第七章溶解氧对发酵的影响及控制
溶解氧对发酵的影响及其控制
QO2
C临界
CL
满足微生物呼吸的最低氧浓度叫临界溶氧浓度(c临界),当溶 氧溶度(cL)高于菌体生长的临界溶氧浓度(c临界)时,菌体 的各种代谢活动不受干扰,反之则反。
一般好氧微生物的c临界很低,大约为饱和氧浓度1%~25%。
定义:氧饱和度=发酵液中氧的浓度/临界溶氧溶度
提高罐压
Pi增加则与之平衡的Ci也会增加,对提高(c* - c) 是有一定作用的。
利用纯氧,可以提高(c* - cL)
缺点:价格较高 易引起爆炸
可见,提高KLa最有效的方法是提高N与Vs,并 协调两者之间的关系,其他方法效果不大,且受 限制较多。
2、发酵液的需氧量
发酵液的需氧量(OUR),受c(X) 、基质的种
式中
KL
(c
cL
)
OTR-氧由气相向液相的传递速率(传氧速率,
oxygen take rate),mmol O2 /(L·h);
KLα-液相体积氧传递系数,1/h;
c*-液相饱和溶氧浓度,mmol O2 /L;
cL-液相实际溶氧浓度,mmol O2 /L;
OUR-菌的耗氧速率(摄氧速率,oxygen uptake
但不能够无限的增加通风量,研究表明,当通风量 增加到一定的量后,(Pg/V)会随着Q的增加而下 降。
也就是说单位体积发酵液所拥有的搅拌功率会下 降,不但不能提高kLa,甚至会造成kLa值的下降。
(2)提高(c* - cL),即氧传递动力
c*,改变c*是没有太大的余地的。因为,发酵温 度、浓度等严格的受到菌体生长和发酵工艺的限 制。
OTR = kLa×(P*-P)
溶氧对发酵的影响及控制
溶氧对发酵的影响及控制总述:溶氧(DO)是需氧微生物生长所必须,发酵过程中有多方面的限制因素,而溶氧往往是最易成为控制因素。
发酵液中的溶氧浓度对微生物的生长和产物形成有着重要的影响,在发酵液中溶氧的高低直接影响菌体的生长和代谢产物的积累,并最终决定着发酵产物产量的高低。
根据对氧的需求,微生物可分为专性好氧微生物、兼性好氧微生物和专性厌氧微生物。
以下则主要针对氧在好养微生物,需要微生物或兼性厌氧型微生物的一些影响。
1.溶氧在好氧微生物发酵过程的影响溶氧是发酵中的营养和环境因素,不同发酵阶段的需氧量通常不同。
根据溶氧调控策略对Alcaligenes.sp.NX-3 产威兰胶的发酵过程的影响(5)溶氧对好氧微生物发酵的影响主要分为两方面:是溶氧浓度影响与呼吸链有关的能量代谢,影响微生物生长代谢。
二是在氧直接参与产物合成,且通过溶氧控制条件对深层灵芝发酵生产灵芝酸产量的影响溶氧是好氧性微生物生长发酵的重要工艺参数,对菌体生长和积累代谢产物都有较大影响,定着代谢产物产量的高低。
溶氧过低,不利于菌体生长和代谢产物的积累,溶氧过高,只利于菌体大量生长,代谢产物的积累受到抑制,好氧微生物生长和代谢均需要氧气,此供氧必须满足微生物在不同阶段的需要,在不同的环境条件下,各种不同的微生物的吸氧量或呼吸强度是不同的。
因此,对于好氧性微生物发酵,溶氧参数的控制尤为重要。
而好氧微生物发酵过程中溶氧检测值受多种参数的影响,包括生物代谢过程本身,也包括外部补料、风量、搅拌转速、发酵罐温度、压力等。
可以针对不同的影响因素对发酵过程进行控制与调节。
2.溶氧在需氧菌或兼性厌氧菌微生物发酵过程的影响需氧发酵并不是溶氧愈大愈好,溶氧高虽然有利于菌体生长和产物合成,但溶氧太大有时反而抑制产物的形成。
因此,发酵处于限氧条件下,需要考查每一种发酵产物的临界氧浓度和最适氧浓度,并使发酵过程保持在最适浓度。
根据溶氧对氨基酸发酵的影响及控制(2)中可知发酵液中的氧(溶解氧)是菌体生长与代谢的必需品。
发酵的影响因素-溶氧
Qo2---菌体呼吸强度(比耗氧速率), molO2/(kg干细胞·s ) ;
X ---发酵液中菌体浓度,(kg/m3);
1.溶氧对发酵过程的影响
溶氧对菌体生长和产物形成的影响:
一般对于微生物: 临界溶氧浓度: =1~15%饱和溶氧浓度 例:酵母 4.6*10-3 mmol.L-1, 1.8% 产黄青霉 2.2*10-2 mmol.L-1, 8.8%
影响供氧的因素: 影响发酵罐中Kla的因素
搅拌:效果明显 空气流速 罐压
空气分布器 温度 空气中含氧量
发酵液物理性质
控制溶氧的工艺手段主要是从供氧和需氧两方面来考虑。
思考题
1 摄氧率如何计算? 2 生产上,如何增加供氧量?
