实验三---译码器及其应用实验报告

合集下载

译码器及其应用实验报告

译码器及其应用实验报告

译码器及其应用实验报告译码器是一种能够将数字信号转换为模拟信号或者将模拟信号转换为数字信号的设备,它在通信、控制系统以及各种电子设备中都有着广泛的应用。

本实验旨在通过对译码器的实际操作,深入了解其工作原理和应用场景。

实验一,译码器的基本原理。

首先,我们需要了解译码器的基本原理。

译码器是一种数字电路,它能够将输入的数字信号转换为相应的模拟信号输出。

在实验中,我们使用了常见的二进制译码器,通过对不同的输入信号进行转换,观察输出信号的变化,从而验证译码器的工作原理。

实验二,译码器的应用场景。

译码器在数字通信系统中有着重要的应用,比如在调制解调器中,译码器可以将数字信号转换为模拟信号进行传输,而在接收端,又可以将模拟信号转换为数字信号进行解码。

此外,在控制系统中,译码器也扮演着重要的角色,它能够将数字控制信号转换为模拟控制信号,实现对各种设备的精确控制。

实验三,译码器的性能评估。

在实验中,我们对译码器的性能进行了评估。

通过测量译码器的输入输出特性、信噪比、失真度等指标,我们可以全面了解译码器的性能优劣,并对其在实际应用中的适用性进行评估。

实验四,译码器的改进与优化。

最后,我们对译码器进行了改进与优化。

通过对译码器电路的调整和优化设计,我们可以提高译码器的性能指标,使其在实际应用中具有更好的稳定性和可靠性。

总结:通过本次实验,我们深入了解了译码器的工作原理和应用场景,掌握了对译码器性能进行评估和优化的方法,这对我们进一步深入研究译码器的工作原理和应用具有重要意义。

译码器作为一种重要的数字电路设备,在通信、控制系统等领域有着广泛的应用前景,我们有信心通过不断的研究和实践,进一步提升译码器的性能和应用水平,为数字化时代的发展做出更大的贡献。

译码器、编码器及其应用实验报告

译码器、编码器及其应用实验报告

译码器、编码器及其应用一、实验目的(1) 掌握中规模集成译码器的逻辑功能和使用方法;(2) 熟悉掌握集成译码器和编码器的应用;(3) 掌握集成译码器的扩展方法。

二、实验设备数字电路实验箱,74LS20,74LS138。

三、实验内容(1) 74LS138译码器逻辑功能的测试。

将74LS138输出接数字实验箱LED管,地址输入接实验箱开关,使能端接固定电平(或GND)。

电路图如图1所示:图2时,任意拨动开关,观察LED显示状态,记录观察结果。

时,按二进制顺序拨动开关,观察LED显示状态,并与功能表对照,记录观察结果。

用Multisim进行仿真,电路如Figure 3所示。

将结果与上面实验结果对照。

图4(2) 利用3-8译码器74LS138和与非门74LS20实现函数:四输入与非门74LS20的管脚图如下:对函数表达式进行化简:按图5所示的电路连接。

并用Multisim进行仿真,将结果对比。

图6(3) 用两片74LS138组成4-16线译码器。

因为要用两片3-8实现4-16译码器,输出端子数目刚好够用。

而输入端只有三个,故要另用使能端进行片选使两片138译码器进行分时工作。

而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试,在各端子上移动即可。

在multisim中仿真电路连接如图7所示(实验台上的电路没有接下面的两个8灯LED):图8四、实验结果(1) 74LS138译码器逻辑功能的测试。

当输入时,应该是输出低电平,故应该第一个小灯亮。

实际用实验台测试时,LE0灯显示如图9所示。

当输入时,应该是输出低电平,故理论上应该第二个小灯亮。

实际用实验台测试时,LE0灯显示如Figure 6所示。

图10图11(2) 利用3-8译码器74LS138和与非门74LS20实现函数。

输入,由可知,小灯应该亮。

在实验台测试结果如图12所示。

输入,分析知小灯应该灭,测试结果如图13所示。

输入,分析知小灯应该亮,测试结果如图14所示。

2023年译码器及其应用实验报告范文

2023年译码器及其应用实验报告范文

译码器及其应用试验汇报范文5试验三译码器及其应用一、试验目旳1、掌握译码器旳测试措施。

2、理解中规模集成译码器旳功能,管脚分布,掌握其逻辑功能。

3、掌握用译码器构成组合电路旳措施。

、学习译码器旳扩展。

4二、试验设备及器件1、数字逻辑电路试验板 1块2、74HC138 3-8线译码器 2片3、74HC20 双4输入与非门 1片三、试验原理1、中规模集成译码器74HC13874HC138是集成3线,8线译码器,在数字系统中应用比较广泛。

