八上数学题50道基础计算题含答案

合集下载

初二上册计算题100道及答案过程

初二上册计算题100道及答案过程

初二上册计算题100道及答案过程1) 66x+17y=396725x+y=1200答案:x=48 y=47(2) 18x+23y=230374x-y=1998答案:x=27 y=79(3) 44x+90y=779644x+y=3476答案:x=79 y=48(4) 76x-66y=408230x-y=2940答案:x=98 y=51(5) 67x+54y=854671x-y=5680答案:x=80 y=59(6) 42x-95y=-141021x-y=1575答案:x=75 y=48(7) 47x-40y=85334x-y=2006答案:x=59 y=48 (8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57(15) 83x-49y=8259x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=761947x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36(37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55 (39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 (51) 17x+62y=3216答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46(66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-581589x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55(88) 70x+35y=8295 40x+y=2920答案:x=73 y=91 (89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=23928x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-450 67x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。

人教版八年级数学上册第十四章基础练习题(含答案)

人教版八年级数学上册第十四章基础练习题(含答案)

人教版八年级数学上册第十四章基础练习题(含答案)14.1整式的乘法考点1 同底数幂的乘法1.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 42.已知x a =2,x b =3,则x a+b 的值( )A .1B .-1C .5D .63.已知2a +5b ﹣4=0,则4a ×32b =( )A .8B .16C .32D .644.已知2x +4=m ,用含m 的代数式表示2x 正确的是( )A .16m B .8m C .m ﹣4 D .4m考点2 幂的乘方5.计算()()433a a -⋅-的结果为( )A .15aB .10a -C .15a -D .10a -6.已知:2x a =,5y a =,则32x y a -=( ).A .910B .4125C .825D .357.如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .b >a >cD .b >c >a考点3 积的乘方8.计算:(m 3n )2的结果是( )A .m 6nB .m 5n 2C .m 6n 2D .m 3n 29.已知m ,n 是整数,a≠0,b≠0,则下列各式中,能表示“积的乘方法则”的是( )A .n m m n a a a +=B .()nmmn a a = C .m n m n a a a -÷=D .()nn n ab a b =10.计算()20202019144⎛⎫-⨯- ⎪⎝⎭的结果是( )A .4B .-4C .14D .14-考点4 同底数幂的除法11.计算(﹣a )5÷a 3结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 412.已知a m =9,a n =13,则a m ﹣n 的值为( )A .4B .﹣4C .913D .13913.下列计算正确的是( )A .426a a a +=B .52210()ab a b =C .4312⋅=a a aD .1025a a a ÷=考点5 单项式乘单项式14.计算a 2•ab 的结果是( )A .a 3bB .2a 2bC .a 2b 2D .a 2b15.一个长方形的长为3a 2b ,宽为2ab ,则其面积为( )A .5a 3b 2B .6a 2bC .6a 2b 2D .6a 3b 216.若□·3xy=27x 3y 4 , 则□内应填的单项式是( )A .3x 3y 4B .9x 2y 2C .3x 2y 3D .9x 2y 3考点6 单项式乘多项式17.计算(-3x)(2x 2-5x-1)的结果是( )A .-6x 3-15x 2-3xB .-6x 3+15x 2+3xC .-6x 3+15x 2D .-6x 3+15x 2-118.若11,2a b a c -=--=,则35()228b c b c --++的值是 ( ) A .14B .38C .1D .-119.若()()3x a x -+-的积不含x 的一次项,则a 的值为A .3B .-3C .13D .13-20.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-21.某同学在计算23x -乘一个多项式时错误的计算成了加法,得到的答案是21x x -+,由此可以推断正确的计算结果是( )A .241x x -+B .21x x -+C .4321233x x x -+-D .无法确定考点7 多项式乘多项式22.如果x 2+ kx +6=(x +2)(x +3),则k =( )A .1B .2C .3D .523.如果代数式(x ﹣2)(x 2+mx+1)的展开式不含x 2项,那么m 的值为( )A .2B .12C .-2D .12-24.设A =(x ﹣2)(x ﹣7),B =(x ﹣3)(x ﹣6),则A 、B 的大小关系为( )A .A <B B .A =BC .A >BD .无法确定25.已知4322125d x x x x =-+--,则当2250x x --=,d 的值为( )A .25B .20C .15D .1026.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 227.观察下列各式及其展开式()2a b +=2a +2ab+2b()3a b +=3a +32a b+3a 2b +3b()4a b +=4a +43a b+62a 2b +4a 3b +4b()5a b +=5a +54a b+103a 2b +102a 3b +5a 4b +5b……请你猜想()821x -的展开式中含2x 项的系数是( )A .224B .180C .112D .48考点8 单项式除单项式28.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y29.计算(x 3y )3÷(2xy )3的结果应该是( )A .612x B .618x C .418x y D .218x y 30.如果一个单项式与22a b -的积为3225a bc -,则这个单项式为( )A .215acB .15ac C .45acD .245ac 考点9 多项式除单项式31.计算(﹣4a 2+12a 3b )÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab32.弟弟把嘉琪的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮她推测出被除式等于( )A .B .C .D .33.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b + D .+a b考点10 整式的混合运算34.若3x 2﹣5x +1=0,则5x (3x ﹣2)﹣(3x +1)(3x ﹣1)=( )A .﹣1B .0C .1D .﹣235.王大爷承包一长方形鱼塘,原来长为2x 米,宽为x 米,现在要把长和宽都增加y 米,那么这个鱼塘的面积增加( )A .(2232x xy y ++)平方米B .(2223x xy y ++)平方米C .2(3)xy y +平方米D .2(64)xy y +平方米36.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2答案1.C 2.D 3.B 4.A 5.C 6.C 7.C 8.C 9.D 10.D 11.B 12.C 13.B 14.A 15.D 16.D 17.B18.C19.B20.A21.C22.D23.A24.A25.A26.C27.C28.D29.B30.A31.A32.B33.C34.A35.C36.D14.2 乘法公式一、选择题(本大题共10道小题)1. 运用乘法公式计算(a+3)(a-3)的结果是()A.a2-6a+9 B.a2-3a+9C.a2-9 D.a2-6a-92. 下列各式中,运算结果是9m2-16n2的是()A.(3m+2n)(3m-8n)B.(-4n+3m)(-4n-3m)C.(-3m+4n)(-3m-4n)D.(4n+3m)(4n-3m)3. 将202×198变形正确的是 ( )A.2002-4 B.2022-4C.2002+2×200+4 D.2002-2×200+44. 若(a+3b)2=(a-3b)2+A,则A等于( )A.6ab B.12ab C.-12ab D.24ab5. 计算(x+1)(x2+1)·(x-1)的结果是( )A.x4+1 B.(x+1)4C.x4-1 D.(x-1)46. 为了运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是()A.[x-(2y+1)]2B.[x+(2y-1)][x-(2y-1)]C.[(x-2y)+1][(x-2y)-1]D.[x+(2y-1)]27. 将9.52变形正确的是 ( )A.9.52=92+0.52 B.9.52=(10+0.5)×(10-0.5) C.9.52=92+9×0.5+0.52 D.9.52=102-2×10×0.5+0.528. 若(2x +3y )(mx -ny )=9y 2-4x 2,则m ,n 的值分别为( )A .2,3B .2,-3C .-2,-3D .-2,3 9. 如图,阴影部分是边长为a 的大正方形剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )A .①②B .②③C .①③D .①②③10. 如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A. 等边三角形.B. 直角三角形.C. 钝角三角形.D. 形状不确定.二、填空题(本大题共6道小题)11. 填空:()22121453259x y x y ⎛⎫-=- ⎪⎝⎭ 12. 如果(x -ay )(x +ay )=x 2-9y 2,那么a = .13. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.14.课本上,公式(a-b)2=a2-2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的.已知(a+b)4=a4+4a3b+6a2b2+4ab3+b4,则(a-b)4=________________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式___________.16.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是_______ _____________.三、解答题(本大题共4道小题)17.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘25;abba第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的数是8,请帮他计算出最后结果:[(8+1)2-(8-1)2]×25÷8;(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a (a ≠0),请你帮小明完成这个验证过程.18. 探索、归纳与证明:(1)比较以下各题中两个算式结果的大小(在横线上填“>”“<”或“=”): ①32+42________2×3×4;②52+52________2×5×5;③(-2)2+52________2×(-2)×5;④(12)2+(23)2________2×12×23.(2)观察上面的算式,用含字母a ,b 的关系式表示上面算式中反映的一般规律.(3)证明(2)中你所写规律的正确性.19. 如图,王大妈将一块边长为a m的正方形土地租给了邻居李大爷种植,今年,她对李大爷说:“我把你这块地的一边减少4 m,另一边增加4 m,继续租给你,你也没有吃亏,你看如何?”李大爷一听,就答应了.同学们,你认为李大爷吃亏了吗?为什么?20. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,….下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a+b)n展开式中共有多少项?(2)请写出多项式(a+b)5的展开式.14.3《因式分解》一.选择题1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.如果多项式abc+ab2﹣a2bc的一个因式是ab,那么另一个因式是()A.c﹣b+5ac B.c+b﹣5ac C.ac D.﹣ac3.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)4.已知a+b=3,ab=2,计算:a2b+ab2等于()A.5 B.6 C.9 D.15.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.166.下列多项式,在实数范围内能够进行因式分解的是()A.x2+4 B.C.x2﹣3y D.x2+y27.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+98.把多项式a3﹣a分解因式,结果正确的是()A.a(a2﹣1)B.a(a﹣1)2C.a(a+1)2D.a(a+1)(a﹣1)9.已知x2+kx+4可以用完全平方公式进行因式分解,则k的值为()A.﹣4 B.2 C.4 D.±410.多项式x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz因式分解后的结果是()A.(y﹣z)(x+y)(x﹣z)B.(y﹣z)(x﹣y)(x+z)C.(y+z)(x﹣y)(x+z)D.(y+z)(x+y)(x﹣z)11.如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.812.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形13.如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.24二.填空题14.分解因式:x2﹣4=.15.因式分解:2x2﹣8=.16.分解因式:x3﹣4x2﹣12x=.17.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.18.若a,b,c分别是△ABC的三条边,a2+c2+2b2﹣2ab﹣2bc=0.则△ABC的形状是.三.解答题(共4小题)19.分解因式(1)(2)9y2﹣(2x+y)2.20.将下列各式因式分解(1)2a3b﹣8ab3 (2)﹣x3+x2y﹣xy2(3)(7x2+2y2)2﹣(2x2+7y2)2 (4)(x2+4x)2+(x2+4x)﹣621.已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知a﹣b=4,ab+c2﹣6c+13=0,求a+b+c的值.参考答案一.选择题1.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.解:abc+ab2﹣a2bc=ab(c+b﹣5ac),故另一个因式为(c+b﹣5ac),故选:B.3.解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.4.解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故选:B.5.解:∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.6.解:A、x2+4不能分解,故此选项错误;B、x2﹣x+=(x﹣)2,故此选项正确;C、x2﹣3y不能分解,故此选项错误;D、x2+y2不能分解,故此选项错误;故选:B.7.解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.8.解:原式=a(a2﹣1)=a(a+1)(a﹣1),故选:D.9.解:∵x2+kx+4=x2+kx+22,∴kx=±2x•2,解得k=±4.故选:D.10.解:x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz=(y﹣z)x2+(z2+y2﹣2yz)x+z2y﹣y2z=(y﹣z)x2+(y﹣z)2x﹣yz(y﹣z)=(y﹣z)[x2+(y﹣z)x﹣yz]=(y﹣z)(x+y)(x﹣z).故选:A.11.解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选:C.12.解:已知等式变形得:(a+b)(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a+b﹣c)=0,∵a+b﹣c≠0,∴a﹣b=0,即a=b,则△ABC为等腰三角形.故选:C.13.解:根据题意得:a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70;故选:B.二.填空题14.解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).15.解:2x2﹣8=2(x+2)(x﹣2).16.解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).17.解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.18.解:∵a2+c2+2b2﹣2ab﹣2bc=0(a2﹣2ab+b2)+(b2﹣2bc+c2)=0(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,解得:a=b=c,又∵a,b,c分别是△ABC的三条边,∴△ABC是等边三角形,故答案为等边三角形.三.解答题(共4小题)19.解:(1)原式=(m2﹣2mn+n2)=(m﹣n)2;(2)原式=[3y+(2x+y)][3y﹣(2x+y)]=4(x+2y)(y﹣x).20.解:(1)2a3b﹣8ab3=2ab(a2﹣4b2)=2ab(a+2b)(a﹣2b);(2)﹣x3+x2y﹣xy2=﹣x(x2﹣xy+y2)=﹣x(x﹣y)2;(3)(7x2+2y2)2﹣(2x2+7y2)2=(7x2+2y2+2x2+7y2)(7x2+2y2﹣2x2﹣7y2)=(9x2+9y2)(5x2﹣5y2)=9×5(x2+y2)(x2﹣y2)=45((x2+y2)(x﹣y)(x+y);(4)(x2+4x)2+(x2+4x)﹣6=(x2+4x﹣2)(x2+4x+3)=(x2+4x﹣2)(x+1)(x+3).21.解:(1)∵a﹣b=7,ab=﹣12,∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∴(a﹣b)2=49,∴a2+b2﹣2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25﹣24=1,∴a+b=±1.22.解:(1)∵x2+2xy+2y2+2y+1=0,∴(x2+2xy+y2)+(y2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=﹣1,∴2x+y=2×1+(﹣1)=1;(2)∵a﹣b=4,∴a=b+4,∴将a=b+4代入ab+c2﹣6c+13=0,得b2+4b+c2﹣6c+13=0,∴(b2+4b+4)+(c2﹣6c+9)=0,∴(b+2)2+(c﹣3)2=0,∴b+2=0,c﹣3=0,解得,b=﹣2,c=3,∴a=b+4=﹣2+4=2,∴a+b+c=2﹣2+3=3.。

人教版 八年级数学上册 14.1 --14.3基础测试题(含答案)

人教版 八年级数学上册  14.1 --14.3基础测试题(含答案)

