天然气压缩因子
天然气计量中压缩因子的修正
表 1 天然气色谱分析数据 分析项目
结果
N2
CO2
CH4
C2H6
体积组成/%
C3H8 i-C4H10
n-C4
i-C5
n-C5
C6+ 相对分子质量
温度/K
压力/MPa
密度(20 益)(/ g·cm-3)
相对密度
高热值(20 益)(/ kJ·m-3)
工况下水露点/益
备注:密度及高热值均在 101.32 kPa 下测定
3.684 34.429 54.964 3.451 1.835 0.372 0.428 0.129 0.073 0.635 27.740
306 5.4 1.241 9 0.9611 2.716伊104 -12.8
第一作者简介:韩彬 男 1986 年生 硕士研究生 工程师 研究方向:石油化工设备
第6期
韩彬,等:天然气计量中压缩因子的修正
·19·
为பைடு நூலகம்便于计量,流量计读数一般通过内部组态
换算为标准参比条件下的数据进行输出,标准参比
条件规定为:绝对压力为 101.325 kPa,温度为 20
℃,干基[3]。标准参比条件下的瞬时体积流量按公式
关键词 天然气计量 超声流量计 压缩因子 中图分类号 TE 8
近年来,随着国家环保要求日趋严格,煤炭消耗 受到越来越多的限制,天然气在我国能源战略中的 地位逐步凸显,东海、南海的油气田项目逐渐增多。 由于海底地质情况复杂,生产中天然气组分和生产 工况与设计组分和设计工况会有较大差别,而平台 外输流量计则是依据设计组分和设计工况进行选型 安装的。这就造成了外输天然气计量出现问题,生产 方无法掌握可靠数据。
第一节 天然气的高压物理性质
第一节天然气的高压物理性质一、名词解释。
1.天然气视分子量(gas apparent molecular weight):(gas relative density ): 2.天然气的相对密度g3.天然气的压缩因子Z(gas compressibility factor) :4.对应状态原理(correlation state principle) :5.天然气压缩系数Cg(gas compressive coefficient):6.天然气体积系数Bg(gas formation volume factor):二.判断题。
1.体系压力愈高,则天然气体积系数愈小。
()2.烃类体系温度愈高,则天然气压缩因子愈小。
()3.体系压力越大,天然气等温压缩率越大。
()4.当二者组分相似,分子量相近时,天然气的粘度增加。
()5.压力不变时,随着温度的增加,天然气的粘度增加。
()6.天然气水合物形成的有利条件是低温低压。
()7.温度不变时,压力增加,天然气体积系数减小。
()8.温度不变时,压力增加,天然气分子量变大。
()9. 当压缩因子为1时,实际气体则成为理想气体。
()三.选择题。
1.理想气体的压缩系数与下列因素有关A.压力B.温度C.体积D.组成( )2.在相同温度下,随着压力的增加,天然气压缩因子在低压区间将在高压区间将A.上升,上升B.上升,下降C.下降,上升D.下降,下降( )3.对于单组分烃,在相同温度下,若C原子数愈少,则其饱和蒸气压愈其挥发性愈A.大,强B.小,弱C.小,强D.大,弱( )4.地层中天然气的密度地面天然气的密度。
A.小于B.等于C.大于D.视情况定( )5.通常用来计算天然气体积系数的公式为A.Bg=Cg(273+t)/293PB.Bg=V地下/ V地面C.Bg=Z(273+t)/293PD.Bg= V地面/ V地下( )6.天然气压缩因子Z>1说明天然气比理想气体压缩,Z<1说明天然气比理想气体。
天然气压缩因子计算
1.天然气相关物性参数计算密度计算: TZR PM m =ρ ρ——气体密度,Kg/m 3;P ——压力,Pa ;M ——气体千摩尔质量,Kg/Kmol ;Z ——气体压缩因子;T ——气体温度,K ;R m ——通用气体常数,8314.4J/Kmol·K 。
2.压缩因子计算:已知天然气相对密度∆时。
96.28M =∆ M ——天然气的摩尔质量。
∆+=62.17065.94pc T510)05.493.48(⨯∆-=pc P ;pc pr P P P = pcpr T T T =; P ——工况下天然气的压力,Pa ;T ——工况下天然气的温度,k ;P Pc —临界压力;T Tc ——临界温度。