谢谢观看
生长 产物
头孢菌素
卷须霉素
5% (相对于饱和浓度) 13%
>13%
>8%
2. 发酵过程对溶氧的控制
2.发酵过程对溶氧的控制
影响需氧的因素:
菌体浓度
r= QO2 .X
QO2
➢ 遗传因素 ➢ 菌龄 ➢ 营养的成分与浓度 ➢ 有害物质的积累 ➢ 培养条件
2.发酵过程对溶氧的控制
影响供氧的因素:
Nv Kla(c * c)
所以对于微生物生长,只要控制发酵过程中氧浓度要大于 临界溶氧浓度.
1.溶氧对发酵过程的影响
问题:一般微生物的临界溶氧浓度很小,是不是发酵过程中 氧很容易满足。
例:以微生物的摄氧率0.052 mmol O2·L-1·S-1 计,
0.25/0.052=4.8秒
注意:由于产物的形成和菌体最适的生长条件,常常不一样:
第七章溶解氧对发酵的影响及控制
• 此方法只是近似测量溶氧的方法。
第七章溶解氧对发酵的影响及控制
第七章溶解氧对发酵的影响及控制
2.溶解氧作为发酵异常情况的指示
发酵过程中,出现异常变化的原 因:耗氧或供氧出现了异常因素或 发生了障碍
第七章溶解氧对发酵的影响及控制
溶氧异常下降的原因有哪些?
• 污染好气性杂菌 • 菌体代谢发生异常现象 • 某些设备或工艺控制发生故
障或变化
第七章溶解氧对发酵的影响及控制
溶解氧对发酵的影响 及控制
第七章溶解氧对发酵的影响及控制
溶氧(DO)是需氧微生物生长所必需。在 发酵过程中有多方面的限制因素,而溶氧往往 是最易成为控制因素。
在28℃,氧在发酵液中的100%的空气饱 和浓度只有0.25mmol.L-1左右,比糖的溶解度 小7000倍。在对数生长期即使发酵液中的溶氧 能达到100%空气饱和度,若此时中止供氧, 发酵液中溶氧可在几分钟之内便耗竭,使溶氧 成为限制因素。
r= QO2 .X
X指发酵液的菌体浓度,单位为(g干菌体/L)
第七章溶解氧对发酵的影响及控制
• 微生物对氧的需求
QO2
CCr
CL
CCr: 临界溶氧浓度, 指不影响呼吸所允许的最低溶氧浓度。
第七章溶解氧对发酵的影响及控制
当发酵液中的溶解氧浓度低于此临界氧 浓度时,微生物的耗氧速率将随着溶解 氧浓度降低而很快下降,此时溶解氧是 微生物生长的限制因素,改善供氧对微 生物生长有利。
溶氧异常升高的原因有哪些?
• 在供氧条件没发生变化的情况下,耗氧量 的显著减少,会引起溶氧异常上升。 特别注意:是否污染烈性噬菌体 若污染了烈性噬菌体: 产生菌尚未裂解,呼吸就受到抑制→溶氧 明显上升 菌体破裂会完全失去呼吸能力→溶氧直线 上升
溶氧对发酵的影响及控制
溶氧对发酵的影响及其控制The dissolved oxygen concentration in the fermentation broth (Dissolved Oxygen, referred to as DO) is the key factor to influence the fermentation, has an important influence on microbial growth and product formation. According to the demand of dissolution characteristics and microbial oxygen on oxygen, analysis of the effects of dissolved oxygen on the fermentation and the effect on fermentation, and then determine the control of dissolved oxygen in the fermentation broth and transfer, the maximum production efficiency.Compared with normal PID controller, the new controller is of small overshoot and quick response, improved stability of the system andincrease the yield of products. Study the influence of dissolved oxygen and controlling the fermentation to improve production efficiency, improve product quality, etc. are important.溶氧浓度(DO)作为发酵控制中的一个关键参数,直接影响着发酵生产的稳定性和生产成本,受到工业生产和实验室研究的重视,无论是厌氧还是需氧发酵,研究发酵液中溶氧对发酵的影响都有重要意义。
