数高考试题文档版(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 学&科网 (A )32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018北京高考卷数学[理科]试题和答案解析

2018北京高考卷数学[理科]试题和答案解析

2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ).A .12 B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。

2018年北京卷高考数学(理)试题含答案解析

2018年北京卷高考数学(理)试题含答案解析

2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合2A x x,2,0,1,2B x ,则A BI (A )01,(B )-101,,(C )-201,,(D )-1012,,,2.在复平面内,复数i 1i的共轭复数对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.执行如图所示的程序框图,输出的s 值为().A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为().A .32fB.322fC.1252fD.1272f5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为().A.1B.2C.3D.4a b a b”是“a b”的6.设a b,均为单位向量,则“33(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件7. 在平面直角坐标系中,记d为点P cos,sin到直线20x my的距离.当,m变化时,d的最大值为(A)1(B)2 (C)3 (D)4A x y x y ax y x ay,则8. 设集合,|1,4,2A对任意实数a,2,1A B对任意实数a,2,1AC 当且仅当0a 时,2,1AD 当且仅当32a时,2,1A二.填空(9)设n a 是等差数列,且13a ,2536a a ,则n a 的通项公式为。

(10)在极坐标系中,直线cossin(0)a a与圆2cos相切,则a。

(11)设函数cos6f xx0。

北京理数2018年高考试题文档版(含答案)

北京理数2018年高考试题文档版(含答案)
2018 年普通高等学校招生全国统一考试
数 学பைடு நூலகம்理)(北京卷)
本试卷共 5 页, 150 分。考试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上 作答无效。考试结束后,将本试卷和答题卡一并交回。
第一部分 (选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分。在每小题列出的四个选项中,选出符合题目
要求的一项。
(1)已知集合 A={ x||x|<2} , B={ –2, 0, 1, 2} ,则 A B=
( A ){0 , 1}
( B) { –1, 0, 1}
( C) { –2, 0, 1, 2}
( D) { –1, 0, 1,2}
(2)在复平面内,复数 1 的共轭复数对应的点位于 1i
( A )第一象限
( B)第二象限
( C)第三象限
( D)第四象限
(3)执行如图所示的程序框图,输出的 s 值为
(A) 1 2
(C) 7 6
5 ( B)
6 7 ( D) 12
(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为

2018年北京市高考数学理试题有答案【高考】

2018年北京市高考数学理试题有答案【高考】

2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01,(B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限(B )第二象限 (C )第三象限(D )第四象限3.执行如图所示的程序框图,输出的s 值为().A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为().ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为(). A .1 B .2 C .3 D .46.设a b r r ,均为单位向量,则“33a b a b -=+r r r r ”是“a b ⊥r r”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈()B 对任意实数a ,()2,1A ∉ ()C 当且仅当0a <时,()2,1A ∉()D 当且仅当32a ≤时,()2,1A ∉二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为。

2018年高考真题——数学(理)(北京卷)+Word版含解析

2018年高考真题——数学(理)(北京卷)+Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40 分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

