最新模电课件-第1章-半导体器件课件PPT
合集下载
第1章 半导体器件-PPT课件

V
V
a )
b )
jiaocaiwang
1.2半导体三极管
二、三极管的电流放大作用
三极管实现电流放大作 用的外部条件:发射结 正向偏置, 集电结反向 偏置。 NPN管必须满足: UC>UB>UE, 而PNP管必须满足: UC<UB<UE。
IB V R + U
BB b
IC
R + IE
c
U -
CC
-
a)
空穴 (少 子 )
内电场
IR
+
A
外电场
U
b)
jiaocaiwang
1.1半导体二极管
三、半导体二极管——结构、符号和类型
jiaocaiwang
1.1 半导体二极管
三、半导体二极管——伏安特性
iV / m A
正向特性:硅管的死 区电压0.5 V,导通压 降0.6~0.7 V,而锗管 为0.1 V和0.2~0.3 V 反向特性:饱和电流Is 反向击穿特性:UBR 温度特性:温度升高 时二极管正向特性曲 线向左移动,反向特 性曲线向下移动。
I/ m A
U
Z
U
B
U
U
A
Z
O
I A ( I Z m in ) IZ IZ IB (IZ m a x) U / V
V
A
B
jiaocaiwang
1.1 半导体二极管
四、特殊二极管——光电二极管、发光二极管
光电二极管正向电阻为几千欧,反向电阻为无穷大,工作在反偏 状态,主要用于需要光电转换的自动探测、控制装置以及光导纤 维通讯系统中作为接收器件等。符号如下: 发光二极管工作在正向偏置状态,导通时能发光,是一种把电能 转换成光能的半导体器件。常用作设备的电源指示灯、音响设备、 数控装置中的显示器。符号如下:
模拟电子技术第1章PPT课件

多数载流子——自由电子 施主离子
少数载流子—— 空穴
7
8
2. P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓等。
硅原子
+4
空穴
+4
硼原子
+4
8
电子空穴对
空穴
+4 +4
P型半导体
- - --
+3 +4
- - --
- - --
+4 +4
受主离子
多数载流子—— 空穴 少数载流子——自由电子 9
杂质半导体的示意图
(1) 稳定电压UZ ——
在规定的稳压管反向工作电流IZ下UZ,所对应的Iz反min 向工作电u压。
(2) 动态电阻rZ ——
△I
rZ =U /I
rZ愈小,反映稳压管的击穿特性△愈U 陡。
I zmax
(3) 最小稳定工作 电流IZmin——
保证稳压管击穿所对应的电流,若IZ<IZmin则不能稳压。
(4) 最大稳定工作电流IZmax——
17
EW
R
18
(2) 扩散电容CD
当外加正向电压
不同时,PN结两 + 侧堆积的少子的 数量及浓度梯度 也不同,这就相 当电容的充放电 过程。
P区 耗 尽 层 N 区 -
P 区中电子 浓度分布
N 区中空穴 浓度分布
极间电容(结电容)
Ln
Lp
x
电容效应在交流信号作用下才会明显表现出来
18
19
1.2 半导体二极管
30
31
四、稳压二极管
稳压二极管是应用在反向击穿区的特殊二极管
பைடு நூலகம்
精品课件-模拟电子技术-第1章

由此可知,在常温下,半导体内存在着两种载流子,一 种是带负电的自由电子,另一种是带正电的空穴。所以半导 体在外加电压作用下,两种载流子将会同时参与导电,如图 1.4所示。其中,In 表示电子形成的电流,Ip表示空穴形成 的电流。
15
第1章 半导体器件
图1.4 半导体内部载流子的运动
16
第1章 半导体器件
4
第1章 半导体器件
3) 掺杂特性 在纯净的半导体中掺入微量的杂质元素能使其导电性能 发生显著变化,这种特性称为掺杂特性。例如在纯净的硅中 掺入百万分之一的杂质,其导电能力可以增强上百万倍。各 种半导体器件的制作,正是利用掺杂特性来改变和控制半导 体的导电能力的。 此外,半导体的导电能力还会随着电场、磁场的作用而 变化。 为什么半导体会有这些独特的导电性能呢?这主要是由 其内部的原子结构所决定的。