07 第七章 发酵工艺过程控制 20171024 课后
第七章发酵工艺过程控制11. 发酵工艺过程控制2. 温度对发酵的影响及其控制3. pH值对发酵的影响及其控制4. 溶解氧对发酵的影响及其控制5. 泡沫对发酵的影响及其控制6. 补料(基质浓度)控制7. 发酵过程中的参数检测8. 高密度发酵21.发酵工艺过程控制3发酵过程控制的重要性•过程控制的内容:最佳工艺条件的优选(即最佳工艺参数的确定)以及在发酵过程中通过过程调节达到最适水平的控制。
•过程控制的目的:就是要为生产菌创造一个最适的环境,使所需要的代谢活动得以最充分的表达,以最经济、最大限度地获得发酵产物。
决定发酵水平的因素外部环境因素生物因素:菌株特性(营养要求、生长速率、产物合成速率)设备性能: 传递性能工艺条件物理:T 、Ws化学:pH 、DO 、基质浓度4工业微生物发酵过程52.温度对发酵的影响及其控制影响发酵温度变化的因素温度对微生物生长的影响温度对基质消耗的影响温度对产物合成的影响最适温度的选择与控制62.1 影响发酵温度的因素发酵热就是发酵过程中所产生的净热量Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射产热因素:生物热机械搅拌热散热因素:蒸发热辐射热7(1)生物热Q生物生物热是生产菌在生长繁殖过程中产生的热能。
在发酵过程中,菌体不断利用培养基中的营养物质,将其分解氧化产生能量,一部分用于合成ATP提供细胞代谢产物合成需的能量,另一部分以热的形式散发,这散发出来的热就叫生物热。
影响生物热的因素:菌株发酵类型、培养基、发酵时期8生物热与发酵类型有关微生物进行有氧呼吸产生的热比厌氧发酵产生的热多。
和水一摩尔葡萄糖彻底氧化成CO2好氧:产生287.2千焦耳热量,–183千焦耳转变为高能化合物–104.2千焦以热的形式释放厌氧:产生22.6千焦耳热量,–9.6千焦耳转变为高能化合物–13千焦以热的形式释放9培养过程中生物热的产生具有强烈的时间性细胞呼吸量强弱与生物热的大小有关:1.在培养初期,菌体处于适应期,菌数少,呼吸作用缓慢,产生热量较少。
发酵工艺控制——氧对发酵的影响及控制
发酵工艺控制——氧对发酵的影响及控制在好氧深层培养中,氧气的供应往往是发酵能否成功的重要限制因素之一。
通气效率的改进可减少空气的使用量,从而减少泡沫的形成和杂菌污染的机会。
一、溶解氧对发酵的影响溶氧是需氧发酵控制最重要的参数之一。
由于氧在水中的溶解度很小,在发酵液中的溶解度亦如此,因此,需要不断通风和搅拌,才能满足不同发酵过程对氧的需求。
溶氧的大小对菌体生长和产物的形成及产量都会产生不同的影响。
如谷氨酸发酵,供氧不足时,谷氨酸积累就会明显降低,产生大量乳酸和琥珀酸。
需氧发酵并不是溶氧愈大愈好。
溶氧高虽然有利于菌体生长和产物合成,但溶氧太大有时反而抑制产物的形成。
因为,为避免发酵处于限氧条件下,需要考查每一种发酵产物的临界氧浓度和最适氧浓度,并使发酵过程保持在最适浓度。
最适溶氧浓度的大小与菌体和产物合成代谢的特性有关,这是由实验来确定的。
根据发酵需氧要求不同可分为三类:第一类有谷氨酸、谷氨酰胺、精氨酸和脯氨酸等谷氨酸系氨基酸,它们在菌体呼吸充足的条件下,产量才最大,如果供氧不足,氨基酸合成就会受到强烈的抑制,大量积累乳酸和琥珀酸;第二类,包括异亮氨酸、赖氨酸、苏氨酸和天冬氨酸,即天冬氨酸系氨基酸,供氧充足可得最高产量,但供氧受限,产量受影响并不明显;第三类,有亮氨酸、缬氨酸和苯丙氨酸,仅在供氧受限、细胞呼吸受抑制时,才能获得最大量的氨基酸,如果供氧充足,产物形成反而受到抑制。
氨基酸合成的需氧程度产生上述差别的原因,是由它们的生物合成途径不同所引起的,不同的代谢途径产生不同数量的NAD(P)H,当然再氧化所需要的溶氧量也不同。
第一类氨基酸是经过乙醛酸循环和磷酸烯醇式丙酮酸羧化系统两个途径形成的,产生的NADH量最多。
因此NADH氧化再生的需氧量为最多,供氧愈多,合成氨基酸当然亦愈顺利。
第二类的合成途径是产生NADH的乙醛酸循环或消耗NADH的磷酸烯醇式丙酮酸羧化系统,产生的NADH量不多,因而与供氧量关系不明显。
发酵工艺控制(溶氧)
(2)、降低发酵液中的CL
