指数函数对数函数幂函数单元测试题(有答案)精品资料

合集下载

幂函数、指数函数和对数函数单元测试及参考答案

幂函数、指数函数和对数函数单元测试及参考答案

《幂函数、指数函数和对数函数》单元测试一、填空题1.函数1lg(3)y x=-的定义域是________________.2.已知3log 10a =,27log 25b =,用a 、b 表示lg 5=____________. 3.函数2(log )xy a =是减函数,则a 的取值范围是____________. 4.已知252222x x +-=,则2lg(1)x +=____________.5.若2log 13a<,则a 的取值范围是____________. 6.函数213log (54)y x x =--的单调递减区间为____________.7.已知函数2log ,0()3,x x x f x x >⎧=⎨⎩≤,则1()4f f ⎡⎤=⎢⎥⎣⎦____________.8.函数2y x =(1x -≤)的反函数为___________________.9.设函数12()x f x a-=,且(lg )f a =a 的值为__________.10.2log (2)x +=的实数解的个数为________个.11.已知()log a f x x b =+为偶函数,且在(0,)+∞上递减,则(2)f b +_____(1)f a +(选填“>”或“<”) .12.关于函数21()lg x f x x+=(x ∈R ,0x ≠)的下列命题:①函数()y f x =的图像关于y 轴对称;②函数()y f x =的最小值为lg 2;③当0x >时,()f x 是增函数;当0x <时,()f x 是减函数; ④()f x 在[)1,0-、[)1,+∞上是增函数; ⑤()f x 无最大值,也吴最小值. 其中正确命题的序号是______________. 二、选择题13.下列函数中既不是奇函数也不是偶函数的是( )A .23x y = B .xxy e e -=+C .lg(y x =D .1lg2y x =- 14.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年后的剩留量为y ,则x 、y 之间的函数关系是( )A .1000.9576xy =B .1000.9576xy =C .0.9576()100xy =D .1001(0.0424)x y =-15.函数()2xf x a m =⋅+的图像经过点(1,3),又其反函数图像经过点(2,0),则()f x 的表达式为( )A .()21xf x =+ B .3()262xf x =-⋅+ C .3()22x f x =⋅D .3()262xf x =⋅+ 16.如果1m n >>,(0,1)x ∈,则下列不等式正确的是( )A .xxm n <B .m nx x < C .log log x x m n >D .log log m n x x <三、解答题17.解方程:122log (44)log (23)x x x ++=+-.18.已知222()21x x a a f x ⋅+-=+.(1)当1a =时,求()f x 的反函数;(2)若()f x 在定义域上单调递增,求实数a 的取值范围.19.已知2()f x x x k =-+,若2log ()2f a =,2(log )f a k =(1a ≠).(1)求a 、k 的值;(2)当x 为何值时,2(log )f x 有最小值?并求出最小值.20.记函数1()()f x f x =,2(())()f f x f x =,它们的定义域的交集为A .若对于任意的x A ∈,都有2()f x x =,则称()f x 是集合M 中的元素.(1)判断()2f x x =-+,()31g x x =-,21()2x h x x +=-是否是M 中的元素? (2)若()log (1)x a f x a =-(1a >),求它的反函数1()f x -,并判断1()f x -是否属于M .参考答案1.1(,0)(,)3-∞∞ 2.32b a3.(1,2)4.15.2(0,)(1,)3∞6.(5,2)--7.198.y =1x ≥) 9.10 10.111.<12.①②④13.D14.A15.A16.B17.2x = 18.(1)121()log 1xfx x-+=-(11x -<<) (2)12a -<< 19.(1)2a =,2k =(2)当x =2min 7(log )4f x =20.(1)()f x M ∈,()h x M ∈,()g x M ∉ (2)1()f x M -∈。

指数函数、对数函数、幂函数练习题大全(标准答案)

指数函数、对数函数、幂函数练习题大全(标准答案)

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn =B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数22)21(++-=x x y 得单调递增区间是 ( )A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为.12.不用计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是.16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是.三、解答题:(10+10+12=32分)18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a ay x x在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值;t/月2 3(2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a ax m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7B 、lg35C 、35 D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x =D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m na a m n a+===。

指数函数、对数函数、幂函数练习题大全(答案)

指数函数、对数函数、幂函数练习题大全(答案)

一、采用题(每小题4分,同计40分)之阳早格格创做1.下列各式中创造的一项是( )A .7177)(m n mn =B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的截止( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中没有精确的是 ( )A .f(x+y)=f(x)·f(y)B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f n n n4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数x a y =正在[-1,1]上的最大值与最小值的好是1,则底数a 等于 ( ) A .215+ B .215- C .215± D .251±6.圆程)10(2||<<=a x a x 的解的个数为( )A. 0个B. 1个C. 2个D. 0个或者1个 7.函数||2)(x x f -=的值域是( ) A .]1,0(B .)1,0(C .),0(+∞D .R 8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,谦脚1)(>x f 的x的与值范畴( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列精确的是 ( )A .奇函数,正在R 上为删函数B .奇函数,正在R 上为删函数C .奇函数,正在R 上为减函数D .奇函数,正在R 上为减函数 10.函数22)21(++-=x x y 得单调递加区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二、挖空题(每小题4分,同计28分)11.已知0.622,0.6a b ==,则真数a b 、的大小闭系为. 12.没有必估计器估计:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.没有等式xx 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.没有等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛a x axx 恒创造,则a 的与值范畴是.16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()x x x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍伸张的里积(2m )与时间t (月)的闭系:ty a =,有以下道述:① 那个指数函数的底数是2;② 第5个月时,浮萍的里积便会超出230m ; ③ 浮萍从24m 伸张到212m 需要通过1.5个月;④ 浮萍每个月减少的里积皆相等;⑤ 若浮萍伸张到22m 、23m 、26m分别为1t 、2t 、3t ,则123t t t +=. 其中精确的是.三、解问题:(10+10+12=32分) 18.已知17a a -+=,供下列各式的值:(1)33221122a a a a----; (2)1122aa-+; (3)22(1)aa a -->.)1(122>-+=a a a y x x 正在区间[-1,1]上的最大值是14,供a 的值.20.(1)已知m x f x+-=132)(是奇函数,供常数m 的值; 1 0 t/月2 3(2)绘出函数|13|-=x y 的图象,并利用图象回问:k 为何值时,圆程|31|x k -=无解?有一解?有二解?一、采用题:(本题同12小题,每小题4分,同48分,正在每小题给出的四个选项中,惟有一项是切合题目央供的) 1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、23a a - 2、2log (2)log log a a a M N M N -=+,则NM 的值为( )A 、41 B 、4 C 、1 D 、4或者13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n + D 、()12m n -4、如果圆程2lg (lg5lg7)lg lg5lg70x x +++=的二根是,αβ,则αβ的值是( )A 、lg5lg 7B 、lg 35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( ) A 、13B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像闭于( ) A 、x 轴对于称 B 、y 轴对于称 C 、本面对于称 D 、曲线y x =对于称 7、函数(21)log x y -=的定义域是( )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 谦脚的条件是( ) A 、 1 m n >> B 、1n m >> C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的与值范畴是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭11、下列函数中,正在()0,2上为删函数的是( ) A 、12log (1)y x =+B 、2log y =C 、21log y x=D 、2log (45)y x x =-+12、已知()log x+1 (01)ag x a a =>≠且正在()10-,上有()0g x >,则1()x f x a+=是( )A 、正在(),0-∞上是减少的B 、正在(),0-∞上是缩小的C 、正在(),1-∞-上是减少的D 、正在(),0-∞上是缩小的二、挖空题:(本题同4小题,每小题4分,同16分,请把问案挖写正在问题纸上) 13、若2log 2,log 3,m n a a m n a +===.14、函数(-1)log (3-)x y x =的定义域是. 15、2lg 25lg 2lg50(lg 2)++=. 16、函数()2()lg 1f x x x=+是(奇、奇)函数.三、解问题:(本题同3小题,同36分,解允许写出笔墨道明,道明历程或者演算步调.) 17、已知函数1010()1010x xxxf x ---=+,推断()f x 的奇奇性战单调性.18、已知函数222(3)lg 6x f x x -=-,(1)供()f x 的定义域; (2)推断()f x 的奇奇性. 19、已知函数2328()log 1mx x nf x x ++=+的定义域为R ,值域为[]0,2,供,m n 的值. 一、采用题1.下列所给出的函数中,是幂函数的是()A .3x y -=B .3-=x yC .32x y =D .13-=x y 2.函数3y x =( )A .是奇函数,且正在R 上是单调删函数B .是奇函数,且正在R 上是单调减函数C .是奇函数,且正在R 上是单调删函数D .是奇函数,且正在R 上是单调减函数 3.函数43y x =的图象是()4.下列函数中既是奇函数又正在(,0)-∞上是删函数的是()A .43y x =B .32y x = C .2y x -= D .14y x-=5.幂函数()3521----=m x m m y ,当x ∈(0,+∞)时为减函数,则真数m 的值为()A.m =2B.m =-1C.m =-1或者m =2D.251±≠m6.当0<x <1时,f(x)=x2,21)(x x g =,h(x)=x -2的大小闭系是( )A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x)C.g(x)<h(x)<f(x)D.f(x)<g(x)<h(x)7. 函数2-=x y 正在区间]2,21[上的最大值是( )A .41B .1-C .4D .4-8. 函数3x y =战31x y =图象谦 ()A .闭于本面对于称B .闭于x 轴对于称C .闭于y 轴对于称D .闭于曲线x y =对于称9. 函数R x x x y ∈=|,|,谦脚 ()A .是奇函数又是减函数B .是奇函数又是删函数C .是奇函数又是删函数D .是奇函数又是减函数10.正在下列函数中定义域战值域分歧的是( )A.31x y = B.21-=x y C.35x y = D.32xy =11.如图所示,是幂函数αx y =正在第一象限的图象,比较1,,,,,04321αααα的大小为() A .102431<<<<<αααα B .104321<<<<<αααα C .134210αααα<<<<< D .142310αααα<<<<<12.设(),125212+⨯-=-x x x f 它的最小值是( ) (A )21- (B )3- (C )169-(D )0二、挖空题13.函数2223()(1)m m f x m m x --=--是幂函数,且正在(0,)x ∈+∞上是减函数,则真数m =____14.函数y x =-32的定义域是15.下列命题中,精确命题的序号是 __________(写出您认为精确的所有序号)①当0=α时函数y x α=的图象是一条曲线;②幂函数的图象皆通过(0,0)战(1,1)面;③若幂函数y x α=是奇函数,则y x α=是定义域上的删函数;④幂函数的图象没有成能出当前第四象限.16.若22x x ≥,+∈R x ,则x 的与值范畴是____________。