A. {0 , 1} B. { -1, 0, 1}C. { 2 0, 1, 2}D. { -1 , 0, 1 , 2} 【答案】A【解析】分析:先解含绝对值不等式得集合 详解:■■-二因此 A B-二 二一,::,选 A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性 (是点集、数集或其他情形)和化简集合是正确求解的两个先决条件 •12.在复平面内,复数——的共轭复数对应的点位于1-1A.第一象限B. 第二象限C.第三象限D.第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限D. 点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分A ,再根据数轴求集合交集2弓的共轭复数为详解:1 I i在第四象限,故选3.执行如图所示的程序框图,输出的s值为C.【答案】B【解析】分析:初始化数值:,.「:,执行循环结构,判断条件是否成立, 详解:初始化数值-1.1-1循环结果执行如下:.I I、第一次:•「:-「,.…-•不成立;12 15第二次:• '- •成立,236循环结束,输出=- 6故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到 型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环 条件、循环次数• 4•“十二平均律”是通用的音律体系 ,明代朱载埴最早用数学方法计算出半音比例 ,为这个理论的发展做 出了重要贡献•十二平均律将一个纯八度音程分成十二份 ,依次得到十三个单音,从第二个单音起,每- 个单音的频率与它的前一A.B.开始7个单音的频率的比都等于:.若第一个单音的频率为f,则第八个单音的频率为A. .B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为:,所以?, - ■,•; i:'.■.I l 八:..又,则•:.:; =十::.■:, - i故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:" ] 日(1)定义法,若•(、“匚、.)或Ci .1二.1 :-,.),数列是等比数列;a ll 斗】-1(2)等比中项公式法,若数列中,且.,| 则数列是等比数列•5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为1 I ■adj N )詞正(主)视图侧(左)规图A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数•详解:由三视图可得四棱锥m在四棱锥厂⑴:门中n = • • 2由勾股定理可知:u' 、「、则在四棱锥中,直角三角形有:共三个,故选C.ft点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解6•设a, b均为单位向量,则“b-闷- ”是“ a丄b”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】分析:先对模平方,将b-砌-等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:■ .:、;.i ■'. ;•,,.| 卜,—■- |■.- |-- - -, | ■- ■',因为a, b均为单位向量,所以/ -.I- - - ■.■ ■. ■ ■■ •- 卜,一a] b,即“ …'、”是“ a丄b”的充分必要条件.选C.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若.•则”、“若•.则"的真假.并注意和图示相结合,例如“ ?为真,则是的充分条件.2•等价法:利用?•.与非•.?非」,? .•与非」?非?与非?非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3 .集合法:若?,则是的充分条件或是的必要条件;若 =,则是的充要条件.7. 在平面直角坐标系中,记d为点P (cos 0 sin )到直线5厂2=0的距离,当0, m变化时,d的最大值为A. 1B. 2C. 3D. 4【答案】C【解析】分析:P为单位圆上一点,而直线二-叱一―:过点A(2, 0),则根据几何意义得d的最大值为OA+1. 详解:{「、、'、..「P为单位圆上一点,而直线〉“过点A (2,0),所以d的最大值为OA+仁2+仁3,选C.点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面•解决此类问题的主要思路是利用圆的几何性质将问题转化.8. 设集合•■- •■- -:则A.对任意实数a, ;B. 对任意实数a,(2, 1)-C.当且仅当a<0时,(2, 1)D. 当且仅当时,(2, 1)-2【答案】D【解析】分析:求出:及;所对应的集合,利用集合之间的包含关系进行求解详解:若,,则•且,即若,,则 ,2 23此命题的逆否命题为:若,则有、,故选D.2点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据|・|成立时对应的集合之间的包含关系进行判断•设\ : x :"' x::. I ■■ : \ '..I1|:,若■ L 1\则I- :-1;若&-三,则| .1,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式•第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(精品word)(精校版)2018年北京理数高考试题文档版(含答案)

(精品word)(精校版)2018年北京理数高考试题文档版(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试 结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40 分)、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

已知集合 A={x|X|<2} , B={ -, 0, 1, 2},则 A p|B=(2) (3) (A) {0 , 1}(C ) { z 0, 1,在复平面内,复数 (A )第一象限 (C )第三象限2} 丄的共轭复数对应的点位于1 —i执行如图所示s 值为(B ) (D) (B ) (D) { -1, 0, 1}{ - , 0, 1 , 2}第二象限第四象限1(A) 丄2(B )(C) 7(D)7 12(1)(4)“十二平均律”是通用的音律体系,明代朱载埴最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122 •若第一个单音的频率为的频率为(A) 32f ( B) 3.2^f最大值为(A) 1 ( B) 2(C) 3 ( D) 4(8)设集合 A ={( x, y) |x—y 亠1,ax y 4,x—ay 込2},则(A)对任意实数a, (2,1),A ( B)对任意实数a, (2, 1) A3(C)当且仅当a<0时,(2, 1)-' A ( D )当且仅当a乞3时,(2, 1) A 2第二部分(非选择题共110分) f,则第八个单(5)(C) 1225 f(A) 1(B)(C) 3 (D)(6)设a, b均为单位向量,则a - 3b = 3a b ”是“ a 丄b” 的(A)充分而不必要条件(B) 必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在平面直角坐标系中,记d为点P (cos 0, si n B)到直线x—my—2=0的距离,当0:m变化时,d的(D) 12 27 f某四棱锥的三视图如图所示,恻(左〉现圏正(主)视團、填空题共6小题,每小题5分,共30分。