人教版 八年级数学上册 14.1 --14.3基础测试题(含答案) 14.1 整式的乘法一、选择题(本大题共12道小题) 1. 计算a 3·a 2正确的是( )A. ɑB. ɑ5C. ɑ6D. ɑ92. 单项式乘多项式运算法则的依据是( )A .乘法交换律B .加法结合律C .分配律D .加法交换律3. 化简(x 3)2,结果正确的是() A .-x 6 B .x 6C .x 5D .-x 54. 下列运算正确的是() A .(x 3)3=x 6 B .x 7·x 2=x 9 C .3x -x =3D .x 4+x 2=x 65. 一个长方形的周长为4a +4b ,若它的一边长为b ,则此长方形的面积为( )A .b 2+2abB .4b 2+4abC .3b 2+4abD .a 2+2ab6. 下列计算错误的是( )A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=7. 已知x a =2,x b =3,则x 3a +2b 的值() A .48 B .54C .72D .178. 若(x +1)(2x 2-ax +1)的运算结果中,x 2的系数为-6,则a 的值是( )A .4B .-4C .8D .-89. 已知a m =4,则a 2m 的值为() A .2 B .4C .8D .1610. 通过计算,比较图①、图②中阴影部分的面积,可以验证的算式是( )A .a (b -x )=ab -axB .(a -x )(b -x )=ab -ax -bx +x 2C .(a -x )(b -x )=ab -ax -bxD .b (a -x )=ab -bx11. 已知0a b +=,n 为正数,则下列等式中一定成立的是()A .0n n a b +=B .220n n a b +=C .21210n n a b +++=D .110n n a b +++=12. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( ) A .21()0n n a b += B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共6道小题) 13. 填空:54x x x ÷⨯= ;14. 填空:()()()324a a a -⋅-⋅-= ;15. 计算:(103)5=________.16. 填空:()()2322a b b ⋅-=;17. 计算:(2x +1)·(-6x )=____________.18. 如图①,有多个长方形和正方形的卡片,图②是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示方法可以验证等式a (a +b )=a 2+ab 成立,根据图③,利用面积的不同表示方法,仿照上面的式子写出一个等式:____________________.三、解答题(本大题共3道小题)19. 整体代入阅读下面文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=2×27-6×9-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.20. 小明在做多项式乘法的时候发现,两个多项式相乘在合并同类项后的结果存在缺项的可能.比如x+2和x-2相乘的结果为x2-4,x的一次项没有了.(1)请计算x2+2x+3与x-2相乘后的结果,并观察x的几次项没有了;(2)请想一下,x2+2x+3与x+a相乘后的结果有没有可能让一次项消失?如果可能,那么a 的值应该是多少?21. 阅读下列解题过程:试比较2100与375的大小.解:∵2100=(24)25=1625,375=(33)25=2725,且16<27,∴2100<375.请根据上述解答过程解决下列问题:比较255,344,433的大小.人教版八年级数学14.1 整式的乘法课时训练-答案一、选择题(本大题共12道小题)1. 【答案】B【解析】原式=a3+2=a5.2. 【答案】C3. 【答案】B4. 【答案】B[解析] (x3)3=x9,3x-x=2x,x4与x2不是同类项,不能合并,因此只有选项x7·x2=x9正确.5. 【答案】A[解析] 因为一个长方形的周长为4a+4b,若它的一边长为b,则另一边长=2a+2b-b=2a+b,故面积=(2a+b)b=b2+2ab.6. 【答案】C【解析】根据积的乘方运算法则,应选C7. 【答案】C[解析] 因为x a=2,x b=3,所以x3a+2b=(x a)3·(x b)2=23×32=72.8. 【答案】C[解析] (x+1)(2x2-ax+1)=2x3-ax2+x+2x2-ax+1=2x3+(-a+2)x2+(1-a)x+1.因为运算结果中,x2的系数是-6,所以-a+2=-6,解得a=8.9. 【答案】D[解析] 由于a m=4,因此a2m=(a m)2=42=16.10. 【答案】B [解析] 图①中阴影部分的面积=(a -x)·(b -x),图②中阴影部分的面积=ab -ax -bx +x 2,所以(a -x)(b -x)=ab -ax -bx +x 2.11. 【答案】C【解析】因为a b ,互为相反数,它们的偶次幂相等,而奇次幂互为相反数,指数中只有21n +一定是奇数,故选C12. 【答案】D【解析】由10a b +=知1,a b两数为相反数,且不为0,易得答案二、填空题(本大题共6道小题) 13. 【答案】8x【解析】原式448x x x =⋅=14. 【答案】9a -【解析】原式()99a a =-=-15. 【答案】1015[解析] (103)5=1015.16. 【答案】458a b -【解析】原式()4234588a b b a b =⋅-=-17. 【答案】-12x 2-6x18. 【答案】(a +b)(a +2b)=a 2+3ab +2b 2三、解答题(本大题共3道小题)19. 【答案】解:(2a 3b 2-3a 2b +4a)·(-2b) =-4a 3b 3+6a 2b 2-8ab =-4(ab)3+6(ab)2-8ab =-4×33+6×32-8×3 =-108+54-24 =-78.20. 【答案】解:(1)(x2+2x+3)(x-2)=x3-2x2+2x2-4x+3x-6=x3-x-6,x的二次项没有了.(2)(x2+2x+3)(x+a)=x3+ax2+2x2+2ax+3x+3a=x3+(a+2)x2+(2a+3)x+3a.当2a+3=0,即a=-1.5时,x的一次项消失了.故x2+2x+3与x+a相乘后的结果有可能让一次项消失,此时a=-1.5.21. 【答案】解:因为255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,且32<64<81,所以255<433<344.:14.2 乘法公式一.选择题1.下列各式中,能用平方差公式计算的是()A.(p+q)(p+q)B.(p﹣q)(p﹣q)C.(p+q)(p﹣q)D.(p+q)(﹣p﹣q)2.若(2a+3b)()=9b2﹣4a2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a3.计算(x+3y)2﹣(x﹣3y)2的结果是()A.12xy B.﹣12xy C.6xy D.﹣6xy4.若多项式x2+kx+9是一个完全平方式,则常数k的值是()A.6B.3C.±6D.±35.计算(x+1)(x﹣1)(x2+1)的结果是()A.x2﹣1B.x3﹣1C.x4+1D.x4﹣16.已知a+b=5,ab=3,则a2+b2=()A.25B.22C.19D.137.如图,两个正方形边长分别为a、b,且满足a+b=10,ab=12,图中阴影部分的面积为()A.100B.32C.144D.368.如图,从边长为m的大正方形中剪掉一个边长为n的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(m﹣n)2=m2﹣2mn+n2B.m2﹣n2=(m+n)(m﹣n)C.(m﹣n)2=m2﹣n2D.m(m﹣n)=m2﹣mn二.填空题9.x2﹣4x+k是完全平方式,则k=.10.(2x+3y)2=;(2a﹣b)(﹣b﹣2a)=.11.若x2+y2=10,xy=3,则(x﹣y)2=.12.如果(2x+2y+1)(2x+2y﹣1)=15,那么x+y的值是.13.已知a+=3,则a2+的值是.14.计算:12(1+72)(1+74)(1+78)(1+716)的结果为.三.解答题15.计算:9(x﹣2)2﹣(3x+2)(3x﹣2)16.199.5×200.5(运用公式简便运算)17.先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=.18.已知x+y=4,xy=3,求下列各式的值:(1)2x2y+2xy2;(2)x﹣y19.图1是一个长为2a,宽为2b的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形边长等于多少?(2)请你用两种不同的方法表示图2中阴影部分的面积,并用等式表示.(3)根据(2)中的等量关系解决下面问题,若a+b=5,ab=3,求(a﹣b)2的值.20.如图1,在一个边长为a的正方形木板上锯掉一个边长为b的正方形,并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积:图1得:;图2得;(2)由图1与图2面积关系,可以得到一个等式:;(3)利用(2)中的等式,已知a2﹣b2=16,且a+b=8,则a﹣b=.参考答案一.选择题1.解:(p+q)(p+q)=(p+q)2=p2+2pq+q2;(p﹣q)(p﹣q)=(p﹣q)2=p2﹣2pq+q2;(p+q)(p﹣q)=p2﹣q2;(p+q)(﹣p﹣q)=﹣(p+q)2=﹣p2﹣2pq﹣q2.故选:C.2.解:∵(2a+3b)(3b﹣2a)=9b2﹣4a2即(3b+2a)(3b﹣2a)=(3b)2﹣(2a)2∴括号内应填的代数式是3b﹣2a.故选:D.3.解:原式=x2+6xy+9y2﹣(x2﹣6xy+9y2)=x2+6xy+9y2﹣x2+6xy﹣9y2=12xy.故选:A.4.解:∵a2+ka+9=a2+ka+32,∴ka=±2×a×3,解得k=±6.故选:C.5.解:原式=(x2﹣1)(x2+1)=x4﹣1.故选:D.6.解:∵(a+b)2=a2+2ab+b2,∴a2+b2=(a+b)2﹣2ab=25﹣2×3=19,故选:C.7.解:S阴影=a2+b2﹣a2﹣(a+b)•b,=a2﹣ab+b2,=(a2﹣ab+b2),=[(a+b)2﹣3ab],当a+b=10,ab=12时,原式=(100﹣36)=32.故选:B.8.解:左边图形的阴影部分可表示为:m2﹣n2右边图形可表示为:(m﹣n)(m+n)由于阴影部分面积相等,故m2﹣n2=(m+n)(m﹣n),故选:B.二.填空题9.解:∵x2﹣4x+k是完全平方式,∴k=22=4,故答案为:410.解:(2x+3y)2=(2x)2+2•2x•3y+(3y)2=4x2+12xy+9y2;(2a﹣b)(﹣b﹣2a)=(﹣b+2a)(﹣b﹣2a)=b2﹣4a2.故答案为:4x2+12xy+9y2,b2﹣4a2.11.解:∵x2+y2=10,xy=3,∴(x﹣y)2=x2﹣2xy+y2=x2+y2﹣2xy=10﹣6=4,故答案为:4.12.解:(2x+2y+1)(2x+2y﹣1)=15,(2x+2y)2﹣12=15,(2x+2y)2=16,2x+2y=±4,x+y=±2,故答案为:±2.13.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.14.解:原式=×(1+72)(1+74)(1+78)(1+716)=×(1+74)(1+78)(1+716)=×(1+78)(1+716)=(1+716)=.故答案为:.三.解答题15.解:原式=9(x2﹣4x+4)﹣(9x2﹣4)=9x2﹣36x+36﹣9x2+4=﹣36x+40.16.解:原式=(200﹣0.5)×(200+0.5)=40000﹣0.25=39999.75.17.解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2,∵a=,∴原式=1+2=3.18.解:(1)∵x+y=4,xy=3,∴2x2y+2xy2=2xy(x+y)=2×4×3=24;(2)∵x+y=4,xy=3,∴(x﹣y)2=(x+y)2﹣4xy=42﹣4×3=4.∴.19.解:(1)根据拼图可知,阴影正方形的边长为(a﹣b),(2)阴影正方形的边长为(a﹣b),因此S阴影正方形的面积=(a﹣b)2,S阴影正方形的面积=S大正方形的面积﹣S图1的面积=(a+b)2﹣4ab,故有(a﹣b)2=(a+b)2﹣4ab;(3)由(2)得(a﹣b)2=(a+b)2﹣4ab,当a+b=5,ab=3时,(a﹣b)2=(a+b)2﹣4ab=52﹣4×3=25﹣12=13.即(a﹣b)2的值为13.20.解:(1)图1中阴影部分的面积为:a2﹣b2,图2中阴影部分的面积为:(2b+2a)(a﹣b),即(a+b)(a﹣b);故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图1与图2面积关系,可以得到一个等式:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(3)∵a2﹣b2=16,且a+b=8,∴(a+b)(a﹣b)=16,即8(a﹣b)=16,∴a﹣b=2.故答案为:2.14.3因式分解一.选择题(共10小题)1.下列从左边到右边的变形,是因式分解的是()A.12ab=3a•4bB.(a+b)2=a2+2ab+b2C.a2﹣b2+1=(a+b)(a﹣b)+1D.3(a﹣b)﹣c(a﹣b)=(a﹣b)(3﹣c)2.下列变形属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x﹣1=x(1﹣)(x≠0)C.x3+2x2+1=x2(x+2)+1D.x2﹣9=(x+3)(x﹣3)3.下列多项式可以用平方差公式进行因式分解的有()①﹣a2+b2;②x2+x+;③x2﹣4y2;④(﹣m)2﹣(﹣n)2;⑤﹣121a2+36b2;⑥﹣s2+2s.A.2个B.3个C.4个D.5个4.因式分解a2﹣4的结果是()A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)5.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)6.下列多项式中,能用完全平方公式分解因式的是()A.a2+4B.a2+ab+b2C.a2+4ab+b2D.x2+2x+17.把多项式(a+b)(a+4b)﹣9ab分解因式正确的是()A.(a﹣2b)2B.(a+2b)2C.a(a﹣3b)2D.ab(a+3)(a﹣3)8.下列因式分解正确的是()A.x2﹣x+=(x﹣)2B.a4b﹣6a3b+9a2b=a2b(a2﹣6a+9)C.x2﹣2x+4=(x﹣2)2D.4x2﹣y2=(4x+y)(4x﹣y)9.把多项式x2+mx﹣5因式分解成(x+5)(x﹣1),则m的值为()A.m=6B.m=﹣6C.m=﹣4D.m=410.分解因式a3﹣4a的结果正确的是()A.a(a2﹣4)B.a(a﹣2)(a+2)C.a(a﹣2)2D.a(a+2)2二.填空题(共5小题)11.分解因式:ab3﹣4a=.12.分解因式:m2﹣m=.13.分解因式:16x4﹣81=.14.因式分解:2m2﹣12m+18=.15.把多项式m2n+6mn+9n分解因式的结果是.三.解答题(共3小题)16.分解因式:(1)36﹣25x2;(2)x2y﹣4xy﹣5y.17.因式分解(1)x3﹣4x2+4x(2)a2(x﹣y)﹣4(x﹣y)18.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图).如:将式子x2+3x+2和2x2+x﹣3分解因式,如图:x2+3x+2=(x+1)(x+2);2x2+x﹣3=(x﹣1)(2x+3)请你仿照以上方法,探索解决下列问题:(1)分解因式:y2﹣7y+12;(2)分解因式:3x2﹣2x﹣1.参考答案1.解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.2.解:A.从左边到右边的变形,不属于因式分解,故本选项不符合题意;B.从左边到右边的变形,不属于因式分解,故本选项不符合题意;C.从左边到右边的变形,不属于因式分解,故本选项不符合题意;D.从左边到右边的变形,属于因式分解,故本选项符合题意;故选:D.3.解:①﹣a2+b2=(b+a)(b﹣a),可以用平方差公式进行因式分解;②x2+x+=(x+)2,不可以用平方差公式进行因式分解;③x2﹣4y2=(x+2y)(x﹣2y),可以用平方差公式进行因式分解;④(﹣m)2﹣(﹣n)2=(m+n)(m﹣n),可以用平方差公式进行因式分解;⑤﹣121a2+36b2=(6b﹣11a)(6b+11a),可以用平方差公式进行因式分解;⑥﹣s2+2s=﹣s(s﹣4),不可以用平方差公式进行因式分解;故选:C.4.解:原式=(a+2)(a﹣2),故选:A.5.解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.6.解:A、a2+4,无法分解因式,故此选项错误;B、a2+ab+b2,无法运用公式分解因式,故此选项错误;C、a2+4ab+b2,无法运用公式分解因式,故此选项错误;D、x2+2x+1=(x+1)2,正确.故选:D.7.解:原式=a2+5ab+4b2﹣9ab=a2﹣4ab+4b2=(a﹣2b)2.故选:A.8.解:A、x2﹣x+=(x﹣)2,正确;B、a4b﹣6a3b+9a2b=a2b(a2﹣6a+9)=a2b(a﹣3)2,故此选项错误;C、x2﹣2x+4,无法运用公式法分解因式,故此选项错误;D、4x2﹣y2=(2x+y)(2x﹣y),故此选项错误;故选:A.9.解:由题意,得m=5﹣1=4.故选:D.10.解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故选:B.11.解:ab3﹣4a=a(b3﹣4).故答案为:a(b3﹣4).12.解:m2﹣m=m(m﹣1).故答案为:m(m﹣1).13.解:16x4﹣81=(4x2+9)(4x2﹣9)=(4x2+9)(2x+3)(2x﹣3).故答案为:(4x2+9)(2x+3)(2x﹣3).14.解:原式=2(m2﹣6m+9)=2(m﹣3)2.故答案为:2(m﹣3)2.15.解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.16.解:(1)36﹣25x2=(6+5x)(6﹣5x);(2)x2y﹣4xy﹣5y=y(x2﹣4x﹣5)=y(x﹣5)(x+1).17.解:(1)x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2;(2)a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).18.解:(1)y2﹣7y+12=(y﹣3)(y﹣4)(2)3x2﹣2x﹣1=(x﹣1)(3x+1).。

八年级数学上册实数计算题

八年级数学上册实数计算题

八年级数学上册实数计算题一、实数计算题20题。

1. 计算:√(4) + sqrt[3]{-8}- 解析:- 先分别计算各项。

- 因为√(4)=2,sqrt[3]{-8}=-2(因为(-2)^3 = -8)。

- 所以√(4)+sqrt[3]{-8}=2+( - 2)=0。

2. 计算:√(9)-√(16)- 解析:- 先计算根号下的数。

- √(9) = 3,√(16)=4。

- 则√(9)-√(16)=3 - 4=-1。

3. 计算:√(25)+√(36)- 解析:- √(25)=5,√(36)=6。

- 所以√(25)+√(36)=5 + 6=11。

4. 计算:√(1)-√(0)- 解析:- 因为√(1)=1,√(0)=0。

- 所以√(1)-√(0)=1-0 = 1。

5. 计算:√(121)-√(144)- 解析:- √(121)=11,√(144)=12。

- 则√(121)-√(144)=11-12=-1。

6. 计算:√(169)+√(196)- 解析:- √(169)=13,√(196)=14。

- 所以√(169)+√(196)=13 + 14=27。

7. 计算:√(49)-√(64)- 解析:- √(49)=7,√(64)=8。

- 所以√(49)-√(64)=7-8=-1。

8. 计算:√(81)+√(100)- 解析:- √(81)=9,√(100)=10。

- 所以√(81)+√(100)=9 + 10=19。

9. 计算:sqrt[3]{27}+sqrt[3]{-1}- 解析:- 因为sqrt[3]{27}=3(因为3^3 = 27),sqrt[3]{-1}=-1(因为(-1)^3=-1)。

- 所以sqrt[3]{27}+sqrt[3]{-1}=3+( - 1)=2。

10. 计算:sqrt[3]{64}-sqrt[3]{125}- 解析:- sqrt[3]{64}=4(因为4^3 = 64),sqrt[3]{125}=5(因为5^3 = 125)。

初二数学练习题50道带答案

初二数学练习题50道带答案

初二数学练习题50道带答案1. 计算下列各式的值:a) 5 + 3 × 2 - 6 ÷ 3b) 4 × 2 + 6 ÷ 3 - 2c) 8 + 4 × 3 - 2 ÷ 2答案:a) 5 + 3 × 2 - 6 ÷ 3 = 5 + 6 - 2 = 9b) 4 × 2 + 6 ÷ 3 - 2 = 8 + 2 - 2 = 8c) 8 + 4 × 3 - 2 ÷ 2 = 8 + 12 - 1 = 192. 求下列各式的值:a) 13 + 4 × (7 - 3)b) 15 - 2 × (4 + 6)c) 6 × (9 - 3) + 12 ÷ 4答案:a) 13 + 4 × (7 - 3) = 13 + 4 × 4 = 13 + 16 = 29b) 15 - 2 × (4 + 6) = 15 - 2 × 10 = 15 - 20 = -5c) 6 × (9 - 3) + 12 ÷ 4 = 6 × 6 + 12 ÷ 4 = 36 + 3 = 393. 计算下列各题:a) 98 - 23 - 17b) 65 + 27 + 48c) 78 × 5 - 56 ÷ 7答案:a) 98 - 23 - 17 = 58b) 65 + 27 + 48 = 140c) 78 × 5 - 56 ÷ 7 = 390 - 8 = 3824. 求下列各题:a) 34 + 58 - 29b) 87 - 42 + 15c) 25 + 36 - 18答案:a) 34 + 58 - 29 = 63b) 87 - 42 + 15 = 60c) 25 + 36 - 18 = 435. 计算下列各题:a) (12 + 7) × 5b) 11 × (25 - 16)c) 48 ÷ (8 + 4)答案:a) (12 + 7) × 5 = 19 × 5 = 95b) 11 × (25 - 16) = 11 × 9 = 99c) 48 ÷ (8 + 4) = 48 ÷ 12 = 46. 求下列各题:a) 15 ÷ (10 - 8)b) (5 + 3) × (6 - 2)c) 24 ÷ (9 + 3)答案:a) 15 ÷ (10 - 8) = 15 ÷ 2 = 7.5b) (5 + 3) × (6 - 2) = 8 × 4 = 32c) 24 ÷ (9 + 3) = 24 ÷ 12 = 27. 计算下列各题:a) 20 ÷ (5 - 1)b) (8 + 4) × 3c) 45 ÷ (9 - 3)答案:a) 20 ÷ (5 - 1) = 20 ÷ 4 = 5b) (8 + 4) × 3 = 12 × 3 = 36c) 45 ÷ (9 - 3) = 45 ÷ 6 = 7.58. 求下列各题:a) (20 + 13) ÷ 11b) 18 - 2 × (6 - 3)c) (9 + 6) ÷ (2 + 2)答案:a) (20 + 13) ÷ 11 = 33 ÷ 11 = 3b) 18 - 2 × (6 - 3) = 18 - 2 × 3 = 18 - 6 = 12c) (9 + 6) ÷ (2 + 2) = 15 ÷ 4 = 3.759. 计算下列各题:a) 48 ÷ (9 - 4)b) (12 - 6) × 2c) (15 + 9) ÷ (5 + 2)答案:a) 48 ÷ (9 - 4) = 48 ÷ 5 = 9.6b) (12 - 6) × 2 = 6 × 2 = 12c) (15 + 9) ÷ (5 + 2) = 24 ÷ 7 = 3.4310. 求下列各题:a) 18 ÷ (6 - 2)b) (8 + 4) × (6 - 3)c) 24 ÷ (9 + 3)答案:a) 18 ÷ (6 - 2) = 18 ÷ 4 = 4.5b) (8 + 4) × (6 - 3) = 12 × 3 = 36c) 24 ÷ (9 + 3) = 24 ÷ 12 = 211. 计算下列各题:a) (15 - 10) ÷ 5b) 35 - 5 × (8 - 2)c) (48 + 24) ÷ (8 + 4)答案:a) (15 - 10) ÷ 5 = 5 ÷ 5 = 1b) 35 - 5 × (8 - 2) = 35 - 5 × 6 = 35 - 30 = 5c) (48 + 24) ÷ (8 + 4) = 72 ÷ 12 = 612. 求下列各题:a) 17 + (8 - 5) × 6b) 62 - 4 × (7 + 2)c) (12 + 6) ÷ (3 + 3)答案:a) 17 + (8 - 5) × 6 = 17 + 3 × 6 = 17 + 18 = 35b) 62 - 4 × (7 + 2) = 62 - 4 × 9 = 62 - 36 = 26c) (12 + 6) ÷ (3 + 3) = 18 ÷ 6 = 313. 计算下列各题:a) 48 ÷ (8 - 4) × 2b) (15 - 5) × 3 + 9c) 20 - 4 × (8 ÷ 4)答案:a) 48 ÷ (8 - 4) × 2 = 48 ÷ 4 × 2 = 12 × 2 = 24b) (15 - 5) × 3 + 9 = 10 × 3 + 9 = 30 + 9 = 39c) 20 - 4 × (8 ÷ 4) = 20 - 4 × 2 = 20 - 8 = 1214. 求下列各题:a) (12 + 8) × (7 - 2)b) 45 ÷ (9 - 4) + 6c) 28 - 4 × (9 ÷ 3)答案:a) (12 + 8) × (7 - 2) = 20 × 5 = 100b) 45 ÷ (9 - 4) + 6 = 45 ÷ 5 + 6 = 9 + 6 = 15c) 28 - 4 × (9 ÷ 3) = 28 - 4 × 3 = 28 - 12 = 1615. 计算下列各题:a) (13 + 7) × (6 - 2)b) 56 ÷ (8 - 5) + 4c) 40 - 3 × (8 ÷ 4)答案:a) (13 + 7) × (6 - 2) = 20 × 4 = 80b) 56 ÷ (8 - 5) + 4 = 56 ÷ 3 + 4 = 18.67 + 4 = 22.67c) 40 - 3 × (8 ÷ 4) = 40 - 3 × 2 = 40 - 6 = 3416. 求下列各题:a) 76 ÷ (9 - 7) × 4b) (15 - 9) × 2 + 5c) 24 - 6 × (8 ÷ 4)答案:a) 76 ÷ (9 - 7) × 4 = 76 ÷ 2 × 4 = 38 × 4 = 152b) (15 - 9) × 2 + 5 = 6 × 2 + 5 = 12 + 5 = 17c) 24 - 6 × (8 ÷ 4) = 24 - 6 × 2 = 24 - 12 = 1217. 计算下列各题:a) (18 - 6) ÷ 3 × 2b) 45 ÷ (6 - 3) + 7c) 50 - 2 × (9 ÷ 3)答案:a) (18 - 6) ÷ 3 × 2 = 12 ÷ 3 × 2 = 4 × 2 = 8b) 45 ÷ (6 - 3) + 7 = 45 ÷ 3 + 7 = 15 + 7 = 22c) 50 - 2 × (9 ÷ 3) = 50 - 2 × 3 = 50 - 6 = 4418. 求下列各题:a) (10 + 6) ÷ (7 - 3)b) 68 - 8 × (9 - 6)c) 60 ÷ (12 - 6)答案:a) (10 + 6) ÷ (7 - 3) = 16 ÷ 4 = 4b) 68 - 8 × (9 - 6) = 68 - 8 × 3 = 68 - 24 = 44c) 60 ÷ (12 - 6) = 60 ÷ 6 = 1019. 计算下列各题:a) (9 + 7) ÷ (8 - 2)b) 51 - 3 × (8 - 5)c) 56 ÷ (14 - 7)答案:a) (9 + 7) ÷ (8 - 2) = 16 ÷ 6 = 2.67b) 51 - 3 × (8 - 5) = 51 - 3 × 3 = 51 - 9 = 42c) 56 ÷ (14 - 7) = 56 ÷ 7 = 820. 求下列各题:a) (10 + 13) ÷ 8b) 88 - 6 × (12 - 7)c) 84 ÷ (9 - 4)答案:a) (10 + 13) ÷ 8 = 23 ÷ 8 = 2.88b) 88 - 6 × (12 - 7) = 88 - 6 × 5 = 88 - 30 = 58c) 84 ÷ (9 - 4) = 84 ÷ 5 = 16.821. 计算下列各题:a) 34 ÷ (11 - 9)b) (16 - 6) × 5 - 22c) (18 + 9) ÷ (7 - 3)答案:a) 34 ÷ (11 - 9) = 34 ÷ 2 = 17b) (16 - 6) × 5 - 22 = 10 × 5 - 22 = 50 - 22 = 28c) (18 + 9) ÷ (7 - 3) = 27 ÷ 4 = 6.7522. 求下列各题:a) (12 + 5) ÷ (8 - 6)b) 72 - 3 × (9 + 2)c) 100 ÷ (20 - 15)答案:a) (12 + 5) ÷ (8 - 6) = 17 ÷ 2 = 8.5b) 72 - 3 × (9 + 2) = 72 - 3 × 11 = 72 - 33 = 39c) 100 ÷ (20 - 15) = 100 ÷ 5 = 2023. 计算下列各题:a) 48 ÷ (12 - 10)b) (14 - 8) × (7 - 3)c) (21 + 9) ÷ (6 - 4)答案:a) 48 ÷ (12 - 10) = 48 ÷ 2 = 24b) (14 - 8) × (7 - 3) = 6 × 4 = 24c) (21 + 9) ÷ (6 - 4) = 30 ÷ 2 = 1524. 求下列各题:a) (10 + 7) ÷ (6 - 2)b) 54 - 2 × (9 + 5)c) 96 ÷ (6 - 3)答案:a) (10 + 7) ÷ (6 - 2) = 17 ÷ 4 = 4.25b) 54 - 2 × (9 + 5) = 54 - 2 × 14 = 54 - 28 = 26c) 96 ÷ (6 - 3) = 96 ÷ 3 = 3225. 计算下列各题:a) (9 - 6) ÷ 2 × 3b) 41 - 3 × (12 - 6)c) 50 ÷ (10 - 2)答案:a) (9 - 6) ÷ 2 × 3 = 3 ÷ 2 × 3 = 1.5 × 3 = 4.5b) 41 - 3 × (12 - 6) = 41 - 3 × 6 = 41 - 18 = 23c) 50 ÷ (10 - 2) = 50 ÷ 8 = 6.2526. 求下列各题:a) (16 - 8) ÷ 2 × 4b) 65 - 5 × (12 + 3)c) 40 ÷ (8 - 2)答案:a) (16 - 8) ÷ 2。