降低发酵液中的CL,可采取减少通气量或降低搅拌转速等方式来降低KLa,使发酵液中的CL降低。但是,发酵过程中发酵液中的CL不能低于C临界,否则就会影响微生物的呼吸。
目前发酵所采用的设备,其供氧能力已成为限制许多产物合成的主要因素之一,故此种方法亦不理想。
(一)影响氧传质推动力的因素
要想增加氧传递的推动力(C*一CL),就必须设法提高C*或降低CL。
1、提高饱和溶氧浓度C*的方法
A、温度:降低温度
B、溶液的性质:一般来说,发酵液中溶质含量越高,氧的溶解度越小。
C、氧分压:在系统总压力小于0.5MPa时,氧在溶液中的溶解度只与氧的分压成直线关系。气相中氧浓度增加,溶液中氧浓度也增加。
氨基酸合成的需氧程度产生上述差别的原因,是由它们的生物合成途径不同所引起的,不同的代谢途径产生不同数量的NAD(P)H,当然再氧化所需要的溶氧量也不同。第一类氨基酸是经过乙醛酸循环和磷酸烯醇式丙酮酸羧化系统两个途径形成的,产生的NADH量最多。因此NADH氧化再生的需氧量为最多,供氧愈多,合成氨基酸当然亦愈顺利。第二类的合成途径是产生NADH的乙醛酸循环或消耗NADH的磷酸烯醇式丙酮酸羧化系统,产生的NADH量不多,因而与供氧量关系不明显。第三类,如苯丙氨酸的合成,并不经TCA循环,NADH产量很少,过量供氧,反而起到抑制作用。肌苷发酵也有类似的结果。由此可知,供氧大小是与产物的生物合成途径有关
这个理论假定在气泡和包围着气泡的液体之间存在着界面,在界面的气泡一侧存在着一层气膜,在界面液体一侧存在着一层液膜,气膜内的气体分子与液膜中的液体分子都处于层流状态,分子之间无对流运动,因此氧分子只能以扩散方式,即借助于浓度差而透过双膜,另外,气泡内除气膜以外的气体分子处于对流状态,称为气流主体,在空气主流空间的任一点氧分子的浓度相同,液流主体亦如此。
第七节 溶解氧对发酵的影响及控制
一、溶解氧浓度对发酵的影响
1、供氧与微生物呼吸代谢产物的关系 呼吸强度: /g干菌体 干菌体·h 呼吸强度:QO2(mmol O2/g干菌体 h) • 耗氧速率:r (mmol O2/L h) /L·h 耗氧速率:
r = QO2 • X
---发酵液中菌体浓度,(kg/m 发酵液中菌体浓度,( X ---发酵液中菌体浓度,(kg/m3);
• 由于不可能测定界面处的氧分压和氧浓度,为了计算 由于不可能测定界面处的氧分压和氧浓度, 方便,通常情况下,改用总传质系数和总推动力表示, 方便,通常情况下,改用总传质系数和总推动力表示, 在稳定状态时, 在稳定状态时,有:
N o 2 = K L (c − cL ) = K G ( p − p )
N = K Lα ( c − c L )
*
N:氧的传递速率[kmol/(m3·h)]; :氧的传递速率 ( ); KLa:以浓度差为动力的体积溶氧系数(h-1); :以浓度差为动力的体积溶氧系数( KGa:以分压差为动力的体积溶氧系数 :以分压差为动力的体积溶氧系数[kmol/(m3·h·M pa)]; ( ); cL:发酵液中氧浓度(kmol/m3); 发酵液中氧浓度( c*:与气相中氧分压 平衡的发酵液氧浓度(kmol/m3); 平衡的发酵液氧浓度( :与气相中氧分压p平衡的发酵液氧浓度 p:气相中氧分压(M Pa); :气相中氧分压( ); p*:与液相中氧浓度 平衡的氧分压(M Pa); 平衡的氧分压( :与液相中氧浓度c平衡的氧分压 ); H:亨利常数(m3·M Pa/kmol) :亨利常数( )
1 1 H 所 : = 以 + KG kG kL
同样的方法可得出K 的表达式: 同样的方法可得出 L的表达式:
溶氧对发酵的影响及控制
溶氧对发酵的影响及控制溶氧是微生物发酵过程中的重要因素之一,它对微生物的生长和代谢有着直接的影响。
本文将从溶氧对发酵的影响、溶氧的控制及其方法等方面进行探讨。
一、溶氧对发酵的影响1. 溶氧影响微生物生长速度和代谢产物微生物在发酵过程中需要通过呼吸作用来产生能量,而呼吸作用需要氧气参与。
当溶氧充足时,微生物的生长速度和代谢产物的产量都会增加。
但当溶氧不足时,微生物会采用厌氧代谢途径,此时代谢产物的种类和产量都会发生改变。
2. 溶氧影响微生物的代谢途径微生物在不同的溶氧条件下,会采用不同的代谢途径,从而影响代谢产物的种类和产量。
当溶氧充足时,微生物会采用呼吸代谢途径,产生的代谢产物主要是二氧化碳和水。
当溶氧不足时,微生物会采用厌氧代谢途径,产生的代谢产物主要是乳酸、酒精等。