2018北京理数高考试题[版含答案解析]

2018北京理数高考试题[版含答案解析]

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于f ,则第八个单音的频率为(A (B(C )(D )(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年普通高等学校招生全国统一考试数学试题 理(北京卷,含解析)

2018年普通高等学校招生全国统一考试数学试题 理(北京卷,含解析)

2018年普通高等学校招生全国统一考试数学试题理(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限. 详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列. 5. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.6. 设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C. 点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A. 1B. 2C. 3D. 4【答案】C【解析】分析:P为单位圆上一点,而直线过点A(2,0),则根据几何意义得d的最大值为OA+1. 详解: P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.8. 设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2018年普通高等学校招生全国统一考试(北京卷) 理科数学试题及解析

2018年普通高等学校招生全国统一考试(北京卷)  理科数学试题及解析

2018年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A ={x ||x |<2},B ={–2,0,1,2},则A I B =( )(A ){0,1} (B ){–1,0,1} (C ){–2,0,1,2} (D ){–1,0,1,2} 1.【答案】A【解析】2x <Q ,22x ∴-<<,因此{}(){}2,0,1,22,20,1A B =--=I I ,故选A .(2)在复平面内,复数11i-的共轭复数对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2.【答案】D【解析】()()11i 11i 1i 1i 1i 22+==+--+的共轭复数为11i 22-,对应点为11,22⎛⎫- ⎪⎝⎭,在第四象限,故选D .(3)执行如图所示的程序框图,输出的s 值为( )(A )12 (B )56 (C )76 (D )7123.【答案】B【解析】初始化数值1k =,1s = 循环结果执行如下:第一次:()1111122s =+-⋅=,2k =,23k =≥不成立;第二次:()21151236s =+-⋅=,3k =,33k =≥成立, 循环结束,输出56s =,故选B .(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( )(A (B (C ) (D ) 4.【答案】D【解析】因为每一个单音与前一个单音频率比为,()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f===,故选D .(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )(A )1 (B )2 (C )3 (D )4 5.【答案】C【解析】由三视图可得四棱锥P ABCD -,在四棱锥P ABCD -中,2PD =,2AD =,2CD =,1AB =,由勾股定理可知,PA =PC =3PB =,BC =,则在四棱锥中,直角三角形有,PAD △,PCD △,PAB △共三个,故选C .(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.【答案】C【解析】2222223333699+6a b a b a b a b a a b b a a b b -=+⇔-=+⇔-⋅+=⋅+, 因为a ,b 均为单位向量,所以2222699+6=0a a b b a a b b a b a b -⋅+=⋅+⇔⋅⇔⊥, 即“33a b a b -=+”是“a b ⊥”的充分必要条件.故选C .(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为( )(A )1 (B )2 (C )3 (D )4 7.【答案】C【解析】22cos sin 1θθ+=Q ,P ∴为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,故选C .(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则( )(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉8.【答案】D【解析】若()2,1A ∈,则32a >且0a ≥,即若()2,1A ∈,则32a >,此命题的逆否命题为,若32a ≤,则有()2,1A ∉,故选D .第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(精校版)2018年北京理数高考试题文档版(含答案)

(精校版)2018年北京理数高考试题文档版(含答案)

2018年普通高等学校招生全国统一考试数学(理)(北京卷)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为(A )32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