指数函数、对数函数、幂函数练习题大全(答案)

指数函数、对数函数、幂函数练习题大全(答案)

一、选择题(每小题4分,共计40分)之蔡仲巾千创作1.下列各式中成立的一项是( )A .7177)(m n mn=B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( ) A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( )A .f(x+y)=f(x)·f(y)B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n ∈= D .)()]([·)]([)]([+∈=N n y f x f xy f n n n 4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数x a y =在[-1,1]上的最年夜值与最小值的差是1,则底数a 即是 ( ) A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x a x 的解的个数为( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( ) A .]1,0(B .)1,0(C .),0(+∞D .R 8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的年夜小关系为. 12.不用计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是.16.界说运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()x x x f -⊗=22的值域为_________________17.如图所示的是某水池中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超越230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月;④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是.三、解答题:(10+10+12=32分) 18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122aa-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最年夜值是14,求a 的值.20.(1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?1 0 t/月2 3一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 暗示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、23a a - 2、2log (2)log log a a a M N M N -=+,则NM 的值为( )A 、41 B 、4 C 、1 D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1ya a a x m n x+==-则即是( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg7)lg lg5lg70x x +++=的两根是,αβ,则αβ的值是( )A 、lg5lg 7B 、lg 35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -即是( ) A 、13B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -=的界说域是( )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( ) A 、 1 m n >> B 、1n m >> C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x=D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题:(本题共4小题,每小题4分,共16分,请把谜底填写在答题纸上)13、若2log 2,log 3,m n a a m n a +===. 14、函数(-1)log (3-)x y x =的界说域是. 15、2lg 25lg 2lg50(lg 2)++=.16、函数)()lgf x x =是(奇、偶)函数.三、解答题:(本题共3小题,共36分,解承诺写出文字说明,证明过程或演算步伐.)17、已知函数1010()1010x xx x f x ---=+,判断()f x 的奇偶性和单调性.18、已知函数222(3)lg 6x f x x -=-,(1)求()f x 的界说域; (2)判断()f x 的奇偶性. 19、已知函数2328()log 1mx x nf x x ++=+的界说域为R ,值域为[]0,2,求,m n 的值. 一、选择题1.下列所给出的函数中,是幂函数的是()A .3x y -=B .3-=x yC .32x y =D .13-=x y 2.函数3y x =( )A .是奇函数,且在R 上是单调增函数B .是奇函数,且在R 上是单调减函数C .是偶函数,且在R 上是单调增函数D .是偶函数,且在R 上是单调减函数3.函数43y x =的图象是()4.下列函数中既是偶函数又在(,0)-∞上是增函数的是()A .43y x = B .32y x = C .2y x -= D .14y x-=5.幂函数()3521----=m x m m y ,当x∈(0,+∞)时为减函数,则实数m 的值为()A.m =2B.m =-1C.m =-1或m =2D.251±≠m6.当0<x <1时,f(x)=x2,21)(x x g =,h(x)=x -2的年夜小关系是( )A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x)C.g(x)<h(x)<f(x)D.f(x)<g(x)<h(x)7. 函数2-=x y 在区间]2,21[上的最年夜值是( )A .41B .1-C .4D .4-8. 函数3x y =和31x y =图象满 ()A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称9. 函数R x x x y ∈=|,|,满足 ()A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数10.在下列函数中界说域和值域分歧的是( )A.31x y = B.21-=x y C.35x y =D.32xy =11.如图所示,是幂函数αx y =在第一象限的图象,比力1,,,,,04321αααα的年夜小为() A .102431<<<<<αααα B .104321<<<<<αααα C .134210αααα<<<<< D .142310αααα<<<<<12.设(),125212+⨯-=-x x x f 它的最小值是( ) (A )21- (B )3- (C )169- (D )0二、填空题13.函数2223()(1)m m f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =____1415,正确命题的序号是 __________(写出你认为正确的所有序号)①那时0=α函数y x α=的图象是一条直线;②幂函数的图象都经过(0,0)和(1,1)点;③若幂函数y x α=是奇函数,则y x α=是界说域上的增函数; ④幂函数的图象不成能呈现在第四象限. 16.若22x x ≥,+∈R x ,则x 的取值范围是____________。

指数函数、对数函数、幂函数练习题大全(答案)

指数函数、对数函数、幂函数练习题大全(答案)