3. 溶氧影响微生物的生理状态溶氧对微生物的生理状态也有着直接的影响。
当溶氧充足时,微生物的细胞膜通透性和细胞内酶的活性都会增强,从而提高微生物的生理状态。
当溶氧不足时,微生物的生理状态会下降,从而影响微生物的生长和代谢。
二、溶氧的控制及其方法1. 气体控制法气体控制法是一种常用的溶氧控制方法。
通过控制氧气的流量和进气口的大小,来调节溶氧的浓度。
这种方法适用于规模较大的发酵过程。
2. 搅拌控制法搅拌控制法是一种通过搅拌来增加氧气传递的方法。
通过调节搅拌的强度和速度,来增加氧气的传递速率,从而提高溶氧浓度。
这种方法适用于规模较小的发酵过程。
3. 降低发酵液的粘度发酵液的粘度越高,氧气传递速率就越慢。
因此,通过降低发酵液的粘度,来增加氧气的传递速率,从而提高溶氧浓度。
4. 控制发酵液的温度发酵液的温度也会影响溶氧浓度。
当温度升高时,溶氧浓度会下降。
因此,通过控制发酵液的温度,来调节溶氧浓度。
5. 使用溶氧控制仪溶氧控制仪是一种通过测量发酵液中的溶氧浓度,来控制氧气的流量和进气口的大小,从而调节溶氧浓度的设备。
这种方法适用于规模较大的发酵过程。
发酵工程 第7章 溶解氧对发酵的影响及其控制
2009年6月9日
2
(四)溶解氧对发酵的影响及其控制
1. 引起溶解氧变化的因素 2. 溶解氧对发酵的影响 3. 溶解氧在发酵过程控制中的重要作用 4. 发酵液中溶解氧的控制 5. 溶解氧控制实例
2009年6月9日
3
氧是一种难溶于水的气体。在25℃,1×105Pa条件下,氧 在纯水中的溶解度为1.26mmol/L,空气中的氧在纯水中的 溶解度更低(0.25mmol/L)。在28℃氧在发酵液中的100% 的空气饱和浓度只有7mg/L左右,比糖的溶解度小7000倍。
KLa
k(
PG V
)
Ws
2009年6月9日
27
以小型罐中牛顿型流体测定的结果为例:
KLad 2 DL
=0.06( Nd 2 )1.5
( N 2d )0.19 g
(
DL
)0.5
(Ws
)0.6
( NDi )0.32 Ws
合并化简得:
KLa=0.0 6
N
2.2d
D W 1.51 0.5 0.28 Ls
微生物的比耗氧速率受发酵液中氧的浓度的影响, 各种微生物对发酵液中溶氧浓度CL有一个最低要求 ,即不影响呼吸所允许的最低溶氧浓度,称为临界 溶氧浓度,以Ccr表示。 CL> Ccr,QO2 保持恒定 CL< Ccr, QO2 大大下降
2009年6月9日
7
发酵行业用空气饱和度(%)来表示DO含量的单位
第八章 发酵过程控制
2009年6月9日
1
本章内容
一、概述 二、温度对发酵的影响及其控制 三、 pH对发酵的影响及其控制 四、溶解氧对发酵的影响及其控制 五、 CO2和呼吸商对发酵的影响及其控制 六、基质浓度对发酵的影响及补料控制 七、泡沫对发酵的影响及其控制 八、自动控制技术在发酵过程控制中的应用
溶解氧对发酵的影响及其控制
利用纯氧,可以提高(c* - cL) 缺点:价格较高
易引起爆炸
可见,提高KLa最有效的方法是提高N与Vs,并协 调两者之间的关系,其他方法效果不大,且受限 制较多。
(3)改变发酵液理化性质
① 加消泡剂,消除泡沫,增加溶氧 ② 补加无菌水,降低粘度 ③ 改变培养基成分,降低粘度 ④ 改变温度,影响溶氧
溶解氧对发酵的影响及其控制
溶解氧在发酵过程控制中的重要作用 发酵过程溶解氧控制的策略与方法
(一)溶氧在发酵过程控制中的重要作用
(1)溶解氧判断发酵体系是否污染杂菌。
(2)溶解氧判断中间补料是否恰当。中问补料是否得当可 以从DO值的变化看出,如赤霉素发酵,有些批次的发酵罐 会出现"发酸。
(3)溶氧作为控制代谢方向的指标。在天冬氨酸发酵中前 期好氧培养,后期转为厌氧培养,酶活可大大提高。
2. 溶氧控制的方法:
溶氧浓度的控制从供给和消耗两方面考虑:
OTR KL (C * CL) 供给
QO2 X
消耗
(1)从供氧方面考虑
从氧传递动力学方程式,可以看出:在供氧方 面,主要是设法提高氧传递的推动力(c* - cL)和 体积氧传递系数KLα。 (1)提高 kLa kLa 反映了设备的供氧能力,不但与反应器的结构 参数有关,还与发酵液的性质有关(粘度、浓度 等), kLa与操作参数之间的关系,可以使用下 式表示出来:
kLa = f(N Q μ Vs ……)
搅拌转速
kLa ∝ (Pg/V)α ×Vsв
Pg ∝ N2.46
可见,提高N可以有效的提高kLa,从而增加发 酵液中的溶氧浓度。
