烷烃

合集下载

烷烃

烷烃
12 C和14 C 6 6
相互关系 E F C A D B
白磷与红磷 正丁烷与异丁烷
H H H C C H H H
H H H H C C C H H H H
丙烷( 丙烷(C3H8) 结构简式: 结构简式:CH3CH2CH3
乙烷( 乙烷(C2H6) 结构简式: 结构简式:CH3CH3 CH3—CH3
H H H H C C C 丁烷(C4H10) 结构简式: 结构简式:CH3CH2CH2CH3 或CH3(CH2)2CH3 CnH2n+2(n≥1) ) CnH2n(n≥3) )
(三)同系物
结构相似,在分子组成上相差一个或若干个 结构相似,在分子组成上相差一个或若干个CH2 原子团的物质 相差一个或若干个 互称同系物。 互称同系物。 同:通式同,组成元素同,同类物质 通式同,组成元素同, 原子团,(分子式不同) ,(分子式不同 异:组成上相差n个CH2原子团,(分子式不同) 组成上相差 个 式量相差: 式量相差:14n 电子数相差: 电子数相差:8n
同系物一定不是同分异构体; 同系物一定不是同分异构体;同分异构体一定不是同系物
练习:选择正确答案的序号, 练习:选择正确答案的序号, 填入下表空格中 A.同位素 B.同分异构体 . . C.同系物 D.同素异形体 . . E.同一物质 F.同类物质 . . 物质名称 氯仿与三氯甲烷 一氯甲烷与四氯化碳 乙烷与新戊烷
气态, (1)状态:常温常压下的烷烃, C1~C4,气态, )状态:常温常压下的烷烃, C5~C16,液态, 液态, C17及以上,固态。 及以上,固态。 (2)密度: 液态时密度均小于1g/cm3(均比水轻)。 )密度: 液态时密度均小于 均比水轻)。 (3)溶解性:均难溶于水,易溶于有机溶剂。 )溶解性:均难溶于水,易溶于有机溶剂。

有机化学—烷烃

有机化学—烷烃
(CH3)3C-叔丁基 > CH3CH2(CH3)CH-仲丁基 > (CH3)2CH- 异丙基>(CH3)2CHCH2-异丁基 > CH3CH2CH2CH2-正丁基 > CH3CH2CH2-正丙基 > CH3CH2-乙基 > CH3-甲基
例:用衍生命名法给下列烷烃命名
CH3CHCH2CH3 CH3
戊烷
烷烃
同分异构
同分异构的分类
构造异构
碳链异构(正丁烷和异丁烷) 官能团位置异构(1-丁烯和2-丁烯) 官能团异构(乙醇和二甲醚)
互变异构(乙酰乙酸乙酯酮式和烯醇式)
立体异构
构型异构
顺反异构(烯烃) 光学异构(旋光异构)
构象异构(烷烃,环己烷,糖类)
一、烷烃的构造异构 分子构造:分子中原子间互相连接的顺序和方式。
CH4
C2H6
C3H8
C4H10
H
HH
HHH
HHHH
H C HH C C HH C C C HH C C C C H
H 甲烷
HH 乙烷
HHH 丙烷
HHHH 丁烷
第一节 烷烃的命名
一、伯、仲、叔、季碳原子和伯、仲、叔氢原子
1 H(伯氢)
2 H(仲氢)
H3C CH2 CH2 CH3
1 C(伯碳,一级碳) 2 C (仲碳,二级碳)
➢同系列 同系差 同系物 具有同一通式,结构、性质相似,组成上相差一个或若干个CH2 的一系列化合物称为同系列。CH2称为系差,同系列中各化合物 互称为同系物。如甲烷,乙烷,丙烷等都属于烷烃系列,三者彼此 之间互称烷烃同系物。
CH4 甲烷
C2H6 乙烷
C3H7 丙烷
C4H8 丁烷

烷烃

烷烃



⑷若有几个等长碳链时,要选含有最多 取代基的碳链作主链。 ⑸若在主链的两端等距离处有取代基且 多于两个时,要使第三个取代基的位次 较小,依此类推。
第三节 烷烃的化学性质


一、稳定性 二、卤代反应及反应机制 反应机理就是研究反应是如何发生、如何 发展、如何结束的。 烷烃卤代反应的反应机理是游离基链锁反 应(free radical chain reaction)。

⑵主链编号:从靠近取代基的一端, 用阿拉伯数字依次为主链编号。



⑶取代基处理:将取代基的编号和名称放在 母体前面,中间用半字线连接。 相同的取代基合并,取代基数目用中文小写 数字表示,取代基的位次需一一标出,中间 用逗号隔开。 不同的取代基在母体前面的排列依据基团的 “次序规则”进行比较后按“较优基团后列 出”原则列出。
本章要点:


1.烷烃的结构特点:
碳原子都是SP3杂化,所有的键都是σ键, σ键的特点。


2.碳原子的种类:
伯、仲、叔、季(1°级、2°级、3°级、4°级)碳原子。


3.烷烃的同分异构现象:
碳链异构和构象异构;构象异构的概念、定义、乙烷的两种典型构象、丁烷 的四种典型构象的Newman投影式、稳定性比较。
第二节 烷烃的命名法


一、普通命名法
正、异、新; 伯、仲、叔、季碳原子。 举例说明。
二、系统命名法


常见的基团名称: RCH3CH3CH2甲基 methyl 乙基 ethyl
烷基 Alkyl
正丙基 propyl
CH3CH2CH2-
(CH3)2CH异丙基 isopropyl

有机化学烷烃

有机化学烷烃
普通命名法基本原则:
例:
(正己烷)
(异己烷)
(新己烷)
CH3CH2CH2CH2CH2CH3
CH3CHCH2CH2CH3
CH3
CH3—C—CH2 CH3
CH3
CH3
我国现在使用的有机化合物系统命名法是参考国际纯粹和应用化学联合会(International Union of Pure and Applied Chemistry 简称IUPAC)制定的命名原则,并结合我国的文字特点于1960年制定,1980年由中国化学会加以增减修订的《有机化学命名原则》。
色散力示意图:
烷烃属于非极性分子,分子间只有微弱的色散力,在室温(25℃)和下,
烷烃的状态
C1~C4的烷烃为气态(gas); C5~C16的烷烃为液态(liquid); C17以上的烷烃为固态(solid)。
1、随着碳原子数的递增,沸点依次升高。
1.沸点(boiling point)
有机化学烷烃
分子中只含有碳(carbon)和氢(hydrogen)两种元素的有机化合物叫做碳氢化合物,简称烃。 其它有机化合物可以看作是烃的衍生物,所以烃是有机化合物的“母体”。
烃(hydrocarbon)的定义:

