按定义definition创建二叉树的说明

合集下载

二叉树的建立与基本操作

二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。

二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。

本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。

一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。

下面以使用链表的方式来建立二叉树为例。

1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。

```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。

```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。

1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。

```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。

数据结构(二十四)二叉树的链式存储结构(二叉链表)

数据结构(二十四)二叉树的链式存储结构(二叉链表)

数据结构(⼆⼗四)⼆叉树的链式存储结构(⼆叉链表) ⼀、⼆叉树每个结点最多有两个孩⼦,所以为它设计⼀个数据域和两个指针域,称这样的链表叫做⼆叉链表。

⼆、结点结构包括:lchild左孩⼦指针域、data数据域和rchild右孩⼦指针域。

三、⼆叉链表的C语⾔代码实现:#include "string.h"#include "stdio.h"#include "stdlib.h"#include "io.h"#include "math.h"#include "time.h"#define OK 1#define ERROR 0#define TRUE 1#define FALSE 0#define MAXSIZE 100 /* 存储空间初始分配量 */typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 *//* ⽤于构造⼆叉树********************************** */int index=1;typedef char String[24]; /* 0号单元存放串的长度 */String str;Status StrAssign(String T,char *chars){int i;if(strlen(chars)>MAXSIZE)return ERROR;else{T[0]=strlen(chars);for(i=1;i<=T[0];i++)T[i]=*(chars+i-1);return OK;}}/* ************************************************ */typedef char TElemType;TElemType Nil=''; /* 字符型以空格符为空 */Status visit(TElemType e){printf("%c ",e);return OK;}typedef struct BiTNode /* 结点结构 */{TElemType data; /* 结点数据 */struct BiTNode *lchild,*rchild; /* 左右孩⼦指针 */}BiTNode,*BiTree;/* 构造空⼆叉树T */Status InitBiTree(BiTree *T){*T=NULL;return OK;}/* 初始条件: ⼆叉树T存在。

二叉树的定义及基本操作

二叉树的定义及基本操作
五、实验结果及分析
(所输入的数据及相应的运行结果,运行结果要有提示信息,运行结果采用截图 方式给出。)
2
① 输入界面
②输出结果
③测试式子 6*((5+(2+)*8)+3)
六、总结与体会
(调试程序的心得与体会,若实验课上未完成调试,要认真找出错误并分析原因 等。)
每次的实验,总是很受打击。不过,在这过程中,能让我发现自己的 不足,逐渐改善,这是做实验给我最大的收获。 七、程序清单(包含注释)
四、实验记录
(调试过程及调试中遇到的问题及解决办法,其他算法的存在与实践等。) ① 调试过程老是出现访问冲突的错问,通过上网查找访问冲突方面的消息,才
知道应该是指针指错地址,经过调试,最终解决了问题。 ②
调试过程中还出现了这个问题,Status CreateBiTree(BiTree T),当这样定 义时,问题就出现了,但是 Status CreateBiTree(BiTree &T)这样定义就没问题 了,这个想不通。
-
+
/
1.中缀表达式(中序遍历): a+(b*(c-d))-(e/f)
a
*e
2.前缀表达式/波兰式(前序遍历):
f
-+a*b-cd/ef
b-
3.后缀表达式/逆波兰式(后序遍历): abcd-*+ef/-
《《《《《
《 《《《《
C《《《 《 P129
cd
表达式二叉树
1
三、实验所涉及的知识点 递归函数 二叉树
输入说明