但是,高转速也有不利的方面(能耗 、菌体对 剪切力的要求)。
溶解氧对发酵的影响及其控制
溶解氧对发酵的影响及其控制1 溶解氧对发酵的影响溶氧是需氧发酵控制最重要的参数之一。
由于氧在水中的溶解度很小,在发酵液中的溶解度亦如此,因此,需要不断通风和搅拌,才能满足不同发酵过程对氧的需求。
溶氧的大小对菌体生长和产物的形成及产量都会产生不同的影响。
如谷氨酸发酵,供氧不足时,谷氨酸积累就会明显降低,产生大量乳酸和琥珀酸。
1.1 溶氧量在发酵的各个过程中对微生物的生长的影响是不同的改变通气速率发酵前期菌丝体大量繁殖,需氧量大于供氧,溶氧出现一个低峰。
在生长阶段,产物合成期,需氧量减少,溶氧稳定,但受补料、加油等条件大影响。
补糖后,摄氧率就会增加,引起溶氧浓度的下降,经过一段时间以后又逐步回升并接近原来的溶解氧浓度。
如继续补糖,又会继续下降,甚至引起生产受到限制。
发酵后期,由于菌体衰老,呼吸减弱,溶氧浓度上升,一旦菌体自溶,溶氧浓度会明显上升。
1.2 溶氧对发酵产物的影响对于好氧发酵来说,溶解氧通常既是营养因素,又是环境因素。
特别是对于具有一定氧化还原性质的代谢产物的生产来说,DO的改变势必会影响到菌株培养体系的氧化还原电位,同时也会对细胞生长和产物的形成产生影响。
[1]在黄原胶发酵中,虽然发酵液中的溶氧浓度对菌体生长速率影响不大,但是对菌体浓度达到最大之后的菌体的稳定期的长短及产品质量却有着明显的影响。
[2]需氧微生物酶的活性对氧有着很强的依赖性。
谷氨酸发酵中,高溶氧条件下乳酸脱氢酶(LDH)活性明显比低溶氧条件下的LDH酶活要低,产酸中后期谷氨酸脱氢酶(GDH)的酶活下降很快,这可能是由于在高溶氧条件下,剧烈的通气和搅拌加剧了菌体的死亡速度和发酵活性的衰减。
[3]DO值的高低还会改变微生物代谢途径,以致改变发酵环境甚至使目标产物发生偏离。
研究表明,L-异亮氨酸的代谢流量与溶氧浓度有密切关系,可以通过控制不同时期的溶氧来改变发酵过程中的代谢流分布,从而改变Ile等氨基酸合成的代谢流量。
[4]2 溶氧量的控制对溶解氧进行控制的目的是把溶解氧浓度值稳定控制在一定的期望值或范围内。
溶氧对发酵的影响及控制
溶氧对发酵的影响及控制引言:发酵是一种广泛应用于食品和生物工程领域的生物过程。
溶氧是发酵过程中必不可少的因素之一,对发酵的效率和产物品质有着重要的影响。
本文将探讨溶氧对发酵的影响及其控制方法。
一、溶氧对发酵的影响1. 溶氧影响生物代谢:生物发酵过程中需要大量的氧气参与代谢反应,例如呼吸作用和产物合成。
充足的溶氧可提供细胞所需的氧气,加速代谢反应进行,从而提高发酵效率和产物质量。
2. 溶氧影响菌群生长:某些微生物在缺氧环境下更适合生长,而另一些微生物则需要较高的溶氧浓度。
适宜的溶氧浓度能够选择性地促进或抑制特定微生物的生长,从而调控发酵过程中菌群的种类和数量。
3. 溶氧影响发酵产物:溶氧水平的变化会导致发酵微生物的代谢途径发生改变,从而影响产物的种类和数量。
例如,在酿造啤酒的过程中,高溶氧浓度会促使酵母细胞产生醋酸,而低溶氧浓度则有利于乙醇的产生。
二、控制溶氧浓度的方法1. 气体供应控制:通过调节气体供应速率和流量,可以控制发酵罐中的氧气浓度。
例如,增加通气速率可以提高溶氧浓度,而减少通气速率则可以降低溶氧浓度。
2. 搅拌控制:搅拌发酵罐中的培养基可以增加气液传质速率,促进氧气的溶解和分配。
合理的搅拌速度可以保持溶氧浓度的稳定,避免过高或过低的溶氧浓度对发酵过程的不利影响。
3. 温度控制:适宜的温度可以影响氧气在液体中的溶解度。
根据不同微生物的需求,可以通过调节发酵罐的温度,来控制溶氧浓度的变化。
4. 添加表面活性剂:表面活性剂的添加可以降低氧气的表面张力,促进氧气的溶解和分散。
这种方法可以提高溶氧浓度,特别适用于高粘度的发酵培养基。
5. 使用溶氧传感器:通过安装溶氧传感器,可以实时监测发酵罐中的溶氧浓度,并根据需求进行及时调整。
结论:溶氧是发酵过程中不可忽视的重要因素,它对发酵效率和产物品质有着显著的影响。
合理控制溶氧浓度可以优化发酵过程,提高产物的质量和产量。
通过调节气体供应、搅拌、温度和添加表面活性剂等方法,可以有效地控制溶氧浓度,实现理想的发酵效果。
第七章 发酵过程控制
一、初级代谢的变化 二、次级代谢的变化 三、发酵过程的主要控制参数
初级代谢变化的根本原因在于菌体的代谢活 动引起环境的变化,而环境的变化又反过来影 响菌体的代谢。 在初级代谢中,菌体生长仍显示适应期、对 数生长期、静止期和衰亡期的特征。 由于菌体的生理状态与培养条件不同,各个 时期时间长短也不尽相同,且与接种微生物的 生理状态有关。