一.选择题(每小题4分,共计40分) 【1 】1.下列各式中成立的一项是( )A .7177)(m n mn =B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的成果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不准确...的是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x a x 的解的个数为( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,知足1)(>x f 的x 的取值规模( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列准确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二.填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为.12.不必盘算器盘算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值规模是.16.界说运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________(2m )与时光t (月)的关系:ty a =,有以下论述:② 第5个月时,浮萍的面积就会超出230m ; ③ 浮萍从24m 舒展到212m 须要经由1.5个月; ④ 浮萍每个月增长的面积都相等;⑤ 若浮萍舒展到22m .23m .26m 所经由的时光 分离为1t .2t .3t ,则123t t t +=. 个中准确的是.三.解答题:(10+10+12=32分) 18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并应用图象答复:k 为何值时,方程|31|x k -=无解?有一解?有两解?一.选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是相符标题请求的)1.已知32a=,那么33log 82log 6-用a 暗示是( )A.2a -B.52a -C.23(1)a a -+ D. 23a a - 2.2log (2)log log a a a M N M N -=+,则NM的值为( ) A.41B.4C.1D.4或1 3.已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a aa x m n x+==-则等于( ) A.m n + B.m n - C.()12m n + D.()12m n -4.假如方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是A.lg5lg7B.lg35C.35D.351 5.已知732log [log (log )]0x =,那么12x -等于( )A.136.函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A.x 轴对称 B.y 轴对称 C.原点对称 D.直线y x =对称7.函数(21)log x y -= )A.()2,11,3⎛⎫+∞⎪⎝⎭B.()1,11,2⎛⎫+∞⎪⎝⎭C.2,3⎛⎫+∞⎪⎝⎭ D.1,2⎛⎫+∞ ⎪⎝⎭8.函数212log (617)y x x =-+的值域是( )A.RB.[)8,+∞C.(),3-∞-D.[)3,+∞ 9.若log 9log 90m n <<,那么,m n 知足的前提是( ) A. 1 m n >> B.1n m >> C.01n m <<< D.01m n <<< 10.2log 13a <,则a 的取值规模是( ) A.()20,1,3⎛⎫+∞ ⎪⎝⎭B.2,3⎛⎫+∞⎪⎝⎭ C.2,13⎛⎫ ⎪⎝⎭ D.220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11.下列函数中,在()0,2上为增函数的是( )A.12log (1)y x =+ B.2log y =C.21log y x = D.2log (45)y x x =-+ 12.已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a+=是A.在(),0-∞上是增长的B.在(),0-∞上是削减的C.在(),1-∞-上是增长的D.在(),0-∞上是削减的二.填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13.若2log 2,log 3,m na a m n a+===.14.函数(-1)log (3-)x y x =的界说域是. 15.2lg 25lg 2lg 50(lg 2)++=. 16.函数()2()lg1f x x x =+是(奇.偶)函数.三.解答题:(本题共3小题,共36分,解答应写出文字解释,证实进程或演算步调.)17.已知函数1010()1010x xx x f x ---=+,断定()f x 的奇偶性和单调性.18.已知函数222(3)lg 6x f x x -=-,(1)求()f x 的界说域; (2)断定()f x 的奇偶性.19.已知函数2328()log 1mx x nf x x ++=+的界说域为R ,值域为[]0,2,求,m n 的值. 一.选择题1.下列所给出的函数中,是幂函数的是()A .3x y -=B .3-=x y C .32x y =D .13-=x y2.函数3yx =( )A .是奇函数,且在R 上是单调增函数B .是奇函数,且在R 上是单调减函数C .是偶函数,且在R 上是单调增函数D .是偶函数,且在R 上是单调减函数 3.函数43y x =的图象是()4.下列函数中既是偶函数又在(,0)-∞上是增函数的是()A .43y x = B .32y x = C .2y x -= D .14y x -=5.幂函数()3521----=m xm m y ,当x∈(0,+∞)时为减函数,则实数m 的值为()A.m =2B.m =-1C.m =-1或m =2D.251±≠m 6.当0<x <1时,f(x)=x 2,21)(x x g =,h(x)=x -2的大小关系是( )A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x)C.g(x)<h(x)<f(x)D.f(x)<g(x)<h(x) 7. 函数2-=xy 在区间]2,21[上的最大值是( )A .41B .1-C .4D .4- 8. 函数3x y =和31x y =图象满 ()A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称9. 函数R x x x y ∈=|,|,知足 ()A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数10.鄙人列函数中界说域和值域不合的是( )A.31x y = B.21-=xy C.35x y = D.32x y =11.如图所示,是幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小为() A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<12.设(),125212+⨯-=-x xx f 它的最小值是( )(A )21-(B )3- (C )169- (D )0二.填空题13.函数2223()(1)mm f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =____14.函数y x=-32的界说域是15.下列命题中,准确命题的序号是 __________(写出你以为准确的所有序号)①当0=α时函数y x α=的图象是一条直线; ②幂函数的图象都经由(0,0)和(1,1)点;③若幂函数y x α=是奇函数,则y x α=是界说域上的增函数; ④幂函数的图象不成能出如今第四象限. 16.若22xx ≥,+∈R x ,则x 的取值规模是____________。

幂函数、指数函数、对数函数专练习题(含答案)

幂函数、指数函数、对数函数专练习题(含答案)

若 x≥0,则 3x≥2x≥1,∴ f (3 x) ≥f (2 x) .
若 x<0,则 3x<2x<1,∴ f (3 x)> f (2 x) .
∴f
(3
x
)

f
(2
x
)

答案: A
3. 解析:由于函数 y= |2 x-1| 在 ( -∞, 0) 内单调递减,在 (0 ,+∞ ) 内单调递增,而函数在 区间 ( k- 1, k+ 1) 内不单调,所以有 k-1<0<k+ 1,解得- 1<k<1.
1 f ( x)< ,则实数
a 的取值范围
2
是(
)
1 A. (0 , ] ∪ [2 ,+∞ )
2
1 B. [ , 1) ∪ (1,4]
4
1 C. [ 2, 1) ∪ (1,2]
1
D.
(0

) 4

[4
,+∞)
二、填空题
7.函数 y= ax( a>0,且 a≠1) 在 [1,2] 上的最大值比最小值大
u( x) 在 (1,2) 上单调递增,则 u( x)> u(1) = a- 3,即 a≥3. 答案: B 5. 解析:数列 { an} 满足 an= f ( n)( n∈ N*) ,则函数 f ( n) 为增函数,
x
B
、 y log 2 x2 1
D、 y log 1 (x2 4x 5)
2
12 、 已 知 g( x) loga x+1 (a 0且a 1) 在 1,0 上 有 g( x ) 0, 则 f ( x) a x 1 是


A、在 ,0 上是增加的

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。

指数函数、对数函数、幂函数练习题大全(答案)

指数函数、对数函数、幂函数练习题大全(答案)

一、选择题(每小题4分,共计40分)之杨若古兰创作1.以下各式中成立的一项是( )A .7177)(m n mn =B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则以下等式中不准确...的是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n ∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nn n4.函数21)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ( ) A .215+ B .215- C .215± D .251±6.方程)10(2||<<=a x a x 的解的个数为( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( ) A .]1,0(B .)1,0(C .),0(+∞D .R 8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x的取值范围( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或 9.已知2)(xx e e x f --=,则以下准确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为. 12.不必计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式xx 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________. 14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是.16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()x x x f -⊗=22的值域为_________________(2m )与时间t (月)的关系:t y a =,有以下论述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超出230m ; ③ 浮萍从24m 蔓延到212m 须要经过1.5个月; ④ 浮萍每个月添加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间分别为1t 、2t 、3t ,则123t t t +=. 其中准确的是.三、解答题:(10+10+12=32分) 18.已知17a a -+=,求以下各式的值:(1)33221122a a a a----; (2)1122aa-+; (3)22(1)aa a -->.)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:1 0 t/月2 3k 为什么值时,方程|31|x k -=无解?有一解?有两解?一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只要一项是符合题目请求的) 1、已知32a =,那么33log 82log 6-用a 暗示是( ) A 、2a - B 、52a - C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM 的值为( )A 、41 B 、4 C 、1 D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n + D 、()12m n -4、如果方程2lg (lg5lg7)lg lg5lg70x x +++=的两根是,αβ,则αβ的值是( )A 、lg5lg 7B 、lg 35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( ) A 、13B 、D 、6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( ) A 、 1 m n >> B 、1n m >> C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭11、以下函数中,在()0,2上为增函数的是( ) A 、12log (1)y x =+B 、2log y =C 、21log y x=D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a+=是( )A 、在(),0-∞上是添加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是添加的D 、在(),0-∞上是减少的 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m n a a m n a +===. 14、函数(-1)log (3-)x y x =的定义域是. 15、2lg 25lg 2lg50(lg 2)++=.16、函数)2()lg 1f x x x=+是(奇、偶)函数.三、解答题:(本题共3小题,共36分,解答应写出文字说明,证实过程或演算步调.) 17、已知函数1010()1010x xx xf x ---=+,判断()f x 的奇偶性和单调性. 18、已知函数222(3)lg 6x f x x -=-,(1)求()f x 的定义域; (2)判断()f x 的奇偶性. 19、已知函数2328()log 1mx x nf x x ++=+的定义域为R,值域为[]0,2,求,m n 的值.一、选择题1.以下所给出的函数中,是幂函数的是()A .3x y -=B .3-=x yC .32x y =D .13-=x y 2.函数3y x =( )A .是奇函数,且在R 上是单调增函数B .是奇函数,且在R 上是单调减函数C .是偶函数,且在R 上是单调增函数D .是偶函数,且在R 上是单调减函数3.函数43y x =的图象是()4.以下函数中既是偶函数又在(,0)-∞上是增函数的是()A .43y x = B .32y x = C .2y x -= D .14y x-=5.幂函数()3521----=m x m m y ,当x∈(0,+∞)时为减函数,则实数m 的值为()A.m =2B.m =-1C.m =-1或m =2D.251±≠m6.当0<x <1时,f(x)=x 2,21)(x x g =,h(x)=x -2的大小关系是( )A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x)C.g(x)<h(x)<f(x)D.f(x)<g(x)<h(x)7. 函数2-=x y 在区间]2,21[上的最大值是( )A .41B .1-C .4D .4-8. 函数3x y =和31x y =图象满 ()A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称9. 函数R x x x y ∈=|,|,满足 ()A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数10.在以下函数中定义域和值域分歧的是( )A.31x y = B.21-=x y C.35x y = D.32xy =11.如图所示,是幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小为() A .102431<<<<<αααα B .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<12.设(),125212+⨯-=-x x x f 它的最小值是( ) (A )21- (B )3- (C )169-(D )0二、填空题13.函数2223()(1)m m f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =____14.函数y x =-32的定义域是15.以下命题中,准确命题的序号是 __________(写出你认为准确的所有序号)①当0=α时函数y x α=的图象是一条直线;②幂函数的图象都经过(0,0)和(1,1)点;③若幂函数y x α=是奇函数,则y x α=是定义域上的增函数;④幂函数的图象不成能出此刻第四象限.16.若22x x ≥,+∈R x ,则x 的取值范围是____________。