***\n"); printf("*** 请按先序输入表达式,当结点的左子树或者右
子树为空时输入‘#‘***\n");

《二叉树的概念》课件

《二叉树的概念》课件
过程中进行一些特定的操作。
05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。

二叉树的建立方法总结

二叉树的建立方法总结

⼆叉树的建⽴⽅法总结之前已经介绍了⼆叉树的四种遍历(如果不熟悉),下⾯介绍⼀些⼆叉树的建⽴⽅式。

⾸先需要明确的是,由于⼆叉树的定义是递归的,所以⽤递归的思想建⽴⼆叉树是很⾃然的想法。

1. 交互式问答⽅式这种⽅式是最直接的⽅式,就是先询问⽤户根节点是谁,然后每次都询问⽤户某个节点的左孩⼦是谁,右孩⼦是谁。

代码如下(其中字符'#'代表空节点):#include <cstdio>#include <cstdlib>using namespace std;typedef struct BTNode *Position;typedef Position BTree;struct BTNode{char data;Position lChild, rChild;};BTree CreateBTree(BTree bt, bool isRoot){char ch;if (isRoot)printf("Root: ");fflush(stdin); /* 清空缓存区 */scanf("%c", &ch);fflush(stdin);if (ch != '#'){isRoot = false;bt = new BTNode;bt->data = ch;bt->lChild = NULL;bt->rChild = NULL;printf("%c's left child is: ", bt->data);bt->lChild = CreateBTree(bt->lChild, isRoot);printf("%c's right child is: ", bt->data);bt->rChild = CreateBTree(bt->rChild, isRoot);}return bt;}int main(){BTree bt;bt = CreateBTree(bt, true);LevelOrderTraversal(bt); /* 层序遍历 */return0;}2. 根据先序序列例如输⼊序列ABDH##I##E##CF#J##G##(#表⽰空),则会建⽴如下图所⽰的⼆叉树思路和第⼀种⽅式很相似,只是代码实现细节有⼀点区别,这⾥给出创建函数BTree CreateBTree(){BTree bt = NULL;char ch;scanf("%c", &ch);if (ch != '#'){bt = new BTNode;bt->data = ch;bt->lChild = CreateBTree();bt->rChild = CreateBTree();}return bt;}3. 根据中序序列和后序序列和⽅式⼆不同的是,这⾥的序列不会给出空节点的表⽰,所以如果只给出先序序列,中序序列,后序序列中的⼀种,不能唯⼀确定⼀棵⼆叉树。

数据结构入门-树的遍历以及二叉树的创建

数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。

二叉树结构体定义

二叉树结构体定义

二叉树结构体定义
二叉树是一种重要的数据结构,它由根节点、左子树和右子树组成。

在程序中,我们通常使用结构体来定义二叉树。

二叉树结构体通常包含三个成员变量:根节点指针、左子树指针和右子树指针。

其中,根节点指针指向二叉树的根节点,左子树指针指向左子树的根节点,右子树指针指向右子树的根节点。

二叉树结构体的定义如下:
```c
typedef struct TreeNode {
int val;
struct TreeNode* left;
struct TreeNode* right;
} TreeNode;
```
上述代码中,我们使用 typedef 关键字定义了一个名为TreeNode 的结构体类型。

结构体中包含了一个 int 型的 val 成员变量,以及两个指向 TreeNode 类型的指针 left 和 right。

通过定义二叉树结构体,我们可以轻松地创建二叉树,并对其进行操作。

- 1 -。

二叉树ADT

二叉树ADT

ADT BinaryTree {数据对象D:D是具有相同特性的数据元素的集合。

数据关系R:(见教材p121)基本操作P:InitBiTree(&T);操作结果:构造空二叉树T。

DestroyBiTree(&T);初始条件:二叉树T存在。

操作结果:销毁二叉树T。

CreateBiTree(&T, definition);初始条件:definition给出二叉树T的定义。

操作结果:按definition构造二叉树T。

ClearBiTree(&T);初始条件:二叉树T存在。

操作结果:将二叉树T清为空树。

BiTreeEmpty(T);初始条件:二叉树T存在。

操作结果:若T为空二叉树,则返回TRUE,否则返回FALSE。

BiTreeDepth(T);初始条件:二叉树T存在。

操作结果:返回T的深度。