对于长距离干线输气管道,压缩因子常用以下两式计算:668.34273.01--=prpr T P Z 320107.078.068.110241.01prpr pr pr T T T P Z ++--=对于干燥天然气也可用经验公式估算: 15.1117.0100100P Z +=标况流量和工况流量转换。
为了控制Welas 的5L/min 既 0.3立方米每小时的工况流量。
Q 2------流量计需要调节的流量值P 2------0.1MpaT 2------293.15K (20℃ )Z 2------标况压缩因子Q 1------0.3m 3/hP 1------ 工况压力(绝对压力MPa )T 1------开尔文KZ 1-------工况压缩因子转换公式为12221211p T Z Q Q p T Z。
GB T 17747.2-1999 天然气压缩因子的计算 第2部分:用摩尔组成进行计算
0 a 镇6 MP MP<p 5 a 25 <30 2K <T 5 K 2 MJ m- 0 ・ ' <4 MJ ' <H, 8 " m-
注 2 将本条中的高位发热量和相对密度换算为我国石油气体标准参 比条件下 的高位发热量和相对密度 , : 则高位 发热1 范围为 79 -4. " , 2. 19 MJ '相对密度范围为 050 -. , 1 5 3 m- . -080 5 0
天然气中各组分 的摩尔分数应在 以下范围以内:
— 第3 部分: 用物性值进行计算。
附录 A、 附录B 附录C 附录D是标准的附录。附录E 附录 F 附录G是提示的附录。 、 、 、 、
中华 人 民共 和 国国 家标 准
天然气压缩因子的计算 第2 部分: 用摩尔组成进行计算
N t a gs ac a o o o rsi fco- rl -C l l in cmpes n tr au a ut f o a P r 2C l l inபைடு நூலகம்ig lr o p sin a s at a u t u n m a- m oio a l i : c ao s o c t n ys
似法是否会使计算结果变差.
摩尔分数大于 000 .0 0 5的所有组分都必须在计算中考虑。痕量组分( C 等) 如 M; 应按表 1中指定 的赋值组分处理。所有组分的摩尔分数之和为 1 . 1 士000 0 ,
如果已知体积分数组成, 则应将其换算成摩尔分数组成, 具体换算方法见 G / 102 B T 6 0 1
c / 1772 99 S T 4 .-19 7
绝对压力:
热力学温度 :
0 a -1 MP MP <p 2 a <
2 3 6 K镇T蕊3 8 3 K
天然气基本压缩因子计算方法
天然气基本压缩因子计算方法编译:阙洪培(西南石油大学审校:刘廷元这篇文章提出一个简便展开算法:任一压力-温度的基本压缩因子的输气监测计算。
这个算法中的二次维里系数来源于参考文献1。
计算的压缩因子接近AGA 8状态方程值[2]。
1 测量在天然气工业实用计量中,压力、温度变化作为基本(或标准条件,不仅地区间有差别,而且在天然气销售合同也有不同。
在美国,通常标准参考条件是60°F和14.73 psia。
欧洲常用的基本条件是0 ℃和101.325 kPa,而标准条件是15 ℃和101.325 kPa。
阿根廷也用15 ℃和101.325 kPa,而墨西哥则用的是20 ℃和1kg/ sq cm(绝对。
计算真实气体的热值、密度、基本密度、基本体积、以及沃贝指数时要求已知基本条件的压缩因子。
表1是理想气体值。
表1中的理想气体值不能用于密闭输气,必须计算相应基本条件的压缩因子。
参考文献提供的一些数据表和获取基本条件压缩因子方法,基本条件只能是60°F,14.73或14.696 psia。
计算其它基本条件的压缩因子可用AGA 8 程序,但代数计算较复杂,计算机编程共有三组软件,比较耗时。
本文提出了一个展开算法,计算密闭输气基本条件(基本条件可是任何压力温度的压缩因子。
2 压缩因子接近外界条件时,即压力小于16 psia,截断维里状态方程(方程组中的方程1较好地描述了天然气的体积性质。
方程1中,各符号的物理意义是:Z = 基本条件下压缩因子B = 二次维里系数R = 气体常数P = 基本条件的绝对压力T = 温度条件的绝对压力天然气基本压缩因子接近1,如0.99,B必然为负(图1方程2是混合物的二次维里系数,式中B ij = B ji为组分i和j的二次交互维里系数,B ii为纯组分i 的二次维里系数。