开链烃 (脂肪烃)
例:
戊烷——系统命名
正戊烷——习惯命名
(A)从烷烃的构造式中选取最长的连 续碳链作为主链,支链作为取代基。当含有不止一个相等的最长碳链可供选择时,一般选取包含支链最多的最长碳链作为主链。根据主链所含碳原子数称为“某”烷。
系统命名的基本原则:(支链烷烃)
正确的选择是2,不是1。
例:
问:下列化合物应选择哪条主链?
CH3
正丁烷和异丁烷属于同分异构体。正丁烷和异丁烷这种同分异构体,是由于分子内原子间互相连接的顺序不同造成的(即不同构造(constitution)引起的),称为构造异构体(constitutional isomers) 。

烷烃

烷烃

英文名
n-heptane
n-octane n-nonane n-decane n-undecane n-dodecane n-tridecane n-eicosane
正庚烷
正辛烷 正壬烷 正癸烷 正十一烷 正十二烷 正十三烷 正二十烷
C12
C13
C20
碳原子数为10以上时用大写数字表示
2. IUPAC命名法(系统命名法)
用“,”隔 开

含支链的取代基的命名
5 7 8 6 4
3 2
1
2
1
3
仲丁基 2-丁基 1-甲基丙基
2, 7-二甲基-4-仲丁基辛烷 2, 7-二甲基-4-(2-丁基)辛烷 2, 7-二甲基-4-(1-甲基丙基)辛烷
三.构象 (comformation) 和构象异构体
C—C单键是可以旋转的 单键的旋转使分子中的原子或基团在空间产生不同的排列 (构象) 不同的构象之间为构象异构关系(一类立体异构现象)
CH2
CH2
H 3C
C
CH3
1碳负离子 (伯碳负离子)
3碳正离子 (伯碳正离子)
二. 烷烃的命名

普通命名法
用于简单化合物的命名

IUPAC命名法(系统命名法)
(IUPAC: 国际纯粹与应用化学联合会, International Union of Pure and Applied Chemistry)
(正)丁基
n -b u ty l
n -B u
仲丁基
s e c -b u ty l (s e c o d a ry )
s -B u
CH3 C H 3C H C H 2 CH3 C H 3C CH3 叔丁基 te rt-b u ty l (te rtia ry ) t-B u 异丁基 is o b u ty l i-B u