浙教版初中数学八年级上册专题50题(含答案)

浙教版初中数学八年级上册专题50题(含答案)

浙教版初中数学八年级上册专题50题含答案一、单选题1.下列是我省几家著名煤炭企业的徽标,其中轴对称图形是( )A .B .C .D .2.若66x y >-,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -< 3.如图,已知,AB AD =,ACB AED ∠=∠,DAB EAC ∠=∠,则下列结论错误..的是( )A .B ADE ∠=∠B .BC AE = C .ACE AEC∠=∠ D .CDE BAD ∠=∠ 4.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h 随时间x 变化的函数图象最接近实际情况的是( )A .B .C .D .5.下列图象中,表示y 是x 的函数的是( )A .B .C .D .6.在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是( )A .(-2,3)B .(-1,2)C .(0,4)D .(4,4) 7.下列四组数,是勾股数的是( )A .1,2,3B .2,3,4C .1,3D .5,12,13 8.在ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,下列条件不能判定ABC 为直角三角形的是( )A .ABC ∠∠=∠+B .222a c b =-C .23a =,24b =,25c =D .5a =,12b =,13c =9.在平面直角坐标系中,若点()2P x -,在第二象限,则x 是( )A .正数B .负数C .正数或0D .任意数 10.如图是由圆和正方形组成的轴对称图形,对称轴的条数有 ( )A .2条B .3条C .4条D .6条 11.点A 的位置如图所示,下列说法正确的是( )A .点A 在点O 的30°方向,距点O 10.5km 处B .点A 在点O 北偏东30°方向,距点O 10.5km 处C .点O 在点A 北偏东60°方向,距点A 10.5km 处D .点A 在点O 北偏东60°方向,距点O 10.5km 处12.如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则A 2017的坐标为( )A .(505,504)B .(505,-504)C .(-504,504)D .(-504,-504)13.已知4<m ≤5,则关于x 的不等式组0420x m x -<⎧⎨-≤⎩的整数解的个数共有( ) A .2 B .3 C .4 D .514.若x y <,则下列不等式一定成立的是( )A .22x y -<-B .22x y -<-C .nx my >D .22x y > 15.如图,OA 和BA 分别表示甲乙两名学生练习跑步的一次函数的图象,图中S 和t 分别表示路程(米)和时间(秒),根据图象判定跑210米时,快者比慢者少用( )秒.A .4秒B .3.5秒C .5秒D .3秒 16.如图,在ABC 中,AD BC ⊥于D ,且AD BC =,以AB 为底边作等腰直角三角形ABE ,连接ED 、EC ,延长CE 交AD 于点F ,下列结论:①ADE BCE △△≌;①BD DF AD +=;①CE DE ⊥;①BDE ACE S S =△△,其中正确的有( ).A .①①B .①①C .①①①D .①①①① 17.如图,在△ABC 中,①A =80°,①C =60°,则外角①ABD 的度数是( )A .100°B .120°C .140°D .160° 18.如图,一个长方体的长宽高分别是6米、3米、2米,一只蚂蚁沿长方体的表面从点A 到点C '所经过的最短路线长为( )A B C D .以上都不对 19.如图,BAC ∠的平分线与BC 的垂直平分线相交于点D ,ED AB ⊥于点E ,11AB =,5AC =,则BE 的长为( )A .3B .4C .5D .6二、填空题20.若关于x 的方程7x 62a 5x +-=的解是负数,则a 的取值范围是__________. 21.如图,在ABC 和△FED 中,BD EC =,AB FE =,当添加条件______时,就可得到ABC EDF △≌△.(只需填写一个即可)22.点P(在第________象限. 23.若一次函数26y x =-的图像过点(),a b ,则21b a -+=______.24.我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦如图1所示,数学家刘徽(约公元225年~公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理如图2所示的长方形是由两个完全相同的“勾股形”拼接而成,若4a =,6b =,则长方形的面积为______.25.将直线21y x =-向上平移4个单位长度,平移后直线的函数解析式为 _____. 26.小明某天离家,先在A 处办事后,再到B 处购物,购物后回家.下图描述了他离家的距离s (米)与离家后的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)A 处与小明家的距离是_________米,小明在从家到A 处过程中的速度是________米/分;(2)小明在B 处购物所用的时间是_______分钟,他从B 处回家过程中的速度是________米/分;(3)如果小明家、A 处和B 处在一条直线上,那么小明从离家到回家这一过程的平均速度是_________米/分.27.关于x 的解集3x a -<<有五个整数解,则a 的取值范围为______.28.如图:已知,平行四边形ABCD 中,CE AB ⊥,E 为垂足,如果A 120︒∠=,则BCE ∠的度数是______________.29.若关于x 的方程3(4)25x a +=+的解大于关于x 的方程(41)(34)43a x a x +-=的解,则a 的取值范围为________. 30.若等腰三角形的一个内角为50,则它的底角的度数为______.31.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要的聚集.小华爸爸早上开车以60/km h 的平均速度行驶20min 到达单位,下班按原路返回,若返回时平均速度为v ,则路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为________.32.规定:经过三角形的一个顶点且将三角形的周长分成相等的两部分的直线叫做该角形的“等周线”,“等周线”被这个三角形截得的线段叫做该三角形的“等周径”.例如等腰三角形底边上的中线即为它的“等周径”Rt △ABC 中,①C =90°,AC =4,BC =3,若直线l 为△ABC 的“等周线”,则△ABC 的所有“等周径”长为________.33.如图,已知EA=CE,①B=①D=①AEC=90°,AB=3 cm,CD=2 cm,则①CDE 和①EBA 的面积之和是____.34.(1)点(2,36)P a a -+到两坐标轴的距离相等,则点P 的坐标为__________; (2)正方形的两边与x ,y 轴的负方向重合,其中正方形的一个顶点坐标为(2,23)C a a --,则点C 的坐标为_______.35.已知长方形的两邻边的差为2,对角线长为4,则长方形的面积是________. 36.如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器内壁离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为_______m (容器厚度忽略不计).37.已知关于x 的不等式组1x x m>-⎧⎨<⎩的整数解共有2个,则m 的取值范围是___________38.如图,在①ABC 中,3∠=∠ABC C ,12∠=∠,BE AE ⊥,5AB =,3BE =,则AC =_____39.在直角坐标系中,直线1y x =+与y 轴交于点1A ,按如图方式作正方形111A B C O 、2221A B C C 、3332A B C C 、…,点1A 、2A 、3A 、…在直线1y x =+上,点1C 、2C 、3C 、…,在x 轴上,图中阴影部分三角形的面积从左到右依次记为1S 、2S 、3S 、…n S ,则1S =_______,=n S ________.(用含n 的代数式表示,n 为正整数)三、解答题40.如图,①MOP =60°,OM =5,动点N 从点O 出发,以每秒1个单位长度的速度沿射线OP 运动.设点N 的运动时间为t 秒,当△MON 是锐角三角形时,求t 满足的条件.41.如图所示,AE AC =,AB AD =,EAB CAD ∠=∠.求证:B D ∠=∠.42.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品43.给出如下规定:两个图形1G 和2G ,点P 为1G 上任一点,点Q 为2G 上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形1G 和2G 之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为()10A ,,则点()2,3B 和射线OA 之间的距离为 ,点(3,4)C -和射线OA 之间的距离为 .(2)点E 的坐标为(1,1),将射线OE 绕原点O 逆时针旋转90︒,得到射线OF ,在坐标平面内所有和射线OE OF ,之间的距离相等的点所组成的图形记为图形M .①在坐标系中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)①将抛物线22y x =﹣与图形M 的公共部分记为图形N ,射线OE ,OF 组成的图形记为图形W ,请直接写出图形W 和图形N 之间的距离.44.某城市居民用水实行阶梯收费,每户每月用水量如果未超过15吨,按每吨2元收费.如果超过15吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出当每月用水量未超过15吨和超过15吨时,y 与x 之间的函数表达式; (2)若该城市某用户5月份和6月份共用水50吨,且5月份的用水量不足15吨,两个月一共交水费120元,求该用户5月份和6月份分别用水多少吨?45.有一块木板(图中阴影部分),测得4AB =,3BC =,12DC =,13AD =,90ABC ∠=︒.求阴影部分面积.46.ABC 在平面直角坐标系中的位置如图所示,(1)画出ABC 关于y 轴对称的111A B C △,并写出点111,,A B C 的坐标;(2)在x 轴上取一点P ,使1PB PC +的值最小,在图上标出点P 的位置,(保留作图痕迹);(3)在y 轴上求作一点Q ,使QA QB =.(尺规作图,保留作图痕迹,不写作法)47.已知方程组31313x y m x y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)化简:324m m -++.48.在①ABC 中,CD 是AB 边上的高,AC =4,BC =3,DB =1.8. (1)求CD 的长;(2)求AB 的长;(3)①ABC 是直角三角形吗?请说明理由.49.如图,ABC 中,=45ABC ∠︒,D 为BC 上一点,60ADC ∠=︒,AE BC ⊥于点E ,CF AD ⊥于点F ,AE 、CF 相交于点G ,15CAE ∠=︒(1)求ACF∠的度数;(2)求证:12DF AG=.参考答案:1.C【分析】根据轴对称图形的定义分析判断即可知道正确答案.【详解】A 、不是轴对称图形,选项不符合题意;B 、不是轴对称图形,选项不符合题意;C 、是轴对称图形,选项符合题意;D 、不是轴对称图形,选项不符合题意.故选:C【点睛】本题考查轴对称图形的识别,牢记相关定义是解题关键.2.A【分析】根据不等式的性质可判断不等式的变形是否正确.【详解】① 66x y >-,① 6+60x y >,① +0x y >.故A 正确,B ,C ,D 错误.故选:A .【点睛】本题考查了不等式的性质,熟练运用不等式的性质是解题的关键.3.B【分析】先根据三角形全等的判定定理证得ABC ADE ∆≅∆,再根据三角形全等的性质、等腰三角形的性质可判断A 、C 选项,又由等腰三角形的性质、三角形的内角和定理可判断出D 选项,从而可得出答案.【详解】DAB EAC ∠=∠DAB CAD EAC CAD ∴∠+∠=∠+∠,即BAC DAE ∠=∠在ABC ∆和ADE ∆中,BAC DAE ACB AED AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC ADE AAS ∴∆≅∆,,B ADE AC AE BC DE ∴∠=∠==,则A 选项正确ACE AEC ∴∠=∠(等边对等角),则C 选项正确AB AD =B ADB ∴∠=∠180B A B DB AD ∠+︒=∠+∠2180BA B D ∴∠=∠+︒,即1802B BAD ∠=︒∠-又180ADB A E DE CD ∠+∠+∠=︒180CDE B B ∠=∴∠+∠+︒,即1802B CDE ∠=︒∠-CDE BAD ∴∠=∠,则D 选项正确虽然,AC AE BC DE ==,但不能推出BC AE =,则B 选项错误故选:B .【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出ABC ADE ∆≅∆是解题关键.4.A【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【详解】解:最上面圆柱的直径较长,水流下降较慢;中间圆柱的直径最长,水流下降最慢;下面圆柱的直径最短,水流下降最快.故选:A .【点睛】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低. 5.A【分析】根据函数的定义,对任意的一个x 都存在唯一的y 与之对应可求.【详解】解:根据函数的定义,对任意的一个x 都存在唯一的y 与之对应,而B 、C 、D 都是一对多,只有A 是对任意的一个x 都存在唯一的y 与之对应.故选:A【点睛】本题主要考查了函数定义与函数对应的应用,要注意构成函数的要素之一:必须形成一一对应,但是不能一对多,属于基础试题.6.C【详解】由平移规律可知:点(2,3)平移后的横坐标为2-2=0;纵坐标为3+1=4; ①平移后点的坐标为(0,4).选C .【点睛】本题考查了平移变换,根据左右平移,横坐标变化,纵坐标不变,上下平移,横坐标不变,纵坐标变化,熟记“左减右加,下减上加”是解题关键.7.D【分析】先求出两小边的平方和和最长边的平方,看看是否相等即可.【详解】解:A 、①12+22≠32,①1,2,3不是勾股数,故本选项不符合题意;B 、①32+22≠42,①4,2,3不是勾股数,故本选项不符合题意;C 、①22213+≠,①13不是勾股数,故本选项不符合题意;D 、①52+122=132,①5,12,13是勾股数,故本选项符合题意;故选:D .【点睛】本题考查了勾股数和算术平方根,能熟记勾股数的意义是解此题的关键. 8.C【分析】根据三角形内角和定理求出最大内角,即可判断选项A 和选项B ,根据勾股定理的逆定理即可判断选项C 和选项D .【详解】解:A 、①A B C ∠∠=∠+,180A B C ∠+∠+∠=︒,①2180C ∠=︒,①90C ∠=︒,①ABC 是直角三角形,故本选项不符合题意;B 、①222a c b =-,①222+=a b c ,①以a ,b ,c 为边能组成直角三角形,故本选项不符合题意;C 、①23a =,24b =,25c =,2275a b +=≠,①222a b c +≠,①以a ,b ,c 为边不能组成直角三角形,故本选项符合题意;D 、①2251225144169+=+=,213169=,①22251213+=,①以a ,b ,c 为边能组成直角三角形,故本选项不符合题意.故选:C.【点睛】本题考查了勾股定理的逆定理和三角形内角和定理.理解和掌握勾股定理的逆定理是解题的关键,注意:如果一个三角形的两边a、b平方和等于第三边c的平方,那么这个三角形是直角三角形.9.A-,进行判断即可.【分析】根据第二象限,点的符号特征(),+-,【详解】解:①第二象限,点的符号特征是(),+①0x>,是正数;故选A.【点睛】本题考查坐标系下象限内点的符号特征.熟练掌握象限内点的符号特征,是解题的关键.10.C【详解】因为过圆心的直线都是圆的对称轴,所以这个图形的对称轴的条数即是正方形的对称轴的条数,而正方形有4条对称轴.故选C.11.D【分析】根据方向角的定义,即可解答.【详解】解:由题意得:90°-30°=60°,2.1×5=10.5(km),①点A在点O北偏东60°方向,距点O10.5km处,故选:D.【点睛】本题考查了方向角,熟练掌握方向角的定义是解题的关键.12.B【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),①2017÷4=504…1,①点A 2017在第四象限,点A 2016在第三象限, ①20164=504, ①A 2016是第三象限的第504个点,①A 2016的坐标为(−504,−504),①点A 2017的坐标为 (505,-504).故选:B .【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果. 13.B【分析】可先将不等式组求出解集,再通过m 的取值范围确定不等式组的解集中的整数解的个数即可.【详解】解:不等式组整理得:2x m x <⎧⎨≥⎩,解集为2x m ≤<, ①m 54<≤,①整数解为2,3,4,共3个,故选:B .【点睛】本题考查含参数的不等式,解题的关键是根据参数的范围来确定不等式组的解集. 14.B【分析】根据不等式的性质,依次分析各个选项,选出不等式的变形正确的选项即可.【详解】解:A 、①x y <,①22x y ->-,故该选项错误,不符合题意;B 、①x y <,①22x y -<-,故该选项正确,符合题意;C 、①x y <,①当0m n >>时,nx my <,故该选项错误,不符合题意;D 、①x y <,①22x y <,故该选项错误,不符合题意. 故选:B【点睛】本题考查了不等式的性质,能灵活运用不等式的性质进行变形是解本题的关键.不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.15.C【分析】利用图象分别得出快、慢者行驶的路程和时间,进而求出速度,再求出时间差.【详解】解:如图所示:快者的速度为:60÷10=6(米/秒),慢者的速度为:(60-10)÷10=5(米/秒),快者跑210米所用的时间为210÷6=35(秒),慢者跑210米所用的时间为(210-10)÷5=40(秒),①快者比慢者少用的时间为40-35=5(秒).故选:C .【点睛】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.16.D【分析】①易证①CBE=①DAE ,用SAS 即可求证:①ADE①①BCE ;①根据①结论可得①AEC=①DEB ,即可求得①AED=①BEG ,即可解题;①证明①AEF①①BED 即可;①易证①FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由①AEF①①BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】解:①AD 为①ABC 的高线①①CBE+①ABE+①BAD=90°,①Rt①ABE 是等腰直角三角形,①①ABE=①BAE=①BAD+①DAE=45°,AE=BE ,①①CBE+①BAD=45°,①①DAE=①CBE ,在①DAE 和①CBE 中,AE BE DAE CBE AD BC ⎪∠⎪⎩∠⎧⎨=== ①①ADE①①BCE (SAS );故①正确;①①ADE①①BCE ,①①EDA=①ECB ,AD=BC ,DE=EC ,①①ADE+①EDC=90°,①①EDC+①ECB=90°,①①DEC=90°,①CE①DE,①DEC是等腰直角三角形,易证①DFC是等腰直角三角形,故①正确,①DF=DC,①BC=BD+DC=BD+DF=AD,故①正确;①AD=BC,BD=AF,①CD=DF,①AD①BC,①①FDC是等腰直角三角形,①DE①CE,①EF=CE,①S△AEF=S△ACE,①①AEF①①BED,①S△AEF=S△BED,①S△BDE=S△ACE.故①正确;故选D.【点睛】本题考查了全等三角形的判定,等腰直角三角形的性质等知识,考查了全等三角形对应边相等的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.C【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,①ABD=①A+①C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.18.C【分析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.【详解】解:如图所示,此时:AC;'此时,'AC此时,'AC>故选:C.【点睛】此题考查平面的最短路径问题,关键是把长方体拉平后用了勾股定理求出对角线的长度.19.A【分析】连接CD ,BD ,由①BAC 的平分线与BC 的垂直平分线相交于点D ,DE①AB ,DF①AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,继而可得AF=AE ,易证得Rt △CDF①Rt △BDE ,则可得BE=CF ,继而求得答案.【详解】如图,连接CD ,BD ,①AD 是①BAC 的平分线,DE①AB ,DF①AC ,①DF=DE ,①F=①DEB=90°,①ADF=①ADE ,①AE=AF ,①DG 是BC 的垂直平分线,①CD=BD ,在Rt △CDF 和Rt △BDE 中,CD BD DF DE ⎧⎨⎩==, ①Rt △CDF①Rt △BDE (HL ),①BE=CF ,①AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,①AB=11,AC=5, ①BE=12×(11-5)=3.故选:A .【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题20.a <3【详解】7x 62a 5x +-=7x-5x=2a-62x=2a-6x=a-3因为关于x 的方程7x 62a 5x +-=的解是负数,所以a-3<0,所以a<3.故答案是:a<3.21.答案不唯一(如B E ∠=∠或AC FD =)【分析】根据题意可知BC=ED ,再结合三角形全等的判定定理“边角边”和“边边边”即可得出答案.【详解】①BD=EC ,①BC=ED ,由SSS 可知当AC=FD 时,①ABC①①EDF ;由SAS 可知当①B=①E 时,①ABC①①EDF ;故答案为:AC=FD 或①B=①E .【点睛】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.22.三【分析】根据直角坐标系的象限特点即可判断.【详解】①点P 00,则点P 在第三象限. 【点睛】此题主要考查直角坐标系的象限分类,解题的关键是熟知各象限的坐标特点. 23.5-【分析】先把点(),a b 代入一次函数26y x =-,得到26b a =-,再代入代数式计算即可.【详解】①一次函数26y x =-的图像过点(),a b ,①26b a =-,①2126215b a a a -+=--+=-,故答案为:5-【点睛】此题主要考查了一次函数图像上点的坐标特点以及代数式求值的问题,关键是掌握凡是函数图像经过的点必能满足解析式.24.48【分析】设小正方形的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,利用整体代入的思想解决问题,进而可求出该长方形的面积.【详解】解:设小正方形的边长为x ,①46a b ==,,①4610AB =+=,在Rt ABC △中,222AC BC AB +=,即()()2224610x x +++=,整理得,210240x x +-=,即21024x x +=,而长方形面积为()()2461024242448x x x x ++=++=+=, 即该长方形的面积为48,故答案为:48.【点睛】本题考查了勾股定理的运用,利用勾股定理得到21024x x +=再整体代入计算是解题的关键.25.23y x =+【分析】利用将直线y kx b =+向上或平移n 个单位,再向左或向右平移m 个单位,平移后的函数解析式y k x m n ,据此可得到平移后的函数解析式.【详解】①将直线21y x =-向上平移4个单位长度,①平移后直线的函数的解析式21423y x x =-+=+.故答案为:23y x =+.【点睛】本题考查了直线的平移给函数解析式的影响,掌握一次函数图象的平移规律是解本题的关键.26. 200 40 5 160 64【分析】根据图象可得:5-10分钟小明在A 处办事,15-20分钟小明在B 处购物,20-25分钟为小明返回家途中,即可求解.【详解】解:(1)由图可知,x =5时小明到达A 处,A 处离家距离为200米;小明在从家到A 处过程中的速度是200÷5=40(米/分);(2)小明在B 处购物所用的时间是20-15=5(分);他从B 处回家过程中的速度是800÷(25-20)=160(米/分),(3)小明往返所走路程为800×2=1600(米),往返所用时间为25分,所以小明从离家到回家这一过程的平均速度是1600÷25=64(米/分).故答案为:(1)200,40;(2)5,160;(3)64.【点睛】本题考查函数与图象的结合,根据图象,解决实际问题,准确获取信息,找到题中各个点所对应坐标的实际意义是解题的关键.27.23a <≤【分析】根据不等式的正整数解为210,1,2--,,,即可确定出正整数a 的取值范围. 【详解】①不等式3x a -<<有5个正整数解,①这5个整数解为210,1,2--,,, 则23a <≤,故答案为23a <≤.【点睛】本题主要考查不等式组的整数解,解题的关键是掌握据得到的条件进而求得不等式组的整数解.28.30°【详解】试题分析:先根据平行四边形的性质求得①B 的度数,再由根据三角形的内角和定理求解即可.解:①平行四边形, ①①B=60°①①=180°-90°-60°=30°. 考点:平行四边形的性质,三角形的内角和定理点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.29.718a > 【分析】先求出两个方程的解,然后解关于a 的一元一次不等式,即可得到答案.【详解】解:解方程3(4)25x a +=+, 得:273a x -=, 解方程(41)(34)43a x a x +-=, 得:163x a =-. 由题意得:271633a a ->-. 解得:718a >. 故答案为:718a >. 【点睛】本题考查的是解一元一次方程和解一元一次不等式,根据题意列出关于x 的不等式是解答此题的关键.30.65°或50°.【分析】由等腰三角形的一个内角为50°,可分别从50°的角为底角与50°的角为顶角去分析求解,即可求得答案.【详解】①等腰三角形的一个内角为50°,若这个角为顶角,则底角为:(180°﹣50°)÷2=65°,若这个角为底角,则另一个底角也为50°,①其一个底角的度数是65°或50°.故答案为65°或50°.31.20t v= 【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v =路程÷时间,即可得出答案.【详解】解:①20602060⨯=(km) ①小华爸爸下班时路上所用时间t (单位h )与速度v (单位:/km h )之间的关系可表示为:20t v=. 故答案为:20t v =.【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.32【分析】分三种情况:①当“等周线”经过点C时,直线l交AB于点E;①当“等周线”经过点A时,直线l交BC于点E,①当“等周线”经过点B时,直线l交AC于点E.画图并运用勾股定理计算.【详解】①Rt①ABC中,①C=90°,AC=4,BC=3,①AB=5①如图,当“等周线”经过点C时,直线l交AB于点E,设BE=x,则AE=5-x,作CH①AB于H.由题意得:3+x=4+5-x解得:x=3①CH=125 BC ACAB⋅=①BH9 5 =①EH=395-=65在Rt①ECH中,CE=①“等周径”①如图,当“等周线”经过点A时,直线l交BC于点E,设BE=x,则CE=3-x由题意得:4+3-x=5+x解得:x=1①EC=2在Rt①ACE中,AE①“等周径”长为①如图,当“等周线”经过点B时,直线l交AC于点E,设AE=x,则CE=4-x由题意得:3+4-x=5+x解得:x=1①CE=3在Rt①BCE中,BE①“等周径”长为综上所述,满足条件的“等周径”【点睛】本题考查“新定义”问题,分类讨论并准确画图,灵活运用勾股定理是解题关键.33.62cm【分析】只要证明△ECD①①AEB,再根据三角形面积公式计算即可.【详解】如图,①①B=①D=①AEC=90°,①①1+①2=90°,①2+①a=90°,①①1=①A ,①EC=AE ,①①ECD①①AEB ,①CD=EB=2cm ,DE=AB=3cm ,①①CDE 和△ABE 的面积之和为2×12×2×3=6cm 2,故答案为62 c m .【点睛】本题考查全等三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找全等三角形全等的条件.34. (3,3),(6,-6) 1-0(1,1)2⎛⎫-- ⎪⎝⎭,, 【分析】(1)根据点(2,36)P a a -+到两坐标轴的距离相等,可得2=36a a -+,当点P 在第一或第三象限时2=36a a -+或当点P 在第二或第四象限时2+360a a -+=,解方程即可;(2)由正方形的两边与x ,y 轴的负方向重合,当点C 在第三象限时,当点C 在x 轴上,与y 轴上分类列方程与解方程即可.【详解】解:(1)①点(2,36)P a a -+到两坐标轴的距离相等, ①2=36a a -+,当点P 在第一或第三象限时2=36a a -+解得1a =-,当1a =-时,2213,36363a a -=+=+=-+=,①点(3,3)P ,当点P 在第二或第四象限时2+360a a -+=解得4a =-当4a =-时,22+46,361266a a -==+=-+=-,①点(6,-6)P ,故答案为(3,3),(6,-6);(2)①正方形的两边与x ,y 轴的负方向重合,当点C 在第三象限时,(2,23)C a a --,①2=23a a --,解得=1a ,当=1a 时,2121,23231a a -=-=--=-=-,点(1,1)C --.当点C 在x 轴上时,①23=0a - 解得32a =当32a =时,312222a -=-=- 点1,02C ⎛⎫- ⎪⎝⎭; 当点C 在y 轴上时,2=0a -,解得=2a当=2a 时,23=4-3=10a ->不合题意舍去 故答案为1,02⎛⎫- ⎪⎝⎭, (-1,-1). 【点睛】本题考查点到两坐标轴的距离问题,根据坐标的符号分类构建方程是解题关键. 35.6【详解】试题解析:设长方形短边为x ,则长边为x+2,根据勾股定理得:x 2+(x+2)2=42,整理得:x 2+2x-6=0,解得:±①长方形宽为则面积为6.36.1.3.【详解】因为壁虎与蚊子在相对的位置,则壁虎在圆柱展开图矩形两边中点的连线上,如图所示要求壁虎捉蚊子的最短距离,实际上是求在EF 上找一点P ,使PA+PB 最短,过A 作EF 的对称点A',连接A'B ,则A'B 与EF 的交点就是所求的点P .过B 作BM AA'⊥于点M ,在Rt A'MB ∆中,A'M 1.2=,BM 0.5=,①A'B 1.3==.①A'B AP PB =+,①壁虎捉蚊子的最短距离为1.3m .37.12m <≤【分析】首先确定不等式组的整数解,即可确定m 的范围.【详解】解:关于x 的不等式组1x x m><-⎧⎨⎩的解集是:﹣1<x <m , ①不等式组的整数解有2个①这2个整数解是:0,1,①12m <≤故答案为:12m <≤.【点睛】本题考查了不等式组的整数解,正确理解m 与1和2的大小关系是关键. 38.11【分析】如图,延长BE 交AC 于M ,利用三角形内角和定理,得出①3=①4,AB=AM=5,BM=2BE=6,再利用①4是①BCM 的外角,利用等腰三角形判定得到CM=BM ,利用等量代换即可求证.【详解】证明:如图,延长BE 交AC 于M①BE AE ⊥①①AEB=①AEM=90°①①3=90°-①1,①4=90°-①2①①1=①2①①3=①4①AB=AM=5①BE AE ⊥①BM=2BE=6①①4是①BCM 的外角①①4=①5+①C①3∠=∠ABC C①①ABC=①3+①5=①4+①5①3①C=①4+①5=2①5+①C①①5=①C①CM=BM=6①AC=AM+CM=AB+2BE=11.【点睛】本题考查学生对等腰三角形的判定与性质的理解和掌握,本题的关键是作好辅助线,延长BE 交AC 于M ,利用三角形内角和定理、三角形外角的性质,考查的知识点较多,综合性较强.39. 12 232n -【分析】(1)如图所示,设直线与x 轴的交点为D. 计算直线与x 轴y 轴的交点坐标,从而求出正方形111A B C O 边长,然后计算12B A 即可解决问题.(2)分别计算2S 和3S 的面积,然后研究它们面积之间存在的数量关系即可解决n S .。