二次维里系数是温度的函数。
也可用方程3求B,便于手工计算。
比较适合密闭输气计算,方程3中B i的平方根为总因子,参见参考文献1,3,4。
AGA8—92DC计算方法天然气压缩因子计算(最漂亮的)
AGA8—92DC计算方法天然气压缩因子计算摘要:按照GB/T 17747.2—1999《天然气压缩因子的计算第2部分:用摩尔组成进行计算》,采用AGA8—92DC计算方法,用VB编程计算了天然气压缩因子。
用二分法求解状态方程,精度满足工程需要。
关键词:压缩因子;AGA8—92DC计算方法;二分法1概述工作状态下的压缩因子是天然气最重要的物性参数之一,涉及到天然气的勘探、开发、输送、计量和利用等各个方面。
实测天然气压缩因子所需的仪器设备价格高,不易推广,因此计算方法发展很快,主要为经验公式和状态方程计算方法。
1992年6月26日,国际标准化组织(ISO)天然气技术委员会(TC193)及分析技术分委员会(TC193/SC1)在挪威斯泰万格(Stavanger)召开了第四次全体会议,会上推荐了两个精度较高的计算工作状态下天然气压缩因子的方程,目PAGA8-92DC方程、SGERG-88方程[1]。
随后,国际标准化组织于1994年形成了国际标准草案[2]。
AGA8-92DC方程来自美国煤气协会(AGA)。
美国煤气协会在天然气压缩因子和超压缩因子表的基础上,开展了大量研究,于1992年发表了以状态方程为基础计算压缩因子的AGA No.8报告及AGA8-92DC方程[2]。
1994年,四川石油管理局天然气研究所遵照中国石油天然气总公司技术监督局的指示,对国际标准化组织1992年挪威斯泰万格会议推荐的AGA8-92DC 方程、SGERG-88方程进行验证研究,于1996年底基本完成[2]。
1999年,四川石油管理局天然气研究院(前身为四川石油管理局天然气研究所)起草的《天然气压缩因子的计算》GB/T 17747.1~3—1999被批准、发布。
《天然气压缩因子的计算》GB/T 17747.1~3—1999包括3个部分:《天然气压缩因子的计算第1部分:导论和指南》GB/T 17747.1—1999,《天然气压缩因子的计算第2部分:用摩尔组成进行计算》GB/T 17747.2—1999,《天然气压缩因子的计算第3部分:用物性值进行计算》GB/T 17747.3—1999。
天然气压缩因子的计算
天然气压缩因子的计算天然气的压缩系数计算方法可采用GB/T 17747-1999《天然气压缩因子的计算》,或AGA NX-19方程。
当为非贸易计量场合和贸易计量中符合GB/T 18603-2001《天然气计量系统技术要求》表A1准确度为C 级要求的计量装置可考虑使用AGA NX-19方程,其它应采用SGERG-88或AGA 8-92DC 方程。
本文描述AGA NX-19和SGERG-88两种计算方法。
1.用物性值进行计算天然气压缩因子的公式本计算公式参照国家标准GB/T 17747中SGERG-88公式,该计算公式使用高位发热量、相对密度和CO 2含量作为输入变量。
在GB/T 17747中,用物性值计算天然气压缩因子公式如下:21mm C B Z ρρ++= (1 /(ZRT p m =ρ (2式中有关符号表示见本文后述的符号说明。
天然气压缩因子Z 的值由方程(1、(2联解求得(1式中:天然气第二维利系数B 由方程(B1求得B x x B x B 2111212+=12++++++233222255254424332324422B x B x B x B x x +++ (B1(B1式中:CH x x =1 (B2 22N x x = (B3 23CO x x = (B4 24H x x = (B5 CO x x =5 (B6 2(1(0([2(1(b 0(11120H0011H H H H H b T b b T b T b B +++++=CH H T ]222222]2(1(0([CH H H H H T b T b b +++ (B7B 14,B 15,B 22,B 23,B 24,B 33, B 44和B 55是温度函数的二次多项式,即:2-12B B B +×+= (B91/23311130.865(B -B B = (B10(B7和(B8式中维利系数温度展开式系数b(0,b(1和b(2的数值 ij b(0 b(1 b(2 CH H0 -4.25468×10-1 2.86500×10-3 -4.62073×10-1CH H1 8.77118×10-4 -5.56281×10-6 8.81510×10-9 CH H2 -8.24747×10-7 4.31436×10-9 -6.08319×10- 12 N 2 22 -1.44600×10-1 7.40910×10-4-9.11950×10-7CO 2 33 -8.68340×10-1 4.03760×10-3 -5.16570×10-6H 244-1.10596×10-3 8.13385×10-5-9.87220×10-8 CO 55 -1.30820×10-1 6.02540×10-4 -6.44300×10-7CH+ N 2 12 y =0.72+1.875×10-5(320-T2 CH+ CO 2 13 y =-0.865CH+ H 2 14 -5.21280×10-2 2.71570×10-4-2.50000×10-7CH+ CO 15-6.87290×10-2-2.39381×10-6 5.18195×10-7N 2+ CO 2 23 -3.39693×10-1 1.61176×10-3 -2.04429×10-6N 2+ H 2 24 1.20000×10-2 0.00000 0.00000天然气第二维利系数C 由方程(C1求得1233211222444343333323323222332222232133231333C x C x C x x C x x C x C x x ++++++ (C1 (C1式中:211120001112(1(0([2(1(0(T c T c c T c T c c C H H H H H H +++++=CH H ]22222]2(1(0([CH H H H H T c T c c +++ (C2C 222,C 333,C 444,C 113,C 223和C 233是温度函数的二次多项式,即:22(1(0(T c T c c C ijk ijk ijk ijk ++= (C3维利系数温度展开式中系数c(0,c(1和c(2的数值ijk c(0 c(1 c(2CH H0 -3.02488×10-1 1.95861×10-3 -3.16302×10-6CH H1 6.46422×10-4-4.22876×10-6 6.88157×10-9CH H2 -3.32805×10-7 2.23160×10-9 -3.67713×10-12N 2 222 7.84980×10-3-3.98950×10-5 6.11870×10-8CO 2 333 2.05130×10-3 3.48880×10-5 -8.37030×10-8H 2 444 1.04711×10-3-3.64887×10-8 4.67095×10-9CH+ CH+ N 2 112 y =0.92+0.0013(T-270 CH+ CH+ CO 2 113 y = 0.92 CH+ CH+ H 2 114 y = 1.20 CH+ CH+CO1157.36748×10-3-2.76578×10-5 3.43051×10-8CH+ N 2+ N 2 122 y =0.92+0.0013(T-270 CH+ N 2+ CO 2 123 y =1.10 CH+ CO 2+ CO 2 133 y =0.92 N 2+ N 2+ CO 2 223 5.52066×10-3 -1.68609×10-5 1.57169×10-8N 2+ CO 2+ CO 2 2333.58783×10-3 8.06674×10-6 -3.25798×10-8其他非同类交互作用维利系由方程(C4求得: ijk ijk y C =3/1(kkk jjj iii C C C (C4(C4式中ijk y 由(C5~(C8给出:92.0133113==y y (C620.1114=y (C710.1123=y (C8式中符号:H ——摩尔发热量,单位:MJ ·kmol -1x ——组分的摩尔分数CH ——等价烃类 CO ——一氧化碳 CO 2——二氧化碳 H 2——氢气 N 2——氮气m ρ——摩尔密度,单位: kmol -1·m 3p ——绝对压力,单位:MPaR ——摩尔气体常数,其值为0.008314510 m 3·kmol -1K -1 T ——热力学温度,单位:K2.用AGA NX-19公式计算天然气压缩因子的方法天然气超压缩系数Fz 是因天然气特性偏离理想气体定律而导出的修正系数,其定义为1Z ZnFz =………………………………………………………(3 式中: Zn —天然气在标准参比条件下的压缩因子;Z1 —天然气在操作条件下的压缩因子。