烷烃

烷烃

一.定义,通式和同系列定义:由碳和氢两种元素组成的饱和烃称为烷烃.通式: CnH2n+2同系列: 相邻的两种烷烃分子组成相差一个碳原子和两个氢原子,像这样结构相似,而在组成上相差一个或几个CH2的一系列化合物称为同系列.二.同分异构体甲烷,乙烷和丙烷没有同分异构体,从丁烷开始产生同分异构体.碳链异构体:因为碳原子的连接顺序不同而产生的同分异构体.随着分子中碳原子数目的增加,碳链异构体的数目迅速增多.三.烷烃的结构碳原子的最外层上有4个电子,电子排布为1S22S22P2,碳原子通过SP3杂化形成四个完全相同的SP3杂化轨道,所谓杂化就是由若干个不同类型的原子轨道混合起来,重新组合成数目相等的.能量相同的新轨道的过程.由1个S轨道与3个P轨道通过杂化后形成的4个能量相等的新轨道叫做SP3杂化轨道,这种杂化方式叫做SP3杂化.在形成甲烷分子时,4个氢原子的S轨道分别沿着碳原子的SP3杂化轨道的对称轴靠近,当它们之间的吸引力与斥力达到平衡时,形成了4个等同的碳氢σ键.实验证明甲烷分子是正四面体型的.4个氢原子占据正四面体的四个顶点,碳原子核处在正四面体的中心,四个碳氢键的键长完全相等,所有键角均为109.5.σ 键的特点:(1)重叠程度大,不容易断裂,性质不活泼.(2)能围绕其对称轴进行自由旋转.四.烷烃的命名碳原子的类型:伯碳原子:(一级)跟另外一个碳原子相连接的碳原子.仲碳原子:(二级)跟另外二个碳原子相连接的碳原子.叔碳原子:(三级)跟另外三个碳原子相连接的碳原子.季碳原子:(四级)跟另外四个碳原子相连接的碳原子.普通命名法其基本原则是:(1)含有10个或10个以下碳原子的直链烷烃,用天干顺序甲,乙,丙,丁,戊,已,庚,辛,壬,癸10个字分别表示碳原子的数目,后面加烷字.例如: CH3CH2CH2CH3 命名为正丁烷.(2)含有10个以上碳原子的直链烷烃,用小写中文数字表示碳原子的数目.如CH3(CH2)10CH3命名为正十二烷.(3)对于含有支链的烷烃,则必须在某烷前面加上一个汉字来区别.在链端第2位碳原子上连有1个甲基时,称为异某烷,在链端第二位碳原子上连有2个甲基时,称为新某烷.如: 正戊烷异戊烷新戊烷系统命名法系统命名法是我国根据1892年曰内瓦国际化学会议首次拟定的系统命名原则.国际纯粹与应用化学联合会(简称IUPAC法)几次修改补充后的命名原则,结合我国文字特点而制定的命名方法,又称曰内瓦命名法或国际命名法.烷基:烷烃分子去掉一个氢原子后余下的部分.其通式为CnH2n+1-,常用R-表示.常见的烷基有:甲基CH3— (Me)乙基CH3CH2— (Et)正丙基CH3CH2CH2— (n-Pr)异丙基(CH3)2CH— (iso-Pr)正丁基CH3CH2CH2CH2— (n-Bu)异丁基(CH3)2CHCH2— (iso-Bu)仲丁基(sec-Bu)叔丁基(CH3)3C— (ter-Bu)在系统命名法中,对于无支链的烷烃,省去正字.对于结构复杂的烷烃,则按以下步骤命名:选择分子中最长的碳链作为主链,若有几条等长碳链时,选择支链较多的一条为主链.根据主链所含碳原子的数目定为某烷,再将支链作为取代基.此处的取代基都是烷基.从距支链较近的一端开始,给主链上的碳原子编号.若主链上有2个或者个以上的取代基时,则主链的编号顺序应使支链位次尽可能低.将支链的位次及名称加在主链名称之前.若主链上连有多个相同的支链时,用小写中文数字表示支链的个数,再在前面用阿拉伯数字表示各个支链的位次,每个位次之间用逗号隔开,最后一个阿拉伯数字与汉字之间用半字线隔开.若主链上连有不同的几个支链时,则按由小到大的顺序将每个支链的位次和名称加在主链名称之前.如果支链上还有取代基时,则必须从与主链相连接的碳原子开始,给支链上的碳原子编号.然后补充支链上烷基的位次.名称及数目.五.物理性质1.状态:在常温常压下,1至4个碳原子的直链烷烃是气体,5至16个碳原子的是液体,17个以上的是固体.2.沸点:直链烷烃的沸点随分子量的增加而有规律地升高.而低级烷烃的沸点相差较大,随着碳原子的增加,沸点升高的幅度逐渐变小.沸点的高低取决于分子间作用力的大小.烷烃是非极性分子,分子间的作用力(即范德华力)主要是色散力,这种力是很微弱的.色散力与分子中原子数目及分子的大小成正比,这是由于分子量大的分子运动需要的能量也大.多一个亚甲基时,原子数目和分子体积都增大了,色散力也增大,沸点即随之升高.色散力是一种近程力,它只有在近距离内才能有效地发挥作用,随着分子间距离的增大而迅速减弱.带着支链的烷烃分子,由于支链的阻碍,分子间不能像直链烷烃那样紧密地靠在一起,分子间距离增大了,分子间的色散力减弱,所以支链烷烃的沸点比直链烷烃要低.支链越多,沸点越低.3.熔点:直链烷烃的熔点,其本上也是随分子量的增加而逐渐升高.但偶数碳原子的烷烃熔点增高的幅度比奇数碳原子的要大一些.形成一条锯齿形的曲线.烷烃的熔点也主要是由分子间的色散力所决定的.固体分子的排列很有秩序,分子排列紧密,色散力强.固体分子间的色散力,不仅取决于分子中原子的数目和大小,而且也取决于它们在晶体中的排列状况.X-光结构分析证明:固体直链烷烃的晶体中,碳链为锯齿形的,由奇数碳原子组成的锯齿状链中,两端的甲基处在一边,由偶数碳原子组成的锯齿状链中,两端的甲基处在相反的位置.即偶数碳原子的烷烃有较大的对称性,因而使偶数碳原子链比奇数碳原子更为紧密,链间的作用力增大,所以偶数碳原子的直链烷烃的熔点要高一些.4.溶解度:烷烃是非极性分子,又不具备形成氢键的结构条件,所以不溶于水,而易溶于非极性的或弱极性的有机溶剂中.5.密度:烷烃是在所有有机化合物中密度最小的一类化合物.无论是液体还是固体,烷烃的密度均比水小.随着分子量的增大,烷烃的密度也逐渐增大.六.化学性质烷烃是非极性分子,分子中的碳碳键或碳氢键是非极性或弱极性的σ键,因此在常温下烷烃是不活泼的,它们与强酸.强碱.强氧化剂.强还原剂及活泼金属都不发生反应.氧化反应:烷烃很容易燃烧,燃烧时发出光并放出大量的热,生成CO2和H2O.CH4 + 2O2 CO2 + 2H2O + 热量在控制条件时,烷烃可以部分氧化,生成烃的含氧衍生物.例如石蜡(含20—40个碳原子的高级烷烃的混合物)在特定条件下氧化得到高级脂肪酸.RCH2CH2R + O2 RCOOH + RCOOH2,裂化:烷烃在隔绝空气的条件下加强热,分子中的碳碳键或碳氢键发生断裂,生成较小的分子,这种反应叫做热裂化.如:CH3CH2CH2CH3 CH4 + CH2=CHCH3CH3CH3 + CH2=CH2CH2=CHCH2CH3 + H2取代反应:卤代反应是烷烃分子中的氢原子被卤素原子取代.将甲烷与氯气混合,在漫射光或适当加热的条件下,甲烷分子中的氢原子能逐个被氯原子取代,得到多种氯代甲烷和氯化氢的混合物.CH4 +Cl2 CH3Cl + HClCH3Cl + Cl2 CH2Cl2 + HClCH2Cl2 + Cl2 CHCl3 + HClCHCl3 + Cl2 CCl4 + HCl卤素反应的活性次序为:F2 >Cl2 > Br2 > I2对于同一烷烃,不同级别的氢原子被取代的难易程度也不是相同的.大量的实验证明叔氢原子最容易被取代,伯氢原子最难被取代.卤代反应机理:实验证明,甲烷的卤代反应机理为游离基链反应,这种反应的特点是反应过程中形成一个活泼的原子或游离基.其反应过程如下:(1)链引发: 在光照或加热至250—400度时,氯分子吸收光能而发生共价键的均裂,产生两个氯原子游离基,使反应引发.Cl2 2Cl(2)链增长:氯原子游离基能量高,反应性能活泼.当它与体系中浓度很高的甲烷分子碰撞时,从甲烷分子中夺取一个氢原子,结果生成了氯化氢分子和一个新的游离基——甲基游离基.Cl + CH4 HCl + CH3甲基游离基与体系中的氯分子碰撞,生成一氯甲烷和氯原子游离基.CH3 + Cl2 CH3Cl + Cl反应一步又一步地传递下去,所以称为链反应.CH3Cl + Cl CH2Cl + HCl3CH2Cl + Cl2 CH2Cl2 + Cl(3)链终止: 随着反应的进行,甲烷迅速消耗,游离基的浓度不断增加,游离基与游离基之间发生碰撞结合生成分子的机会就会增加. Cl + Cl Cl2CH3 + CH3 CH3CH3CH3 + Cl CH3Cl七.重要的烷烃。