Root(T);初始条件:二叉树T存在。

操作结果:返回T的根。

Value(T, e);初始条件:二叉树T存在,e是T中的某个结点。

操作结果:返回e的值。

Assign(T, &e, value);初始条件:二叉树T存在,e是T中的某个结点。

操作结果:结点e赋值为value。

Parent(T, e);初始条件:二叉树T存在,e是T中的某个结点。

操作结果:若e是T的非根结点,则返回它的双亲,否则返回"空"。

LeftChild(T, e);初始条件:二叉树T存在,e是T中的某个结点。

操作结果:返回e的左孩子。

若e无左孩子,则返回"空"。

RightChild(T, e);初始条件:二叉树T存在,e是T中的某个结点。

操作结果:返回e的右孩子。

若e无右孩子,则返回"空"。

LeftSibling(T, e);初始条件:二叉树T存在,e是T中的某个结点。

操作结果:返回e的左兄弟。

若e是T的左孩子或无左兄弟,则返回"空"。

C语言数据结构之二叉链表创建二叉树

C语言数据结构之二叉链表创建二叉树

C 语⾔数据结构之⼆叉链表创建⼆叉树⽬录⼀、思想(先序思想创建)⼆、创建⼆叉树(1)传⼀级参数⽅法(2)传⼆级参数⽅法⼀、思想(先序思想创建)第⼀步先创建根节点,然后创建根节点左⼦树,开始递归创建左⼦树,直到递归创建到的节点下不继续创建左⼦树,也就是当下递归到的节点下的左⼦树指向NULL ,结束本次左⼦树递归,返回这个节点的上⼀个节点,开始创建右⼦树,然后⼜开始以当下这个节点,继续递归创建左⼦树,左⼦树递归创建完,就递归创建右⼦树,直到递归结束返回到上⼀级指针节点(也就是根节点下),此时根节点左边⼦树创建完毕,开始创建右边⼦树,原理和根节点左边创建左右⼦树相同⼆、创建⼆叉树⼆叉树的操作通常使⽤递归⽅法,如果递归不太明⽩,建议去对此进⾏⼀下学习和练习。

⼆叉树的操作可以分为两类,⼀类是需要改变⼆叉树的结构的,⽐如⼆叉树的创建、节点删除等等,这类操作,传⼊的⼆叉树的节点参数为⼆叉树指针的地址,这种参⼊传⼊,便于更改⼆叉树结构体的指针(即地址)。

这⾥稍微有⼀点点绕,可能需要多思考⼀下如下是⼆叉数创建的函数,这⾥我规定,节点值为整数,如果输⼊的数为-1,则表⽰结束继续往下创建⼦节点的操作。

然后我们使⽤递归的⽅法以此创建左⼦树和右⼦树为了更⽅便的使⽤⼆叉树结构体,可以使⽤ typedef 对结构体进⾏命名123456typedef struct Tree{int data; // 存放数据域struct Tree *lchild; // 遍历左⼦树指针struct Tree *rchild; // 遍历右⼦树指针}Tree,*BitTree;这⾥展⽰两种传参类型的创建⽅法,其中深意可多次参考理解,加深指针理解(1)传⼀级参数⽅法123456789101112131415161718BitTree CreateLink(){ int data; int temp; BitTree T;scanf("%d",&data); // 输⼊数据temp=getchar(); // 吸收空格if(data == -1){ // 输⼊-1 代表此节点下⼦树不存数据,也就是不继续递归创建 return NULL; }else{ T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间T->data = data; // 把当前输⼊的数据存⼊当前节点指针的数据域中printf("请输⼊%d 的左⼦树: ",data);T->lchild = CreateLink(); // 开始递归创建左⼦树192021222324printf("请输⼊%d 的右⼦树: ",data);T->rchild = CreateLink(); // 开始到上⼀级节点的右边递归创建左右⼦树return T; // 返回根节点 } }(2)传⼆级参数⽅法123456789101112131415161718192021222324252627282930BitTree CreateLink(BitTree *T) // 次数 T 为指向根节点的指针的地址{ int data; scanf("%d",&data); if(data == -1){*T=NULL; // 结束递归时,让指针当前节点的指针地址的 指针 指向NULL}else{*T = (BitTree)malloc(sizeof(Tree)); // 对指向节点指针地址的指针 分配内存 if(!(*T) ){ // *T = NULL 表⽰分配内存失败,也就是结束递归创建了 printf("内存分配失败\n");exit(-1);}(*T)->data = data; // 给节点指针地址内的数据域,存⼊数据 printf("请输⼊%d 的左⼦树: ",data); CreateLink(&(*T)->lchild); // 开始遍历左⼦树printf("请输⼊%d 的右⼦树: ",data);CreateLink(&(*T)->rchild); // 开始遍历右⼦树,遍历的思想⽂章开头处解释} }1234567891011121314#include<stdio.h>#include<stdlib.h> typedef struct Tree{ int data; // 存放数据域 