5
第1章 半导体器件
1.1.2 半导体的原子结构 用来制造晶体管的半导体材料主要是硅和锗。下面就来
讨论这两种半导体材料的原子结构。 1. 单个原子结构 硅的化学元素符号是Si,它有一个带正电的原子核和14
个带负电的电子。电子分三层绕原子核不停地旋转,如图 1.1(a)所示。由于原子核带14个电子电量的正电,因此正常 情况下原子呈中性。锗的化学元素符号是Ge,它共有32个电 子,分四层绕原子核不停地转动,如图1.1(b)所示。
第1章 半导体器件
第1章 半导体器件
1.1 半导体的基础知识 1.2 半导体二极管 1.3 半导体三极管 1.4 场效应管 本章小结 练习题
1
第1章 半导体器件
1.1 半导体的基础知识
1.1.1 半导体的基本特性 1. 什么是半导体 自然界中的物质,按其导电能力的强弱,可分为导体、
15
第1章 半导体器件
图1.4 半导体内部载流子的运动
16
第1章 半导体器件
4
第1章 半导体器件
3) 掺杂特性 在纯净的半导体中掺入微量的杂质元素能使其导电性能 发生显著变化,这种特性称为掺杂特性。例如在纯净的硅中 掺入百万分之一的杂质,其导电能力可以增强上百万倍。各 种半导体器件的制作,正是利用掺杂特性来改变和控制半导 体的导电能力的。 此外,半导体的导电能力还会随着电场、磁场的作用而 变化。 为什么半导体会有这些独特的导电性能呢?这主要是由 其内部的原子结构所决定的。
5
第1章 半导体器件
1.1.2 半导体的原子结构 用来制造晶体管的半导体材料主要是硅和锗。下面就来
讨论这两种半导体材料的原子结构。 1. 单个原子结构 硅的化学元素符号是Si,它有一个带正电的原子核和14
个带负电的电子。电子分三层绕原子核不停地旋转,如图 1.1(a)所示。由于原子核带14个电子电量的正电,因此正常 情况下原子呈中性。锗的化学元素符号是Ge,它共有32个电 子,分四层绕原子核不停地转动,如图1.1(b)所示。
第1章 半导体器件
第1章 半导体器件
1.1 半导体的基础知识 1.2 半导体二极管 1.3 半导体三极管 1.4 场效应管 本章小结 练习题
1
第1章 半导体器件
1.1 半导体的基础知识
1.1.1 半导体的基本特性 1. 什么是半导体 自然界中的物质,按其导电能力的强弱,可分为导体、
模电1--常用半导体器件PPT课件

.5ຫໍສະໝຸດ 1.1.0 半导体特性常用的半导体导体材料有如::金属 物元体素分半类导绝体缘:体硅(如S:i)橡、胶锗、(云G母e、)塑料等。
化合物半半导导体体:—砷化导镓电(能G力aA介s于)导体和绝缘体之间。 掺杂材料:硼(B)、铟(In);磷(P)、锑(Sb)。
• 半导体特性
掺杂特性 掺入杂质则导电率增加几百倍
2. 在外电场的作用下,产生电流 — 电子流和空穴流 电子流 自由电子作定向运动形成的
与外电场方向相反
自由电子始终在导带内运动
空穴流 价电子递补空穴形成的
用空穴移动产
与外电场方向相同
生的电流代表束缚电
始终在价带内运动
子移动产生的电流
.
10
1.1.2 杂质半导体
杂质半导体
掺入三价元素如B、Al、In等, 形成P型半导体,也称空穴型半导体
+4
.
8
本征半导体
共价键内的电子 挣脱原称子为核束束缚缚电的子 价带中电留子下称的为自由电子 空位称为空穴
导带
自由电子定向移 动形成电外子电流场E
禁带EG
束缚电子填补空穴的 定向移动形成空穴流
价带
.
9
本征半导体
1. 本征半导体中有两种载流子 — 自由电子和空穴 电子浓度ni = 空穴浓度pi
空穴的出现是半导体区别于导体的一个重要特点。
定其化学性质和导电性能 .