天然气压缩因子计算及影响因素分析
天然气压缩因子计算及影响因素分析王春生;徐玉建;田明磊;董国庆;徐畅;陈钊【摘要】Measurement shortage will often arise between the head and the end of nature gas pipeline which is a vital important influencing factor of transmission cost. Regarding to the phenomenon of measurement shortage, we focused on the compressibility factor and tried to solve the problem by optimizing the calculation method of the compressibilityfactor so that the phenomenon can be well control. On the basis of BWRS equation, first equation coefficients were obtain by Excel, then the gas density was calculated with these coefficients, finally all these results were put into the gas state equation to obtain the compressibility factor. By solving the gas compressibility factor, its main influencing factors were determined, which could help to correct the throughput of natural gas to keep measurement shortage to the minimum.%天然气长输管道首端与末端之间往往会出现输差,输差是影响输气成本的一个最关键的因素。
用于计量的天然气压缩因子计算方法比较[1]
N G03 0. 25 0. 60 96. 50 1. 75 0. 40 0. 10 0. 10 0. 10 0. 10 0. 10
N G04 0. 56 0. 52 94. 53 0. 96 1. 55 0. 30 0. 79 0. 22 0. 19 0. 24 0. 14
N G05 N G062)
第 20 卷第 5 期 天 然 气 工 业 集输工程
用于计量的天然气压缩因子计算方法比较
张 福 元3
(西南油气田公司天然气计量检测中心)
张福元. 用于计量的天然气压缩因子计算方法比较. 天然气工业 ,2000 ;20 (5) :73~76 摘 要 天然气压缩因子或超压因子计算结果的准确性直接影响天然气流量计量的准确性 。当前国内天然 气计量界广泛使用 A GANX219〔1〕,A GA8 号报告 , ISO 1221321997 三种天然气压缩因子计算方法标准 。文章研究了 这三种天然气压缩因子计算方法标准 ,并编写了 N GZCWIN 天然气压缩因子计算软件 ,通过对不同气样和不同温 度 、压力条件的计算 ,比较了三种计算方法的差别 ,并对这些计算方法的应用范围和不确定度提出了看法 。 主题词 天然气 计量 压缩系数 计算 方法 分析
表 2 A GA8 号报告和 ISO 12213 的适用范围
项 目
A GA8 号报告
ISO 12213
管输范围 扩展范围 管输范围 扩展范围
压 力 (MPa) 0~12 0~280 0~12 0~651)
温 度 ( ℃) - 8~65
相对密度
0. 554 ~0. 87