struct Tree *lchild; // 遍历左⼦树指针 struct Tree *rchild; // 遍历右⼦树指针 }Tree,*BitTree;151617181920212223242526272829303132333435363738394041424344454647484950515253545556BitTree CreateLink(){int data; int temp; BitTree T; scanf("%d",&data); // 输⼊数据 temp=getchar(); // 吸收空格if(data == -1){ // 输⼊-1 代表此节点下⼦树不存数据,也就是不继续递归创建return NULL;}else{T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间 T->data = data; // 把当前输⼊的数据存⼊当前节点指针的数据域中 printf("请输⼊%d 的左⼦树: ",data); T->lchild = CreateLink(); // 开始递归创建左⼦树printf("请输⼊%d 的右⼦树: ",data);T->rchild = CreateLink(); // 开始到上⼀级节点的右边递归创建左右⼦树 return T; // 返回根节点 } } void ShowXianXu(BitTree T) // 先序遍历⼆叉树{if(T==NULL){return; } printf("%d ",T->data);ShowXianXu(T->lchild); // 递归遍历左⼦树ShowXianXu(T->rchild); // 递归遍历右⼦树} int main(){ BitTree S;printf("请输⼊第⼀个节点的数据:\n");S = CreateLink(); // 接受创建⼆叉树完成的根节点ShowXianXu(S); // 先序遍历⼆叉树 return 0; }123456789101112131415#include<stdio.h>#include<stdlib.h>typedef struct Tree{int data;struct Tree *lchild;struct Tree *rchild;}Tree,*BitTree; BitTree CreateLink(BitTree *T) // 次数 T 为指向根节点的指针的地址{ int data;16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 scanf("%d",&data);if(data == -1){*T=NULL; // 结束递归时,让指针当前节点的指针地址的指针指向NULL }else{*T = (BitTree)malloc(sizeof(Tree)); // 对指向节点指针地址的指针分配内存if(!(*T) ){ // *T = NULL 表⽰分配内存失败,也就是结束递归创建了printf("内存分配失败\n");exit(-1);}(*T)->data = data; // 给节点指针地址内的数据域,存⼊数据printf("请输⼊%d的左⼦树: ",data);CreateLink(&(*T)->lchild); // 开始遍历左⼦树printf("请输⼊%d的右⼦树: ",data);CreateLink(&(*T)->rchild); // 开始遍历右⼦树,遍历的思想⽂章开头处解释}}void ShowXianXu(BitTree T) // 先序遍历⼆叉树{if(T==NULL){return;}printf("%d ",T->data);ShowXianXu(T->lchild); // 遍历左⼦树ShowXianXu(T->rchild); // 遍历右⼦树}int main(){BitTree *S; // 创建指向这个结构体指针地址的指针printf("请输⼊第⼀个节点的数据:\n");CreateLink(&S); // 传⼆级指针地址ShowXianXu(S);return0;}到此这篇关于C语⾔数据结构之⼆叉链表创建⼆叉树的⽂章就介绍到这了,更多相关C语⾔⼆叉链表创建⼆叉树内容请搜索以前的⽂章或继续浏览下⾯的相关⽂章希望⼤家以后多多⽀持!。

java实现二叉树的基本操作

java实现二叉树的基本操作

java实现二叉树的基本操作一、二叉树的定义树是计算机科学中的一种基本数据结构,表示以分层方式存储的数据集合。

树是由节点和边组成的,每个节点都有一个父节点和零个或多个子节点。

每个节点可以对应于一定数据,因此树也可以被视作提供快速查找的一种方式。

若树中每个节点最多只能有两个子节点,则被称为二叉树(Binary Tree)。

二叉树是一种递归定义的数据结构,它或者为空集,或者由一个根节点以及左右子树组成。

如果左子树非空,则左子树上所有节点的数值均小于或等于根节点的数值;如果右子树非空,则右子树上所有节点的数值均大于或等于根节点的数值;左右子树本身也分别是二叉树。

在计算机中实现二叉树,通常使用指针来表示节点之间的关系。