图3,1是其引脚排列。

其中 A2 、A1 、A0为地址输入端, 0Y, 7Y为译码输出端,S1、2S、3S为使能端。

表3-1为74HC138真值表。

74HC138工作原理为:当S1=1,S2+S3=0时,电路完毕译码功能,输出低电平有效。

其中:2、译码器应用由于74HC138 三-八线译码器旳输出包括了三变量数字信号旳所有八种组合,每一种输出端表达一种最小项,因此可以运用八条输出线组合构成三变量旳任意组合电路。

四、试验内容1、译码器74HC138 逻辑功能测试(1)控制端功能测试测试电路如图3-2所示。

按表3-2所示条件输入开关状态。

观测并记录译码器输出状态。

LED指示灯亮为0,灯不亮为1。

测试成果如下:输入输出 S1 ,S2 ,S3 A2 A1 A0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 1 x x x x x 1 1 1 1 1 1 1 1 1 1 0 x x x 1 1 1 1 1 1 1 1 1 0 1 x x x 1 1 1 1 1 1 1 11 1 1 x x x 1 1 1 1 1 1 1 1(2)逻辑功能测试将译码器使能端 S1、,S2、,S3地址端A2、A1、A0 分别接至逻辑电平开关输出口,八个输出端依次连接在逻辑电平显示屏旳八个输入口上,拨动逻辑电平开关,按表3, 3逐项测试74HC138旳逻辑功能。

逻辑功能测试,成果如下:输入输出 S1 ,S2+,S3 A2 A1 A0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 x x x x 1 1 1 1 11 1 1 x 1 x x x 1 1 1 1 1 1 1 1 当时我A2A1A0旳状态是111,老师问我在发光二极管应对应哪个灯亮,我回答是八。

实验3 编码器、译码器及应用电路设计

实验3  编码器、译码器及应用电路设计

实验三编码器、译码器及应用电路设计一、实验目的:1、掌握中规模集成编码器、译码器的逻辑功能测试和使用方法;2、学会编码器、译码器应用电路设计的方法;3、熟悉译码显示电路的工作原理。

二、实验原理:1、什么是编码:用文字、符号、数字表示特定对象的过程。

2、编码器74LS147的特点及引脚排列图:4、什么是译码:编码的逆过程,即把代码状态的特定含义“翻译”出来的过程。

译码器按照功能的不同,一般分为三类:二进制译码器、二—十进制译码器、显示译码器。

(1)变量译码器74LS138的特点及其引脚排列图:反码输出。

(2)码制变换译码器:译码器74LS42的特点及其引脚排列图:(3)数码显示与七段译码驱动器:a、七段发光二极管数码显示管的特点:(共阴极)b、七段译码驱动器:4、在本数字电路实验装置上已完成了译码器74LS48和数码管之间的连接图。

三、实验器件:集成块:74LS147 74LS138 74LS42四、实验内容与步骤:三四端接高电频,五端随便,数码管的单独端接低电频。

1、74LS147编码器逻辑功能测试:将编码器9个输入端I1~I9各接一根导线,来改变输入端的状态,4个输出端依次从高到低Q3-Q0示,在各输入端输入有效电平,观察并记录电路输入与输出地对应关系,以及当几个输入同时我有效电平时编码器的优先级别关系。

2345678945678967898923456789045678956789899123456789123456789345678989912345678922345678934567894567895678967897891234567893I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Q I I I I I I I I I I I I I I I I I I I I I I I Q I I I I I I I I I I I I I I I I I I I I I I I I I I I Q I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Q +++=++++=++++=++++++=逻辑表达式2、74LS138 译码器逻辑功能测试:逻辑表达式 012510121012400120m m A m m A 54========A A A Y A A YA A A YA A Y3、74LS47译码器逻辑功能测试:DABC ABCD D C B A D C B A Q D C AB D C B A D C B A D ABC ABCD D C AB D C B A D C B A Q DC ABD ABC ABCD CD B A D C AB D C B A D C B A D C B A CD B A D C B A Q ABCDD ABC D C B A D C B A CD B A D C B A Q D C B A ABCD CD B A BCD A D C B A CD B A Q D C AB D BC A D C B A ABCD CD B A D C B A BCD A Q D BC A D C B A CD B A ABCD D C B A BCD A CD B A D C B A Q G FE D C B A +++=+++++++=+++++++++=+++++=+++++=++++++=+++++++=进一步猜测,74ls47为反码输出,在以下进行试验。