生物热的大小随培养时间的不同而不同。 实验发现抗生素高产量批号的生物热高于低产 量批号的生物热。说明抗生素合成时微生物的新陈 代谢十分旺盛。
生物热的大小与菌体的呼吸强度有对应关系,呼 吸强度越大,所产生的生物热也越大。
在四环素发酵中,还发现 生物热和菌的呼吸强度的 变化有对应关系,特别是 在80小时以前。从此实验 中还可看到,当产生的生 物热达到高峰时,糖的利 用速度也最大。另外也有 人提出,可从菌体的耗氧 率来衡量生物热的大小。
• 蒸发热的计算: Q蒸发=G(I2-I1) G:空气流量,按干重计算,kg/h I1 、I2 :进出发酵罐的空气的热焓量,J/kg (干空气)
• 辐射热:由于发酵罐内外温度差,通过罐 体向外辐射的热量。
• 辐射热可通过罐内外的温差求得,一 般不超过发酵热的5%。
发酵热的测定
(1)通过测定一定时间内冷却水的流量和 冷却水进出口温度,由下式求得这段时间内 的发酵热。
影响酶的活性,当pH值抑制菌体中某些酶 的活性时,会阻碍菌体的新陈代谢;
H+或OH-在细胞内改变了胞内原有的中性状 态,影响到酶蛋白的解离度和电荷情况,从而 改变酶的结构和功能。
•
影响微生物原生质膜所带电荷的状态。改变 细胞膜的通透性,影响微生物对营养物质的吸 收和代谢产物的排泄。
第七章发酵过程中工艺参数的检测和控制
3.2 基质浓度
①C源,青霉素生产中葡萄糖和 乳糖利用。因此工业上培养基中 含有迅速和缓慢利用的混合C源。 如为聚合物,利用缓慢。
第七章发酵过程中工艺参数的检测和 控制
3.2 基质浓度
②N源,也有迅速利用和缓慢利用, 前者有氨基酸、硫酸铵、尿素和玉 米浆,后者有黄豆饼粉、花生、棉 子饼粉等蛋白质。前者菌生长快, 但产量低,选用快、慢混合氮源很 重要。生产上可补加有机或无机氮 源。
第七章发酵过程中工艺参数的检测和 控制
❖中间补料的机理
①避免一次投料,菌丝生长过盛。 ②延长次级代谢产物的分泌期, 提高产量。
☆
第七章发酵过程中工艺参数的检测和
控制
❖ FBC的内容
①补碳源、氮源(无机和有机),如蛋 白胨、玉米浆、硫酸铵、尿素。
②无机盐,微量元素,前体和促进剂。 ③补全料和补水,总之视情况不同,补
第一节 工业发酵的主要类型
(三) 补料分批发酵法(fed-batch fermentation)
补料分批发酵又称半连续发酵,是 指在分批发酵过程中,间歇或连续地补 加新鲜培养基的培养方法。与传统分批 发酵相比,其优点在于使发酵系统中维 持很低的基质浓度。
第七章发酵过程中工艺参数的检测和 控制
☆
第一节 工业发酵的主要类型
第七章发酵过程中工艺参数的检测和 控制
一、溶氧的浓度对发酵的影响
微生物对氧的需求: 1、 C6H12O6+6O2→6CO2+6H2O+能量
从分子式看出,180g葡萄糖完全氧化需 190克O2。 2、构成细胞成分含有氧,如酵母细胞元素组成 为C3.95 N6.5 O1.94。
第七章发酵过程中工艺参数的检测和 控制
第一节 工业发酵的主要类型
发酵过程的控制
【例】: 在GA(谷氨酸)发酵的合成期,过量供氧会使NADPH(还原型辅酶Ⅱ)进入呼吸链被氧化,减少了其数量,而NADPH与α-KGA(α-酮戊二酸)的还原氨基化是相偶联的,必然会影响α-KGA →GA的合成。
要指出的是,需氧发酵并不是溶解氧越高越好,适宜的溶氧水平有利于菌体生长和产物形成。但溶氧太高,有时反而抑制产物的形成。即使是专性好气菌,过高的DO对生长也可能不利。因为过量的氧会形成新生态[O]、活性氧自由基 O2 ·和 OH· ,造成许多细胞组分破坏,反而不利于微生物的生长。 发酵过程需氧程度产生差异的原因是:微生物的代谢途径不同所引起的。由于不同代谢途径产生不同数量的还原型NAD(P)H,它再氧化所需要的溶氧量当然也不同。由此可知,供氧大小与产物的生物合成途径有关。
三、发酵过程氧的传质理论
(一)氧从气泡至细胞的传递过程
供氧:空气中的氧从空气泡里通过气膜、气液界面和液膜扩散到液相主体中。
耗氧:氧从液相主体通过液膜、菌丝丛、细胞膜扩散到细胞内,才能被微生物利用。 以上氧传递的整个过程必须克服一系列的阻力。
氧从气泡到细胞的传递过程示意图
O2
气膜
发酵罐的温度传感器、耐高温pH和溶氧传感器