在Java中,定义一个二叉树节点类的代码如下:```public class BinaryTree {int key;BinaryTree left;BinaryTree right;public BinaryTree(int key) {this.key = key;}}```在这个类中,key字段表示该节点的数值;left和right字段分别表示这个节点的左右子节点。

1. 插入节点若要在二叉树中插入一个节点,首先需要遍历二叉树,找到一个位置使得插入新节点后,依然满足二叉树的定义。

插入节点的代码可以写成下面这个形式:```public void insert(int key) {BinaryTree node = new BinaryTree(key); if (root == null) {root = node;return;}BinaryTree temp = root;while (true) {if (key < temp.key) {if (temp.left == null) {temp.left = node;break;}temp = temp.left;} else {if (temp.right == null) {temp.right = node;break;}temp = temp.right;}}}```上面的代码首先创建了一个新的二叉树节点,然后判断二叉树根是否为空,若为空,则将这个节点作为根节点。

二叉树

二叉树

6-2-2 二叉树的基本操作与存储实现
1、二叉树的基本操作 Initiate(bt)
Create(x, lbt, rbt)
InsertL(bt, x, parent) InsertR(bt, x, parent) DeleteL(bt,parent) DeleteR(bt,parent)
Search(bt,x)
BiTree DeleteL(BiTree bt, BiTree parent){ BiTree p; if(parent==NULL||parent->lchild==NULL){ cout<<“删除出错”<<endl; return NULL; } p=parent->lchild; parent->lchild =NULL; delete p; return bt ; }
a b c e 0 1 2 3 4 5 a b c d e ^ 6 7 8 9 10 ^ ^ ^ f g
d
f
g
特点:结点间关系蕴含在其存储位置中。浪费空间, 适于存满二叉树和完全二叉树。
二、链式存储结构 1、二叉链表存储法
A
B C E G D B A ^
lchild data rchild
F
^ C ^ typedef struct BiTNode { DataType data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree; ^ E
二叉树的五种基本形态

A
A
A B
A
B 空二叉树
B
C 左、右子树 均非空
只有根结点 的二叉树
右子树为空
左子树为空

二叉树

二叉树

例.设结点的权集W ={10,12,4,7,5,18,2},建立一棵 哈夫曼树,并求出其带权路径长度。
5.什么是哈夫编码? 在数据通讯中,经常需要将传送的文字转换成由二进制 字符0,1组成的二进制代码,称之为编码。 如果在编码时考虑字符出现的频率,让出现频率高的字 符采用尽可能短的编码,出现频率低的字符采用稍长的编 码,构造一种不等长编码,则电文的代码就可能更短。哈 夫曼编码是一种用于构造使电文的编码总长最短的编码方 案。 6.求哈夫曼编码的方法 (1)构造哈夫曼树 设需要编码的字符集合为{d1,d2,…,dn},它们在电文 中出现的次数集合为{w1,w2,…,wn},以d1,d2,…, dn作为叶结点,w1,w2,…,wn作为它们的权值,构造 一棵哈夫曼树。
6.Insert操作 二叉树的插入操作与查找操作类似,为了将X插入到树 中,实际上就是先对二叉树进行查找操作。如果找到X,则 什么也不做或做一些“更新”。否则,将X插入到遍历路径 的最后一个节点上。 7.Delete操作 删除操作要比插入操作困难,主要是因为其要考虑的 情况比插入多。 如果要删除的节点是一片树叶,那么可以直接删除。 如果节点有一个儿子,则该节点可以在其父节点调整指针 绕过该节点后被删除。复杂的情况是处理有两个儿子的节 点。一般的删除策略是用其右子树的最小数据代替该节点 的数据并递归地删除那个节点。因为有子树中的最小节点 不可能有左儿子,所以第二次Delete要容易。
例.设有A,B,C,D,E,F 6个数据项,其出现的频度分别 为6、5、4、3、2、1,构造一棵哈夫曼树,并确定它们的 哈夫曼编码。
(2)在哈夫曼树上求叶结点的编码。 规定哈夫曼树中的左分支代表0,右分支代表1,则从根 结点到每个叶结点所经过的路径分支组成的0和1的序列便 为该结点对应字符的编码,上图编码为: A=11;B=01;C=00;D=100;E=1011;F=1010。 在哈夫曼编码树中,树的带权路径长度的含义是各个字 符的码长与其出现次数的乘积之和,也就是电文的代码总 长。采用哈夫曼树构造的编码是一种能使电文代码总长为 最短的、不等长编码。 求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从 叶结点开始,沿结点的双亲链域回退到根结点,每回退一 步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼 码值,由于一个字符的哈夫曼编码是从根结点到相应叶结 点所经过的路径上各分支所组成的0,1序列,因此先得到 的分支代码为所求编码的低位码,后得到的分支代码为所 求编码的高位码。