中考数学八年级上册专题训练50题含参考答案

中考数学八年级上册专题训练50题含参考答案

中考数学八年级上册专题训练50题含答案一、单选题1.在以下一列数3,3,5,6,7,8中,中位数是( ) A .3 B .5C .5.5D .62.若分式13x -有意义,则x 的取值范围是( ) A .3x >B .3x ≠C .0x ≠D .3x ≠-3.某小组英语听力口语考试的分数依次为:25,29,27,25,22,30,26,这组数据的中位数是( ) A .27B .26C .25.5D .254.对“十·一”黄金周7天假期去某景区旅游的人数进行统计,每天旅游的人数统计如下表:其中众数和中位数分别是( )A .1.2,B .2,2.5C .2,2D .1.2, 2.55.下列定理中,没有逆定理的是( ). A .直角三角形的两锐角互余 B .同位角相等,两直线平行C .对顶角相等D .直角三角形两直角边平方和等于斜边的平方6.已知ABC DEF ≅△△,70A ∠=︒,40E ∠=︒,则F ∠的度数为( ) A .30︒B .40︒C .70︒D .110︒7.某中学随机抽取了该校50名学生,他们的年龄如表所示:这50名学生年龄的众数和中位数分别是( ).A .13岁、14岁 B .14岁,14岁C .14岁,13岁D .14岁,15岁8.下列图形是轴对称图形的有( )A .5个B .4个C .3个D .2个9.已知116a b a b+=+,则a bb a +之值为( )A .4B .3C .2D .110.在1x ,12,21x x+,3xy π,3x y +,1+1x 中,分式的个数有( ) A .5个 B .4个 C .3个 D .2个11.下列各组图形中是全等三角形的一组是( )A .B .C .D .12.如图是用直尺和圆规作一个角等于已知角的示意图,要证明A O B AOB '''∠=∠,就要先证明C O D COD '''∆≅∆,那么判定C O D COD '''∆≅∆的依据是( )A .SSSB .SASC .AASD .ASA13.△ABC 中,AB =AC ,顶角是120°,则一个底角等于( ) A .120°B .90°C .60°D .30°14.如图,在Rt ABC ∆中,90C ∠=︒,12cm AC =,6cm BC ,一条线段PQ AB =,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,若以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,则AP 的值为( )A .6cmB .12cmC .12cm 或6cmD .10cm 或6cm15.下列命题是真命题的是( ) A .同旁内角互补 B .垂直于同一条直线的两直线平行 C .邻补角相等D .两直线平行,内错角相等16.已知分式242x y ⎛⎫- ⎪⎝⎭与另一个分式的商是62x y ,那么另一个分式是( )A .252x y-B .252x yC .1432x yD .32x y -17.要使式子21236x x x x +=---从左到右变形成立,x 应满足的条件是( ) A .x >-2B .x =-2C .x <-2D .x≠-218.若△ ABC 的内角满足,2∠ A -∠ B =60°,4∠ A +∠ C =300°,则△ ABC 是( ) A .直角三角形B .等腰三角形C .等边三角形D .无法确定19.关于x 的分式方程2311m x x -=--有增根,则m 的值是( ) A .1B .2C .1-D .2-20.下列命题中,假命题是( ) A .对顶角相等B .如果一个角的两边分别平行于另一个角的两边,那么这两个角相等C .两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行D .等角的补角相等二、填空题21.我市6月份某一周每天的最高气温为(单位:△):24,25,28,30,31,33,那么这一周每天最高气温的中位数是__.22.如图BD 是ABC 的一条角平分线,AB=8,BC=4,且ABCS =24,则DBC 的面积是_________.23.已知2410x x ++=,则1x x+=______. 24.计算:23b b a a÷=_______________________.25.如图,在ABC 中,B ACB ∠=∠,CD 是ABC 的角平分线,过A 作CD 的平行线交BC 的延长线于点E ,40E ∠=︒,则BAE ∠=_______°26.分式方程24211x x x++--=﹣1的解是_____. 27.21222933++=--+m m m ______. 28.已知方程21242kx x +=--,有增根,则k =_________. 29.在一个三角形中,如果一个内角是另一个内角的2倍,那么这个三角形称为理想三角形;如果一个内角是另一个内角的3倍,那么这个三角形称为梦想三角形.若一个三角形既是理想三角形,也是梦想三角形,写出这个三角形的三个内角的度数(只写出一组)______.30.在ABC 中,已知9028C B A ∠=︒∠-∠=︒,,则B ∠=______.31.如图,AB AC =,AD△BC ,50DAC ∠=︒,则B ∠的度数是_________.32.在平面直角坐标系中,点A (﹣1,8)关于x 轴对称点的坐标是 ___.33.在课堂上,老师发给每人一张印有Rt A B C '''(如图所示)的卡片,然后,要同学们尝试画一个Rt ABC △,使得t Rt R A B ABC C '''≌.小赵和小刘同学先画出了90MBN ∠=︒之后,后续画图的主要过程分别如图所示老师评价:他俩的做法都正确.请你选择一位同学的做法,并说出其作图依据.我选______的做法(填“小赵”或“小刘”),他作图判定t Rt R A B ABC C '''≌的依据是______ 34.如图,△ABC 是等腰直角三角形,AB =AC ,已知点A 的坐标为(﹣2,0),点B 的坐标为(0,1),则点C 的坐标为__.35.已知△AOB=30°,点在△AOB 的内部,与关于OA 对称,与关于OB对称,则△一定是一个__________________三角形.36.方程146x x =+的解是_____. 37.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连PQ 交AC 边于D ,则DE 的长为__________.38.已知等腰三角形一腰上的垂直平分线与另一腰所在直线的夹角是50°,则底角的度数为________.39.重庆市政府为了大力发展农牧业,鼓励并支持青年自主创业.打工返乡青年甲、乙两人在政府帮助下合伙养了若干头羊,而每头羊的卖价又恰与羊的头数相等,全部卖完后,两人按下面的方法平分钱:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元(都是整元),轮到乙拿去.为了平均分配,甲应该找补给乙__________元?三、解答题40.如图,点B 、D 、C 、F 在一条直线上,且BD=FC ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ABC△△EFD ,你添加的条件是 .(2)根据你添加的条件,证明△ABC△△EFD .41.已知:如图,AD 是ABC ∆的角平分线,,80B BAD ADC ∠=∠∠=︒,求ABC ∆各内角的度数.42.如图,在ABC ∆中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE ≌;(2)若110A ∠=︒,40C ∠=︒,求AEB ∠的度数. 43.先化简,再求值:(m+2﹣52m -)•243m m--,其中m=﹣12. 44.先化简:(2222a a a a -+-+-)÷2444a a --,再从﹣2,2,﹣1,1中选择一个合适的数代入求值.45.随着国内快递业务量的迅速增长,通过无人机可打造短途航空物流网络,加速物流效率.某公司采用“站点对站点”的无人机快递运送模式,选用了A ,B 两种型号的无人机,已知A 型号无人机平均每分钟比B 型号无人机多飞行150米.若两站点之间的距离为5000米,A 型号无人机单程所需时间是B 型号无人机单程所需时间的45,若不计停留时间,求A 型号无人机在两站点之间往返..的飞行时间.46.已知:如图,在ABC 中,AB AC =,AB 的垂直平分线DE 分别交AB 、AC 于D 、E .(1)若12AC =,10BC =,求EBC 的周长; (2)若40A ∠=︒,求EBC ∠的度数.47.如图,直线a△b ,一块含60°角的直角三角板ABC(△A =60°)按如图所示放置.若△1=55°,求△2的度数.48.如图1,在△ABC 中,BO AC ⊥于点O ,3,1AO BO OC ===,过点A 作AH BC ⊥于点H ,交BO 于点P .(1)求线段OP 的长度;(2)连接OH ,求证:点O 到△AHC 的两边距离相等;(3)如图2,若点D 为AB 的中点,点M 为线段BO 延长线上一动点,连接MD ,过点D 作DN DM ⊥交线段OA 延长线于N 点,则BDM ADN S S ∆∆-的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.49.如图1,在等边三角形ABC 中,AD BC ⊥于,D CE AB ⊥于,E AD 与CE 相交于点O .(1)求证:2OA DO =;(2)如图2,若点G 是线段AD 上一点,CG 平分BCE ∠,60BGF ∠=︒,GF 交CE 所在直线于点F .求证:GB GF =.(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作OG OF OA三条线段之间的数量60∠=︒,边GF交CE所在直线于点F.猜想:,,BGF关系,并证明.参考答案:1.C【详解】试题分析:从小到大排列此数据为:3,3,5,6,7,8,第3个与第4个数据分别是5,6,所以这组数据的中位数是(5+6)÷2=5.5.故选C.考点:中位数.2.B【分析】分式有意义的条件:分母不为0,根据分式有意义的条件列不等式即可.【详解】解:分式13x-有意义,30,x∴-≠3,x∴≠故选:B.【点睛】本题考查的是分式有意义的条件,掌握“分式的分母不为0”是解本题的关键.3.B【分析】将这组数据从小到大重新排列,再根据中位数的定义求解即可.【详解】将这组数据从小到大重新排列为22,25,25,26,27,29,30,△这组数据的中位数为26,故选:B.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.C【分析】先把数据按大小排列,然后根据中位数和众数定义分别求解.【详解】众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;而将这组数据从小到大的顺序排列后,处于中间位置的那个数的是2,那么由中位数的定义可知,这组数据的中位数是2.故选C.【点睛】本题考查统计知识中的中位数和众数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;一组数据中出现次数最多的数据叫做众数.答案第1页,共22页5.C【分析】分别写出四个命题的逆命题,逆命题是真命题的就是逆定理,不成立的就是假命题,就不是逆定理.【详解】解:A 、直角三角形两锐角互余逆定理是两锐角互余的三角形是直角三角形; B 、同位角相等,两直线平行逆定理是两直线平行,同位角相等;C 、对顶角相等的逆命题是:如果两个角相等,那么这两个角是对顶角,逆命题是假命题;D 、直角三角形两直角边平方和等于斜边的平方逆定理是两边的平方和等于第三边的平方的三角形是直角三角形.故选:C .【点睛】本题考查命题与定理,关键是写出四个选项的逆命题,然后再判断真假. 6.C【分析】由题意根据全等三角形对应角相等可得,D A B E F C ∠=∠∠=∠∠=∠,,再利用三角形的内角和等于180°列式计算即可得解.【详解】解:△△ABC △△DEF ,△7040,D A B E F C ︒︒∠=∠=∠=∠=∠=∠,,在△DEF 中,△F =180°-△D -△E =180°-70°-40°=70°.故选:C .【点睛】本题考查全等三角形的性质,主要利用了全等三角形对应角相等,根据对应顶点的字母放在对应位置上准确确定出对应角是解题的关键.7.C【详解】试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题中位数=(13+13)÷2=13;数据14出现了18次,次数最多,所以众数是14.故选C .考点:1.众数;2.中位数.8.B【分析】根据轴对称图形的定义,逐一判断图形,即可得到答案.【详解】由题意得:第一、三、四、五个图形是轴对称图形,【点睛】本题主要考查轴对称图形的定义,掌握“沿一条直线折叠,两边完全重合的图形,叫做轴对称图形”是解题的关键.9.A【分析】将已知条件变形可得:26()ab a b =+,利用完全平方公式展开移项合并同类项后可得,224ab a b =+,又因为22a b a b b a ab ++=,代入即可. 【详解】解:△116a b a b+=+可变形为:26()ab a b =+, △2262ab a ab b =++△224ab a b =+ △22ab a b b a ab++= △原式2244a b ab ab ab+===. 故选:A .【点睛】本题考查的知识点是求分式的值,解此题的关键是将已知条件进行变形,得出224ab a b =+.10.B【详解】解:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式, 由此可得1x ,21x x+,3x y +,1+1x 是分式,共4个, 故选B11.B【分析】根据全等三角形的判定定理逐个判断即可.【详解】解:A .不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;B .符合全等三角形的判定定理SAS ,能推出两三角形全等,故本选项符合题意;C .只有一个角相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;D .只有一条边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL 等.12.A【分析】由题意:用直尺和圆规作一个角等于已知角的示意图中,可得到三条线段对应相等,据此解题.【详解】根据作法可知: =C O CO D O DO D C DC ''''''==,,()C O D COD SSS '''∴∆≅∆故选:A .【点睛】本题考查基本作图、全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.13.D【分析】根据等腰三角形的性质得出△B =△C ,根据题意得出△A =120°,根据三角形内角和定理即可求得底角的度数.【详解】△△ABC 中,AB =AC ,顶角是120°,△△B =△C ,△A =120°△△A+△B+△C =180°,△△B =△C =1801202︒-︒=30°, 故选:D .【点睛】本题主要考查了等腰三角形性质与三角形内角和定理,熟练掌握相关概念是解题关键.14.C【分析】分△ABC △△QP A 、△ABC △△PQA 两种情况,根据全等三角形的性质解答.【详解】解:由题意得:△C =△P AQ =90°,△分两种情况讨论:当△ABC △△QP A 时,AP =BC =6cm ,当△ABC △△PQA 时,AP =AC =12cm ,即AP 的值为12cm 或6cm ,【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键. 15.D【详解】试题分析:A 、两直线平行,则同旁内角互补;B 、在同一平面内,垂直于同一条直线的两直线平行;C 、邻补角是指一个角.考点:真假命题的判定.16.B【分析】由被除式÷除式=商,根据分式除法的运算法则求出另一个分式即可.【详解】△分式242x y ⎛⎫- ⎪⎝⎭与另一个分式的商是62x y , △242x y ⎛⎫- ⎪⎝⎭÷62x y =84x y ⋅612x y =252x y , △另一个分式是252x y, 故选B.【点睛】本题考查分式除法,分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,熟练掌握运算法则是解题关键.17.D【详解】根据分式的基本性质:“在分式的分子和分母中,同时乘以(或除以)一个不为0的数(或整式)分式的值不变.”可知,要使式子21236x x x x +=---从左到右变形成立,则20x +≠,即2x ≠-,故选D.18.C【详解】因为2△A -△B =60°,4△A +△C =300°,所以△C +2△B =180°.因为△A +△B +△C =180°,所以△A =△B =△C =60°,故选C.19.B【分析】根据题意可得x =1,然后代入整式方程中进行计算,即可解答. 【详解】解:2311m x x -=--, m -2=3(x -1),解得:x =m+13,△分式方程有增根,△x=1,把x=1代入x=m+13中,1=m+13,解得:m=2,故选:B.【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键.20.B【分析】分别判断后,找到错误的命题就是假命题.【详解】A. 对顶角相等,正确,是真命题;B. 如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故错误,是假命题.C. 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,正确,是真命题;D.等角的补角相等,正确,是真命题;故选B.【点睛】此题考查命题与定理,解题关键在于掌握其性质定义.21.29【详解】根据中位数的定义,可得每天最高气温的中位数是2922.8【详解】过D作AB、BC的垂线,根据角平分线上的点到角两边的距离相等,得两垂线段相等.所以△△DBC的面积==8.23.4-【分析】将已知方程两边同除以x即可求解.【详解】解:将2410x x++=两边同除以x,得140xx++=△14x x+=- 故答案为:4-.