译码器及应用实验报告总结

译码器及应用实验报告总结

译码器及应用实验报告总结
一、实验目的
1.了解译码器的原理及应用;
2.掌握译码器的设计方法;
3.提高动手能力和实验操作技能。

二、实验器材
1.译码器模块;
2.数码管显示器;
3.电阻器、电容等元器件;
4.面包板、杜邦线等电子元件。

三、实验原理
译码器是一种将二进制代码转换为十进制代码的电路。

它由多个逻辑门组成,可以将输入的二进制代码翻译成对应的十进制数字。

在本实验中,我们使用的是74HC163译码器模块,它有3个8位输入端和3个8位输出端,可以同时驱动3个LED灯。

当输入端接收到正确的二进制代码时,对应的输出端会亮起相应的LED灯。

四、实验步骤
1.连接电路:将译码器模块的VCC引脚连接到正极电源,GND引脚
连接到负极电源;将译码器模块的IN0~IN7引脚分别连接到数码管显示器的A~D引脚上;将译码器模块的OE引脚连接到一个开关上。

2.编写程序:使用Arduino编程语言编写程序,将三个输入端口与三个输出端口相连,实现对译码器的控制。

具体代码如下:
3.测试程序:将开关打开,观察LED灯的状态变化。

根据程序中的逻辑判断输入的二进制代码是否正确,如果正确则对应的LED灯会亮起。

如果不正确则所有的LED灯都会熄灭。

可以通过修改程序中的二进制数来测试不同的输入情况。

译码器及其应用实验报告

译码器及其应用实验报告

一、实验目的1. 理解译码器的基本原理和功能。

2. 掌握中规模集成译码器(如74HC138)的逻辑功能和使用方法。

3. 熟悉译码器在数字系统中的应用,如地址译码、信号控制等。

4. 提高动手能力和实验操作技能。

二、实验器材1. 数字逻辑电路实验板2. 74HC138 3-8线译码器3. 数码管显示器4. 连接线5. 电源6. 计算器三、实验原理译码器是一种将输入的二进制代码转换成特定输出的逻辑电路。

它广泛应用于数字系统中,如地址译码、信号控制、编码器/译码器等。

本实验以74HC138 3-8线译码器为例,介绍译码器的基本原理和应用。

74HC138是一种常见的3-8线译码器,它具有3个地址输入端(A2、A1、A0)和8个输出端(Y0-Y7)。

当输入端A2、A1、A0的编码为000、001、010、011、100、101、110、111时,相应的输出端Y0-Y7输出低电平,其他输出端输出高电平。

四、实验内容1. 译码器功能测试(1)按照实验指导书连接电路,将74HC138的输入端A2、A1、A0连接到数字逻辑电路实验板的地址输入端。

(2)将译码器的输出端Y0-Y7连接到数码管显示器的输入端。

(3)根据74HC138的功能表,输入不同的地址码,观察数码管显示器的输出结果。

2. 地址译码电路设计(1)设计一个简单的地址译码电路,将输入端A0、A1、A2作为地址输入,输出端Y0-Y7作为片选信号。

(2)根据地址译码电路的设计,编写程序,实现数据的输入输出。

五、实验步骤1. 译码器功能测试(1)连接电路:将74HC138的输入端A2、A1、A0连接到数字逻辑电路实验板的地址输入端,将输出端Y0-Y7连接到数码管显示器的输入端。

(2)设置地址码:使用计算器设置地址码(A2、A1、A0),例如000、001、010、011、100、101、110、111。

(3)观察输出结果:观察数码管显示器的输出结果,确认是否与74HC138的功能表一致。

译码器及其应用实验报告_2011303513_张忠钢

译码器及其应用实验报告_2011303513_张忠钢

实验三 译码器及其应用姓名:张忠钢 班号:14011107 学号:2011303513一、实验目的(1)、掌握译码器的测试方法和使用方法;(2)、了解中规模集成译码器的原理,管脚分布,掌握其逻辑功能,以及译码显示器电路的构成原理;(3)、掌握集成译码器的扩展方法。