二叉树

二叉树

7.1.2
二叉树的五种基本形态
Ф
左子树
(a) (b) (c)
右子树
(d)
左子树
(e)
右子树
7.1.3
两种特殊形态的二叉树
结点拥有的子树数称为该结点的度(degree)。度为零的结点称 为叶子(leaf),其余结点称为分支结点(branch)。树中结点的最大的 度称为树的度。显然,二叉树结点的度可能为0、1或2。 根结点的层次(level)为1,其余结点的层次等于该结点的双亲结 点的层次加1。树中结点的最大层次称为该树的高度或深度。 1.满二叉树 2.完全二叉树
7.6
本章小结
本章讨论了二叉树数据类型的定义以及实现方法。二叉树是 以两个分支关系定义的层次结构,结构中的数据元素之间存在着一 对多的关系,因此它为计算机应用中出现的具有层次关系或分支关 系的数据,提供了一种自然的表示方法。 二叉树是有明确的左子树和右子树的树形结构,因此当用二 叉树来描述层次关系时,其左孩子表示下属关系,而右孩子表示的 是同一层次的关系。 二叉树的遍历算法是实现各种操作的基础。遍历的实质是按 某种规则将二叉树中的数据元素排列成一个线性序列,二叉树的线 索链表便可看成是二叉树的一种线性存储结构,在线索链表上可对 二叉树进行线性化的遍历,即不需要递归,而是从第一个元素起, 逐个访问后继元素直至后继为空止。因此,线索链表是通过遍历生 成的,即在遍历过程中保存结点之间的前驱和后继的关系。
7.1.4
二叉树的几个特性
由二叉树的定义、形态,我们很容易的得出下面二叉树的 一些特性。 性质1 在二叉树的第i 层上至多有 2i-1 个结点(i≥1)。 性质2 深度为k的二叉树中至多含有2k-1 个结点(k≥1)。 性质3 对任何一棵二叉树 T,如果其终端结点数为,度为 2的结点数为,则。 性质4 具有n个结点的完全二叉树的深度为 log2n+1。 性质5 如果对一棵有 n 个结点的完全二叉树(其深度为 log2n+1)的结点按层序(从第1层到第 log2n+1 层,每层从左到 右)从1起开始编号。

表达式二叉树的构建

表达式二叉树的构建

表达式二叉树的构建
在计算机科学中,表达式二叉树是一种数据结构,用于表示数学表达式。

表达式二叉树通常使用二叉树的数据结构来表示数学表达式的运算符和操作数。

下面是一个简单的示例,说明如何构建一个表达式二叉树。

假设我们有一个数学表达式:(a + b) * (c - d) / e。

我们可以将这个表达式转换为一个二叉树,其根节点表示整个表达式,左子树表示第一个括号内的表达式,右子树表示第二个括号内的表达式。

下面是构建这个表达式二叉树的步骤:
1. 首先,将表达式转换为后缀表达式(也叫逆波兰表示法)。

后缀表达式是一种不需要括号的表示法,运算符位于操作数之后。

对于上面的例子,后缀表达式为:abc+d-e*。

2. 根据后缀表达式构建二叉树。

根节点是一个新的节点,它的左子树表示第一个操作数和第一个运算符(a、b、+),右子树表示第二个操作数和第二个运算符(c、d、-)。

根节点的父节点表示整个表达式。

3. 继续按照后缀表达式的顺序构建子树,直到所有的操作数和运算符都被处理。

通过这个过程,我们可以构建一个表示给定数学表达式
的二叉树。

然后,可以使用这个二叉树来进行表达式的求值和化简等操作。

第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码

第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
或 2k-1 ≤ n < 2k
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。

二叉树的构造方法

二叉树的构造方法

二叉树的构造方法
二叉树是一种树形数据结构,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。

下面将介绍二叉树的构造方法。

二叉树的构造方法主要有两种:递归和迭代。

递归构造方法是指从根节点开始,递归地构造二叉树。

具体地,我们可以定义一个函数,该函数接收一个数组或者列表作为输入,返回一个二叉树。

在该函数中,我们首先找到根节点,然后递归地构造左子树和右子树。

每次递归时,输入的数组或列表都会被缩小,直到只剩下一个元素或者没有元素为止。

此时,递归终止,返回一个节点或者空值,作为当前子树的根节点的左子节点或右子节点。

迭代构造方法是指利用栈或队列实现非递归的构造二叉树。

具体地,我们可以定义一个栈或队列,并将根节点入栈或入队。

然后,我们循环地弹出栈或队列的顶部元素,并将其作为当前子树的根节点。

接着,我们检查当前子树是否存在左子树和右子树。

如果存在,我们将左子树和右子树入栈或入队。

循环结束的条件是栈或队列为空。

无论使用递归方法还是迭代方法,构造二叉树的时间复杂度均为O(n),其中n为二叉树的节点数。

但是,递归方法可能会因为递归深度过大