烷烃 知识点

烷烃  知识点
方法一:①先求实验式(最简式);②再求相对分子质量(摩尔质量);③最后求分子式。
方法二:求出0.1mol该气态烃中含C、H的物质的量,进而求出1mol该气态烃中C、H的物质的量,从而求出分子式。
②同一个碳原子上连相同的烃基时,烃基等效,只需观察其中一个即可。例如:
—中的3个氢原子等效,只算其中一个即可;
中的三个甲基等效,只算其中一个即可;
中两个乙基等效,只算其中一个即可。
③处于镜面对称位置(相当于镜面成像时,物与像的关系)的氢原子等效。例如:
一氯取代物有4种,一氯取代物只有1种。
(2)二元取代物同分异构体数目的判断
(1)同系物的结构相似,主要指化学键类型相似,分子中各原子的结合方式相似。对烷烃而言,就是指碳原子间通过共价单键相连,其余价键全部结合氢原子。同系物结构相似,并不是相同。例如:和,前者有支链,而后者无支链,结构不相同,
但两者的碳原子均以单键结合成链状,结构相似,故互称为同系物。
(2)同系物的组成元素必相同。
例如:,属于环烷烃,通式为CnH2n,化学性质与烷烃相似。
2、烷烃的物理性质
烷烃的物理性质一般随着分子中碳原子数的递增而呈现规律性的变化。
(1)溶解性:烷烃均不溶于水而易溶于有机溶剂,液态烷烃本身也可以作为有机溶剂。
(2)状态:常温常压下,碳原子数小于等于4的烷烃一般呈气态,碳原子在5~16之间的烷烃常温下为液态,碳原子数大于16的烷烃常温下为固态(但新戊烷在常温下为气体)。
(3)同系物必符合同一通式。但符合同一通式且分子组成上相差一个或多个CH2原子团的物质不一定是同系物,例如: (乙烯)和(环丙烷)。
(4)同系物一定具有不同的分子式。
六、同分异构现象和同分异构体
1、定义:化合物具有相同的分子式,但具有不同结构的现象,叫做同分异构现象。具有同分异构现象的化合物互称为同分异构体。同分异构现象的广泛存在是造成有机物种类繁多的重要原因之一。

第二章 烷烃(Alkane)

第二章 烷烃(Alkane)

• 键 ——凡是成键电子云对键轴呈圆柱形对称的 键均称为 键.以 键相连的两个原子可以相对旋转 而不影响电子云的分布.
2.3.2 其它烷烃的结构
•乙烷的C- C 键
Stuart模型
乙烷分子中C-C键(C-H键用直线表示)
其他烷烃:据测定,除乙烷外,烷烃分子的碳链并不排 布在一条直线上,而是曲折地排布在空间。这是烷烃碳 原子的四面体结沟所决定的。如丁烷的结构:
烷烃分子中各原子之间都以σ键相连接的,所以两个碳原子 可以相对旋转,形成了不同的空间排布。实际上,在室温下 烷烃(液态)的各种不同排布方式经常不断地互相转变着。
注意:键线式书写烷烃的分子结构:
•为了方便,只要写出锯齿形骨架,用锯齿形线的 角 (120º )及其端点代表碳原子.不写出每个碳上所连的氢 原子.但其它原子必须写出.
• 乙烷可看成甲烷的一个氢原子被甲基-CH3取代;
• 丙烷可看成乙烷上的一个H被甲基-CH3取代; • 丁烷可看成丙烷的一个H被甲基 -CH3 取代:
• 同分异构体 ——由于分子式相同,但它们的构造
不同(分子中各原子相连的方式和次序不同). 又叫 构造异构体。
•它们是两种不同的化合物.物理性质一定的差异. 直链烃的沸点比带有支链的构造异构体的高(表21).
如:正丁烷的沸点:- 0.5℃,熔点:- 138.3℃, 异丁烷的沸点:- 11.7℃,熔点:- 159.4℃,
•戊烷可看成是正丁烷和异 丁 烷 上 的 一 个 H 被 甲 基CH3 取代的产物: (正戊烷 ,异戊烷,新戊烷)......
•随着碳原子数的增加,烷烃的构造异构体的数目也越 多.庚烷C7H16有9个构造异构体,辛烷C8H18有18个. •部分异构体的物理性质差异见表2-1. (3)同系物 烷烃的通式 CnH2n+2, 直链烃的通式可写为:

烷烃

烷烃
取代基位置-----取代基数目-----取代基名称-----母体名称
3.数字意义: 阿拉伯数字---------取代基位置 汉字数字---------相同取代基的个数
1、最长原则
2、最近原则 3、最小原则 4、最简原则
1、用系统命名法命名 下列物质:
CH3—CH—CH2—CH—CH3
CH2 CH3 CH2 CH3
CH3—CH—CH2—CH—CH3 CH3 CH2—CH3
己烷
2、编号,定支链所在的位置。
把主链中离支链最近的一端作为起点, 用1、2、3等数字给主链的各碳原子依次编 号定位,以确定支链所在的位置。
CH3—CH—CH2—CH—CH3
6
5
4
3
1
2
CH3
3
4 2
CH2—CH3
1
5
6
2、编号,定支链所在的位置。
CH3 CH3–C–CH2–CH–CH2–CH3 CH3 CH2–CH3
2,2—二甲基—4—乙基己烷
最简原则:当有两条相同 碳原子的主链时,选支链 最简单的一条为主链。
CH3 CH3–CH–2,5—二甲基—3—乙基己烷
1.命名步骤: (1)找主链------最长的主链; (2)编号-----靠近支链(小、多)的一端; (3)写名称-------先简后繁,相同基合并写. 2.名称组成:
练习1:
1 互为同位素,___ 2 是同素异形体, 下列五组物质中___ 5 是同分异构体,___ 4 是同系物,___ 3 是同一物质。 ___
1、 12 C
6 14 6
C
2、白磷、红磷
3、
H H | | H-C-Cl 、Cl-C-Cl | | Cl H

烷烃

烷烃

第二章 烷烃一 . 基本内容1. 定义及命名法只含碳和氢两种元素且分子中只存在单键的饱和烃称为烷烃。

除简单的烷烃可以用普通命名法外,主要是掌握系统命名法,系统命名法的原则如下:(1)选取主链:选择最长的碳链作为母体,称为某烷。

当有一种以上的碳链可供选择时,应选择碳链上支链(支链可视为取代基)最多的碳链作母体。

(2)主链编号:编号的原则是从最靠近取代基的一端开始依次用阿拉伯数字编号,位次和取代基之间要用半字线“-”连接。

当首先出现的取代基所连碳原子的编号相同时,则尽可能使连有较多取代基的碳原子的编号最小,如CH 3CH 2CH(CH 2CH 3)C- (CH 3)2CH 2CH 3应命名为3,3-二甲基-4-乙基己烷。

主链上碳原子的编号有几种可能时,则采取“最低系列”的编号方法,即逐个比较两种编号中取代基位次的数字,最先遇到位次较低者,定为“最低系列”,如CH 3CH(CH 3)CH 2CH(CH 3)CH(CH 3)CH 3命名为2,3,5-三甲基己烷。

(3)取代基的名称写在母体名称之前,取代基的排列次序按“优先次序规则”排列,将较优的基团后列出。

2. 反应烷烃在常温下与强酸(如浓硫酸、浓硝酸),强碱(如熔化的氢氧化钠),强氧化剂(如重铬酸钾、高锰酸钾),强还原剂(如锌加盐酸、钠加乙醇)等都不起反应或反应速度很慢。