高位发热量 18. 7 (MJ/ m3) ~45. 1
天然气压缩因子计算方法简介
1. A GA8 号报告 在 A GA8 号报告 1994 年版中〔2〕,提供了以组成
天然气压缩因子、压力、温度对计量的影响
天然气压缩因子、压力、温度对计量的影响天然气压缩因子、压力、温度对计量的影响摘要:天然气计量系统中压力、温度、压缩因子等参数的准确性及变化对计量结果准确度有直接的影响,在国际贸易交接过程中,密切关系着国家的经济效益。
为了确保天然气计量的准确性,探索天然气压缩因子、压力、温度对其计量过程产生的影响,本文通过对不同气源、不同组分的天然气进行分析计算,通过建立数学计算公式,逐个分析了天然气压缩因子、甲烷含量、气体组分及工况条件对天然气计量准确性的影响程度。
通过分析表明:压缩因子及压力、温度等工况条件对压缩机的计量均存在一定的影响,尤其在各参数的影响均正向便宜时,其误差是巨大的,对贸易交接过程中的经济利益也存在较大的不公平。
关键词:超声波流量计、色谱、压力、温度、体积量中图分类号:TE53文献标识码:A(前言)随着国家能源结构的调整,天然气境外资源的引进对保障天然气供应,保障中国能源安全,促进节能减排,优化能源消费结构,推动国际能源合作互利共赢具有重大意义。
目前,多条境外管线的逐步建立,与国外进行天然气贸易交接过程中计量结果的准确性逐渐显示出其重要性。
西气东输二线年设计输送能力达300亿标方,随着西气东输三线、西气东输四线的建立输量会与日俱增,在如此大量国际贸易交接的局面下,其数据的准确性对国家经济利益存在巨大的影响,因此本文主要研究分析天然气压缩因子、压力、温度对计量的影响,找出最佳的运行状态,以实现经济效益最大化的目标。
如果年输量为300亿标方,由于设备准确度引入的误差可达约4亿标方,如果按照2元/标方的价格购买天然气,则可产生8亿的经济误差。
3 结论从以上的数据可以看出准确测量流量计处的压力、温度及压缩因子,对降低输差提高经济效益有很大的作用。
为了进一步减小设备方面造成的经济损失,建议设备使用单位在参照GB/T18603配备相应的计量设备同时根据业务情况可以适当的选用准确度等级较高的设备,在使用过程中定期核查设备的计量准确情况,通过检定、校准及定期检查设备等手段保证设备的准确度,必要时建议对设备各检测点逐点修正,加强计量设备的期间核查对提高计量准确度和实现经济效益最大化的目标有至关重要的作用。
GB T 17747.1-1999 天然气压缩因子的计算 第1部分:导论和指南
z= v 彩真实)v / 彩理想) ・・・・・・・・……( ・・・・・・・・ ・・・・・・・・ 1) Z( , y = p }真实)( T) ・・・・・・・・・……(3) p T,) V , ( /R ・・・・・・・・・ ・・・・・・・・・
为国际标准正式发布。 国际标准 S 1 1- 是由天然气技术委员会 IO T 13 IO 231 2 S / C 下的“ 9 天然气分析’ , 分委员会制定的。 I 123天然气压缩因子的计算》 《 S 21 O 标准包括以下 3 个部分: — 第1 部分: 导论和指南; — 第2 部分: 用摩尔组成进行计算; — 第3 部分: 用物性值进行计算。 附录 A是标准的附录。附录B和附录 C是提示的附录。
z 无量纲, — 压缩因子, 值通常接近于 1。
32 密度 dni , - esyp t
见G / 16-19 102 98中 23 B T ..
33 摩尔 . 组成 m l c psi o r oi n ao m t o
用摩尔分数或摩尔百分数表示的均匀混合物中每种组分的比例。 给定体积的混合物中1 组分的摩尔 分数2是1 ‘ 组分的摩尔数与混合物中 所有组分的总摩尔数( 即 所有组分摩尔数之和) 之比。 摩尔任何化合物所含物质的量等于以克为单位的相对摩尔质量。 1 相对摩 尔质量的推荐值见G / 102 B T 6, 1 对于理想气体, 摩尔分数或摩尔百分数与体积分数或体积百分数值完全相等。 对真实气体, 两者一
产物的温度降至与规定的反应物温度t , 相同的温度, 并且除燃烧生成的水在温度t下全部冷凝为液态 ,
外, 其余所有燃烧产物均为气态。 高位发热量包含天然气中所有可燃组分。
燃烧参比 条件: 温度t为281 K 20)压力P 为1135 , , 9. ( C , 5 5 , 0. ka 2 P 体积计量参比 条件: 温度t为231 K 0 )压力P 为1135 , : 7.5 0 , (C } 0. ka 2 P