而导致栈溢出的风险,而迭代方法则需要额外的空间来存储栈或队列。

因此,在实际应用中,我们需要根据实际情况选择相应的构造方法。

二叉树的创建与遍历的实验总结

二叉树的创建与遍历的实验总结

二叉树的创建与遍历的实验总结引言二叉树是一种重要的数据结构,在计算机科学中有着广泛的应用。

了解二叉树的创建和遍历方法对于数据结构的学习和算法的理解至关重要。

本文将对二叉树的创建和遍历进行实验,并总结相应的经验和思考。

二叉树的定义在开始实验之前,我们首先需要了解二叉树的定义和基本概念。

二叉树是一种每个节点最多拥有两个子节点的树形结构。

每个节点包含一个值和指向其左右子节点的指针。

根据节点的位置,可以将二叉树分为左子树和右子树。

创建二叉树二叉树的创建可以采用多种方法,包括手动创建和通过编程实现。

在实验中,我们主要关注通过编程方式实现二叉树的创建。

1. 递归方法递归是一种常用的创建二叉树的方法。

通过递归,我们可以从根节点开始,逐层创建左子树和右子树。

具体步骤如下:1.创建一个空节点作为根节点。

2.递归地创建左子树。

3.递归地创建右子树。

递归方法的代码实现如下所示:class TreeNode:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef create_binary_tree(values):if not values:return None# 使用队列辅助创建二叉树queue = []root = TreeNode(values[0])queue.append(root)for i in range(1, len(values)):node = TreeNode(values[i])# 当前节点的左子节点为空,则将新节点作为左子节点if not queue[0].left:queue[0].left = node# 当前节点的右子节点为空,则将新节点作为右子节点elif not queue[0].right:queue[0].right = node# 当前节点的左右子节点已经齐全,可以从队列中删除该节点queue.pop(0)# 将新节点添加到队列中,下一次循环时可以使用该节点queue.append(node)return root2. 非递归方法除了递归方法,我们还可以使用非递归方法创建二叉树。

二叉树的定义

二叉树的定义

二叉树的定义、定义、存储二叉树的定义二叉树是每个节点最多有两个子树的树结构。

通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。

二叉树常被用于实现二叉查找树和二叉堆。

二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。

特殊二叉树1. 斜树所有结点都只有左子树的二叉树叫左斜树,所有结点都只有右子树的二叉树叫右斜树。

斜树的每一层都只有一个结点,结点的个数与斜树的深度相同。

2. 满二叉树在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上,这样的二叉树称为满二叉树。

(上图中所示的二叉树,就是一棵满二叉树)3. 完全二叉树对一棵具有n个结点的二叉树按层序编号,如果编号为i(1≤i≤n)的结点与同样深度的满二叉树中的编号为i的结点在二叉树中的位置完全相同,则这棵二叉树称为完全二叉树。

二叉树的性质性质1:在二叉树的第i层上至多有2i-1个结点(i≥1)。

(数学归纳法可证)性质2:深度为k的二叉树最多有2k-1个结点(k≥1)。

(由性质1,通过等比数列求和可证)性质3:一棵二叉树的叶子结点数为n0,度为2的结点数为n2,则n0 = n2 + 1。

证:结点总数n = n0 + n1 + n2。

设B为分支总数,因为除根节点外,其余结点都有一个分支进入,所以n = B + 1。

又因为分支是由度为1或2的结点射出,所以B = n1 + 2n2。

综上:n = n0 + n1 + n2 = B + 1 = n1 + 2n2 + 1,得出:n0 = n2 + 1。

性质4:具有n个结点的完全二叉树的深度为floor(log2n) + 1 。

性质5:如果对一棵有n个结点的完全二叉树(其深度为floor(log2n) + 1 )的结点按层序编号,则对任一结点i(1≤i≤n)有:(1)如果i = 1,则结点i是二叉树的根,无双亲;如果i > 1,则其双亲PARENT(i)是结点 floor((i)/2)。

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历1.对题目要有需求分析在需求分析中,将题目中要求的功能进行叙述分析,并且设计解决此问题的数据存储结构,设计或叙述解决此问题的算法。

给出实现功能的一组或多组测试数据,程序调试后,将按照此测试数据进行测试的结果列出来。

如果程序不能正常运行,写出实现此算法中遇到的问题和改进方法;2.对题目要有相应的源程序源程序要按照写程序的规则来编写。

要结构清晰,重点函数的重点变量,重点功能部分要加上清晰的程序注释。

(注释量占总代码的四分之一)程序能够运行,要有基本的容错功能。