7
1.1.1 本征半导体
本征半导体
完全纯净、结构完整的半导体晶体。 纯度:99.9999999%,“九个9” 它在物理结构上呈单晶体形态。
T=常0K用且的无本外征半界导激体发,只有束缚电子,没有自由电子,本征 半导体相当于绝缘体;T=300K,本征激发,少量束缚电子
模电PPT【2024版】

一、结型场效应管(JFET)
N沟道结型场效应管
漏极d (drain)
栅极 g(gate)
导电沟道
源极s(source)
N沟道结构示意图
1、工作原理
•栅-源电压uGS < 0, PN结反 偏,无载流子,属于高阻区
• N型半导体中多子导电, 不经过 PN 结
▪ 栅-源电压uGS 控制耗尽层宽 度,进而控制沟道宽度
例:已知UZ、 [IZmin , IZmax]、RL ,求限流电阻R的取 值范围。
➢ Uo =UZ ➢ IDz [IZmin , IZmax]
IR
I DZ
Uz RL
R UI UZ IR
例 现有两只稳压管,它们的稳定电压分别为6V和8V,正向
导通电压为0.7V。试问: (1)若将它们串联相接,则可得到几种稳压值?各为多少? (2)若将它们并联相接,则又可得到几种稳压值?各为多少?
理想 二极管
导通时△i与△u 成线性关系
理想开关: 导通时 UD=0 截止时IS=0
近似分析 中最常用
导通时UD=Uon 截止时IS=0
应根据不同情况选择不同的等效电路!
100V?5V?1V?
?
2、微变等效电路
当二极管在静态基础上有一动态信号作用时,则可将二极 管等效为一个电阻,称为动态电阻,也就是微变等效电路。
c-e间击穿电压
最大集电极耗散功 率,PCM=iCuCE
安全工作区
讨论一:
PCM iCuCE
uCE=1V时的iC就是ICM
2.7
iC iB
U CE
U(BR)CEO
由图示特性求出PCM、ICM、U (BR)CEO 、β。
§1.4 场效应管(FET)
模电-第1章-半导体器件PPT优秀课件

21
3.4 PN 结的电容效应
1) 势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变 化,有电荷的积累和释放的过程,与电容的充放电相 同,其等效电容称为势垒电容Cb。
2)扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
注意
空杂穴质-半--导-体多中子,;多子的浓度决定于掺杂原子的浓度; 电子----少子少.子的浓度决定于温度。
13
3 PN结 3.1 PN结的形成
P区
N区
物质因浓度差而产生的运动称为扩散运动。气体、液体、 固体均有之,包括电子和空穴的扩散!
14
3.1 PN结的形成
I扩
在交界面,由于两种载流子的浓度差,产生 扩散运动。
小功率 二极管
大功率 二极管
稳压 二极管
发光 二极管
25
• 二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u)
u
击穿
iIS(eU T1) (常温 U T下 2m 6 V)电压
温度的 电压当量
材料 硅Si 锗Ge
开启电压 0.5V 0.1V
导通电压 0.5~0.8V 0.1~0.3V
15
3.1 PN结的形成
耗尽层(电荷层、势垒层)
空间电荷区
I漂
在交界面,由于扩散运动,经过复合,出现空 间电荷区
16
3.1 PN结的形成
PN结
I扩 I漂
当扩散电流等于漂移电流时,达到动态 平衡,形成PN结。
17
1.由于扩散运动形成空间电荷区和内电场;
2.内电场阻碍多子扩散,有利于少子漂移;
3.4 PN 结的电容效应
1) 势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变 化,有电荷的积累和释放的过程,与电容的充放电相 同,其等效电容称为势垒电容Cb。
2)扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
注意
空杂穴质-半--导-体多中子,;多子的浓度决定于掺杂原子的浓度; 电子----少子少.子的浓度决定于温度。
13
3 PN结 3.1 PN结的形成
P区
N区
物质因浓度差而产生的运动称为扩散运动。气体、液体、 固体均有之,包括电子和空穴的扩散!