【点睛】本题考查了分式的求值,能正确对已知等式变形是解题关键.24.3b【分析】根据分式除法和分式乘法法则进行计算即可求解. 【详解】解:22333b b b a a a a b b÷=⨯=. 故答案为:3b. 【点睛】本题主要考查分式除法和分式乘法法则,解决本题的关键是要熟练掌握分式除法和分式乘法法则.25.60【分析】根据//CD AE ,40E ∠=︒,可得40BCD E ∠=∠=︒,根据CD 是ABC 的角平分线,可得80B ACB ∠=∠=︒,根据三角形的内角和可得60BDC ∠=︒,再根据两直线平行,同位角相等可得60BAE BDC =︒∠=∠.【详解】解:△//CD AE ,40E ∠=︒,△40BCD E ∠=∠=︒,△CD 是ABC 的角平分线,△224080ACB BCD ∠=∠=⨯︒=︒,△80B ACB ∠=∠=︒,△840180180600BDC BCD B ∠=︒=︒∠=︒-∠-︒-︒-,△//CD AE ,△60BAE BDC =︒∠=∠,故答案是:60.【点睛】本题考查了角平分线的性质,平行线的性质的应用,熟悉相关性质是解题的关键.26.x =13【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:4﹣(x +2)(x +1)=﹣x 2+1,整理得:4﹣x 2﹣3x ﹣2=﹣x 2+1,解得:x =13, 经检验x =13是分式方程的解. 故答案为x =13【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 27.0【分析】先根据平方差公式通分,再加减计算即可. 【详解】原式21222933m m m =-+--+ 222122626999m m m m m +-=-+--- 21226269m m m --+-=- 0=.故答案为:0【点睛】本题考查了分式的加减法,熟悉掌握通分、约分法则是解题的关键.28.14- 【分析】先将分式方程去分母整理为整式方程,然后根据分式方程有增根可得2x =或2x =-,代入计算即可.【详解】解:方程两边同乘(2)(2)x x +-,得12(2)(2)(2)x x k x ++-=-+.△原方程有增根,△最简公分母(2)(2)0x x +-=,增根是2x =或2x =-,当2x =时,14k =-; 当2x =-时,k 无解.△k 值为14-, 故答案为:14-. 【点睛】增根问题可按如下步骤进行:△根据最简公分母确定增根的值;△化分式方程为整式方程;△把增根代入整式方程即可求得相关字母的值.29.30°、60°、90°【分析】根据理想三角形、梦想三角形的定义,列方程求解即可.【详解】解:设最小内角度数为n °,2倍角为2n °,3倍角为3n °,△n +2n +3n =180,△n =30,△这个三角形的三个内角的度数为:30°、60°、90°.故答案为:30°、60°、90°.【点睛】本题考查了n 倍角三角形的定义以及三角形的内角和等知识,解题的关键是学会用方程的思想解决问题.30.59°【分析】由三角形的内角和定理,得到90B A ∠+∠=︒,结合28B A ∠-∠=︒,即可求出B ∠的度数.【详解】解:△在ABC 中,90C ∠=︒,△90B A ∠+∠=︒,△28B A ∠-∠=︒,△59B ∠=︒,21A ∠=︒,故答案为:59°.【点睛】本题考查了三角形内角和定理,解题的关键是熟练掌握三角形内角和定理. 31.50°【分析】根据等腰三角形等边对等角知B C ∠=∠,利用平行线的性质知DAC C ∠=∠,通过等量代换,即可求解.【详解】解:△ AB AC =,△B C ∠=∠,又△//AD BC ,△DAC C ∠=∠(两直线平行,内错角相等),且50DAC ∠=︒,△=50B C DAC ∠=∠∠=︒.故答案为50︒.【点睛】本题考查等腰三角形与平行线的综合,难度不大,熟练掌握等腰三角形以及平行线的性质是顺利解题的关键.32.(-1,-8)【分析】利用关于x 轴的对称点的坐标特点可得答案.【详解】解:△点A (﹣1,8),△点A 关于x 轴的对称点的坐标是(-1,-8),故答案为:(-1,-8).【点睛】此题主要考查坐标的对称,解题的关键是熟知关于x 轴的对称点的坐标特点:坐标轴不变,纵坐标互为相反数.33. 小刘(或小赵) HL (或SAS )【分析】由图可知小赵同学确定的是两条直角边,根据三角形全等判定定理为SAS . 由图可知小刘同学确定了一个直角边和斜边,根据三角形全等判定定理为HL .【详解】小赵同学画了90MBN ∠=︒后,再截取,AB BC 两直角边等于两已知线段,所以确定的依据是SAS 定理;小刘同学画了90MBN ∠=︒后,再截取,BC AC 一直角边和一个斜边,所以确定的依据是HL 定理.故答案为:小刘(或小赵);HL (或SAS )【点睛】本题考查了全等三角形的判定,熟练掌握每种证明方法,做出判断是解题的关键.34.(-3,2)【详解】过C 作CD △x 轴于D ,则△CDA =△AOB =90°,△△ABC 是等腰直角三角形,△△CAB =90°,又△△AOB =90°,△△CAD +△BAO =90°,△ABO +△BAO =90°,△△CAD =△ABO ,在△ACD 和△BAO 中,CDA AOB CAD ABO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ACD △△BAO (AAS ),△CD =AO ,AD =BO ,又△点A 的坐标为(-2,0),点B 的坐标为(0,1),△CD =AO =2,AD =BO =1,△DO =3,又△点C 在第三象限,△点C 的坐标为(-3,2).故答案为:(-3,2).【点睛】考点:1.辅助线的添加;2.三角形全等.35.等边.【详解】试题分析:如图,根据轴对称的性质得到12OP OP OP ==且12260,POP AOB ∠=∠=12OPP ∴是等边三角形.考点:1、轴对称的性质;2、等边三角形的判定.36.x =2.【分析】本题考查解分式方程的能力,观察可得最简公分母是x (x+6),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【详解】方程两边同乘以x (x+6),得x+6=4x ,解得x=2.经检验:x=2是原方程的解.【点睛】此题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程解.(2)解分式方程一定注意要验根.37.1.5【分析】过点P 作//PF BC 交AC 于点F ,根据题意可证APF 是等边三角形,根据等腰三角形三线合一证明AE =FE ,根据全等三角形判定定理可证PFD QCD ≌△△,DF =DC ,进而证明12DE AC =,计算求值即可. 【详解】解:过点P 作//PF BC 交AC 于点F ,如图,△//PF BC ,△60APF B ∠=∠=︒,60A ∠=︒,APF 是等边三角形,△PF PA =,△PE AC ⊥,△AE FE =;△PA CQ =,△PF QC =,△//PF BC ,△∠=∠PFD QCD ,在PFD 和QCD 中,PF QC PFD QCD PDF QDC =⎧⎪∠=∠⎨⎪∠=∠⎩△PFD QCD ≌△△(AAS ),△DF DC =; △12DF FC =,12EF AF =, △DF EF DE +=,FC AF AC +=, △1111()2222DE FC AF FC AF AC =+=+=, △3AC =,113 1.522DE AC ==⨯= 故答案为:1.5【点睛】本题考查了平行线性质、等边三角形性质、全等三角形判定与性质,掌握全等三角形判定定理是解题关键.38.7020︒︒或【分析】分两种情况讨论,△三角形为锐角三角形,根据直角三角形两锐角互余求出顶角,再根据等腰三角形两底角相等列式计算即可;△三角形为钝角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出顶角,再根据等腰三角形两底角相等列式计算即可.【详解】解:由题意,分两种情况讨论,△如图1,三角形为锐角三角形时,905040A ∠=︒-︒=︒, 底角为:()118040702⨯︒-︒=︒; △三角形为钝角三角形时,9050140BAC ∠=︒+︒=︒, 底角为:()1180140202⨯︒-︒=︒, 综上,底角的度数为7020︒︒或.【点睛】此题主要考查了等腰三角形的性质,线段垂直平分线的性质,解题关键是分类讨论.39.2【详解】试题分析:而每头羊的卖价又恰与羊的头数相等.设每头羊的卖价为x;则总的收入是2x ,2x 的尾数可能为0、1、4、5、6、9;全部卖完后,两人按下面的方法平分钱:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元(都是整元),轮到乙拿去,说明这一轮甲拿了10元了,剩下不足十元(都是整元),轮到乙拿去,则最后一轮还剩下的钱大于10,小于20;在10-20间只有16是一个数的平方,所以肯定最后一轮剩下16,甲拿去10元,剩下6元归乙;为了平均分配,甲应该找给乙10-162=2,这样的分配就是平均分配考点:统计点评:本题考查统计,关键是审清题,从而排除各种情况;本题考查学生的逻辑思维能力,归纳能力40.(1)AC=DE;(2)见详解【分析】(1)根据题目中给出的两组对边相等,可以再添加一组对边或一组对角相等利用SSS 或SAS 证明全等即可;(2)根据(1)中添加的条件选择对应的方法证明即可.【详解】(1)AC=DE(2)证明:BD FC =BD DC FC DC ∴+=+即BC DF =在ABC 和EFD △中,AB EF BC DF AC DE =⎧⎪=⎨⎪=⎩()ABC EFD SSS ∴≅【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键. 41.80,40,60BAC B C ∠=︒∠=︒∠=︒【分析】根据B BAD ∠=∠及外角性质可知△B 的度数,进而根据AD 是△BAC 的平分线可知△BAC 的度数,根据三角形内角和求出角C 的度数即可.【详解】△,80B BAD ADC ∠=∠∠=︒,△△B=△BAD=40°,△AD 是△BAC 的平分线,△△BAC=2△BAD=80°,△△B+△BAC+△C=180°,△△C=180°-40°-80°=60°【点睛】本题考查三角形外角性质及三角形内角和定理,熟练掌握三角形内角和定理是解题关键.42.(1)见解析(2)55AEB ∠=︒【分析】(1)根据角平分线的定义得到ABE DBE ∠∠=,再根据全等三角形的判定SAS 证明结论即可;(2)根据三角形的内角和定理求解即可.【详解】(1)证明:△BE 平分ABC ∠,△ABE DBE ∠∠=,在ABE 和DBE 中AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩△()ABE DBE SAS ≌;(2)解:△110,40A C ∠=︒∠=︒,△18030ABC A C ∠=︒-∠-∠=︒由(1)可知ABE DBE ∠∠=,△15ABE ∠=︒,△18055AEB A ABE ∠=︒-∠-∠=︒.【点睛】本题考查角平分线的定义、全等三角形的判定、三角形的内角和定理,熟练掌握全等三角形的判定和三角形的内角和定理是解答的关键.43.-2(m+3),-5.【分析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.【详解】解:(m+2-5m-2)•243m m --, =()22245•23m m m m-----, =-()22(3)(3)•23m m m m m -+---, =-2(m+3).把m=-12代入,得,原式=-2×(-12+3)=-5.44.-1【分析】根据分式的减法和除法运算法则可以化简题目中的式子,然后在-2,2,-1,1中选择一个使得原分式有意义的x 的值代入求解. 【详解】22244-224a a a a a a -+-⎛⎫÷ ⎪+--⎝⎭()()()()()2222241=224a a a a a a --+-÷+-- ()()()()()228=2241a a a a a a +--⨯+-- =2-1a a - , 当a =﹣1时,原式=﹣()2-1-1-1⨯ =﹣1.【点睛】本题主要考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法. 45.403分 【分析】设B 型无人机飞行速度为x 米/分,则A 型无人机飞行速度为()150x +米/分,根据题意列出方程并求解.【详解】设B 型无人机飞行速度为x 米/分,则A 型无人机飞行速度为()150x +米/分. 由题意得:5000450005150x x ⨯=+ 解得,600x =经检验,600x =是原方程的解.500020402215033x ⨯=⨯=+(分) 答:A 型号无人机在两站点之间往返..的飞行时间为403分. 【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 46.(1)22;(2)△EBC =30°.【分析】(1)由AB 的垂直平分线DE 分别交AB 、AC 于点D 、E ,易得△EBC 的周长=AC +BC ;(2)由AB =AC ,△A =40°,即可得到△ABC 的度数,再根据△ABE =△A ,即可得出△EBC 的度数.【详解】解:(1)△AB 的垂直平分线DE 分别交AB 、AC 于点D 、E ,△AE =BE ,△△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=10+12=22;(2)△AB=AC,△A=40°,△△ABC=△C=70°,又△AE=BE,△△ABE=△A=40°,△△EBC=70°-40°=30°.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.解题时注意线段垂直平分线上任意一点,到线段两端点的距离相等.47.115°【详解】分析:直接利用三角形的内角和定理结合对顶角的定义得出△ANM的度数,再利用平行心啊的性质求出△2即可.详解:如图,△直线a△b,△△AMO=△2;△△ANM=△1,而△1=55°,△△ANM=55°,△△AMO=△A+△ANM=60°+55°=115°,△△2=△AMO=115°.点睛:此题主要考查了三角形的内角定理和平行线的性质,关键是通过三角形的内角和求出△ANM的度数.48.(1)OP =1;(2)见解析;(3)不变,94【分析】(1)证△OAP △△OBC (ASA ),即可得出OP =OC =1;(2)过O 分别作OM △CB 于M 点,作ON △HA 于N 点,证△COM △△PON (AAS ),得出OM =ON .得出HO 平分△CHA ,即可得出结论;(3)连接OD ,由等腰直角三角形的性质得出OD △AB ,△BOD =△AOD =45°,OD =DA =BD ,则△OAD =45°,证出△DAN =△MOD .证△ODM △△ADN (ASA ),得S △ODM =S △ADN ,进而得出答案.(1)解:△BO △AC ,AH △BC ,△△AOP =△BOC =△AHC =90°,△△OAP +△C =△OBC +△C =90°,△△OAP =△OBC ,在△OAP 和△OBC 中,AOP BOC AO BOOAP OBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△OAP △△OBC (ASA ),△OP =OC =1;(2)过O 分别作OM △CB 于M 点,作ON △HA 于N 点,如图1所示:在四边形OMHN 中,△MON =360°-3×90°=90°,△△COM =△PON =90°-△MOP .在△COM 与△PON 中,90COM PON OMC ONP OC OP ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,△△COM △△PON (AAS ),△OM =ON .△OM △CB ,ON △HA ,△HO 平分△CHA ,△点O 到△AHC 的两边距离相等;(3)S △BDM -S △ADN 的值不发生改变,等于94.理由如下: 连接OD ,如图2所示:△△AOB =90°,OA =OB ,D 为AB 的中点,△OD △AB ,△BOD =△AOD =45°,OD =DA =BD△△OAD =45°,△MOD =90°+45°=135°,△△DAN =135°=△DOM .△MD △ND ,即△MDN =90°,△△MDO =△NDA =90°-△MDA .在△ODM 和△ADN 中,MDO NDA OD ADDOM DAN ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ODM △△ADN (ASA ),△S △ODM =S △ADN ,△S △BDM -S △ADN =S △BDM -S △ODM =S △BOD =12S △AOB =12×12AO •BO =12×12×3×3=94. 【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质以及三角形面积等知识;本题综合性强,证明三角形全等是解题的关键.49.(1)见解析(2)见解析(3)OF OG OA =+,理由见解析【分析】(1)由等边三角形的可求得30OAC OAB OCA OCB ∠=∠=∠=∠=︒,理由含30︒角的直角三角形的性质可得2OC OD =,进而可证明结论;(2)利用ASA 证明CGB CGF ≌即可证明结论;(3)连接OB ,在OF 上截取OM OG =,连接GM ,可证得OMG 是等边三角形,进而可利用ASA 证明GMF GOB ≌,得到MF OB OA ==,由OF OM MF =+可说明猜想的正确性.【详解】(1)证明:△ABC 为等边三角形,△AB BC AC ==,60BAC ACB ∠=∠=︒,△AD BC ⊥,CE AB ⊥,△AD 平分BAC ∠,CE 平分ACB ∠,△30OAC OAB OCA OCB ∠=∠=∠=∠=︒,△OA OC =,在Rt OCD △中,90ODC ∠=︒,30OCD ∠=︒,△2OC OD =,△2OA OD =;(2)证明:△AB AC BC ==,AD BC ⊥,△BD CD =,。