但在适当的温度、压力和催化剂的作用下可以起反应。

(1) 烷烃的燃烧:烷烃完全燃烧生成二氧化碳和水,同时放出大量的热。

反应的通式为:(2)烷烃的热解:烷烃热解时,碳-碳或碳-氢键断裂,生成含有未配对电子的烷基自由基,烷基自由基的反应活性很高,寿命很短,可发生如下反应: CH 3· + ·CH 2CH 3 → CH 3CH 2CH 3 ·CH 2CH 3 + ·CH 2CH 3 → CH 3CH 3 + CH 2=CH 2(3) 烷烃的卤化C H 2n +2+O 2n CO 2+n+1H 2On 3n +12烷烃的卤化产物通常是混合物。

烷烃

烷烃
物理性质 在室温下,含有1~4个碳原子的烷烃为气体;含有5~16个碳原子的烷烃为液体;含有17个碳原子以上的正烷烃为固体,但直至含有60个碳原子的正烷烃(熔点99℃),其熔点(mehing pomg)都不超过100℃。低沸点(boiling point)的烷烃为无色液体,有特殊气味;髙沸点烷烃为黏稠油状液体,无味。烷烃为非极性分子(non-polar molecule),偶极矩(dipole moment)为零,但分子中电荷的分配不是很均匀的,在运动中可以产生瞬时偶极矩,瞬时偶极矩间有相互作用力(色散力)。此外分子间还有vander Waals引力,这些分子间的作用力比化学键的小一二个数量级,克服这些作用力所需能量也较低,因此一般有机化合物的熔点、沸点很少超过300℃。 正烷烃的沸点随相对分子质量的增加而升高,这是因为分子运动所需的能量增大,分子间的 接触面(即相互作用力)也增大。低级烷烃每增加一个CH2,相对分子质量变化较大,沸点也相差较大,高级烷烃相差较小,故低级烷烃比较容易分离,髙级烷烃分离困难得多。 在同分异构体中,分子结构不同,分子接触面积不同,相互作用力也不同,正戊烷沸点36.1℃,2-甲丁烷沸点25℃,2,2-二甲丙烷沸点只有9℃。叉链分子由于叉链的位阻作用,其分子不能像正烷烃那样接近,分子间作用力小,沸点较低。 固体分子的熔点也随相对分子质量增加而增高,这与质量大小及分子间作用力有关外,还与分子在晶格中的排列有关,分子对称性髙,排列比较整齐,分子间吸引力大,熔点就高。在正烷烃中,含单数碳原子的烷烃其熔点升高较含双数碳原子的少。 通过X射线衍射方法分析,固体正烷烃晶体为锯齿形,在单数碳原子齿状链中两端甲基同处在ー边,如正戊烷,双数碳链中两端甲基不在同一边,如正己烷,双数碳链彼此更为靠近,相互作用力大,故熔点升高值较单数碳链升髙值较大一些。 烷烃的密度(density)随相对分子质量增大而增大,这也是分子间相互作用力的结果,密度增加到一定数值后,相对分子质量增加而密度变化很小。 与碳原子数相等的链烷烃相比,环烷烃的沸点、熔点和密度均要髙一些。这是因为链形化合物可以比较自由地摇动,分子间“拉”得不紧,容易挥发,所以沸点低一些。由于这种摇动,比较难以在晶格内做有次序的排列,所以熔点也低一些。由于没有环的牵制,链形化合物的排列也较环形化合物松散些,所以密度也低一些。同分异构体和顺反异构体也具有不同的物理性质。下表是若干烷烃和环烷烃的物理常数。

烷烃

烷烃

4—甲基—3—乙基
⑦写名称
取代基在前,“某烷”在后,将两者名写在一起
6 7 8 CH3 CH2 —CH2 —CH3 | | 例: CH3—CH—CH2—CH2—CH—CH2—CH3 |2 1 3 4 5| CH3 CH3
2,2,5—三甲基—5—乙基辛烷
练习:用系统命名法命名下列有机物
CH3—CH2—CH2 | CH2 戊烷 | CH3 CH3 |2 1 5 4 3 CH3—CH2—CH—CH—CH3 | CH3
同分异构现象和同分异构体
[讨论]下面是正丁烷和异丁烷的组成和某些物质性质,试分析有 何异同并探讨其原因。 名 称 分子式 C4H10 相对分子质量 熔 58 点 沸 点 相对密度 0.5788 正丁烷 -138.4 -0.5
CH 3—CH—CH— CH2 —CH 3 2 CH 3 CH 3CHCH2CH 2CH 3
CH 3 或者: CH 3CH(CH3 )CH2CH 2CH 3
它们对应的结构简式:
乙烷: H H | | H-C-C-H | | H H 丙烷: H H H | | | H-C-C-C-H | | | H H H
CH3CHCH3 CH3
3烷烃的名称:
碳原子数 分子式 名称
1 CH4
2 C 2H 6
3 4 5 C3H8 C4H10 C5H12
甲烷 乙烷
丙 烷 丁烷
戊烷
6 7 8 9 10 碳原子数 分子式 C6H14 C7H16 C8H18 C9H20 C10H22 名称
己 烷 庚 烷 辛烷 壬烷 癸 烷
碳原子数大于十时,以汉字数字代表称某烷,
①找起点 主链中离支链最近端作为起点 先简单取代基 再繁取代基 ②编序号 用阿拉伯数字给主链碳原子编号 以确定支链的位置

烷烃

烷烃

二.同分异构体 1.概念: 同分异构: 具有相同的分子式,而不同构造式的化合物互称同分 异构体,这种现象称同分异构现象。 同系列: 相邻的两种烷烃分子组成相差一个碳原子和两个氢原 子,像这样结构相似,而在组成上相差一个或几个 CH2的一系列化合物称为同系列。同系物间有相似 的化学性质,物理性质也显示出一定的规律性。 2. 推算简单烷烃的同分异构体
CH3(CH2)3CH3 Pentane CH3(CH2)5CH3 Heptane CH3(CH2)7CH3 Nonane
CH3(CH2)8CH3
11~19Alkane = Number prefix-decane for example: 11-alkane 12-alkane 13-alkane 14-alkane 15-alkane 16-alkane 17-alkane
(CH3)2CHCH3
异丁烷
(CH3)3CCH2CH3
新己烷
用正异新只能区别三个化合物,当分子数增加,同分异构体 数目增加时便无法区分,故普通命名法只适用于简单的化合物。
2、IUPAC命名法(International Union of Pure and Applied Chemistry) 1892年日内瓦国际化学会上拟定,也称“系统命名法”。 系统命名法依次满足三大原则:最长碳链;最多取代;最低序列。
2,3,5-三甲基 丙基庚烷 三甲基-4-丙基庚烷 三甲基
7
6
5
4
3
2
1
CH3 CHCH2CH3 CH3CHCH2CCH2CH2CH2CH3 CH3 C(CH3)3
2-甲基 仲丁基 叔丁基辛烷 甲基-4-仲丁基 甲基 仲丁基-4-叔丁基辛烷
CH3 3 4 5 6 7 8 CH3CH2CHCH2CH2CCH2CH3 CH3 CHCH3 CH3