14
3.1 PN结的形成
I扩
在交界面,由于两种载流子的浓度差,产生 扩散运动。
小功率 二极管
大功率 二极管
稳压 二极管
发光 二极管
25
• 二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u)
u
击穿
iIS(eU T1) (常温 U T下 2m 6 V)电压
温度的 电压当量
材料 硅Si 锗Ge
开启电压 0.5V 0.1V
导通电压 0.5~0.8V 0.1~0.3V
15
3.1 PN结的形成
耗尽层(电荷层、势垒层)
空间电荷区
I漂
在交界面,由于扩散运动,经过复合,出现空 间电荷区
16
3.1 PN结的形成
PN结
I扩 I漂
当扩散电流等于漂移电流时,达到动态 平衡,形成PN结。
17
1.由于扩散运动形成空间电荷区和内电场;
2.内电场阻碍多子扩散,有利于少子漂移;
电子技术精品课程模拟电路第1章 常用半导体器件 91页PPT课件

第1章 常用半导体器件
第1章 常用半导体器件
1.1 半导体基础和半导体二极管
1.2 双极型半导体三极管 1.3 场效应半导体三极管 1.4 晶闸管(可控硅SCR)
2020/7/22
回首页
1
整体概况
第1章 常用半导体器件
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
+
+N +
内电场
E
R
2020/7/22
回首页
12
② 外加反向电压(也叫反向偏置)
第1章 常用半导体器件
外加电场与内电场方向相同,增强了内电场,多子扩散难
以进行,少子在电场作用下形成反向电流I,因为是少子漂移 运动产生的,I很小,这时称PN结处于截止状态。
空间电荷区
变宽
P 区 空间电荷区
N区
+++
++ +
ห้องสมุดไป่ตู้
PN结的单向导电性
第1章 常用半导体器件
① 外加正向电压(也叫正向偏置) 外加电场与内电场方向相反,内电场削弱,多子扩散运动大
大超过少子漂移运动,形成较大的正向电流,这时称PN结处 于导通状态。
P 区 空间电荷区 N 区
++ + ++ + ++ +
内电场方向 PN 结及其内电场
空间电荷区 变窄
P IF 外 电 场
正向电压大于死区电压后 ,正向电流随着正向电压增 大迅速上升。通常死区电压 硅管约为0.5V,锗管约为 0.2V。
(2)反向特性(外加反向电压)
外加反向电压时, PN结处于截止状态,反向饱和电流IS很小。
反向电压大于击穿电压VBR时,反向电流急剧增加。
第1章 常用半导体器件
1.1 半导体基础和半导体二极管
1.2 双极型半导体三极管 1.3 场效应半导体三极管 1.4 晶闸管(可控硅SCR)
2020/7/22
回首页
1
整体概况
第1章 常用半导体器件
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
+
+N +
内电场
E
R
2020/7/22
回首页
12
② 外加反向电压(也叫反向偏置)
第1章 常用半导体器件
外加电场与内电场方向相同,增强了内电场,多子扩散难
以进行,少子在电场作用下形成反向电流I,因为是少子漂移 运动产生的,I很小,这时称PN结处于截止状态。
空间电荷区
变宽
P 区 空间电荷区
N区
+++
++ +
ห้องสมุดไป่ตู้
PN结的单向导电性
第1章 常用半导体器件
① 外加正向电压(也叫正向偏置) 外加电场与内电场方向相反,内电场削弱,多子扩散运动大
大超过少子漂移运动,形成较大的正向电流,这时称PN结处 于导通状态。
P 区 空间电荷区 N 区
++ + ++ + ++ +
内电场方向 PN 结及其内电场
空间电荷区 变窄
P IF 外 电 场
正向电压大于死区电压后 ,正向电流随着正向电压增 大迅速上升。通常死区电压 硅管约为0.5V,锗管约为 0.2V。
(2)反向特性(外加反向电压)
外加反向电压时, PN结处于截止状态,反向饱和电流IS很小。
反向电压大于击穿电压VBR时,反向电流急剧增加。
模拟电路基础课件:1-半导体基础知识(新)

Ⅴ族化合物半导体[砷化镓(GaAs)等]。
• 半导体材料 Si: +14 2 8 4
Ge: +32 2 8 18 4
最外层电子(价电子)都是四个 价电子
Si
Ge
惯性核表示:
+4
惯性核:除价电子外的 内层稳定结构
二. 半导体三大基本特性
1.半导体的热敏性(temperature sensitive) 环境温度升高时,半导体的导电能力大幅度增强,制成 的热敏电阻可以用于温度控制。
浓度梯度:
dn(x) 或 dp(x)
dx
dx
小结