二、实验设备数字电路实验箱,74LS20,74LS138。

三、实验内容(1)利用3-8译码器74LS138和与非门74LS20实现函数:ABC C B B A Y ++=四输入与非门74LS20的管脚图如下:化简上述给出的函数:ABC C B B A Y ++= ABC C B A C B A C B A +++=74107410m m m m m m m m =+++=下图为用Multisim 进行仿真的电路图,并将令A=B=C=1,显示二极管发光。

(2) 用两片74LS138组成4-16线译码器。

在multisim 中仿真电路连接如下图所示: 此图中为DABC=1100,第十三个二极管发光四、实验结果(1) 利用3-8译码器74LS138和与非门74LS20实现函数。

输入ABC=111,由ABC C B B A Y ++=可知,小灯应该亮。

此结果与图一仿真结果一致,而输入ABC=110,由ABC C B B A Y ++=可知,小灯应该灭,此结果与仿真结果一致。

同理测试,得到结果列为下面的真值表:A B C Y0 0 0 10 0 1 10 1 0 00 1 1 01 0 0 11 0 1 01 1 0 01 1 1 1与所要实现的逻辑功能相一致(Y=0表示不亮,Y=1表示亮)(2) 用两片74LS138组成4-16线译码器。

在实验台上进行测试,得到的结果列为真值表如下:DA B C0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 11 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0在Multisim中测试,取DABC=1100,如图二仿真的所示,第13个二极管发光此仿真结果与实验台结果相一致。

译码器应用设计实验报告

译码器应用设计实验报告

译码器应用设计实验报告引言译码器(Decoder)是数字电路中常用的逻辑电路之一,它实现了将输入数字码转换成输出端口的控制信号。

译码器被广泛应用于数字系统中,如计算机、通信、测控等领域。

通常情况下,译码器基于真值表或卡诺图设计,可以根据输入的不同编码方式,输出相应的解码结果。

本实验主要介绍译码器的应用设计。

通过实验,我们将学会如何使用译码器来实现数字系统的控制和数据处理任务。

本实验所涉及的译码器有BCD-7段译码器、数值译码器、时序译码器以及存储器译码器等。

实验器材1. 逻辑计算器2. 示波器3. 数字电路实验箱4. 5V直流电源5. 译码器(BCD-7段译码器、数值译码器、时序译码器和存储器译码器)6. LED数码管实验原理1. BCD-7段译码器BCD-7段译码器是将4位BCD码转换成7段数码管显示的译码器。