(完整版)指数函数对数函数幂函数单元测试题(有答案)精品资料

(完整版)指数函数对数函数幂函数单元测试题(有答案)精品资料

指数函数、对数函数、幂函数测试题一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)l.设指数函数C1:y=a x,C2:y=b x,C3:y=c x的图象如图,则()A.0<c<1<b<a B.0<a<1<b<c C.c<b<a D.0<c<1<a<b2.函数y=a x-1(a>0,a≠1)过定点,则这个定点是()A.(0,1)B.(1,2)C.(-1,0.5)D.(1,1)3.若函数y=f(x)的图象与y=2-x的图象关于y轴对称,则f(3)=()A.8 B.4 C.81D.414.若指数函数y=a x经过点(-1,3),则a等于()A.3 B.31C.2 D.215.函数y=f(x)的图象与y=21-x的图象关于直线x=1对称,则f(x)为()A.y=2x-1 B.y=2x+1 C.y=2x-2 D.y=22-x6.对于∀x1,x2∈R(注:∀表示“任意”),恒有f(x1)·f(x2)=f(x1+x2)成立,且f(1)=2,则f(6)=()A.22B.4 C.2D.87.若函数f(x)=log a x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a=()A.41B.21C.22D.428.在同一坐标系中,函数y=2-x与y=log2x的图象是()9.设函数⎪⎩⎪⎨⎧>≤-=-).(),(12)(21xxxxfx若f(x0)>1,则x0的取值范围是()A.(-1,1) B.(-∞,-2)∪(0,+∞)C.(-1,+∞) D.(-∞,-1)∪(1,+∞)10.已知0<m<n<1,则a=log m(m+1)与b=log n(n+1)的大小关系是()A.a>b B.a=bf C.a<b D.不能确定11.设函数F(x)=f(x)-)(1x f ,其中x-log 2f(x)=0,则函数F(x)是( ) A.奇函数且在(-∞,+∞)上是增函数 B.奇函数且在(-∞,+∞)上是减函数 C.偶函数且在(-∞,+∞)上是增函数 D.偶函数且在(-∞,+∞)上是减函数12.已知函数f(x)=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数f(x)x在区间(1,+∞)上A .有两个零点B .有一个零点C .无零点D .无法确定二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知对数函数C 1:y =log a x ,C 2:y =log b x ,如图所示,则a 、b 的大小是__________.14.函数)34(log 5.0-=x y 的定义域是__________. 15.(1)计算:log 2.56.25+lg 1001+ln e +3log 122+= . (2).0.02731--(-71)-2+25643-3-1+(2-1)0=________.16.已知f (e x )=x ,则f (5)等于_________________3log 9log 28的值是__________________________ 三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明、证明过程或演算步骤)17.已知二次函数()f x 满足(0)1f =,及(1)()2f x f x x +-=. (1)求()f x 的解析式;(2)若()(log )(01)a g x f x a a =>≠且,1,x a a ⎡⎤∈⎢⎥⎣⎦,试求()g x 的值域.18.当某种药品注射到人体内,它在血液中的残留量成指数型函数衰减.(1)药品A 在血液中的残留量可以用以下指数型函数描述:y =5e -0.2t ,其中,t 是注射一剂药A 后的时间(单位:h ),y 是药品A 在人体内的残留量(单位:mg ).描出这个函数图象,求出y 的初始值,当t =20时,y 值是多少?(2)另一种药品B 在人体中的残留量可以表示成y =5e -0.5t .与药品A 相比,它在人体内衰减得慢还是快?19.已知函数f (x )=log a11--x mx(a >0,a ≠1)是奇函数. (1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性.21.设函数)(x f 对于x 、y ∈R 都有)()()(y f x f y x f +=+,且x <0时,)(x f <0,2)1(-=-f . (1)求证:函数)(x f 是奇函数;(2)试问)(x f 在]4,4[-∈x 上是否有最值?若有,求出最值;若无,说明理由.(3)解关于x 的不等式)()(21)()(2122b f x b f x f bx f ->-(0≤b ).21.设函数2()21xf x a =-+.(1)证明:不论a 为何实数函数)(x f 总为增函数; (2)当)(x f 为奇函数时,求函数)(x f 的值域。

(完整版)指数函数对数函数幂函数单元测试题

(完整版)指数函数对数函数幂函数单元测试题

指数函数、对数函数、幂函数测试题一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)l.设指数函数C1:y=a x,C2:y=b x,C3:y=c x的图象如图,则()A.0<c<1<b<a B.0<a<1<b<c C.c<b<a D.0<c<1<a<b2.函数y=a x-1(a>0,a≠1)过定点,则这个定点是()A.(0,1)B.(1,2)C.(-1,0.5)D.(1,1)3.若函数y=f(x)的图象与y=2-x的图象关于y轴对称,则f(3)=()A.8 B.4 C.81D.414.若指数函数y=a x经过点(-1,3),则a等于()A.3 B.31C.2 D.215.函数y=f(x)的图象与y=21-x的图象关于直线x=1对称,则f(x)为()A.y=2x-1 B.y=2x+1 C.y=2x-2 D.y=22-x6.对于∀x1,x2∈R(注:∀表示“任意”),恒有f(x1)·f(x2)=f(x1+x2)成立,且f(1)=2,则f(6)=()A.22B.4 C.2D.87.若函数f(x)=log a x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a=()A.41B.21C.22D.428.在同一坐标系中,函数y=2-x与y=log2x的图象是()9.设函数⎪⎩⎪⎨⎧>≤-=-).(),(12)(21xxxxfx若f(x0)>1,则x0的取值范围是()A.(-1,1) B.(-∞,-2)∪(0,+∞)C .(-1,+∞)D .(-∞,-1)∪(1,+∞)10.已知0<m <n <1,则a =log m (m +1)与b =log n (n +1)的大小关系是( ) A .a >b B .a =bf C .a <b D .不能确定 11.设函数F(x)=f(x)-)(1x f ,其中x-log 2f(x)=0,则函数F(x)是( ) A.奇函数且在(-∞,+∞)上是增函数 B.奇函数且在(-∞,+∞)上是减函数 C.偶函数且在(-∞,+∞)上是增函数 D.偶函数且在(-∞,+∞)上是减函数12.已知函数f(x)=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数f(x)x在区间(1,+∞)上A .有两个零点B .有一个零点C .无零点D .无法确定二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知对数函数C 1:y =log a x ,C 2:y =log b x ,如图所示,则a 、b 的大小是__________.14.函数)34(log 5.0-=x y 的定义域是__________. 15.(1)计算:log 2.56.25+lg 1001+ln e +3log 122+= . (2).0.02731--(-71)-2+25643-3-1+(2-1)0=________.16.已知f (e x )=x ,则f (5)等于_________________3log 9log 28的值是__________________________ 三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明、证明过程或演算步骤)17.已知二次函数()f x 满足(0)1f =,及(1)()2f x f x x +-=. (1)求()f x 的解析式;(2)若()(log )(01)a g x f x a a =>≠且,1,x a a ⎡⎤∈⎢⎥⎣⎦,试求()g x 的值域.18.当某种药品注射到人体内,它在血液中的残留量成指数型函数衰减.(1)药品A 在血液中的残留量可以用以下指数型函数描述:y =5e -0.2t ,其中,t 是注射一剂药A后的时间(单位:h ),y 是药品A 在人体内的残留量(单位:mg ).描出这个函数图象,求出y 的初始值,当t =20时,y 值是多少?(2)另一种药品B 在人体中的残留量可以表示成y =5e -0.5t .与药品A 相比,它在人体内衰减得慢还是快?19.已知函数f (x )=log a 11--x mx(a >0,a ≠1)是奇函数.(1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性.21.设函数)(x f 对于x 、y ∈R 都有)()()(y f x f y x f +=+,且x <0时,)(x f <0,2)1(-=-f . (1)求证:函数)(x f 是奇函数;(2)试问)(x f 在]4,4[-∈x 上是否有最值?若有,求出最值;若无,说明理由.(3)解关于x 的不等式)()(21)()(2122b f x b f x f bx f ->-(0≤b ).21.设函数2()21x f x a =-+.(1)证明:不论a 为何实数函数)(x f 总为增函数; (2)当)(x f 为奇函数时,求函数)(x f 的值域。