导体或半导体的导电作用是通过带电粒子的运动(形成电 流)来实现的,这种电流的载体称为载流子。导体中的载流 子是自由电子,半导体中的载流子则是带负电的电子和带正 电的空穴。
关键词:
• 本征半导体、杂质半导体 • 自由电子、空穴、N型半导体、P型半导体; • 多数载流子、少数载流子、漂移电流与扩散电流。
N型半导体
+4
+45
+4
+4
+4
+4
磷原子的最外层有五个价电子, 其中四个与相邻的半导体原子形成共 价键,必定多出一个电子,这个电子 几乎不受束缚,很容易被激发而成为 自由电子(常温下几乎完全电离), 这样磷原子就成了不能移动的带正电 的离子。这一现象称为“施主电离”。 磷原子称为施主原子。
施主电离:
缘体和半导体。 导 体: 电阻率 < 10-4 Ω·cm,如铁、铝、铜等金属元素等 低价元素,其最外层电子在外电场作用下很容易产生定向移 动,形成电流。
绝缘体:电阻率 > 109 Ω·cm,如惰性气体、橡胶等,其 原子的最外层电子受原子核的束缚力很强,只有在外电场 强到相当程度时才可能导电。
• 半导体材料 Si: +14 2 8 4
Ge: +32 2 8 18 4
最外层电子(价电子)都是四个 价电子
Si
Ge
惯性核表示:
+4
惯性核:除价电子外的 内层稳定结构
二. 半导体三大基本特性
1.半导体的热敏性(temperature sensitive) 环境温度升高时,半导体的导电能力大幅度增强,制成 的热敏电阻可以用于温度控制。
浓度梯度:
dn(x) 或 dp(x)
dx
dx
小结
导体或半导体的导电作用是通过带电粒子的运动(形成电 流)来实现的,这种电流的载体称为载流子。导体中的载流 子是自由电子,半导体中的载流子则是带负电的电子和带正 电的空穴。
关键词:
• 本征半导体、杂质半导体 • 自由电子、空穴、N型半导体、P型半导体; • 多数载流子、少数载流子、漂移电流与扩散电流。
N型半导体
+4
+45
+4
+4
+4
+4
磷原子的最外层有五个价电子, 其中四个与相邻的半导体原子形成共 价键,必定多出一个电子,这个电子 几乎不受束缚,很容易被激发而成为 自由电子(常温下几乎完全电离), 这样磷原子就成了不能移动的带正电 的离子。这一现象称为“施主电离”。 磷原子称为施主原子。
施主电离:
缘体和半导体。 导 体: 电阻率 < 10-4 Ω·cm,如铁、铝、铜等金属元素等 低价元素,其最外层电子在外电场作用下很容易产生定向移 动,形成电流。
绝缘体:电阻率 > 109 Ω·cm,如惰性气体、橡胶等,其 原子的最外层电子受原子核的束缚力很强,只有在外电场 强到相当程度时才可能导电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 常用半导体器件
§1.1 半导体基础知识 §1.2 半导体二极管 §1.3 晶体三极管 §1.4 场效应晶体管
共价键
价电子共有化,形成共价键的晶格结构
空穴
自由电子
半导体中有两种载流子:自由电子和空穴
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
在外电场作用下,电子的定向移动形成电流
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
在外电场作用下,空穴的定向移动形成电流
1.本征半导体中载流子为自由电子和空穴(金属呢?)。
2.电子和空穴成对出现,浓度相等。
3.由于热激发可产生电子和空穴,因此半导体的导 电性和温度有关,对温度很敏感。
2 杂质半导体
2.1 N型半导体
在纯净的硅晶体 中掺入五价元素 (如磷),使之取 代晶格中硅原子的 位置,就形成了N 型半导体。
PN结
I扩 I漂
当扩散电流等于漂移电流时,达到动态 平衡,形成PN结。
1.由于扩散运动形成空间电荷区和内电场;
2.内电场阻碍多子扩散,有利于少子漂移;
3.当扩散电流等于漂移电流时,达到动态 平衡,形成PN结。
3.2 PN结的单向导电性
1) PN结外加正向电压时处于导通状态 加正向电压是指P端加正电压,N端加负电压, 也称正向接法或正向偏置。
将PN结用外壳封装起来,并加上电极引线就构成了 半导体二极管。由P区引出的电极为阳极(A) ,由N区 引出的电极为阴极( K )。
阳极 P N 阴极
二极管的符号:
将PN结封装,引出两个电极,就构成了二极管。
小功率 二极管
大功率 二极管
稳压 二极管
发光 二极管
• 二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
红表笔是(表内电源)正极, 黑表笔是(表内电源)负极。
2k 20k 200k
200
2M
20M
在
挡进行测量,当 PN 结完
✓ 二极管的伏安特性----单向导电性!