八年级上数学练习题

八年级上数学练习题

八年级上数学练习题一、有理数及其运算1. 计算下列各题:(1) (3) + 7 5(2) 4 (9) + 6(3) 5 × (4) ÷ 2(4) 15 ÷ (3) × (2)2. 化简下列各题:(1) (2)^3 + 5^2 1(2) 3 × (4) + 2^5 7(3) 4 × (3)^2 + 6 ÷ 2(4) 8 ÷ (2)^3 + 9 × 5二、整式及其运算1. 计算下列各题:(1) 3x 2y + 4x 5y(2) 5a^2 3a^2 + 7a^2 2a^2(3) 4m^2n 2mn^2 + 3m^2n 5mn^2(4) 6ab^2 3a^2b + 2ab^2 4a^2b2. 化简下列各题:(1) (2x 3y)(x + 4y)(2) (a + 3b)(a 2b)(3) (4m 5n)(2m + 3n)(4) (3x^2 + 2y^2)(x^2 y^2)三、一元一次方程1. 解下列方程:(1) 3x 7 = 5(2) 2x + 5 = 9(3) 4x 15 = x + 8(4) 5x 3(x 2) = 72. 解决实际问题:(1) 某数的3倍减去5等于这个数的2倍加1,求这个数。

(2) 甲、乙两人年龄之和为45岁,甲的年龄是乙的2倍,求甲、乙的年龄。

四、二元一次方程组1. 解下列方程组:(1)\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\](2)\[\begin{cases}4x 5y = 7 \\3x + 2y = 11\end{cases}\]2. 解决实际问题:(1) 甲、乙两人共生产零件120个,甲每天生产5个,乙每天生产8个,求甲、乙各生产多少天。

(2) 某商店同时卖出两件商品,每件售价80元,其中一件盈利20%,另一件亏损20%,求这两件商品的成本价。

华师版八上数学精选计算专题21道-附答案和考点详解

华师版八上数学精选计算专题21道-附答案和考点详解

华师版八上数学精选计算专题21道一.解答题(共21小题)1.计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)2.计算:++﹣3.计算:(1)|1﹣|+×﹣(2)﹣++.4.计算(1)﹣﹣(2)+|1﹣|﹣+(﹣)2.5.计算或化简(1)﹣+|﹣2|﹣()2(2)﹣22÷(﹣|﹣2|﹣)×(﹣1)2﹣.6.计算:(﹣)2﹣﹣2+82.7.计算:8.计算(1)+﹣()2(2)|﹣1﹣|﹣|﹣|+|﹣|9.计算:(1)﹣+(2)+|﹣1|﹣(+1)10.计算:(1)(2﹣)(2)(3)×(4)(2)﹣()11.计算:(1);(2).12.(1)计算:;(2)计算:2()﹣|﹣2|﹣.13.计算:(1);(2)+.14.计算:(1)(﹣1)2+;(2).15.计算:(1);(2).16.计算:(1)3×2﹣(﹣8)÷2;(2)﹣22+()2×().17.(1)计算:×9+(﹣)2﹣|5﹣|;(2)求x的值:﹣(x﹣3)3=1.18.计算:(1)﹣(3+2)﹣(1﹣3);(2)++|﹣2|.19.先化简,再求值(2m+n)(2m﹣n)﹣(2m﹣n)2+2n(m+n),其中m=+2,n=﹣2.20.计算或分解因式:(1)计算:;(2)分解因式:①8a3﹣2a;②x3﹣4x2y+4xy221.计算:.华师版八上数学精选计算专题21道参考答案与试题解析一.解答题(共21小题)1.计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)【考点】实数的运算.【分析】(1)首先利用绝对值的性质计算绝对值,然后再计算实数的加减即可;(2)本题涉及开立方、二次根式化简.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)原式=﹣1﹣(2﹣)+,=﹣1﹣2+﹣,=2﹣3;(2)原式=0.5﹣2﹣=﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.2.计算:++﹣【考点】实数的运算.【分析】首先计算开平方和开立方,然后再计算有理数的加减即可.【解答】解:原式=4++﹣5=4+3﹣5=2.【点评】此题主要考查了实数的运算,关键是掌握二次根式的化简和立方根.3.计算:(1)|1﹣|+×﹣(2)﹣++.【考点】实数的运算.【分析】(1)直接利用立方根以及算术平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.【解答】解:(1)原式=﹣1﹣×﹣=﹣1﹣=﹣;(2)原式=2﹣2﹣+=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.4.计算(1)﹣﹣(2)+|1﹣|﹣+(﹣)2.【考点】实数的运算.【分析】(1)直接利用立方根以及算术平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.【解答】解:(1)﹣﹣=+﹣=;(2)+|1﹣|﹣+(﹣)2=6+﹣1+2+5=12+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.5.计算或化简(1)﹣+|﹣2|﹣()2(2)﹣22÷(﹣|﹣2|﹣)×(﹣1)2﹣.【考点】实数的运算.【分析】(1)根据开平方、开立方、绝对值可以解答本题;(2)根据绝对值、有理数的乘除法和减法可以解答本题.【解答】解:(1)﹣+|﹣2|﹣()2=3﹣3+2﹣﹣2=;(2)﹣22÷(﹣|﹣2|﹣)×(﹣1)2﹣=﹣4÷(﹣2﹣)×﹣===4﹣=.【点评】本题考查实数的运算,解答本题的关键是明确实数运算的计算方法.6.计算:(﹣)2﹣﹣2+82.【考点】实数的运算.【分析】先算乘方、开方,再算加减.【解答】解:原式=2﹣(﹣4)﹣6+64=2+4﹣6+64=64【点评】本题考查了有理数的混合运算.解决此题目的过程中,易混淆(﹣)2与﹣2的运算结果而出错.7.计算:【考点】实数的运算.【分析】直接利用绝对值的性质以及立方根的性质和算术平方根的性质分别化简得出答案.【解答】解:原式=2﹣2++1﹣=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.8.计算(1)+﹣()2(2)|﹣1﹣|﹣|﹣|+|﹣|【考点】实数的运算.【分析】(1)本题涉及立方根、乘方、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2))首先计算绝对值,再合并同类二次根式即可.【解答】解:(1)原式=﹣2﹣=1﹣2=﹣1;(2)原式=1+﹣()+,=1+﹣++﹣,=1+.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.9.计算:(1)﹣+(2)+|﹣1|﹣(+1)【考点】实数的运算.【分析】(1)首先计算开平方和开立方,再计算加减即可;(2)首先计算二次根式的化简、绝对值,再合并同类二次根式即可.【解答】解:(1)原式=5﹣(﹣3)+=8;2)原式=2+﹣1﹣﹣1=0.【点评】此题主要考查了实数的运算,关键是掌握二次根式、绝对值等考点的运算.10.计算:(1)(2﹣)(2)(3)×(4)(2)﹣()【考点】实数的运算.【分析】(1)利用乘法分配律进行计算即可;(2)首先化简,然后再合并同类二次根式即可;(3)首先化简,然后再合并同类二次根式即可;(4)首先去括号,然后再合并同类二次根式即可.【解答】解:(1)原式=2﹣1;(2)原式=4++3=7;(3)原式=5﹣2+1=3+1;(4)原式=2+﹣+=+2.【点评】此题主要考查了实数运算,关键是掌握二次根式的性质.11.计算:(1);(2).【考点】实数的运算.【分析】(1)根据立方根、算术平方根、绝对值的运算将各式化简然后求和计算.(2)先算括号内运算,然后先算乘法再从左到右计算.【解答】解:(1)原式=﹣2+3+﹣1+2×=1+.(2)原式=﹣1﹣(1+8)×=﹣2.【点评】本题考查实数的运算,解题关键是掌握实数的化简与运算法则.12.(1)计算:;(2)计算:2()﹣|﹣2|﹣.【考点】绝对值;算术平方根;立方根;实数的运算.【分析】(1)根据立方根以及算术平方根的定义解决此题.(2)由,,得=.【解答】解:(1)==3.(2)===.【点评】本题主要考查立方根、算术平方根、绝对值以及实数的混合运算,熟练掌握立方根、算术平方根、绝对值以及实数的混合运算是解决本题的关键.13.计算:(1);(2)+.【考点】实数的运算.【分析】(1)先化简,再计算加减法;(2)先算二次根式、三次根式,再计算加减法.【解答】解:(1)原式=7﹣6+(﹣2)=7﹣6﹣2=﹣1;(2)原式=7﹣3+﹣1+﹣1=2=.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握绝对值、二次根式、三次根式等知识点的运算.14.计算:(1)(﹣1)2+;(2).【考点】实数的运算.【分析】(1)利用有理数的乘方法则和算术平方根的意义化简计算即可;(2)利用有理数的乘方法则和算术平方根的意义,立方根的意义化简计算即可.【解答】解:(1)原式=1+4=5;(2)原式=﹣4×﹣2+3×(﹣1)=﹣2﹣2﹣3=﹣7.【点评】本题主要考查了实数的运算,算术平方根的意义,立方根,实数的乘方法则,确定实数运算的运算顺序与符号是解题的关键.15.计算:(1);(2).【考点】实数的运算.【分析】(1)根据绝对值,二次根式的性质,算术平方根,立方根计算即可;(2)根据平方差公式和完全平方公式展开化简即可.【解答】解:(1)原式=2﹣2+2﹣=2;(2)原式=12﹣()2+()2﹣2+12=1﹣5+5﹣2+1=2﹣2.【点评】本题考查了实数的运算,掌握(a+b)(a﹣b)=a2﹣b2,(a±b)2=a2±2ab+b2是解题的关键.16.计算:(1)3×2﹣(﹣8)÷2;(2)﹣22+()2×().【考点】实数的运算.【分析】(1)先算乘除,再算减法;(2)先算乘方,化简算术平方根,然后算乘法,最后算加法.【解答】解:(1)原式=6+4=10;(2)原式=﹣4+(﹣)2×(﹣)=﹣4+×(﹣)=﹣4﹣=﹣.【点评】此题主要考查了有理数的混合运算,实数的混合运算,理解算术平方根的概念,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算)是解题关键.17.(1)计算:×9+(﹣)2﹣|5﹣|;(2)求x的值:﹣(x﹣3)3=1.【考点】立方根;实数的运算.【分析】(1)先进行立方根,绝对值,平方运算,再求和即可;(2)将方程化为(x﹣3)3=﹣64,再求解即可.【解答】解:(1)×9+(﹣)2﹣|5﹣|=×9+4﹣5+=3+4﹣5+=2+;(2)﹣(x﹣3)3=1,方程两边同时乘以﹣64得,(x﹣3)3=﹣64,则有x﹣3=﹣4,解得x=﹣1.【点评】本题考查实数的运算,熟练掌握立方根运算,绝对值运算是解题的关键.18.计算:(1)﹣(3+2)﹣(1﹣3);(2)++|﹣2|.【考点】实数的运算.【分析】(1)先去括号化简,再相加减可求解;(2)根据立方根,算术平方根,绝对值的定义化简,再合并即可求解.【解答】解:(1)原式==;(2)原式=﹣3+2+2﹣=1﹣.【点评】本题主要考查实数的运算,掌握立方根,算术平方根的定义是解题的关键.19.先化简,再求值(2m+n)(2m﹣n)﹣(2m﹣n)2+2n(m+n),其中m=+2,n=﹣2.【考点】整式的混合运算—化简求值;分母有理化.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把m与n的值代入计算即可求出值.【解答】解:原式=4m2﹣n2﹣(4m2﹣4mn+n2)+2mn+2n2=4m2﹣n2﹣4m2+4mn﹣n2+2mn+2n2=6mn,当m=+2,n=﹣2时,原式=6mn=6×(+2)×(﹣2)=6×1=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.计算或分解因式:(1)计算:;(2)分解因式:①8a3﹣2a;②x3﹣4x2y+4xy2【考点】实数的运算;提公因式法与公式法的综合运用.【分析】(1)本题涉及绝对值、二次根式化简、三次根式化简2个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果;(2)①此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解;②此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:(1)原式==;(2)①8a3﹣2a=2a(4a2﹣1)=2a(2a+1)(2a﹣1);②x3﹣4x2y+4xy2=x(x2﹣4xy+4y2)=x(x﹣2y)2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式、绝对值等知识点的运算.21.计算:.【考点】实数的运算.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而利用实数的加减运算法则计算得出答案.【解答】解:原式=3+5﹣﹣(2﹣)=3+5﹣﹣2+=4+.【点评】此题主要考查了立方根的性质以及绝对值的性质、二次根式的性质,正确化简各数是解题关键.。

中考数学八年级上册专题训练50题(含答案)

中考数学八年级上册专题训练50题(含答案)