烷烃完整版课件

烷烃完整版课件
合成路线
化学合成法主要是通过有机化学 反应来合成烷烃,如卤代烃的还
原、烯烃的加氢等。
反应条件
不同的合成路线需要不同的反应条 件,如温度、压力、催化剂等。
产物纯化
通过精馏、结晶等方法将合成产物 中的杂质去除,得到纯净的烷烃产 品。
03
烷烃的反应与转化
燃烧反应
烷烃燃烧反应的定义
烷烃与氧气在点燃条件下发生氧化反 应,生成二氧化碳和水。
工艺流程
天然气经过压缩、冷却、 精馏等步骤,得到不同沸 点的烷烃产品。
石油裂解法
原料选择
石油裂解的原料主要是重 质石油馏分,如重油、渣 油等。
裂解反应
在高温和催化剂的作用下, 重质石油馏分发生裂解反 应,生成小分子的烷烃和 烯烃。
产品分离
通过精馏、萃取等方法将 裂解产物中的烷烃和烯烃 分离。
化学合成法
汽油和柴油
由不同碳链长度的烷烃混合而成,是交通运输领 域的主要燃料。
3
液化石油气(LPG) 丙烷和丁烷的混合物,用作燃料和烹饪用途。
有机合成原料
乙烯和丙烯
通过石油裂解得到,是合成塑料、橡胶和纤维等高分子材料的基 础原料。
丁二烯和苯乙烯
用于合成橡胶、树脂和合成纤维等。
高级烷烃
用作表面活性剂、增塑剂和润滑剂等化学品的合成原料。
生物降解困难
烷烃在土壤中的生物降解速度较慢,长期积累可对土壤生态系统产 生负面影响。
农作物污染
被烷烃污染的土壤种植出的农作物可能含有有害物质,影响食品安 全和人类健康。
治理措施与政策建议
01
02
03
04
源头控制
加强烷烃生产、储存、运输等 环节的监管,减少泄漏和排放。

烷烃

烷烃

第二章烷烃教学要求1.掌握碳的四面体结构,σ键。

2.掌握烷烃的命名、同分异构。

3.掌握烷烃的构象。

4.掌握烷烃的有机性质和化学性质。

5.了解反应历程的一般概念,掌握卤代反应历程。

6.了解烷烃的来源及其重要代表物-甲烷。

分之中只有C、H两种元素的有机化合物叫做烃烷烃开链烃(脂肪烃)烯烃烃炔烃环状烃(脂环烃)脂环烃芳香烃烷烃:分之中的碳除以碳碳单键相连外,碳的其他价键都为氢原子所饱和的烃叫做烷烃,也叫做饱和烃。

第一节烷烃的同系列及同分异构现象一、烷烃的同系列最简单的烷烃是甲烷,依次为乙烷、丙烷、丁烷、戊烷等,它们的分子式、构造式为:分子式构造式构造简式甲烷CH4CH4乙烷C2H6CH3CH3丙烷C3H8CH3CH2CH3丁烷C4H10CH3CH2CH2CH3从上述结构式可以看出,链烷烃的组成都是相差一个或几个CH2(亚甲基)而连成碳链,碳链的两端各连一个氢原字。

故:通式烷烃的为或CnH2n+2。

具有同一通式,结构和化学性质相似,组成上相差一个或多个CH2的一系列化合物称为同系列。

同系列中的化合物互称为同系物。

由于同系列中同系物的结构和性质相似,其物理性质也随着分之中碳原子数目的增加而呈规律性变化,所以掌握了同系列中几个典型的有代表性的成员的化学性质,就可推知同系列中其他成员的一般化学性质,为研究庞大的有机物提供了方便。

在应用同系列概念时,除了注意同系物的共性外,还要注意它们的个性(因共性易见,个性则比较特殊),要根据分子结构上的差异来理解性质上的异同,这是我们学习有机化学的基本方法之一。

二、烷烃的同分异构现象1.异构现象甲、乙、丙烷只有一种结合方式,无异构现象,从丁烷开始有同分异构现象,可由下面方式导出,正丁烷(沸点-0.5℃)异丁烷(沸点-10.2)由两种丁烷可异构出三种戊烷上述这种分子式相同而构造式不同的化合物称为同分异构体,这种现象称为构造异构现象。

构造异构现象是有机化学中普遍存在的异构现象的一种,这种异构是由于碳链的构造不同而形成的,故又称为碳链异构。

有机化学烷烃

有机化学烷烃


第二节 烷烃的命名法

一、普通命名法 二、烷基的命名 三、系统命名法
一、普通命名法

1、正(normal)某烷 C1~C10 天干:甲、 乙、丙、丁、戊、己、庚、辛、壬、癸 > C10 汉文数字

CH3 CH2

CH2 CH2
CH2
CH3
正己烷(n-hexane)

2、异(iso)某烷

例4:
(正确编号)
取代基编号:(上)2,6,8 (下)2,4,8
(3)名称的书写次序
编号 取代基 母体
取代基的排列顺序:小 前、大 后、同 合并 取代基顺序规则 IUPAC法按取代基英文名称的第一个字母的次序排列。
例1
CH3 CH CH3 CH2 CH2 CH2 CH3
例2
CH3 CH CH2 CH3 CH2 CH2 CH3
三、熔点 melting point A. C数增加,熔点m.p.升高; 规律:
B. 偶数烷烃m.p>奇数烷烃
B. 正烷烃b.p>支链烷烃(同碳数)
四、相对密度 density 规律: C数增加,相对密度D升高 五、溶解度 solubility 规律: 难溶于水,易溶于有机溶剂,尤其是烃 类。 相似相溶
用途:用作燃料(重要能源之一) 当CH4∶O2(空气)= 1∶2(10)瓦斯爆炸
2、控制氧化
R:C20~C30 代替动植物油脂制造肥皂
生产各种含氧衍生物:醇、醛、酸等