好气性微生物的生长发育和代谢活动都需要消耗氧气,它们只有氧分子存在情况下才能完成生物氧化作用。因此,供氧对需氧微生物是必不可少的,在发酵过程中必须供给适量无菌空气,才能使菌体生长繁殖、积累所需要的代谢产物。而需氧微生物的氧化酶系是存在于细胞内原生质中,因此,微生物只能利用溶解于液体中的氧。 溶氧(Dissolved Oxygen , DO)是需氧微生物生长所必需的。在发酵过程中有多方面的限制因素,而溶氧往往是制约发酵进行的重要限制因素。
一、溶氧对发酵的影响 氧对微生物发酵的影响是多方面的,不同的菌、不同的发酵阶段对于氧的要求也不相同,氧对其的影响也不相同,表现如下: 1、影响菌系的酶活性 在微生物的代谢过程中,许多参与催化脱氢氧化反应的酶都是以NAD(P)为辅酶的,NAD(P)的数量是保证酶活力的基础。NAD(P)作为H的受体,脱氢后成为还原的NAD(P)H。NAD(P)H只有在有氧条件下才能通过呼吸链被氧化,生成氧化型NAD(P)后又重新参加脱氢反应,一旦发酵液中的氧的浓度不够,与NAD(P)相关的酶促反应就会停止。
第七章 发酵过程的控制
1、发酵温度
4、CO2和呼吸商的影响及控制
• 三.发酵过程中CO2的控制 • CO2浓度受到许多因素的影响,如细胞的 呼吸强度、通气搅拌程度、设备规模、罐 压大小、温度等。通气搅拌程度越大,体 系中CO2浓度越低。 • 工业发酵中,CO2的影响远比溶解氧的影 响要小得多,因此,一般不单独进行控制。
5、基质浓度的影响及补料控 制
压力法
覆膜氧电极 法
极普法
4、CO2和呼吸商的影响及控制
• 一.二氧化碳对发酵过程的影响 CO2影响发酵液的酸碱平衡,使发酵液的 pH值下降,或与其他化学物质发生化学反 应,或与生长必需金属离子形成碳酸盐沉 淀等原因,造成间接作用而影响菌体生长 和产物合成。
4、CO2和呼吸商的影响及控制
• 二.呼吸商与发酵的关系 • 微生物的耗氧速度常用单位质量的细胞(干 重)在单位时间内消耗氧的量,即呼吸商或 比耗氧速率(或呼吸强度)。单位体积培养液, 在单位时间内消耗的氧量称为摄氧率。 • Q氧气 = γ/ Cc 在菌体浓度一定的情况下,摄氧率越大, 呼吸商越大,发酵就越旺盛。
主要内容
由于发酵过程的复杂性,使得发酵过程的控制较为复杂, 目前生产中较常见的参数主要包括:温度、pH值、溶解氧、 空气流量、基质浓度、泡沫、搅拌速率、罐压、效价等。
9 发酵参数和发酵终点的监测与控制 10 发酵过程的计算机控制 设备及管道清洗与消毒的控制
发酵工艺控制讲义——氧对发酵的影响及控制
发酵工艺控制讲义——氧对发酵的影响及控制氧是发酵过程中重要的因子之一,对发酵的影响及其控制具有重要意义。
本文将从氧对发酵的影响、氧的供给方式以及氧的控制等方面进行讲解。
发酵过程中,微生物需要通过氧气来进行呼吸作用,产生能量。
氧气的供给不足或过量都会对发酵过程产生一定影响。
首先,缺氧对发酵过程会产生不利影响。
微生物进行发酵作用时,需要大量的氧气来满足能量需求。
如果氧气供给不足,会导致微生物代谢和生长速率减慢,进而影响发酵产物的生成。
此外,缺氧还会导致乳酸、乙醇等代谢产物的积累增加,影响发酵过程的效率和产物品质。
其次,过量氧气也会对发酵产生负面影响。
过量的氧气会导致微生物产生过多的氧自由基,从而加速细胞氧化损伤的发生,降低细胞代谢的活性。
此外,过量的氧气还容易引起微生物DNA的氧化损伤,降低细胞的生存能力。
针对氧对发酵的影响,发酵过程中需要进行氧的供给和控制。
氧的供给方式可以通过气体通气或溶氧控制来实现。
气体通气是通过将氧气通入反应器中,供给微生物所需的氧气量。
气体通气的主要优点是供给灵活、操作简单。
但是,在气体通气过程中,氧气的传质效率较低,容易产生氧催化剂,进而加速微生物氧化损伤的发生。
溶氧控制是通过调整溶解氧的含量来控制氧的供给。
溶氧控制可以通过调整搅拌速度、改变气体通气速率等方式来实现。
溶氧控制的优点是能够更加准确地控制氧的供给量,避免过量或不足。
但是,溶氧控制需要较为复杂的设备和操作步骤,成本较高。
在发酵工艺中,可以根据具体情况选择合适的氧供给方式和控制策略。
对于一些需求较高氧气的发酵过程,如酒精发酵、乳酸发酵等,通常会采用气体通气供氧;而对于一些对氧敏感的发酵过程,如抗生素发酵、干酪起始菌发酵等,通常会采用溶氧控制的方法。
总而言之,氧是发酵过程中重要的因子之一,对发酵的影响及其控制具有重要意义。
合理的氧供给和控制策略,可以提高发酵过程的效率和产物品质,是发酵工艺控制中不可忽视的一环。
最佳氧的供给和控制方式需要根据具体发酵过程的要求而定,需要深入研究和实践。