尽量避免出现操作错误时出现死循环;3.最后提供的主程序可以象一个应用系统一样有主窗口,通过主菜单和分级菜单调用课程设计中要求完成的各个功能模块,调用后可以返回到主菜单,继续选择其他功能进行其他功能的选择。

二叉树的建立与遍历[问题描述]建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。

[基本要求]从键盘接受输入,以二叉链表作为存储结构,建立二叉树,并对其进行遍历(先序、中序、后序),将遍历结果打印输出。

以下是我的数据结构实验的作业:肯定好用,里面还包括了统计树的深度和叶子数!记住每次做完一个遍历还要重新输入你的树哦!#include "stdio.h"#include "string.h"#define NULL 0typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;BiTree Create(BiTree T){char ch;ch=getchar();if(ch=='#')T=NULL;else{if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))printf("Error!");T->data=ch;T->lchild=Create(T->lchild);T->rchild=Create(T->rchild); }return T;}void Preorder(BiTree T){if(T){printf("%c",T->data); Preorder(T->lchild); Preorder(T->rchild);}}int Sumleaf(BiTree T){int sum=0,m,n;if(T){if((!T->lchild)&&(!T->rchild)) sum++;m=Sumleaf(T->lchild);sum+=m;n=Sumleaf(T->rchild);sum+=n;}return sum;}void zhongxu(BiTree T){if(T){zhongxu(T->lchild);printf("%c",T->data); zhongxu(T->rchild);}}void houxu(BiTree T){if(T){houxu(T->lchild);houxu(T->rchild);printf("%c",T->data);}}int Depth(BiTree T){int dep=0,depl,depr;if(!T) dep=0;else{depl=Depth(T->lchild);depr=Depth(T->rchild);dep=1+(depl>depr?depl:depr);}return dep;}main(){BiTree T;int sum,dep;T=Create(T);Preorder(T);printf("\n");zhongxu(T);printf("\n");houxu(T);printf("\n");sum=Sumleaf(T);printf("%d",sum);dep=Depth(T);printf("\n%d",dep);}在Turbo C的环境下,先按Ctrl+F9运行程序,此时就是建立二叉树的过程,例如输入序列ABC##DE#G##F###(其中的“#”表示空,并且输入过程中不要加回车,因为回车也有对应的ASCII码,是要算字符的,但是输入完之后可以按回车退出),然后再按ALT+F5显示用户界面,这时候就能够看到结果了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作CreateBiTree(T,definition)的实现
首先要清楚逻辑上怎样唯一地确定二叉树,课堂上讲了3类方法。

下面以第一类为例。

即带空子树的先序遍历序列。

由于实验中二叉链表作为二叉树的物理结构,这样就可以确定CreateBiTree(T,definetion)的说明为
CreateBiTree(BiTree T,ElemType definition[])
这里BiTree是结点指针类型,definition是数据元素数组,这个数组无法给出数组的大小(像学C语言时,整数序列排序,sort(int a,int n))。

这个就要求输入时不要出错。

具体在菜单选择时:
case 3:
1. 输入带空子树的先序遍历序列:definition;
2. 调用CreateBiTree(T,definition)。

实现操作CreateBiTree功能,可用多个函数实现。

CreateBiTree(BiTree T,ElemType definition[]){。

调用P131的创建函数CreatBitree1
}
CreatBitree1(BiTree T,definition[](第2个参数提供结点数据definition,思考一下具体形式,甚至为了方便取数组元素,设置3个参数都可以))
{
依次输入definition的结点数据ch
根据ch的值,按教材流程处理。

}
以上是假定设计时,规定了按树的定义definition创建二叉树,提供了这个统一的使用方式,使用者按这个统一的接口使用创建操作、创建二叉树。

当然,如果直接按书上的程序,也能实现创建二叉树,也不会影响到后续的其它操作。

但是这个调用接口被自行改变了,就显得不规范。

相关文档
最新文档