正向特性为 指数曲线
u
i IS(eUT 1)
u
若正u 向 U 电 T,压 i则 ISeU T
若反向 u电 UT, 压i则 IS
• 伏安特性受温度影响 反向特性为横轴的平行线
T(℃)↑→在电流不变情况下管压降u↓ →反向饱和电流IS↑,U(BR) ↓ 增大1倍/10℃
红表笔是(表内电源)负极, 黑表笔是(表内电源)正极。
0
1k
在 R 100或 R 1 k 挡测量
正反向电阻各测量一次, 测量时手不要接触引脚。
一般硅管正向电阻为几千欧,锗 管正向电阻为几百欧;反向电阻为 几百千欧。
正反向电阻相差不大为劣质管。
正反向电阻都是无穷大或零则 二极管内部断路或短路。
(2) 用数字式万用表检测
P区
N区
物质因浓度差而产生的运动称为扩散运动。气体、液体、 固体均有之,包括电子和空穴的扩散!
3.1 PN结的形成
I扩
在交界面,由于两种载流子的浓度差,产生 扩散运动。
3.1 PN结的形成
耗尽层(电荷层、势垒层)
空间电荷区
I漂
在交界面,由于扩散运动,经过复合,出现空 间电荷区
3.1 PN结的形成
2)扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
结电容: Cj Cb Cd
结电容不是常量!若PN结外加电压频率高到一定程 度,则失去单向导电性!
清华大学 华成英 hchya@
§ 1.2 半导体二极管
T(℃)↑→正向特性左移,反向特性下移
• 二极管的等效电路
1)将伏安特性折线化
理想 二极管
导通时△i与△u 成线性关系
理想开关 导通时 UD=0 截止时IS=0
近似分析 中最常用
导通时UD=Uon 截止时IS=0
应根据不同情况选择不同的等效电路!
2)微变等效电路
当二极管在静态基础上有一动态信号作用时,则可将二极 管等效为一个电阻,称为动态电阻,也就是微变等效电路。
模电课件-第1章-半导体器 件
教学目标
• 了解半导体的基本特性,半导体二极管、双极型 三极管、场效应管的分类、结构、基本电特性和 主要技术参数等。
• 理解本征半导体、杂质半导体、PN结、单向导电 性、伏安特性、电容效应、电流放大、击穿、稳 压、夹断、开启等基本概念。
• 掌握PN结的工作原理、半导体二极管的伏安特性、 双极型三极管的工作原理、电流分配关系、电流 放大原理、输入特性曲线、输出特性曲线、场效 应三极管的工作原理、转移特性曲线和输出特性 曲线。
ui=0时直流电源作用
根据电流rd方 程 uiD D, U ID T
小信号作用
Q越高,rd越小。 静态电流
二极管直流电阻 • 二极管的直流电阻是其工作在伏安特性上某一点
时的端电压与其电流之比。
图(a)电路(b)二极管伏安特性和工作点Q(c)二极管的直流电阻:
2. 用万用表检测二极管 (1) 用指针式万用表检测
i f (u)
u
击穿
iIS(eU T1) (常温 U T下 2m 6 V)电压
温度的 电压当量
材料 硅Si 锗Ge
开启电压 0.5V 0.1V
导通电压 0.5~0.8V 0.1~0.3V
反向饱 开启 和电流 电压
反向饱和电流 1µA以下 几十µA
• VT——温度的电压当量, VT=kT/q=T/11600=0.026V,其中k为波耳兹 曼常数(1.38×10–23J/K),T为热力学温度, 即绝对温度(300K),q为电子电荷 (1.6×10–19C)。在常温下,VT≈26m
外电场抵消内电场的作用,使耗尽层变 窄,形成较大的扩散电流。
2) PN结外加反向电压时处于截止状态
外电场和内电场的共同作用,使耗尽层变 宽,形成很小的漂移电流。
3.4 PN 结的电容效应
1) 势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变 化,有电荷的积累和释放的过程,与电容的充放电相 同,其等效电容称为势垒电容Cb。
电子----多子; 空穴----少子.
2 杂质半导体
2.2 P型半导体
在纯净的硅晶体 中掺入三价元素 (如硼),使之取 代晶格中硅原子的 位置,就形成了P 型半导体。
注意
空杂穴质-半--导-体多中子,;多子的浓度决定于掺杂原子的浓度; 电子----少子少.子的浓度决定于温度。
3 PN结 3.1 PN结的形成