8个BCD码,分别对应着数字0~9和字母A~F,输出接到控制7个LED数码管的段选端口和1个公共阴极的位选端口。

2. 数值译码器数值译码器是将4位二进制数转换成BCD码的译码器。

通过数值译码器,可以将数字的二进制编码转换成BCD编码,从而实现数字的BCD码显示。

译码器输出接LED数码管的输入端口。

时序译码器是根据不同状态的时序信号,将输入的二进制数码转换成对应的控制信号的译码器。

将时序信号和数码信号分别输入至译码器的两个输入端口,译码器将输出对应的动作信号。

常用于时序控制电路的设计中。

4. 存储器译码器存储器译码器是将存储芯片中的地址码转换成控制芯片的输入信号的译码器。

存储芯片中的地址码分别对应着芯片的不同存储单元,译码器将地址码转换成控制信号,使控制芯片可以正确访问存储芯片中的数据。

实验设计实验步骤:(1)将BCD码8个输入引脚分别接到译码器的8个输入端口上。

(4)将5V直流电源连接到译码器和LED数码管上。

实验结果:输入BCD码0000~1111时,LED数码管正确显示相应的数字0~9和字母A~F。

译码器及其应用实验

译码器及其应用实验

AB C
-
(3).分析上述实验结果并总结数据选择器作用。
-
4-16译码器参考电路
2.实现组合逻辑电路 例4.2.1 试用译码器和门电路实现逻辑函数:
LA BB CAC
解:将逻辑函数转换成最小项表达式,
L
再转换成与非—与非形式。
&
LA B C A B CAC B ABC
=m3+m5+m6+m7
m3m5m6m7 Y3Y5Y6Y7
实验三、译码器和数据选择器的应用
一、实验目的 1、掌握译码器的逻辑功能及其使用方法。 2、了解译码器的一些应用电路。 3、熟悉数据选择器的使用方法。
二、实验仪器及元器件 1、数电实验箱 3、元器件 :
74LS138(译码器)
2、数字万用表
74LS20(四输入端双与非门)
74LS153(双4选1数据选择器)
-
三、实验内容
(一)74LS138功能测试
1、简介 ➢ 74LS138为双列直插16脚3-8
线译码器,引脚及功能表见右 。 ➢ 使能端:G1=1,使能;G1=0,
禁止。G2A=G2B=0 ,使 能;G2A G2B任一端为1 ,禁止。 ➢ 输出Y0~Y7为低电平有效。
-
2、功能测试 ➢ 将地址和使能端与逻辑开关连接,输出端与电平
用一片74138加一个与非门 就可实现该逻辑函数。
Y7 Y 6 Y 5 Y4 Y3 Y 2 Y1 Y0
74 13 8
G 1 G 2A G 2B
A2 A1 A0
1 00
AB C
-
L &
Y7 Y 6 Y 5 Y4 Y3 Y 2 Y1 Y0
74 13 8

数字逻辑实验报告:译码器及其应用

数字逻辑实验报告:译码器及其应用
0
0
0
1
1
0
0
0
1
0
1
1
0
0
0
0
1
0
1
1
0
0
1
0
1
1
0
1
1
0
1
2
0
1
1
0
0
1
1
1
1
1
1
0
0
1
3
0
1
1
0
1
0
0
0
1
1
0
0
1
1
4
0
1
1
0
1
0
1
1
0
1
1
0
1
1
5
0
1
1
0
1
1
0
0
0
1
1
1
1
1
6
0
1
1

1
1
1
1
1
1
0
0
0
0
7
0
1
1
1
0
0
0
1
1
1
1
1
1
1
8
0
1
1
1
0
0
1
1
1
1
0
0
1
1
9
0
1
1
1
0
1
0
0
0
0
0
0
0
0
消隐
0
1
1
1
0

译码器及应用实验报告

译码器及应用实验报告

一、实验目的1. 理解译码器的原理及工作方式;2. 掌握译码器在数字电路中的应用;3. 提高动手能力和实验操作技能。

二、实验器材1. 译码器模块;2. 数码管显示器;3. 电源;4. 电阻;5. 连接线;6. 实验平台。

三、实验原理译码器是一种将二进制、十进制或其他进制编码转换成特定信号输出的数字电路。

本实验所采用的译码器为3-8线译码器,具有3个输入端和8个输出端。

当输入端输入不同的编码时,对应的输出端会输出高电平信号,其余输出端为低电平信号。

译码器的工作原理如下:1. 当输入端输入的编码为000时,输出端Y0输出高电平,其余输出端为低电平;2. 当输入端输入的编码为001时,输出端Y1输出高电平,其余输出端为低电平;3. 以此类推,当输入端输入的编码为111时,输出端Y7输出高电平,其余输出端为低电平。

四、实验内容1. 熟悉译码器模块的引脚排列及功能;2. 将译码器模块与数码管显示器连接,搭建实验电路;3. 通过改变译码器输入端的编码,观察数码管显示器的显示结果;4. 分析实验结果,验证译码器的工作原理。

五、实验步骤1. 将译码器模块的引脚与实验平台连接;2. 将数码管显示器的引脚与译码器模块的输出端连接;3. 将电源连接至译码器模块和数码管显示器;4. 打开电源,观察数码管显示器的显示结果;5. 改变译码器输入端的编码,观察数码管显示器的显示结果;6. 记录实验数据,分析实验结果。

六、实验结果与分析1. 当译码器输入端输入编码000时,数码管显示器显示0;2. 当译码器输入端输入编码001时,数码管显示器显示1;3. 当译码器输入端输入编码010时,数码管显示器显示2;4. 当译码器输入端输入编码011时,数码管显示器显示3;5. 当译码器输入端输入编码100时,数码管显示器显示4;6. 当译码器输入端输入编码101时,数码管显示器显示5;7. 当译码器输入端输入编码110时,数码管显示器显示6;8. 当译码器输入端输入编码111时,数码管显示器显示7。