中考数学八年级上册专题训练50题含答案一、单选题1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.下面列图案中既是轴对称图形......的是().....又是中心对称图形A.B.C.D.3.下列计算错误的是()=-A.22=B3=C.3D.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列说法正确的是()A.平行四边形的对角线互相平分且相等B.矩形的对角线互相垂直且平分C.菱形的对角线互相垂直且相等D.正方形的对角线互相垂直平分且相等6.下列四个说法:①连接两点之间的线段叫做这两点间的距离;①经过直线外一点,有且只有一条直线与这条直线平行;①a2的算术平方根是a;4.其中假命题的个数有()A.1个B.2个C.3个D.4个7.0.64的算术平方根是( ) A .0.8B .-0.8C .0.8±D .0.48.数学课上,老师出示了如下图的一道证明题.其中①①①分别填写( )A .中线、DE AC ∥、一组对边平行且相等B .中位线、DE AC ∥、两组对边分别相等 C .中线、CF AD =、两组对边分别相等 D .中位线、DE AC ∥、一组对边平行且相等9()2510b c +++=,则a b c +-的值是( ) A .4B .-2C .-4D .210.若函数y kx k =+(k 为常数,且0k ≠)中,y 随x 的增大而增大,则其图像可能是( )A .B .C .D .11.已知111222(,),(,)P x y P x y 是函数12y x =-图象上的两点,下列判断正确的是( ) A .12y y >B .12y y ≤C .当12x x <时,12y y <D .当12x x <时, 12y y >12.如图,在①ABCD 中,若①A =2①B ,则①D 的度数为( )A .30°B .45°C .70°D .60°13.已知a =b =2a 2+b 2的值为( ) A .14B .16C .18D .2014. 如下图,在等腰直角∆ABC 中,①B=90°,将∆ABC 绕顶点A 逆时针方向旋转60°后得到∆AB’C’,则①BAC’等于( )A .60°B .105°C .120°D .135°15.如图,等边AOB 中,点B 在x 轴正半轴上,点A 坐标为(,将AOB 绕点O 逆时针旋转30︒,此时点A 对应点'A 的坐标是( )A .(B .()2,0C .()0,2D .)16.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO .若60COB ∠=︒,2FO FC ==,则下列结论:①FB OC ⊥;①EOB CMB △≌△;①四边形EBFD 是菱形;①MB =( )A .1个B .2个C .3个D .4个17.如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至'''OA B C 的位置,若OB =①C =120°,则点B'的坐标为( )A .(3B .(3,C .D .18.在△ABC 中,AC =AB ,D ,E ,F 分别是AC ,BC ,AB 的中点,则下列结论中一定正确的是( )A .四边形DEBF 是矩形B .四边形DCEF 是正方形C .四边形ADEF 是菱形D .△DEF 是等边三角形19.小军用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数图象l 1、l 2,如图所示,则这个方程组是( )A .22112y x y x =-+⎧⎪⎨=-⎪⎩B .22y x y x =-+⎧⎨=-⎩C .38132y x y x =-⎧⎪⎨=-⎪⎩D .22112y x y x =-+⎧⎪⎨=--⎪⎩20.有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3)2=;(4(5)当0a ≠有( ) A .1个B .2个C .3个D .4个二、填空题21.按要求各写出一个数:负整数______;无理数______.22.如图,在△ABD 中,①D =90°,CD =6,AD =8,①ACD =2①B ,BD 的长为_____.23. 24.立方根和算术平方根都等于它本身的数是___________. 25.计算:0(-2)2=____.26.如图,线段AB 和CD 关于点O 中心对称,若40B ∠=︒,则D ∠的度数为________.27的结果为_____.28.已知二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足3x y +≤,则a 的取值范围为______.29a 的取值范围是______. 30.对于任意有理数a ,定义运算①:当2a ≥-时,①a a =-;当2a <-时,①a a =.则()425+-=⎡⎤⎣⎦▽▽____.31.在平面直角坐标系中,将二次函数y =(x ﹣2)2+2的图象向左平移2个单位,所得图象对应的函数解析式为_____.32.在平面直角坐标系中,若点P(x ﹣2,x+1)关于原点的对称点在第四象限,则x 的取值范围是_____.33.如图,正六边形ABCDEF 放置在直角坐标系内,A (﹣2,0),则点D 的坐标是 ____________.34.已知正方形ABCD 中,点E 在DC 边上,4DE =,2EC =,如图,把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点间的距离为___.35.如图,DE 为①ABC 的中位线,点F 在DE 上,且①AFB =90°,若AB =8,BC =10,则EF =______.36.在平面直角坐标中,点()1,2P -关于原对称的点的坐标为_______________________.37.如图,在ABC 中,BD 平分ABC ∠,CD BD ⊥,垂足为D ,E 为AC 的中点.若10AB =,6BC =,则DE 的长为_______________________.38.如图,矩形ABCD 的对角线AC ,BD 的交点为O ,点E 为BC 边的中点,OCB 30∠=︒,如果OE =2,那么对角线BD 的长为______.39.如图,ABC ∆和ADE ∆都是等边三角形,120CAD ∠<︒,点,M N 分别是AE ,CD 的中点,连结MN ,BD ,当30ADB ∠=︒,2AD =,5BD =时,MN 的长度为__________.40.四边形不具有稳定性.如图,面积为25的正方形ABCD 变成面积为20的菱形BCEF 后,则AF 的长为 __________.三、解答题41.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.42.先化简,再求值:22321()2422a a a a a a a +--+÷+---,其中a 2 43.如图,在矩形纸片ABCD 中,4AB =,8AD =,E 是AD 边上一点,折叠纸片使点B 与点E 重合,其中MN 为折痕,连结BM 、NE .若2DE =,求NC 的长.44.如图所示,在边长为1的小正方形组成的网格中,点A ,B ,C 都是格点,请证明点A ,B ,C 在同一条直线上.45.无刻度直尺作图:图1 图2 (1)直接写出四边形ABCD 的形状.(2)在图1中,先过E 点画一条直线平分四边形ABCD 的面积,再在AB 上画点F ,使得AF =AE .(3)在图2中,先在AD 上画一点G ,使得①DCG =45°;连接AC ,再在AC 上画点H ,使得GH =GA .46.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 是AD 的中点,连接OE ,过点D 作DF ①AC 交OE 的延长线于点F ,连接AF .(1)求证:AOE △①DFE △;(2)判定四边形AODF 的形状并说明理由.47.先化简,再求值:1111x x x ---+.其中x 48.某市正在创建“全国文明城市”,光明学校拟举办“创文知识”抢答案,欲购买A B 、两种奖品以抢答者.如果购买A 种25件,B 种20件,共需480元;如果购买A 种15件,B 种25件,共需340元.(1)AB 、两种奖品每件各多少元?(2)现要购买AB 、两种奖品共100件,总费用不超过1120元,那么最多能购买A 种奖品多少件?49.已知y =2xy 的n 次方根(n 为大于1的整数)50.某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费,而乙种方式不需要.两种收费方式 的费用 y (元)与印刷份数 x (份)之间的函数关系如图所示.(1)甲种收费方式的函数关系式是 ,乙种收费方式的函数关系式是 ;(2)该校八年级每次需印制 400 份学案,选择哪种印刷方式印刷比较合算?说明理由.参考答案:1.D【分析】根据菱形.正方形.矩形的判定进行判断即可.【详解】解:A.两条对角线垂直并且相互平分的四边形是菱形,故选项错误;B.对角线垂直且相等的平行四边形是正方形,故选项错误;C.两条对角线相等的平行四边形是矩形,故选项错误;D.根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项正确;故选:D【点睛】此题考查了菱形.正方形.矩形的判定,熟练掌握是关键.2.D【分析】根据轴对称图形和中心对称图形的定义逐项判断即可.【详解】解:A、既不是轴对称图形,也不是中心对称图形,不符合题意,所以本选项错误;B、既不是轴对称图形,也不是中心对称图形,不符合题意,所以本选项错误;C、是轴对称图形,不是中心对称图形,不符合题意,所以本选项错误;D、既是轴对称图形,也是中心对称图形,符合题意,所以本选项正确.故选D.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,掌握概念是关键. 3.C【分析】根据二次根式的运算法则,逐一判定即可.【详解】A选项,22=,正确;B3=,正确;=,错误;C选项,3D选项,=故选:C.【点睛】此题主要考查二次根式的混合运算,熟练掌握,即可解题.4.B【分析】根据中心对称图形和轴对称图形的特征判断即可.【详解】解:A、不是中心对称图形,也不是轴对称图形,不符合题意;B、是中心对称图形,又是轴对称图形,符合题意;C、不是中心对称图形,是轴对称图形,不符合题意;D、是中心对称图形,不是轴对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形和轴对称图形的识别,解题关键是抓住中心对称图形和轴对称图形的特征.5.D【分析】利用平行四边形、矩形、菱形、正方形的性质逐一判断即可.【详解】解:A、平行四边形的对角线不一定相等,但是互相平分,此选项错误,不符合题意;B、矩形的对角线相等,且互相平分,此选项错误,不符合题意;C、菱形的对角线互相垂直,且互相平分,但是不一定相等,此选项错误,不符合题意;D、正方形的对角线相等,且互相平分、垂直,符合题意.故选:D.【点睛】本题考查了平行四边形、矩形、菱形、正方形对角线的性质,解题的关键是熟练掌握平行四边形、矩形、菱形、正方形的性质及他们之间的联系和区别.6.C【分析】利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项.【详解】解:①连接两点之间的线段的长度叫做这两点间的距离,故原命题错误,是假命题,符合题意;①经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,不符合题意;①a2的算术平方根是a(a≥0),故原命题错误,是假命题,符合题意;2,故原命题错误,是假命题,符合题意;假命题有3个,故选:C.【点睛】本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键.7.A【分析】如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,由此求解即可.【详解】解:①20.80.64=,①0.64的算术平方根是0.8,故选A.【点睛】本题主要考查了算术平方根,解题的关键在于能够熟练掌握算术平方根的定义.8.D【分析】证明DE是①ABC的中位线,得DE①AC,DE=12AC,再证AC=DF,然后由一组对边平行且相等的四边形是平行四边形,即可得出结论.【详解】解:①点D,E分别是AB,BC的中点.①DE是①ABC的中位线,①DE①AC,DE=12AC,又①EF=DE,①AC=DF,①四边形ADFC是平行四边形,故①代表:中位线,①代表:DE①AC,①代表:一组对边平行且相等,故选:D.【点睛】本题考查了平行四边形的判定、三角形中位线定理等知识;熟练掌握平行四边形的判定,证出DE①AC,DE=12AC是解题的关键.9.B【分析】先根据算术平方根的非负性、二次方的非负性和绝对值的非负性求出a、b、c的值,然后再代入代数式求值即可.【详解】解:()2510 b c+++=,①205010abc-=⎧⎪+=⎨⎪+=⎩,解得:251a b c =⎧⎪=-⎨⎪=-⎩,①()()=251=251=2a b c +-+----+-,故B 正确.故选:B .【点睛】本题主要考查了求代数式的值,算术平方根的非负性,二次方的非负性和绝对值的非负性,根据题意求出a 、b 、c 的值,是解题的关键.10.A【分析】先根据题意判断出函数的增减性,再根据一次函数的图象与系数的关系即可得出结论.【详解】解:①函数y kx k =+(k 为常数,且0k ≠)中,y 随x 的增大而增大, ①0k >,①函数图象经过一、二、三象限.故选:A .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键. 11.D【分析】根据正比例函数图象的性质可知.【详解】解:根据k <0,得y 随x 的增大而减小.①当x 1<x 2时,y 1>y 2,①当x 1>x 2时,y 1<y 2.故选:D .【点睛】本题考查了正比例函数图象的性质,正比例函数图象是经过原点的一条直线.①当k >0时,图象经过一、三象限,y 随x 的增大而增大;①当k <0时,图象经过二、四象限,y 随x 的增大而减小.12.D【分析】由平行四边形的性质得出①A +①B =180°,再由已知条件①A =2①B ,即可得出①B 的度数,再根据平行四边形的对角相等即可求出①D 的度数.【详解】解:①四边形ABCD 是平行四边形,①AD ①BC ,①B =①D ,①①A +①B =180°,①①A =2①B ,①2①B +①B =180°,解得:①B =60°;①①D =60°,故选:D .【点睛】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.13.C【分析】根据二次根式的运算及完全平方公式可进行求解.【详解】解:①a =b =2①((2222229918a b +=+=+-=;故选C .【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的运算是解题的关键. 14.B【详解】试题分析:由①ABC 绕顶点A 逆时针方向旋转60°后得到①AB′C′,根据旋转的性质得到①CAC′=60°,而等腰直角①ABC 中,①B=90°,得①BAC=45°,所以①BAC′=①BAC+①CAC′.解:①①ABC 绕顶点A 逆时针方向旋转60°后得到①AB′C′,①①CAC′=60°,又①等腰直角①ABC 中,①B=90°,①①BAC=45°,①①BAC′=①BAC+①CAC′=45°+60°=105°.故答案为B .考点:旋转的性质.15.C【分析】根据等边三角形可知①AOB=60°,OA 与y 轴所成锐角为30°,可知'A 落在y 轴上,作AC①OB ,垂足为C ,求出OA 长即可.【详解】解:①等边AOB ,①①AOB=60°,①OA 与y 轴所成锐角为30°,将AOB 绕点O 逆时针旋转30︒,可知'A 落在y 轴上,作AC①OB ,垂足为C ,2OA =,①()'0,2A .故选:C【点睛】本题考查了等边三角形的性质,旋转的性质,勾股定理,解题关键是明确旋转后的A′所在位置,根据勾股定理求出OA 长.16.B【分析】连接BD ,先证明①BOC 是等边三角形,得出BO=BC ,又FO=FC ,从而可得出FB①OC ,故①正确;因为①EOB①①FOB①①FCB ,故①EOB 不会全等于①CBM ,故①错误;再证明四边形EBFD 是平行四边形,由OB①EF 推出四边形EBFD 是菱形,故①正确;先在Rt①BCF 中,可求出BC 的长,再在Rt①BCM 中求出BM 的长,从而可知①错误,最后可得到答案.【详解】解:连接BD ,①四边形ABCD 是矩形,①AC=BD ,AC 、BD 互相平分,①O 为AC 中点,①BD 也过O 点,①OB=OC ,①①COB=60°,①①OBC 是等边三角形,①OB=BC ,又FO=FC ,BF=BF ,①①OBF①①CBF (SSS ),①①OBF 与①CBF 关于直线BF 对称,①FB①OC ,①①正确;①①OBC=60°,①①ABO=30°,①①OBF①①CBF ,①①OBM=①CBM=30°,①①ABO=①OBF ,①AB①CD ,①①OCF=①OAE ,①OA=OC ,易证①AOE①①COF ,①OE=OF ,①OB=OD ,①四边形EBFD 是平行四边形.又①EBO=①OBF ,OE=OF ,①OB①EF ,①四边形EBFD 是菱形,①①正确;①由①①知①EOB①①FOB①①FCB ,①①EOB①①CMB 错误,①①错误;①FC=2,①OBC=60°,①OBF=①CBF ,①①CBF=30°,①BF=2CF=4,①CM=12①BM=3,故①错误. 综上可知其中正确结论的个数是2个.故选:B .【点睛】本题考查矩形的性质、菱形的判定、等边三角形的判定和性质、全等三角形的判定和性质、含30°的直角三角形的性质以及勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.17.D【分析】根据角度的计算可得45AOB '∠=︒,过B '作B D x '⊥轴,勾股定理求解即可【详解】如图,过B '作B D x '⊥轴,将菱形OABC 绕原点O 顺时针旋转75°至'''OA B C 的位置,75BOB '∴∠=︒四边形OABC 是菱形, ①C =120°,120OAB C ∴∠=∠=︒,AO AB =, ∴()1180302AOB OAB ∠=︒-∠=︒ ∴45AOB '∠=︒OB D '∴是等腰直角三角形OB =OB '∴=OD DB ''∴===∴点B'的坐标为 故选D【点睛】本题考查了旋转的性质,菱形的性质,等腰直角三角形的性质,求得45AOB '∠=︒是解题的关键.18.C【分析】根据中位线性质可得四边形ADEF 是平行四边形,又因为AD=AF ,可得四边形ADEF 是菱形.【详解】解:结论:四边形ADEF 是菱形.理由如下:①CD =AD ,CE =EB ,①DE①AB,①BE=EC,BF=FA,①EF①AC,①四边形ADEF是平行四边形,①AC=AB,①AD=AF,①四边形ADEF是菱形.故选:C.【点睛】本题考查了菱形的判定,利用中位线的性质判定四边形是平行四边形是关键.19.D【分析】两个一次函数的交点为两个一次函数解析式所组方程组的解.因此本题需根据图中直线所经过的点的坐标,用待定系数法求出两个一次函数的解析式.然后联立两个函数的解析式,即可得出所求的方程组.【详解】解:由图可知:直线l1过(2,﹣2),(0,2),因此直线l1的函数解析式为:y=﹣2x+2;直线l2过(0,﹣1),(2,﹣2),因此直线l2的函数解析式为:y12=-x﹣1;因此所求的二元一次方程组为22112y xy x=-+⎧⎪⎨=--⎪⎩;故选:D.【点睛】本题主要考查二元一次方程组与一次函数的关系.函数图象交点坐标为两函数解析式组成的方程组的解.20.B【分析】根据平方根与立方根的定义与性质逐个判断即可.【详解】(1)6-是36的一个平方根,则此说法正确;(2)16的平方根是4±,则此说法错误;(3)(2)2=--=,则此说法正确;(44=,4是有理数,则此说法错误;(5)当a<0综上,正确的说法有2个,故选:B.【点睛】本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键.21.-2(答案不唯一)(答案不唯一)【分析】根据负整数及无理数的概念写出相应的答案即可.【详解】解:负整数:-2故答案为:-2(答案不唯一).【点睛】本题考查数的分类,掌握相关概念是解题关键.22.16.【分析】根据勾股定理求出AC,根据三角形的外角的性质得到①B=①CAB,根据等腰三角形的性质求出BC,计算即可.【详解】解:①①D=90°,CD=6,AD=8,①AC=10,①①ACD=2①B,①ACD=①B+①CAB,①①B=①CAB,①BC=AC=10,①BD=BC+CD=16,故答案:16.【点睛】本题考查勾股定理、三角形的外角的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.23.﹣41.24=-;1.224.0或1【详解】设这个数为x,根据题意可知,3x xx =⎧⎪ , 解得x=1或0,故填:0或1.25.3【分析】根据零次幂和绝对值的计算法则化简,再按照有理数的加减法法则计算即可. 【详解】解:0(-2)2=1+2=3. 故答案为:3.【点睛】此题主要考查了实数的运算,零指数幂与绝对值,熟练掌握运算法则是解答此题的关键.26.40°【分析】根据线段AB 和CD 关于点O 成中心对称,可以证明ABO CDO △≌△,则B D ∠=∠,从而可以得到答案.【详解】解:①线段AB 和CD 关于点O 成中心对称,40B ∠=,①AO =CO ,BO =DO ,又①①AOB =①COD ,①ABO CDO △≌△(SAS ),①B D ∠=∠,①D ∠的度数为40.故答案为:40°.【点睛】本题主要考查了中心对称的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.27.【详解】分析:根据二次根式的性质先化简,再合并同类二次根式即可.详解:原式﹣.点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单. 28.8a ≤【分析】两方程相加得444x y a +=+,继而知14a x y +=+,结合3x y +≤得134a +≤,解之即可.【详解】解:两方程相加,得:444x y a +=+,14a x y ∴+=+, 3x y +≤,134a ∴+≤, 解得8a ≤,故答案为:8a ≤.【点睛】本题主要考查二元一次方程组和解一元一次不等式,解题的关键是根据题意列出关于a 的不等式.29.0a ≥且2a ≠【分析】根据二次根式的被开方数不能为负数,分母不能为零,可得答案.【详解】解:由题意,得:a≥0,a ﹣2≠0,解得:a≥0且a≠2,故答案为:a≥0且a≠2.【点睛】本题考查了分式及二次根式有意义的条件,利用二次根式的被开方数不能为负数,分母不能为零得出不等式是解题关键.30.1-.【分析】根据行定义的运算逐级展开计算即可.【详解】解:原式()=43+-⎡⎤⎣⎦▽▽,①32-<-,=∴▽(-3)-3;①原式==▽(4-3)▽1,又12>-,①原式==▽1-1,故答案为:-1.【点睛】本题考查了一种新定义运算;关键在于能通过题干理解新定义运算的法则. 31.y =x 2+2.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:二次函数y =(x ﹣2)2+2的图象向左平移2个单位,得:y =(x ﹣2+2)2+2=x 2+2;故答案为y =x 2+2.【点睛】本题主要考查了函数图象的平移,熟练掌握是解题的关键.32.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.33.(0,【分析】连接AD ,先根据正六边形的性质可得60OAD ∠=︒,从而可得30ADO ∠=︒,再根据含30︒角的直角三角形的性质可得24AD OA ==,然后利用勾股定理可得OD 的长,由此即可得.【详解】解:如图,连接AD ,(2,0)A -,2OA ∴=,六边形ABCDEF 是正六边形,1180(62)6026OAD ︒⨯-∴∠=⨯=︒, ∴在Rt AOD 中,30ADO ∠=︒,24AD OA ∴==,OD ∴==(0,D ∴,故答案为:(0,.【点睛】本题考查了正六边形的性质、勾股定理、含30︒角的直角三角形的性质、二次根式的化简等知识点,熟练掌握正六边形的性质是解题关键.34.2或10.【分析】分两种情况进行讨论,①当线段AE 顺时针旋转时,利用题干条件得到1ADE ABF ∆≅∆,进而得到FC EC =;①当线段AE 逆时针旋转时,利用题干条件得到2ABF ADE ∆≅∆,进而得到22F C F B BC =+.【详解】解:①当线段AD 顺时针旋转得到1F 点,在ADE ∆和1ABF ∆中,190AE AF D ABC AD AB =⎧⎪∠=∠=︒⎨⎪=⎩,1ADE ABF ∴∆≅∆,14DE BF ∴==,12EC FC ∴==; ①逆时针旋转得到2F 点,同理可得2ABF ADE ∆≅∆,24F B DE ∴==,2210F C F B BC =+=,故答案为2或10.【点睛】本题主要考查旋转的性质,正方形的性质,全等三角形的判定与性质,解答本题的关键是注意旋转的方向,此题难度不大.35.1BC=5,再根据直角三角形斜边上的中线等于斜边的【分析】根据三角形的中位线得DE=12AB=4,进而可求解.一半得到DF=12【详解】解:①DE为①ABC的中位线,BC=10,BC=5,①DE=12①①AFB=90°,D为AB的中点,AB=8,AB=4,①DF=12①EF=DE-DF=5-4=1,故答案为:1.【点睛】本题考查三角形的中位线性质、直角三角形斜边的中线性质,熟知直角三角形斜边上的中线等于斜边的一半是解答的关键.36.1,2【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】解:点P的坐标是(1,-2),则关于原对称的点的坐标为(-1,2),故答案为:(-1,2).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.37.2【分析】如图,延长CD交AB于F,再证明①BDC①①BDF,根据全等三角形的性质可得BF=BC=6,CD=DF,然后可求出AF,最后根据三角形中位线定理计算即可.【详解】解:如图:延长CD 交AB 于F在①BDC 和①BDF 中90DBC DBF BD BD BDC BDF ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩①①BDC ①①BDF (ASA )①BF =BC =6,CD =DF①A F =AB -BF =4.①CD =DF ,CE =EA①DE =12AF =2.故填2.【点睛】本题主要考查了三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边且等于第三边的一半成为解答本题的关键.38.8【分析】由30°角直角三角形的性质求得24OC OE ==,然后根据矩形的两条对角线相等且平分来求BD 的长度. 【详解】解:在矩形ABCD 中,对角线AC ,BD 的交点为O ,OC OA ∴=,AC BD =,90ABC ∠=︒.又①点E 为BC 边的中点,OE BC ∴⊥,30OCB ∠=︒,2OE =,24OC OE ∴==,28AC OC ∴==,8BD ∴=.故答案为:8.【点睛】本题主要考查对矩形的性质,三角形的中位线定理,能根据矩形的性质和30°角所对的直角边等于斜边的一半求出OD的长是解此题的关键.题型较好,难度适中.39【分析】连接EC,EB,设F为ED中点,连接MF,NF,根据中位线定理,求出MF和NF,再证明①BAD①①CAE,得到BD=EC=5,①AEC=①ADB,从而推出EC①AD,可推出MF①NF,再用勾股定理算出MN即可.【详解】解:连接EC,EB,设F为ED中点,连接MF,NF,可得:MF①AD,NF①EC,且MF=12AD=1,NF=12EC,①①ABC和①ADE为等边三角形,①AE=AD,AB=AC,①EAD=①BAC=60°,①①BAD=①EAC,①①BAD①①CAE(SAS),①BD=EC=5,①AEC=①ADB=30°,①EC平分①AED,①EC①AD,①MF①AD,FN①EC,①MF①NF,在①MNF中,=.【点睛】本题考查了中位线定理,全等三角形的判定和性质,等边三角形的性质,勾股定理,有一定难度,解题的难点在于构造出MN 为斜边的直角三角形FMN.40【分析】根据题意延长EF ,与AB 交于G ,作FH BC ⊥于H ,得出四边形GBHF 为矩形,进而根据勾股定理求解即可.【详解】解:延长EF ,与AB 交于G ,作FH BC ⊥于H .由面积为25的正方形ABCD 可得5AB BC ==,面积为20的菱形BCEF 可得·20BC FH =, ①2045FH ==,①541,3AG GF =-==,①AF.【点睛】本题考查四边形综合问题,熟练掌握正方形、矩形和菱形的性质以及运用勾股定理求解是解题的关键.41.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为2x 厘米,即得正方形纸板的边长是2x 厘米,根据题意得:2162x x ⋅=,①281x =,取正值9x =,可得218x =,①答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.42.12a a -+,1【分析】根据分式的混合运算顺序依次计算,代入求值即可【详解】解:原式=2(2)(23)2(2)2·41a a a a a a a --+++--- =2212·(2)(2)1a a a a a a -+-+-- =2(1)2·(2)(2)1a a a a a --+-- =12a a -+当a 2=时, 原式1==【点睛】此题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键. 43.113NC =. 【分析】利用对称的性质得出BM ME BN NE BMN EMN ==∠=∠,,,进而得出BM ME BN NE ===,证明四边形BMEN 是菱形,再利用菱形的性质结合勾股定理得出答案.【详解】解:①B 、E 两点关于直线MN 对称,①BM ME BN NE BMN EMN ==∠=∠,,,在矩形ABCD 中,AD BC ∥,①EMN MNB ∠=∠,①BMN MNB ∠=∠,①BM BN =,①BM ME BN NE ===,①四边形BMEN 是菱形;设菱形BMEN 的边长为x ,①826AM AD DE ME x x =--=--=-,在Rt ABM 中,222AB AM BM +=,①()22246x x +-=,①解得:133x =. ①1311833NC BC BN =-=-=. 【点睛】此题主要考查了菱形的判定与性质以及勾股定理,正确应用轴对称的性质是解题关键.44.见解析【分析】以C 为原点,构建如图,平面直角坐标系.求出直线AC 的解析式,证明点B 在直线AC 上即可.【详解】解:以C 为原点,构建如图,平面直角坐标系.则有C (0,0),A (-2,4),B (-1,2),设直线AC 的解析式为y =kx ,把A (-2,4)代入得,4=-2k ,解得,k =-2,直线AC 的解析式为y =-2x ,①x =-1时,y =2,①点B在直线AC上,①A,B,C三点共线.【点睛】本题考查了一次函数的应用,正确地求出直线AC的解析式是解题的关键,45.(1)四边形ABCD是菱形,理由见解析(2)见解析(3)见解析【分析】(1)只需要证明AB=CD=AD=BC即可得到结论;(2)如图连接AC,BD交于点T,作直线ET交BC于G,连接AG交BD于H,连接CH 并延长交AB于F,则直线EG,点F即为所求;(3)如图所示,取格点T,连接CT交AD于G,取格点M、N,连接MN交BC于P,连接GP交AC于H,则点G、H即为所求;(1)解:四边形ABCD是菱形,理由如下:由题意得55,,AB CD AD BC=====①AB=CD=AD=BC,①四边形ABCD是菱形;(2)解:如图连接AC,BD交于点T,作直线ET交BC于G,连接AG交BD于H,连接CH并延长交AB于F,则直线EG,点F即为所求;如图所示建立如下平面直角坐标系,①点A 的坐标为(0,4),点D 的坐标为(-3,0),点C 的坐标为(2,0),点B 的坐标为(5,4),①直线AD 的解析式为443y x =+,直线BD 的解析式为1322y x =+,点T 的坐标为(1,2), ①点E 的坐标为(-2,43) , ①直线ET 的解析式为21699y x =+, 同理可得直线BC 的解析式为4833y x =-, 联立216994833y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩, 解得483x y =⎧⎪⎨=⎪⎩, ①点G 的坐标为(4,83), ①直线AG 的解析式为143y x =-+, 联立1431322y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩, 解得33x y =⎧⎨=⎩, ①点H 的坐标为(3,3),①直线CH 的解析式为36y k =-,当y =4时,103x =, ①点F 的坐标为(103,4), ①103AF =, 又①103AE ==, ①AF =AE ;。