压缩因子计算方法
汇报人:齐少鹏
压缩因子简介
• 由于理想气体作了两个近似:忽略气体分子本身的体积和分 子间的相互作用力,所以实际气体都会偏离理想气体。
• 压缩因子Z被引用来修正理想气体状态方程:PV=nRT 。
• 压缩因子的定义式为:Z=PV/nRT ,压缩因子的量纲为一。
• 很显然,Z的大小反映出真实气体对理想气体的偏差程度, 即Z等Vm(真实)除以Vm(理想)。由于Z反映出真实气 体压缩的难易程度,所以将它称为压缩因子。
Tp3r
(1.18 2.82 ) Tpr
r
• 特殊定义的对比密度:
r
0.06125
p pr ZTpr
exp1.2(1
1 Tpr
)2
• 方法的适用范围:Tpr>1
AGA公式
•
美国加利福尼亚天然气协会(CNGA)公式 前苏联气体研究所公式
低压下压缩因子的确定
P<35MPa
• Z=1+(0.31506-1.0467/Tpr-0.5783/T3pr)ρ +pr
(0.5353-0.6123/Tpr)ρ
2pr+0.6815ρ
/T 2pr
3pr
•
ρ
=0.27
p /ZT pr
pr
• • 迭代
RK公式
RK(Redlich—Kwong)方 程 是 1949 年 提 出 的 二 参数状态方程,它在范德瓦尔斯基础上引入了温度 对引力的修正,多用于计算干气的压缩因子,不适于 计算非极性分子的压缩因子
实验方法求取天然气压缩因子
实验测定天然气压缩因子方法是将一定质量的天然气 样品装入高压物性实验装置的PVT筒中,在恒温条件下测定 天然气的压力与实际体积V的关系。
天然气与CNG(压缩天然气)之间的换算比例
天然气车的计算方法——CNG车气瓶加气量A(m3)= L×N×P/1000其中:L(升)=气瓶标定容积,N(个)=气瓶个数,P (大气压)=气瓶内气体压强(一般为20MPa,200个大气压);气瓶加气量:G(Kg)= A×ρ,其中:ρ-天然气密度(0.716 Kg /m3)。
例1)车辆CNG气瓶为8×120 + 4×80L。
则加气量=(8×120 + 4×80L)×200/1000 = 256(立方米)= 256×0.716 = 183.3(kg)——LNG车气瓶加气量A(m3)= L×N×600/1000例2)车辆LNG气瓶为450L。
则加气量= 450 ×600/1000 = 270(立方米)= 270 × 0.716 = 193.3简易算法:CNG加气量(立方米)=气瓶总容积×0.2;LNG加气量(立方米)=气瓶总容积×0.6——CNG车在驾驶室的仪表板上有剩余气量显示系统——显示气瓶内的剩余气体压力为多少MPa,根据气瓶加气量计算方法:加气量(m3)=气瓶总容积L×气瓶个数N ×气瓶内气体压强P/ 1000,从而算出气瓶内还剩多少气量,提示司机及时加气。
例1)车辆CNG气瓶为8×120 + 4×80L,驾驶室仪表板上显示气瓶内剩余气体压力为5MPa。
则剩余气量=(8×120 + 4×80L)×50/1000 = 64(立方米)。
一般来说,当CNG车驾驶室仪表板上显示气瓶内的剩余气体压力为5MPa时,司机就应及时给车辆加气;当剩余气体压力为2MPa时,司机就必须给车辆加气。
定义:是指以天然气为燃料的一种气体燃料汽车(有压缩天然气CNG和液化天然气LNG)。
分类:按燃料使用状况的不同,可分为:(1)单燃料天然气汽车:发动机只使用CNG或LNG作为燃料。
天然气压缩因子规范
天然气压缩因子规范
天然气压缩因子规范是指在一定温度和压力条件下,天然气体积收缩率的计算规范。
根据国家标准《液化天然气技术要求》(GB/T 19856-2005)的规定,天然气的压缩因子应满足以下要求:
1. 在温度为15℃,压力为101.325 kPa (1兆帕)时,天然气的压缩因子应大于等于1.0。
2. 在温度为15℃,压力为50.0 kPa (0.5兆帕)时,天然气的压缩因子应大于等于0.8。
3. 在温度为15℃,压力为25.0 kPa (0.25兆帕)时,天然气的压缩因子应大于等于0.6。
4. 在温度为15℃,压力为10.0 kPa (0.1兆帕)时,天然气的压缩因子应大于等于0.4。
5. 在温度为15℃,压力为5.0 kPa (0.05兆帕)时,天然气的压缩因子应大于等于0.2。