幂函数、指数函数、对数函数专练习题含答案

幂函数、指数函数、对数函数专练习题含答案

高中数学对数函数、指数函数、幂函数练习题 1. 函数f (x )=x 21-的定义域是A.(-∞,0]B.[0,+∞)C.(-∞,0)D.(-∞,+∞) 2. 函数x y 2log =的定义域是A.(0,1]B. (0,+∞)C. (1,+∞)D.[1,+∞)3. 函数y =A.(3,+∞)B.[3, +∞)C.(4, +∞)D.[4, +∞)4. 若集合{|2},{|x M y y N y y ====,则M N ⋂= A.}1|{≥y y B.}1|{>y y C.}0|{>y y D.}0|{≥y y5. 函数y = -11-x 的图象是 6. 函数y =1-11-x , 则下列说法正确的是在(-1,+∞)内单调递增 在(-1,+∞)内单调递减 在(1,+∞)内单调递增 在(1,+∞)内单调递减7. 函数y =的定义域是A. (2,3)B. [2,3)C.[2,)+∞D. (,3)-∞8. 函数xx x f 1)(+=在]3,0(上是 A.增函数 B.减函数C.在]10,(上是减函数,]31[,上是增函数D.在]10,(上是增函数,]31[,上是减函数 9. 的定义域是函数 )2(x lg y -=A.(-∞,+∞)B.(-∞,2)C.(-∞,0] D(-∞,1]10. 的取值范围是则若设函数o xx x x x f ,1)f(x 0)(x )0(,12)(o >⎪⎩⎪⎨⎧>≤-=-11. 21||x y =函数A.是偶函数,在区间(﹣∞,0)上单调递增B.是偶函数,在区间(﹣∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减 12. 的定义域是函数xx x y -+=||)1(013. 函数y =的定义域是A.[1,)+∞B.23(,)+∞C.23[,1]D.23(,1]14. 下列四个图象中,函数xx x f 1)(-=的图象是15. 设A 、B 是非空集合,定义A ×B={x |x ∈A ∪B 且x ∉A ∩B}.已知A={x |y =22x x -},B={y |y =2x ,x >0},则A ×B 等于A.[0,1)∪(2,+∞)B.[0,1]∪[2,+∞)C.[0,1]D.[0,2]16. 设a =,b =2,c =log 3.02,则 A a >c >b >b >c C. b >c >a D. c >b >a 17. 已知点33(39在幂函数()y f x =的图象上,则()f x 的表达式是 A.()3f x x =B.3()f x x =C.2()f x x -=D.1()()2x f x =18. 已知幂函数αx x f =)(的部分对应值如下表:1 1则不等式1)(<x f 的解集是A.{}20≤<x xB.{}40≤≤x xC.{}22≤≤-x x D.{}44≤≤-x x 19. 已知函数的值为),则,的值域为)1(0[93)(2f a ax x f x ∞+--+=指数函数习题一、选择题1.定义运算a ?b =⎩⎪⎨⎪⎧a ?a ≤b ?b ?a >b ?,则函数f (x )=1?2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x)与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ?B ,则正数a 的取值范围( )A .a >3B .a ≥3C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧?3-a ?x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________. 三、解答题10.求函数y =2的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x+2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( ) A 、lg5lg7gB 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( )A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。

幂函数、指数函数和对数函数单元测试及参考答案

幂函数、指数函数和对数函数单元测试及参考答案

《幂函数、指数函数和对数函数》单元测试一、填空题1.函数1lg(3)y x=-的定义域是________________.2.已知3log 10a =,27log 25b =,用a 、b 表示lg 5=____________. 3.函数2(log )x y a =是减函数,则a 的取值范围是____________. 4.已知252222xx +-=,则2lg(1)x +=____________.5.若2log 13a<,则a 的取值范围是____________. 6.函数213log (54)y x x =--的单调递减区间为____________.7.已知函数2log ,0()3,x x x f x x >⎧=⎨⎩≤,则1()4f f ⎡⎤=⎢⎥⎣⎦____________.8.函数2y x =(1x -≤)的反函数为___________________. 9.设函数12()x f x a-=,且(lg )f a =a 的值为__________.10.2log (2)x +=的实数解的个数为________个.11.已知()log a f x x b =+为偶函数,且在(0,)+∞上递减,则(2)f b +_____(1)f a +(选填“>”或“<”) .12.关于函数21()lg x f x x+=(x ∈R ,0x ≠)的下列命题:①函数()y f x =的图像关于y 轴对称;②函数()y f x =的最小值为lg 2;③当0x >时,()f x 是增函数;当0x <时,()f x 是减函数; ④()f x 在[)1,0-、[)1,+∞上是增函数; ⑤()f x 无最大值,也吴最小值. 其中正确命题的序号是______________.二、选择题13.下列函数中既不是奇函数也不是偶函数的是( )A .23x y = B .x x y e e -=+C .lg(y x =D .1lg2y x =- 14.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年后的剩留量为y ,则x 、y 之间的函数关系是( )A .1000.9576xy =B .1000.9576x y =C .0.9576()100xy =D .1001(0.0424)x y =-15.函数()2x f x a m =⋅+的图像经过点(1,3),又其反函数图像经过点(2,0),则()f x 的表达式为( )A .()21xf x =+ B .3()262xf x =-⋅+ C .3()22x f x =⋅D .3()262xf x =⋅+ 16.如果1m n >>,(0,1)x ∈,则下列不等式正确的是( )A .xxm n <B .m nx x < C .log log x x m n >D .log log m n x x <三、解答题17.解方程:122log (44)log (23)x x x ++=+-.18.已知222()21x xa a f x ⋅+-=+. (1)当1a =时,求()f x 的反函数;(2)若()f x 在定义域上单调递增,求实数a 的取值范围.19.已知2()f x x x k =-+,若2log ()2f a =,2(log )f a k =(1a ≠).(1)求a 、k 的值;(2)当x 为何值时,2(log )f x 有最小值?并求出最小值.20.记函数1()()f x f x =,2(())()f f x f x =,它们的定义域的交集为A .若对于任意的x A ∈,都有2()f x x =,则称()f x 是集合M 中的元素.(1)判断()2f x x =-+,()31g x x =-,21()2x h x x +=-是否是M 中的元素? (2)若()l o g (1)xaf x a=-(1a >),求它的反函数1()f x -,并判断1()f x -是否属于M .参考答案1.1(,0)(,)3-∞∞ 2.32b a 3.(1,2) 4.15.2(0,)(1,)3∞6.(5,2)--7.198.y =1x ≥) 9.10 10.111.<12.①②④13.D14.A15.A16.B17.2x = 18.(1)121()log 1xfx x-+=-(11x -<<) (2)12a -<< 19.(1)2a =,2k =(2)当x =2min 7(log )4f x =20.(1)()f x M ∈,()h x M ∈,()g x M ∉ (2)1()f x M -∈。

(完整版)幂函数、指数函数、对数函数专练习题(含答案)

(完整版)幂函数、指数函数、对数函数专练习题(含答案)

精心整理1.函数f(x)= . 1 2x的定义域是A. ( —x, 0]B.[0,+x)C. ( —X, 0)D. (―^,+呵2•函数y . log2 x的定义域是A. (0,1]B.(0,+x)C.(1,+x)D.[1,+x)3. 函数y Jog2 ^2的定义域是A.(3,+x )B.[3,+x )C.(4,+x )D.[4,+x)4. 若集合M {y | y 2x}, N {y | y . x 1},贝"M NA.{y|y 1}B.{y|y 1} C{y|y 0}D.{y|y 0}5. 函数y二-1的图象是x 16. 函数y=1 ——,则下列说法正确的是x 1A.y在(—1,+x)内单调递增B.y在(—1,+x)内单调递减Cy在(1,+x)内单调递增 D.y在(1,+x)内单调递减7. 函数y Jog°.5(3 x)的定义域是A.(2,3)B.[2,3) C[2, )D.( ,3)8. 函数f(x) x 在(0,3]上是xA.增函数B.减函数C在(0,1]上是减函数,[1,3]上是增函数。