1、热裂:在高温及无氧条件下发生键断裂的分 解反应。
CH3 CH H CH2 H 460℃ CH2 CH2 + CH4 460℃ CH3CH CH2

烷烃ppt课件

烷烃ppt课件

长链烷烃
02
可作为润滑油、石蜡等产品的原料。
烷烃溶剂
03
如正己烷、环己烷等,在油漆、涂料、油墨等领域用作溶剂。
其他领域拓展应用
生物医学
某些长链烷烃具有生物活性,可用于药物合成或作为生物标记物 。
环境科学
烷烃作为大气污染物之一,其排放和转化对环境质量有重要影响 。
材料科学
利用烷烃的化学反应性,可合成具有特殊性能的高分子材料或纳 米材料。
学生对本次课程感想和体会分享
学生对烷烃的基本概念和分类有了更清晰的认识,能够准确区分不同类型的烷烃并 理解其命名规则。
学生通过本次课程深入了解了烷烃的物理和化学性质,掌握了烷烃的熔沸点、密度 、溶解性等物理性质以及稳定性、燃烧反应、卤代反应等化学性质。
学生认识到烷烃在日常生活和工业生产中的重要性,对烷烃的来源和用途有了更全 面的了解。
命名与分类方法
命名方法
根据IUPAC命名法,烷烃的命名基于 其最长的连续碳链,称为“主链”或 “母链”。主链上的碳原子依次编号 ,支链作为取代基进行命名。
分类方法
根据碳链的结构,烷烃可分为直链烷 烃(正构烷烃)、支链烷烃(异构烷 烃)和环烷烃。
物理性质及变化规律
物理性质
随着分子量的增加,烷烃的沸点、熔点和密度逐渐升高;溶解度逐渐降低;颜 色由无色逐渐变为淡黄色。
04 烷烃在日常生活 中的应用
燃料领域应用现状
天然气
主要成分为甲烷,广泛用于家庭 、工业等领域作为清洁能源。
汽油、柴油
由不同碳链长度的烷烃混合而成 ,是交通运输领域的主要燃料。
煤油、燃料油
用于航空、航海及一些特殊工业 领域的燃料。
化工原料及溶剂使用情况

2.烷烃

2.烷烃

CH2CH2CH3 6 7 8 9 10 CH3CH2CHCH 2CH2CH2CHCH 2CH2CHCH 3 CH2CH3 CH3
1 2 3 4 5
11
12
13
3)名称的书写顺序
3-甲基己烷
取代基位次 位次和基间短线 取代基名称
CH3 CH2 CH CH CH
母体名称
CH
CH3
CH3 CH2 CH3 CH3 CH2 CH3
2.1 烷烃的通式和构造异构
甲烷: CH4 乙烷: C2H6 丙烷: C3H8 丁烷: C4H10

从以上几个烷烃中,你可以得出C原 子数和H原子数之间的关系吗?
甲烷: CH4 丙烷: C3H8
乙烷: C2H6 丁烷: C4H10
它们有共同的通式 CnH2n+2
甲烷: CH4 乙烷: C2H6 丙烷: C3H8 丁烷: C4H10
选择最长的碳链作为主链,
主链等长时,选取代基多的为主链, 主链编号从离支链最近的一端开始,使支链编 号之和最小, 两个取代基位于主链两端等距离时,从简单的

开始编号

总结成五个字原则,即长、多、近、小、简。
第一章
课堂练习
烷烃
1.用系统命名法命名下列化合物: ⑴ CH3 CH2 CH2 CH2 CH3 ⑵ CH3 CH CH2 CH2 CH3 CH3 CH3 戊烷 2-甲基戊烷

σ-键的特点 : 轴对称性 可旋转性 不易断裂 相对的稳定性
单键σ键 双键一个σ键,一个π键 :烯烃SP2 叁键一个σ键,两个π键 :炔烃SP1

2.3.3 其他烷烃的构型
其它烷烃分子中,C–H和C–C的键长分别为110和 154pm左右,C–C–C的键角在111~113之间。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 烷烃的通式是什么?
CnH2n+2 (n≥1)。
3.怎样给烷烃的命名?
4.怎样书写烷烃的结构简式 ?
一、烷烃
1. 定义: 烃分子中的碳原子之间只以单键结合成链状,
碳原子剩余的价键全部跟氢原子相结合,使每个碳 原子的化合价都已充分利用,都达到“饱和”。这 样的烃叫做饱和烃,又叫烷烃。
结构简式:
沸点渐/ 增大相。对 水溶

密度 性
甲烷
CH4
气 -182 -164 0.466 不溶
乙烷
CH3CH3
气 -183.3 -88.6 0.572 不溶
丙烷 CH3CH2CH3 气 丁烷 CH3(CH2)2CH3 气 戊烷 CH3(CH2)3CH3 液 十七烷 CH3(CH2)15CH3 固
-189.7 -138.4 -130
1、碳原子含有4个价电子,可以跟其它原子形成 4个共价键
2、碳原子与碳原子之间可以形成单键、双键、 三键
3、碳原子相互之间可以形成碳链,也可以形成 碳环
4、含有相同原子种类和数目的分子可能具有不 同结构。
练习1:
下列五组物质中__1_互为同位素,_2__是同素异形体,
_5__ 是同分异构体,_4__是同系物,_3__是同一物质。
或者: CH3 CH(CH3 )CH2 CH2 CH3
练一练
下列物质中是否属于烷烃?为什么? CH2=CH2 否 CH3COOH 否 CH3(CH2)3CH3 是
CH3CH2CH(CH3)CH3 是
H2C-CH2 CH2
否 CH3CH2CH2Cl 否
【思考】分析下列烷烃的分子式,它们中碳原子 的个数与氢原子的个数之间有什么关系?
名称
甲烷 乙烷 丙烷 丁烷 戊烷 癸烷 十六烷 十七烷
结构简式
CH4 CH3CH3 CH3CH2CH3 CH3(CH2)2CH3 CH3(CH2)3CH3 CH3(CH2)8CH3 CH3(CH2)14CH3 CH3(CH2)15CH3
常温时 的状态
气 气 气 气 液 液 液