【真题】2018年北京市高考数学(理)试题包含答案解析

【真题】2018年北京市高考数学(理)试题包含答案解析

2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.若集合A=xx<2,B=x-2,0,1,2,则AIB=(A){0,1}(B){-1,0,1}(C){-2,0,1}(D){-1,0,1,2} i的共轭复数对应的点位于 1-i (A)第一象限(B)第二象限(C)第三象限(D)第四象限 3.执行如图所示的程序框图,输出的s值为().{}{}2.在复平面内,复数125B. 67C. 67D. 12A. 4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为(). A.32f B.322f C.1225fD.1227f 5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为(). A.1 B.2 C.3 D.4 ρρρρρρρρb均为单位向量,则“a-3b=3a+b”是“a⊥b”的 6.设a, (A)充分而不必要条件(C)充分必要条件(B)必要而不充分条件(D)既不充分也不必要条件 7. 在平面直角坐标系中,记d为点Pcosθ,sinθ到直线x-my-2=0的距离.当θ,m变化时,d()的最大值为(A)1 8. 设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则(B)2 (C)3 (D)4 (A)对任意实数a,(2,1)∈A(B)对任意实数a,(2,1)∉A (C)当且仅当a<0时,(2,1)∉A(D)当且仅当a≤二.填空(9)设{an}是等差数列,且a1=3,a2+a5=36,则{an}的通项公式为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★本科目考试启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)(B)(C)(D)(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为(A)(B)(C)(D)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1 (B)2(C)3 (D)4(6)设a,b均为单位向量,则“”是“a⊥b”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为(A)1 (B)2(C)3 (D)4(8)设集合则(A)对任意实数a,(B)对任意实数a,(2,1)(C)当且仅当a<0时,(2,1)(D)当且仅当时,(2,1)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(9)设是等差数列,且a1=3,a2+a5=36,则的通项公式为__________.(10)在极坐标系中,直线与圆相切,则a=__________.(11)设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.(12)若x,y满足x+1≤y≤2x,则2y–x的最小值是__________.(13)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.(14)已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N 的离心率为__________.三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

(15)(本小题13分)在△ABC中,a=7,b=8,cos B=–.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.(16)(本小题14分)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.(17)(本小题12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14 0 510好评率0.4 0.2 0.15 0.25 0.2 0.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.(18)(本小题13分)设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.学科*网(19)(本小题14分)已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线P A交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.(20)(本小题14分)设n为正整数,集合A=.对于集合A中的任意元素和,记M()=.(Ⅰ)当n=3时,若,,求M()和M()的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素,当相同时,M()是奇数;当不同时,M()是偶数.求集合B中元素个数的最大值;学#科网(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M()=0.写出一个集合B,使其元素个数最多,并说明理由.绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题1.A 2.D 3.B 4.D 5.C 6.C 7.C 8.D 二、填空题9.10.11.12.313.y=sin x(不答案不唯一)14.三、解答题(15)(共13分)解:(Ⅰ)在△ABC中,∵cos B=–,∴B∈(,π),∴sin B=.由正弦定理得=,∴sin A=.∵B∈(,π),∴A∈(0,),∴∠A=.(Ⅱ)在△ABC中,∵sin C=sin(A+B)=sin A cos B+sin B cos A==.如图所示,在△ABC中,∵sin C=,∴h==,∴AC边上的高为.解:(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.故所求概率为.(Ⅱ)设事件A为“从第四类电影中随机选出的电影获得好评”,事件B为“从第五类电影中随机选出的电影获得好评”.故所求概率为P()=P()+P()=P(A)(1–P(B))+(1–P(A))P(B).由题意知:P(A)估计为0.25,P(B)估计为0.2.故所求概率估计为0.25×0.8+0.75×0.2=0.35.(Ⅲ)>>=>>.解:(Ⅰ)因为=[],所以f ′(x)=[2ax–(4a+1)]e x+[ax2–(4a+1)x+4a+3]e x(x∈R)=[ax2–(2a+1)x+2]e x.f′(1)=(1–a)e.由题设知f′(1)=0,即(1–a)e=0,解得a=1.此时f (1)=3e≠0.所以a的值为1.(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]e x=(ax–1)(x–2)e x.若a>,则当x∈(,2)时,f ′(x)<0;当x∈(2,+∞)时,f ′(x)>0.所以f (x)<0在x=2处取得极小值.若a≤,则当x∈(0,2)时,x–2<0,ax–1≤x–1<0,所以f ′(x)>0.所以2不是f (x)的极小值点.综上可知,a的取值范围是(,+∞).解:(Ⅰ)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由得.依题意,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(Ⅱ)设A(x1,y1),B(x2,y2).由(I)知,.直线P A的方程为y–2=.令x=0,得点M的纵坐标为.同理得点N的纵坐标为.由,得,.所以.所以为定值.(20)(共14分)解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=[(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2,M(α,β)=[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x1,x2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.由题意知x1,x2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x2,x3,x4中1的个数为1或3.所以B{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k=( x1,x2,…,x n)|( x1,x2,…,x n)∈A,x k =1,x1=x2=…=x k–1=0)(k=1,2,…,n),S n+1={( x1,x2,…,x n)| x1=x2=…=x n=0},则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.11 / 11。

相关文档
最新文档