.在(0,1]上是增函数,[1,3]上是减函数9. 函数y \ lg (2 x)的定义域是A.(-x, +X)B.(-x, 2)C.(-x, 0]D(-x, 1]— 2 x1,(x 0)10. 设函数f(x) 若f(X o) 1,则X o的取值范围是V x (x 0)11. 函数y |x|2A.是偶函数,在区间(-x ,0)上单调递增B.是偶函数,在区间(-x ,0)上单调递减C是奇函数,在区间(0,+x)上单调递增D.是奇函数,在区间(0,+x)上单调递减精心整理12. 函数y "―1)—的定义域是13. 函数y log i (3x 2)的定义域是A.[1, )B.(3, )C.[|,1]D.(3,1]14. 下列四个图象中,函数f(x) x 1的图象是x15. 设A、B是非空集合,定义A X B={x| x € A U B且x A A B}.已知A={x| y= 2x x2},B={y| y=2x,x>0},则A X B 等于A. :0,1)U (2,u)B. :0,1]U[ 2,+乂)C. :0,1]D. :0,2]16. 设a=20.|,b=0.32,c=log2.|,则Aa> c> bB.a> b> cC.b> c> aD.c> b> a17. 已知点「八3)在幕函数y f(x)的图象上,贝S f(x)的表达式是3 9「J-i 广一”:八, /■/1A. f(x) 3xB. f(x) x3C.f (x) x 2D. f (x)(一厂218. 已知幕函数f(x) x的部分对应值如下表:则不等式f (|x) 1的解集是A. x0 x 42B. x|o x 4C. 弋2 x V2D. x 4 x 419.已知函数f(x) x ax 3a 9的值域为[0,),则f (1)的值为A.3B.4C.5D.6I I \ 、指数函数习题一、选择题1. 定义运算a?b= ?a< b?,b?a>b?)),则函数f(x) =1?2x的图象大致为()2 .函数f (x) = x2- bx+ c 满足f (1 + x) = f (1 —x)且f (0) = 3,则f ( b x)与f (c x)的大小关系是()A. f(b x) <f (c x) 精心整理精心整理B. f(b x) >f(c x)C. f(b x)>f(c x)D. 大小关系随x的不同而不同3. 函数y = |2x- 1|在区间(k —1, k +1)内不单调,则k的取值范围是()A. ( —1,+切B.(―汽1)C. ( —1,1)D. (0,2)4. 设函数f(x) =ln[( x —1)(2 —x)]的定义域是A,函数g(x) = lg( —1)的定义域是B. 若A?B,则正数a的取值范围()A. a>3B. a>3C. a>D. a>5. 已知函数f (x)=若数列{a n}满足a n = f(n)( n€ N*),且{a n}是递增数列,则实数a 的取值范围是()A. [ , 3)B. (, 3)C. (2,3)D. (1,3)6. 已知a>0且a z 1, f (x) = x2—a x,当x € ( —1,1)时,均有f (x)v,则实数a的取值范围是()A. (0 , ] U [2 ,+乂)B. [ , 1) U (1,4]C. [ , 1) U (1,2]D. (0 , ) U [4 ,+ = )二、填空题7. ___________________________________________________________________ 函数y=a x( a>0,且a z 1)在[1,2]上的最大值比最小值大,则a的值是__________________ .8. _____________________________________________________________ 若曲线|y| = 2x+ 1与直线y= b没有公共点,则b的取值范围是 ____________________ .9. (2011 •滨州模拟)定义:区间[X1, X2](X1«2)的长度为X2—心已知函数y = 2|x|的定义域为[a, b],值域为[1,2],则区间[a, b]的长度的最大值与最小值的差为6、1、已知3a 2,那么log 3 8 2log 3 6用a 表示是()A 、 a 2B 、 2、 2叽(皿 5a 2C 3a (1 a)2D 3a a 2Iog a N ,则M的值为() 2N) log a MA 、 3、 丄B 4C 1D 4 或 14已知 x 2 y 21,x 0, yA ,0,且 log a (1 x)m,log a ----------- n,则 log a y 等于()1 xA 、m n B m n C 、1 m 24、 A 、如果方程 lg 2x (Ig5 Ig 7)lg x丄35Ig5gg7 B 、lg35 C 35D 5、 A 、 1一 m n2lg5 clg 7 0的两根是,,贝卩g 的值是()1已知 Iog 7【log 3(log 2 x )] 0,那么 x 2 等于()1B > LC LD 1一3 2 ; 3 2.2 3*3 函数y Ig 2 1的图像关于()x 轴对称B 、y 轴对称C 、原点对称D 直线y x 对称 精心A 、11. (2011 •银川模拟)若函数y = a 2^2a x — 1(a >0且1)在x € [ —1,1]上的最大值 为14,求a 的值.12.已知函数 f (x ) = 3x , f (a + 2) = 18, g (x ) = X ・3ax — 4x 的定义域为[0,1]. (1)求a 的值;⑵ 若函数g (x )在区间[0,1]上是单调递减函数,求实数 入的取值范围.对数与对数函数同步练习、选择题 三、解答题 10.求函数y = 2x 3x4的定义域、值域和单调区间.7、函数y log(2x 1) .3r~2的定义域是()2 1A -,1 U 1, B、,1 U 1,3 2C、2, D !,3 2&函数y log1 (x26x 17)的值域是()2A、R B 8, C , 3 D 3,9、若log m9 log n9 0,那么m,n满足的条件是()A、m n 1B、n m 1C、0 n m 1D 0 m n 110、log a2 1,则a的取值范围是()3A、0, — U 1,B、2,C、—,1 D> 0,—U -2,3 3 3 3 311、下列函数中,在0,2上为增函数的是()A、y log1 (x 1)B、y log2、x2121 2C、y log2—D y log 1 (x 4x 5)x忑12、已知g(x) log a|x+1| (a 0且a 1)在1,0 上有g(x) 0,则f(x)是()A、在,0上是增加的B、在,0上是减少的C、在,1上是增加的D在,0上是减少的二、填空题13、若log a 2 m,log a 3 n,a2m n。