熔点/℃ 沸点/℃ 相对密度
-138.4
-159.6
沸点(℃)
-0.5
-11.7
液态密度(g·cm-3)
27.9℃
0.5788
9.5℃
0.557
书写同分异构体的方法-减链法 最长链作为主链 以庚烷为例
五句话:
1:主链由长到短 2:开始减链找对称 3:支链由整到散 4:位置由心到边 支链不接
5:排布邻到间
两端碳
① C-C-C-C-C-C-C ② C-C-C-C-C-C ③ C-C-C-C-C-C
5.烷烃的性质
(1)物理性质
a. 常温下状态: 气 液 固
C原子数
1-4:气态 5-16:液态 17以上:固态
b. 熔沸点、密度随碳原子数递增而递增。 (密度再大也是<1)。
c. 均不溶于水,易溶于有机溶剂。
【练习】 ①正丁烷 ②异丁烷 ③正戊烷 ④异戊烷 ⑤新 戊烷 ⑥丙烷,物质的沸点由高到低的排列 顺序是 ③> ④> ⑤ >① >②> ⑥ 。
-182.5 -182.8 -188.0
-161.5 -88.6 -42.1
-138.4 -0.5
-129.7 36.1 -29.7 174.1
18.2
287
22
302.2
0.5005 0.5788 0.5572 0.7298 0.7733 0.7767
水溶性
不溶 不溶 不溶 不溶 不溶 不溶 不溶 不溶
(二)同系物: 结构相似,在分子组成上相差一个
或若干个CH2原子团的物质互称为同系物。
[练习]下列物质中属于同系物的是___②__和__④__.
①CH2=CH-CH3 ②CH4 ③H2 ④CH3(CH2)5CH(CH3)CH3 ⑤ CH2—CH2
CH2—CH2
烷烃的结构 相似是指:
(1)碳、碳单键 (2)链状(可带支链) (3)—CH2—为系差
B. CH4和C2H6
C. C2H4和C2H6 D. C3H4和C3H6
烃的燃烧反应
2.某有机物在氧气中充分燃烧,生成的CO2和H2O的 物质的量之比为1:2,下列说法正确的是( B )
A.该有机物一定含C、H、O三种元素 B.分子中C、H个数之比为1:4 C.该有机物的化学式一定为CH4 D.该有机物一定含C元素,可能含有H元素和
例如为便常:了,用书有结H写机构—的物简HC方还式—HC—HC—HC—HC—H
表示。 H
H HH
在结构式的基础上
H— C —H
H

省略C—H键 把同一C上的H合并
CH3—CH—CH2—CH2—CH3
或者在①的基础上
CH3
省略横线上C—C键 CH3CHCH2CH2CH3
CH3
或者: CH3CH(CH3)CH2CH2CH3
n≤10时,从 1 到 10 依次用甲、乙、丙、丁、戊、 己、庚、辛、壬、癸表示为某烷。
n >10时,用汉字数字表示。
例:
C17H36 十七烷
C8H18 辛烷
C12H26 十二烷
【问题1】烷烃的结构特点及烷 烃的命名命: 名
[规律] 根据碳原子的个数来命名:
(1) 分子中碳原子数在十以内时,以甲、乙、丙、 丁、戊、己、庚、辛、壬、癸依次代表碳原子数, 其后加“烷”字;
它们对应的结构式
乙烷(C2H6)
HH H—C—C—H
HH
丙烷(C3H8)
HHH H—C—C—C—H
HHH
正丁烷(C4H10)
HHHH H—C—C—C—C—H
HHHH
异丁烷(C4H10)
H
H— C —H
H
H
H—C—C—C—H
HHH
H H 归纳它们结构上的特点?
H C C H 1. 碳原子间都以C-C
C3H8
C2H6
HH
相连成链状,其余 都是C-H键;
乙烷
HHH
2.每个C原子都形成 4个共价键,都达
H C C C H 到“饱和”。
HHH
丙烷
HHHH
HCC CCH
C4H10
HHHH
丁烷
【问题1】烷烃的结构特点及烷 烃的命名
1. 烷烃的结构特点?什么叫烷烃?怎么书写结 构简式?
⑴分子里只存在单键。⑵碳链骨架成锯齿状 (3)碳原子的价键达到饱和
C 1、
12 6
164C
2、白磷、红磷
3、 H
H
|
|
H-C-Cl 、 Cl-C-Cl
|
|
Cl
H
4、CH3CH3、 CH3CHCH3 |
CH3
5、CH3CH(CH3)CH2CH3
C(CH3)4
巩固练习
下列化学式不能代表一种纯净物的是(C)
A. C3H8 C. C4H10
B. CH2Cl2 D. CHCl3
想一想:
分析下列分子式在结构和组成上有什么相同点和不同点?
甲烷 乙烷 丙烷 丁烷
CH4
5. 同系物
CH3CH3
结构相似,在分子组成上
CH3CH2CH3
相差一个或若干个CH2原
CH3CH2CH2CH3 子团的物质互称为同系物。
戊烷 CH3(CH2)3CH3 癸烷 CH3(CH2)8CH3
十七烷 CH3(CH2)15CH3
H 电子式: ·C····H
··
H [练习] 写出乙基的结构简式和电子式:
CH3CH2- 或-CH2CH3
或C2H5- 或-C2H5
HH H ··C······C·····
HH
-CH3CH2
(二)烷烃的物理性质:
名称
结构简式
常温 时的 熔点/℃ 状态
结构相似的分子随
相对分子质量的逐
渐增大范德华力逐
2. 结构简式
HH HCCH
HH
乙烷
HHH HCCCH
HHH 丙烷
HHHH
HCC CCH HHHH
丁烷
CH3-CH3、 CH3-CH2-CH3 、 CH3-CH2-CH2-CH3
CH3CH3 CH3CH2CH3
CH3CH2CH2CH3 或CH3(CH2)2CH3
【练习】
CH3—CH—CH2—CH2—CH3 CH3
甲烷 CH4 乙烷 C2H6
丙烷 C3H8
丁烷 C4H10 十七烷 C17H36
HH
HHH
HHHH
HCCHHCCCH HCC CCH
HH
乙烷
HHH
丙烷
HHHH
丁烷
3. 烷烃的通式: CnH2n+2 ( n≥1 )
【练习 】 写出下列烷烃的分子式: (1)含有18个碳原子的烷烃 (2)含有18个氢原子的烷烃 (3)相对分子质量为128的烷烃
(B)

C-C -C
CC (D) ∣ ∣
C- C
(F) C - C- C ∣ C
C-C
(G)

Cห้องสมุดไป่ตู้ C
(H)
C- C ∣∣
CC
思考:请写出戊烷的结构简式
CH3CH2CH2CH2CH3
正戊烷
CH3CHCH2CH3
CH3
异戊烷
新戊烷
正丁烷和异丁烷的性质比较 沸点
物质
正丁烷
异丁烷
36.07℃
熔点(℃)
动动手:
请用手里的球、棍插出丁烷的球棍模型。
CH3CH2CH2CH3 正丁烷
CH3CHCH3
CH3 异丁烷
二、同分异构体
具有相同的分子式,但具有不同的结构的 化合物互称为同分异构体。
相关文档
最新文档