初二数学30道计算题及答案

初二数学30道计算题及答案

初二数学30道计算题及答案(1)“5.12”汶川地震发生后,威海某厂决定为灾区无偿生产活动板房。

已知某种大型号铁皮,每张可生产12个房身或18个房底。

现该厂库存49张这种铁皮,问怎样安排生产房身与房底的铁皮张数,能使生产的房身与房底配套(一张铁皮只能生产一种产品,一个房身配上两个房底)?解:设应用X长做房身,Y张做房底合理。

X+Y=49; 18Y=2*12X;解方程 X=21 Y=28 答:用21张铁皮生产房身,用28张铁皮生产房底。

(2)小明每天早晨在同一时刻从家里骑车去学校,如果以9km/时的速度,可提前20分钟到校.;如果以6千米/时的速度行驶,则迟到20分钟到达学校。

求小明家到学校的距离.设小明的家到学校的距离为X千米X/9+20/60=X/6-20/60 X/9-X/6=2/3 X/18=2/3X=12小明的家到学校的距离为12米(3)重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。

解:设第一种商品的单价为x元,则第二种商品的单价为(x+300)元。

由题意,得900/x =1500/(x+300)解得 x =450所以x+300=450+300=750答:第一种商品的单价为450元,第二种商品的单价为750元.(4)汽车往返于A、B两地,途径高地C(A至C是上坡,C至B是下坡),汽车上坡时的速度为25千米/小时。

下坡时的速度为50千米/时,汽车从A至B需3、5小时,从B 到A需4小时。

求A、C间及C、B间的距离。

设A、C间距离为X千米,C、B间距离为Y千米∵汽车上坡时的速度为25千米/小时,下坡时的速度为50千米/时。

汽车从A至B需3、5小时,从B到A需4小时。

∴X/25+Y/50=3.5X/50+Y/25=4∴X=50,Y=75故A、C间距离为50千米,C、B间距离为75千米。

(5)某同学将500元积蓄存入储蓄所,分活期与一年期两种方式存入,活期储蓄年利率为0、99%,一年期年利率为2、25%,一年后共得利息8、73元,求该同学两种储蓄的钱款。

初二数学练习题50道带答案

初二数学练习题50道带答案

初二数学练习题50道带答案1. 计算下列各式的值:a) 3 + 5 × 2 = 13b) (4 + 9) × 3 = 39c) 15 ÷ 3 × 4 = 20d) 2 × 3 ÷ 6 = 12. 简化下列各式:a) 3 × (4 + 7) = 33b) 12 + (5 + 3) = 20c) 15 ÷ (3 + 2) = 3d) (8 + 4) ÷ 6 = 23. 求下列各式的值:a) 6 + [(9 - 2) × 4] = 38b) (12 ÷ 3) × (4 + 1) = 20c) [(5 + 3) + 2] × 4 = 40d) (8 - 3) × (6 ÷ 3) = 154. 将下列各式改写为小数形式:a) 1/2 = 0.5b) 3/4 = 0.75c) 2/5 = 0.4d) 7/8 = 0.8755. 求下列各式的值:a) 2 3/4 + 1 1/2 = 4 1/4b) 5 3/8 - 3 1/4 = 2 1/8c) 6 2/3 × 2 1/2 = 16 5/6d) 8 1/2 ÷ 1 1/4 = 6 4/56. Patrick 每天早上步行去上学,一共需要花20分钟。

他步行到学校的时间是上学时间的1/4。

他上学总共需要多少分钟?答案:80分钟7. 一个口径为45 cm的圆形水箱的高度为105 cm. 如果用这个水箱每天给植物浇水6400 cm³的水,那么水箱可以供植物浇水多少天?答案:21天8. 一个矩形花坛的长是10 m,宽是6 m. 如果每平方米可以种植6朵花,那么这个花坛中可以种植多少朵花?答案:360朵花9. 一个长方形底的水池体积是45 m³,长是9 m,高是1.5 m. 水池的宽是多少米?答案:5 m10. 一个包装盒,长是40 cm,宽是30 cm,高是20 cm. 如果将其包装为方形,边长是多少?答案:30 cm11. 某货物原价是800元,打折后的价格是680元。

初二上册数学计算题500道

初二上册数学计算题500道

初二上册数学计算题500道
1.若将一个数加上6,再加上它的三倍,所得结果是59,那么这个数是多少?
设这个数为x,根据题意可得x+6+3x=59.
整理得4x+6=59.
4x=59-6=53.
2.如果一辆车以每小时80千米的速度行驶,那么它走300千米需要多少小时?
设时间为t,根据题意可得80t=300.
整理得t=300/80=3.75小时.
所以它走300千米需要3.75小时.
3.写出五个素数的最小公倍数。

素数是只能被1和自身整除的数,所以这题就是找到五个素数的最小公倍数.
写出五个素数:2,3,5,7,11.
将方程中的常数项移到右边得5x=28-3=25.
5.一块正方形的面积是16平方米,求它的周长。

设正方形的边长为x,则根据题意可得x²=16.
解得x=√16=4.
正方形的周长为4*4=16米.
6.两个相差为6的自然数的积是280,那么这两个自然数分别是多少?设较小的自然数为x,则较大的自然数为x+6.
根据题意,(x)(x+6)=280.
展开得x²+6x=280.
使用分解因式或配方法解得(x-14)(x+20)=0.
因此x=14或x=-20.
由于题目要求的是自然数,所以舍去x=-20.。

八年级上册数学题大全

八年级上册数学题大全

八年级上册数学题大全一、三角形相关(6题)1. 已知三角形的两边长分别为3和5,第三边的长为偶数,则第三边的长可以是多少?- 解析:设第三边的长为x,根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”,可得5 - 3< x<5+3,即2< x<8。

因为x为偶数,所以x = 4或x = 6。

2. 在ABC中,∠ A=∠ B + 10^∘,∠ C=∠ A+10^∘,求ABC各内角的度数。

- 解析:设∠ B = x^∘,因为∠ A=∠ B + 10^∘,所以∠ A=(x + 10)^∘,又因为∠ C=∠ A+10^∘,所以∠ C=(x+10 + 10)=(x + 20)^∘。

根据三角形内角和为180^∘,可得x+(x + 10)+(x + 20)=180,3x+30 = 180,3x=150,x = 50。

所以∠ B=50^∘,∠ A = 60^∘,∠ C=70^∘。

3. 如图,在ABC中,AD是BC边上的中线,ADC的周长比ABD的周长多5cm,AB与AC的和为11cm,求AC的长。

- 解析:因为AD是BC边上的中线,所以BD = DC。

ADC的周长为AC + AD+DC,ABD的周长为AB + AD+BD。

又因为ADC的周长比ABD的周长多5cm,所以(AC + AD+DC)-(AB + AD+BD)=5,即AC - AB=5。

设AC=x cm,因为AB与AC 的和为11cm,所以AB=(11 - x)cm。

则x-(11 - x)=5,x - 11+x=5,2x=16,x = 8,所以AC = 8cm。

4. 一个等腰三角形的周长为18cm,一边长为4cm,求其他两边的长。

- 解析:分两种情况讨论。

- 当4cm为腰长时,底边长为18 - 4×2=18 - 8 = 10cm。

因为4 + 4=8<10,不满足三角形三边关系,所以这种情况舍去。

- 当4cm为底边长时,腰长为(18 - 4)÷2=7cm。

八年级上册数学计算题专项训练

八年级上册数学计算题专项训练

八年级上册数学计算题专项训练一、整式乘法与因式分解类。

1. 计算:(2x + 3y)(3x 2y)解析:根据多项式乘法法则,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加。

原式=2x×3x 2x×2y+3y×3x 3y×2y = 6x^2-4xy + 9xy-6y^2=6x^2+5xy 6y^2。

2. 分解因式:x^2-9解析:这是一个平方差的形式,根据平方差公式a^2-b^2=(a + b)(a b),这里a=x,b = 3。

所以x^2-9=(x + 3)(x 3)。

3. 分解因式:2x^2-8x解析:先提取公因式2x,得到2x(x 4)。

二、分式运算类。

4. 计算:frac{x^2-1}{x^2+2x + 1}÷(x 1)/(x + 1)解析:先将分子分母进行因式分解,x^2-1=(x + 1)(x 1),x^2+2x + 1=(x + 1)^2。

原式=((x + 1)(x 1))/((x + 1)^2)÷(x 1)/(x + 1)=((x + 1)(x 1))/((x + 1)^2)×(x + 1)/(x 1)=1。

5. 计算:(1)/(x 1)-(1)/(x + 1)解析:先通分,通分后分母为(x 1)(x + 1)=x^2-1。

原式=(x + 1-(x 1))/(x^2)-1=(x + 1 x + 1)/(x^2)-1=(2)/(x^2)-1。

6. 化简求值:frac{x^2-4x + 4}{x^2-4},其中x = 3解析:先对分子分母进行因式分解,分子x^2-4x + 4=(x 2)^2,分母x^2-4=(x + 2)(x 2)。

原式=frac{(x 2)^2}{(x + 2)(x 2)}=(x 2)/(x + 2),当x = 3时,(32)/(3+2)=(1)/(5)。

三、二次根式运算类。

7. 计算:√(12)+√(27)-√(48)解析:先将各项化为最简二次根式,√(12) = 2√(3),√(27)=3√(3),√(48)=4√(3)。

人教版数学八年级上册 强化系列之计算题一(附答案)

人教版数学八年级上册 强化系列之计算题一(附答案)

八年级上册数学计算题练习1、分解因式:a a a 4423+-计算:2、分解因式 (1)(y ﹣2)(y+5)﹣(y+3)(y ﹣3)(2) 1232-x3、(1)计算:(12a 3﹣6a 2+3a )÷3a ﹣1(2)因式分解:﹣3x 3+6x 2y ﹣3xy 2.4、解方程:(1); (2).5、因式分解(x 2+4y 2)2﹣16x 2y 26、计算:(1)2x2﹣(x+2)(x﹣2)﹣(﹣1)0(x﹣2)﹣1(2)先化简,再求值:,其中x=2.7、解方程:=+8、先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.9.(1)解方程:﹣1=(2)先化简后求值•÷,其中a满足a2﹣a=010、先化简,,然后从的范围内选取一个合适的整数作为x的值代入求值.11.化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.12.计算:(1)(2ab2c﹣3)﹣2÷(a﹣2b)3;(2)÷.13.已知x=+1,求的值.14.计算:(1)(﹣m﹣2)•(2)(﹣)2÷(﹣)15.先化简,再求值:(2x+y)(2x﹣y)﹣(x2y+xy2﹣y3)÷y,其中x=﹣,y=.参考答案1、【答案】解:;.【解析】根据提公因式法和完全平方公式可以将题目中的式子因式分解;根据幂的乘方、同底数幂的乘除法可以解答本题.2、【分析】(1)根据整式的乘法计算解答即可;(2)根据平方差公式分解因式即可.【解答】解:(1)原式=y2+3x﹣10﹣y2+9=3x﹣1;(2)3x2﹣12=3(x+2)(x﹣2).【点评】此题考查平方差公式,关键是根据平方差公式解答.3、【分析】(1)根据多项式除以单项式的法则进行计算即可;(2)先提公因式,再根据完全平方公式进行因式分解即可.【解答】解(1)原式=4a2﹣2a+1﹣ 1=4a2﹣2a;(2)原式=﹣3x(x2﹣2xy+y2)=﹣3(x﹣y)2.4、【分析】(1)观察可得方程最简公分母为(x﹣1).去分母,转化为整式方程求解.结果要检验.(2)观察可得方程最简公分母为(x﹣1)(x+2).去分母,转化为整式方程求解.结果要检验.【解答】解:(1)2x=3x﹣9,解得x=9,经检验x=9是方程的根.(2)x(x+2)﹣(x+2)(x﹣1)=3,解得x=1,经检验x=1是方程的增根.∴方程无解.5、分析】直接利用平方差公式分解因式进而利用完全平方公式分解因式即可.【解答】解:原式=(x2+4y2)2﹣(4xy)2=(x2+4y2﹣4xy)(x2+4y2+4xy)=(x﹣2y)2(x+2y)2.6、【解答】解:(1)原式=2x2﹣x2+4﹣x2=4;(2)原式=+•=+==,当x=2时,原式=.7、【解答】解:去分母得:3x=2x﹣4+6,解得:x=2,经检验x=2是增根,分式方程无解.8、【解答】解:原式=b2﹣2ab+4a2﹣b2=2a(2a﹣b),当a=2,b=1时,原式=2×2×(2×2﹣1)=12.9、【解答】解:(1)两边都乘以(x+2)(x﹣2),得:x(x+2)﹣(x+2)(x﹣2)=8,解得x=2,当x=2时,(x+2)(x﹣2)=0,所以原分式方程无解;(2)原式=••(a+1)(a﹣1)=(a﹣2)(a+1)=a2﹣a﹣2,当a2﹣a=0时,原式=﹣2.10、【答案】解:原式,且,在中符合条件的x的值为,则原式.11、解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.12.【解答】解:(1)原式=a﹣2b﹣4c6÷a﹣6b3,=a4b﹣7c6,=;(2)原式=,=.13.【解答】解:原式===;当x=+1时,原式=.14.【分析】(1)首先通分计算括号里面的减法,再计算乘法即可;(2)首先通分计算括号里面的减法,再计算除法即可.【解答】解:(1)原式=(﹣),=•,=,=6+2m;(2)原式=()2÷,=,=.15.【分析】直接利用整式的混合运算法则化简,再把已知数据代入得出答案.【解答】解:原式=4x2﹣y2﹣x2﹣xy+y2=3x2﹣xy,当x=﹣,y=时,原式=3×(﹣)2﹣(﹣)×=+=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档