(完整word版)《第3章指数函数、对数函数和幂函数》单元测试含答案解析

(完整word版)《第3章指数函数、对数函数和幂函数》单元测试含答案解析

(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.log 22的值为________.解析:log 22=log 2212=12log 22=12. 答案:122.已知a 12=49(a >0),则log 23a =________. 解析:由a 12=49得a =(49)2=(23)4, ∴log 23a =log 23(23)4=4. 答案:43.已知x -1+x =22,且x >1,则x -x -1的值为________.解析:由x -1+x =22平方得x -2+2+x 2=8,则x -2-2+x 2=4,∴(x -1-x )2=4,又∵x >1,∴x -x -1=2.答案:24.函数y =lg(x +5)+ln (5-x )+x -1x -3的定义域为________. 解析:由⎩⎪⎨⎪⎧x +5>05-x >0x -1≥0x -3≠0得定义域为:[1,3)∪(3,5). 答案:[1,3)∪(3,5) 5.函数y =(12)x 2-2x +3的值域为________. 解析:设y =(12)u ,u =x 2-2x +3≥2,所以结合函数图象知,函数y 的值域为(0,14]. 答案:(0,14] 6.方程2-x +x 2=3的实数解的个数为________.解析:画出函数y =2-x 与y =3-x 2图象(图略),它们有两个交点,故方程2-x +x 2=3的实数解的个数为2.答案:27.若a =log 3π,b =log 76,c =log 20.8,则a ,b ,c 由大到小的顺序为________. 解析:利用中间值0和1来比较:a =log 3π>1,0<b =log 76<1,c =log 20.8<0,故a >b >c . 答案:a >b >c .8.设方程2x +x =4的根为x 0,若x 0∈(k -12,k +12),则整数k =________.解析:设y 1=2x ,y 2=4-x ,结合图象分析可知,仅有一个根x 0∈(12,32),故k =1. 答案:19.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元;现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________, .解析:出租车行驶不超过3 km ,付费9元;出租车行驶8 km ,付费9+2.15×(8-3)=19.75元;现某人乘坐一次出租车付费22.6元,故出租车行驶里程超过8 km ,且22.6-19.75=2.85,所以此次出租车行驶了8+1=9 km.答案:910.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则x ,y ,z 由大到小的顺序为________.解析:由对数运算法则知x =log a 6,y =log a 5,z =log a 7,又由0<a <1知y =log a x 在(0,+∞)上为减函数,∴y >x >z .答案:y >x >z11.已知函数f (x )满足:x ≥4,则f (x )=(12)x ;当x <4时,f (x )=f (x +1),则f (2+log 23)=________.解析:∵3<2+log 23<4,所以f (2+log 23)=f (3+log 23),且3+log 23>4,∴f (2+log 23)=f (3+log 23)=(12)3+log 23=18×(12)log 23=18×(12)log 1213=18×13=124. 答案:12412.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是________.解析:①是幂函数,由图象知其在(0,+∞)第一象限内为增函数,故此项不符合要求,②中的函数是由函数y =log 12x 向左平移一个单位而得到的,因原函数在(0,+∞)内为减函数,故此项符合要求,③中的函数图象是由函数y =x -1的图象保留x 轴上方,下方图象翻折到x 轴上方而得到的,故由其图象可知该图象符合要求,④中的函数为指数型函数,因其底数大于1,故其在R 上单调递增,不符合题意,所以②③正确.答案:②③13.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图象三等分,即有BM =M N =N A .那么,αβ=________. 解析:因为M ,N 为A ,B 的三等分点,所以M (13,23),N(23,13), ∴23=(13)α,∴α=log 1323, 同理β=log 2313,∴αβ=1. 答案:114.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价,该地区的电网销售则按这种计费方式该家庭本月应付的电费为________元(用数字作答).解析:由题意知:高峰时间段用电时,f (x )=⎩⎨⎧0.568x ,0≤x ≤500.568×50+0.598·(x -50),50<x ≤2000.568×50+0.598×150+0.668·(x -200),x >200, 低谷时间段用时,g (x )=⎩⎨⎧0.288x ,0≤x ≤500.288×50+0.318(x -50),50<x ≤2000.288×50+0.318×150+0.388(x -200),x >200, W =f (x )+g (x )=f (200)+g (100)=148.4(元).答案:148.4二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数. (1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0⇒b =1,∴f (x )=1-2x 2+2x +1. (2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1, 设x 1<x 2,则f (x 1)-f (x 2)=12x 1+1-12x 2+1 =2x 2-2x 1(2x 1+1)(2x 2+1). 因为函数y =2x 在R 上是增函数且x 1<x 2,∴2x 2-2x 1>0.又(2x 1+1)(2x 2+1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13. 或k <(3t 2-2t )min ⇒k <-13. 16.(本小题满分14分)(1)比较大小:0.70.8,0.80.7;(2)比较f (x )=log a (1-x ),g (x )=log a (1+x )(其中a >1)在公共定义域下的函数值的大小. 解:(1)因为指数函数y =0.7x 在R 上是减函数,所以0.70.7>0.70.8,又幂函数y =x 0.7在(0,+∞)是增函数,所以0.80.7>0.70.7,故0.80.7>0.70.8.(2)函数f (x )=log a (1-x ),g (x )=log a (1+x )的公共定义域是(-1,1),因为f (x )-g (x )=log a 1-x 1+x(a >1), 所以当-1<x <0时,1-x 1+x>1,此时f (x )>g (x ); 当x =0时,1-x 1+x=1,此时f (x )=g (x ); 当0<x <1时,0<1-x 1+x<1,此时f (x )<g (x ). 综上,当-1<x <0时,f (x )>g (x );当x =0时,f (x )=g (x );当0<x <1时,f (x )<g (x ).17.(本小题满分14分)若奇函数f (x )在定义域(-1,1)上是减函数,(1)求满足f (1-a )+f (-a )<0的a 的取值集合M ;(2)对于(1)中的a ,求函数F (x )=log a [1-(1a)2-x ]的定义域. 解:(1)不等式f (1-a )+f (-a )<0可化为f (1-a )<-f (-a ),而f (x )为奇函数,∴f (1-a )<f (a ),又f (x )在定义域(-1,1)上是减函数,∴⎩⎪⎨⎪⎧-1<1-a <1,-1<-a <1,1-a >a ,解得0<a <12, ∴M ={a |0<a <12}. (2)为使F (x )=log a [1-(1a)2-x ]有意义, 必须1-(1a )2-x >0,即(1a)2-x <1. 由0<a <12得1a>2, ∴2-x <0,∴x >2.∴函数的定义域为{x |x >2}.18.(本小题满分16分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.解:(1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|) =(40-t )(40-|t -10|)=⎩⎪⎨⎪⎧(30+t )(40-t ),(0≤t <10),(40-t )(50-t ),(10≤t ≤20).(2)当0≤t <10时,y 的取值范围是[1 200,1 225],在t =5时,y 取得最大值为1 225; 当10≤t ≤20时,y 的取值范围是[600,1 200],在t =20时,y 取得最小值为600. ∴第5天,日销售额y 取得最大值,为1 225元;第20天,日销售额y 取得最小值,为600元.所以,日销售额y 最大为1 225元,最小为600元.19.(本小题满分16分)已知函数f (x -3)=log a x 6-x(a >0,a ≠1). (1)判断f (x )的奇偶性,并且说明理由;(2)当0<a <1时,求函数f (x )的单调区间.解:令x -3=u ,则x =u +3,于是f (u )=log a 3+u 3-u(a >0,a ≠1,-3<u <3),所以f (x )=log a 3+x 3-x(a >0,a ≠1,-3<x <3). (1)因为f (-x )+f (x )=log a 3-x 3+x +log a 3+x 3-x=log a 1=0,所以f (-x )=-f (x ), 所以f (x )是奇函数.(2)令t =3+x 3-x =-1-6x -3在(-3,3)上是增函数, 当0<a <1时,函数y =log a t 是减函数,所以f (x )=log a 3+x 3-x(0<a <1)在(-3,3)上是减函数,即其单调递减区间是(-3,3). 20.(本小题满分16分)已知函数f (x )=log 2(2x +1).(1)求证:函数f (x )在(-∞,+∞)内单调递增;(2)若g (x )=log 2(2x -1)(x >0),且关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围.解:(1)证明:任取x 1<x 2,则f (x 1)-f (x 2)=log 2(2x 1+1)-log 2(2x 2+1)=log 22x 1+12x 2+1, ∵x 1<x 2,∴0<2x 1+1<2x 2+1,∴0<2x 1+12x 2+1<1, ∴log 22x 1+12x 2+1<0, ∴f (x 1)<f (x 2),即函数f (x )在(-∞,+∞)内单调递增.(2)法一:由g (x )=m +f (x )得m =g (x )-f (x )=log 2(2x -1)-log 2(2x +1)=log 22x -12x +1=log 2(1-22x +1), 当1≤x ≤2时,25≤22x +1≤23, ∴13≤1-22x +1≤35, ∴m 的取值范围是[log 213,log 235]. 法二:解方程log 2(2x -1)=m +log 2(2x +1),得x =log 2(2m +11-2m ), ∵1≤x ≤2,∴1≤log 2(2m +11-2m)≤2, 解得log 213≤m ≤log 235.∴m 的取值范围是[log 213,log 235].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

nb e指数函数、对数函数、幂函数测试题一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)l.设指数函数C 1:y =a x ,C 2:y =b x ,C 3:y =c x 的图象如图,则( )A .0<c <1<b <aB .0<a <1<b <cC .c <b <aD .0<c <1<a <b2.函数y =a x-1(a >0,a ≠1)过定点,则这个定点是( )A .(0,1)B .(1,2)C .(-1,0.5)D .(1,1)3.若函数y =f (x )的图象与y =2-x 的图象关于y 轴对称,则f (3)=( )A .8B .4C .D .81414.若指数函数y =a x 经过点(-1,3),则a 等于( )A .3B .C .2D .31215.函数y =f (x )的图象与y =21-x 的图象关于直线x =1对称,则f (x )为( )A .y =2x-1 B .y =2x+1 C .y =2x-2 D .y =22-x6.对于x 1,x 2∈R (注:表示“任意”),恒有f (x 1)·f (x 2)=f (x 1+x 2)成立,且∀∀f (1)=,则f (6)=( )2A .2B .4C .D .8227.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a =( )A .B .C .D .412122428.在同一坐标系中,函数y =2-x 与y =log 2x 的图象是( )9.设函数若f (x 0)>1,则x 0的取值范围是( )⎪⎩⎪⎨⎧>≤-=-).0(),0(12)(21x x x x f x A .(-1,1) B .(-∞,-2)∪(0,+∞)C .(-1,+∞) D .(-∞,-1)∪(1,+∞)10.已知0<m <n <1,则a =log m (m +1)与b =log n (n +1)的大小关系是( )A .a >b B .a =bf C .a <b D .不能确定b 11.设函数F(x)=f(x)-,其中x-log 2f(x)=0,则函数F(x)是( ))(1x f A.奇函数且在(-∞,+∞)上是增函数 B.奇函数且在(-∞,+∞)上是减函数C.偶函数且在(-∞,+∞)上是增函数 D.偶函数且在(-∞,+∞)上是减函数12.已知函数f(x)=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数在区间(1,+∞)上f(x)x A .有两个零点 B .有一个零点 C .无零点 D .无法确定二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知对数函数C 1:y =log a x ,C 2:y =log b x ,如图所示,则a 、b 的大小是__________.14.函数的定义域是__________.)34(log 5.0-=x y 15.(1)计算:log 2.56.25+lg 1001+ln e +3log 122+= .(2).0.027-(-)-2+256-3-1+(2-1)0=________.31-714316.已知f (e x )=x ,则f (5)等于_________________3log 9log 28的值是__________________________三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明、证明过程或演算步骤)17.已知二次函数满足,及.()f x (0)1f =(1)()2f x f x x +-=(1)求的解析式;()f x (2)若,,试求的值域.()(log )(01)a g x f x a a =>≠且1,x a a ⎡⎤∈⎢⎥⎣⎦()g x 18.当某种药品注射到人体内,它在血液中的残留量成指数型函数衰减.(1)药品A 在血液中的残留量可以用以下指数型函数描述:y =5e -0.2t ,其中,t 是注射一剂药A 后的时间(单位:h ),y 是药品A 在人体内的残留量(单位:mg ).描出这个函数图象,求出y 的初始值,当t =20时,y 值是多少?(2)另一种药品B 在人体中的残留量可以表示成y =5e -0.5t .与药品A 相比,它在人体内衰减得慢还是快?19.已知函数f (x )=log a(a >0,a ≠1)是奇函数.11--x mx(1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性.21.设函数对于x 、y ∈R 都有,且x <0时,<0,.)(x f )()()(y f x f y x f +=+)(x f 2)1(-=-f (1)求证:函数是奇函数;)(x f (2)试问在上是否有最值?若有,求出最值;若无,说明理由.)(x f ]4,4[-∈x (3)解关于x 的不等式().)()(21)()(2122b f x b f x f bx f ->-0≤b 21.设函数.(1)证明:不论为何实数函数总为增函数;2()21x f x a =-+a )(x f (2)当为奇函数时,求函数的值域。

)(x f )(x f 22.已知函数1()8421x x f x a -=⋅--(1)当时,求函数在的最值及取最值时对应的取值;1a =()f x []3,0x ∈-x (2)当时,解不等式;1a =()0f x ≥(3)若关于的方程有解,求的取值范围。

x ()0f x =a 23.已知函数的图像经过点A (1,2),,且函数(p>0)与n mx x f +=)(),(01-B x p x h 2)(=函数的图像只有一个交点. n mx x f +=)((1)求函数与的解析式;)(x f )(x h (2)设函数,求的最小值与单调区间;)x (h )x (f )x (F -=)x (F (3)设,解关于x 的方程.R a ∈)x 4(h log )x a (h log ]1)1x (f [log 224---=--答案:1.A 2.D 3.A 4.B 5.A 6.D 7.D 8.A 9.D 10.A 11.A 12.C13.a >b >1 14.{x |<x ≤} 15.9n (n ∈Z ) 16.343三、解答题17.解:(1)设2()1f x ax bx =++(1)()22f x f x ax a b x∴+-=+++ 221,10a ab a b =⎧∴∴==-⎨+=⎩2()1f x x x ∴=-+(2)2()1f x x x =-+Q 2()(log )(log )log 1,a a a g x f x x x ∴==-+1,x a a ⎡⎤∈⎢⎥⎣⎦令,原函数化为,log a t x =21y t t =-+,101a x a a a≤≤>≠Q 又且101a a a ∴<<<即在上单减,, 又对称轴∴log a t x =1,a a ⎡⎤⎢⎥⎣⎦11t ∴-≤≤12t =,,的值域为。

min 1324t y ∴==时,max 13t y ∴=-=时,()g x ∴3,34⎡⎤⎢⎥⎣⎦18.(1)当t =0时,y =5;当t =20时,y =5e -4≈0.091 6(2)y 15e -0.2t ,y 2=5e -0.5t ,∴∴y 1>y 2,则药品B 在人体内衰减得快13.021>=t e y y 19.(1)∵f (x )为奇函数, ∴log a=-log a (对x ∈R 恒成立)m =-111--+x mx 11--x mx∀⇒(2)∵f (x )=log a (x <-1或x >1),∴f (x )=log a (1+),∴(i )当0<a <1时,11-+x x 12-x f (x )在(1,+∞)上是增函数;(ii )当a >1时,f (x )在(1,+∞)上是减函数20.(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧<<-+=<<+-=01,142,0,0,10,412)(x x x x f x x xx(2)设-1<x 1<x 2<0,则f (x 1)-f (x 2)=,∵ x 1<x 2<0,∴,)14)(14()22)(12(211221++--+x x x x x x 01221<-+x x,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以,f (x )在(-1,0)上是增函02212>-x x 数191)∵对x 1,x 2∈(-1,1)时,f (x 1)+f (x 2)=都成立,∴令x 1=x 2=0,得∀1(2121x x x x f ++f (0)=0,∴对于x ∈(-1,1),f (x )+f (-x )==0,所以对于x ∈(-1,1),∀)1(2x xx f --∀有f (-x )=-f (x ),所以f (x )在(-1,1)上是奇函数(2)设0<x 1<x 2<1,f (x 1)-f (x 2)=,因0<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,∴-)1(2121x x x x f --1<<0,则f (x 1)>f (x 2),∴f (x )在(0,1)上是减函数21211x x x x --21.解:(1)证明:令x =y =0,则,从而)0()0()0(f f f +=0)0(=f 令,则,x y -=0)()()0(=-+=x f x f f 从而,即是奇函数. …… 4分)()(x f x f -=-)(x f (2)设,且,则,从而,R x x ∈21,21x x <021<-x x 0)(21<-x x f 又.)()()()()]([)(21212121x f x f x f x f x x f x x f -=-+=-+=- ∴,即.0)()(21<-x f x f )()(21x f x f <∴函数为R 上的增函数,)(x f ∴当时,必为增函数.]4,4[-∈x )(x f 又由,得,∴2)1(-=-f 2)1(-=-f 2)1(=f ∴当时,;4-=x 8)1(4)4()4()(min -=-=-=-=f f f x f 当时,. …… 9分4=x 8)1(4)4()(max ===f f x f (3)由已知得.)()()]()([2122b f x f x b f bx f -<-∴.)()(2122b x f x b bx f ->-∴,即.)(2)(22b x f x b bx f ->-)22()(22b x f x b bx f ->-∵为R 上增函数,∴.)(x f b x x b bx 2222->-∴ ∴.02)2(22>++-b x b bx 0))(2(>--b x bx 当b =0时,,∴不等式的解集为<.02>-x {x x }0当b <0时,.0))(2(<-+-b x bx ①当时,不等式的解集为. 02<<-b {}b x bx <<2②当时,不等式的解集为.2-=b φ③当时,不等式的解集为. 2-<b {}bx b x2<<22.(1)当时………………1分1a =2()24212(2)21x x x x f x =⋅--=⋅-- 令则2,[3,0],x t x =∈-1[,1]8t ∈ 故…………………………………..3分22191212(,[,1]488y t t t t =--=--∈ ∴当时,即时 ………………………………4分14t =2x =-min 98y =- 当时,即时 ………………………………5分1t =0x =m n 0a y =(2) 解得或(舍)…………………..7分22(2)210x x ⋅--≥21x ≥122x ≤-∴………………………………………………………………8分{|0}x x ≥(3)关于x 的方程有解,等价于方程在22(2)210x x a --=2210at t =-=上有解。

相关文档
最新文档