译码器、编码器及其应用实验报告

译码器、编码器及其应用实验报告

译码器、编码器及其应用实验报告实验四译码器、编码器及其应用实验人员:班号:学号:一、实验目的(1) 掌握中规模集成译码器的逻辑功能和使用方法;(2) 熟悉掌握集成译码器和编码器的应用;(3) 掌握集成译码器的扩展方法。

二、实验设备数字电路实验箱,74LS20,74LS138。

三、实验内容(1) 74LS138译码器逻辑功能的测试。

将74LS138输出接数字实验箱LED管,地址输入接实验箱开关,使能端接固定电平(或GND)。

电路图如Figure 1所示:Figure 2时,任意拨动开关,观察LED显示状态,记录观察结果。

时,按二进制顺序拨动开关,观察LED显示状态,并与功能表对照,记录观察结果。

用Multisim进行仿真,电路如Figure 3所示。

将结果与上面实验结果对照。

Figure 4(2) 利用3-8译码器74LS138和与非门74LS20实现函数:四输入与非门74LS20的管脚图如下:对函数表达式进行化简:按Figure 5所示的电路连接。

并用Multisim进行仿真,将结果对比。

Figure 6(3) 用两片74LS138组成4-16线译码器。

因为要用两片3-8实现4-16译码器,输出端子数目刚好够用。

而输入端只有三个,故要另用使能端进行片选使两片138译码器进行分时工作。

而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试,在各端子上移动即可。

在multisim中仿真电路连接如Figure 7所示(实验台上的电路没有接下面的两个8灯LED):Figure 8四、实验结果(1) 74LS138译码器逻辑功能的测试。

当输入时,应该是输出低电平,故应该第一个小灯亮。

实际用实验台测试时,LE0灯显示如Figure 9所示。

当输入时,应该是输出低电平,故理论上应该第二个小灯亮。

实际用实验台测试时,LE0灯显示如Figure 6所示。

Figure 10Figure 11同理进行其他的测试。

译码器实验报告

译码器实验报告

译码器实验报告一、引言在现代科学技术的快速发展中,电子技术被广泛应用于各个领域。

而译码器作为数字电路中的重要组成部分,承担着将输入的二进制信号转化为特定输出的功能,被广泛应用于计算机、通信等领域。

本实验旨在通过构建一个基本的译码器电路,并测试其性能与功能。

二、实验材料和方法1. 实验器材:逻辑门、LED灯、面包板、电压控制开关等。

2. 实验步骤:a) 将译码器所需的逻辑门按照电路图连接起来,确保连接正确。

b) 将输入信号连接到译码器电路的输入端口。

c) 将译码器电路的输出端口连接到相应的LED灯。

d) 打开电压控制开关,观察LED灯的亮灭情况。

三、实验结果与分析1. 实验结果:a) 根据输入信号的不同,LED灯的亮灭情况会发生变化。

b) 验证了译码器电路的功能和性能。

2. 分析:译码器的作用是将输入的二进制信号转化为特定输出,根据不同的输入信号,译码器可以实现不同的功能。

通过本实验,我们成功构建了一个基本的译码器电路,并验证了其功能和性能。

根据译码器的逻辑关系,当输入满足特定条件时,输出相应的结果。

实验中,我们可以通过改变输入信号的组合方式来观察LED 灯的亮灭情况,验证译码器电路的正确性。

四、实验中的问题与改进在实验过程中,我们遇到了一些问题,并进行了一些改进。

1. 问题:连接错误导致电路无法正常工作。

解决方案:仔细检查电路的连接,并确保每个线材正确连接到相应的接口。

2. 问题:输入信号的组合方式不明确,无法观察出正确的输出结果。

解决方案:根据译码器的真值表,确定正确的输入信号组合。

3. 问题:LED灯亮度过低,无法清晰观察。

解决方案:调节电源电压以提高LED灯的亮度。

通过以上改进,我们成功解决了实验中遇到的问题,并最终获得了准确的实验结果。

五、实验的意义和应用译码器作为数字电路中的基本组件,具有重要的意义和广泛的应用。

1. 译码器可以将二进制信号转化为特定输出,广泛应用于计算机、通信等领域。

译码器及其应用实验报告

译码器及其应用实验报告

译码器及其应用实验报告译码器及其应用实验报告引言:译码器是一种重要的电子元件,它能将输入的数字信号转化为特定的输出信号,广泛应用于通信、计算机和电子设备中。

本实验旨在通过对译码器的实际应用进行探索,深入了解其原理和功能。

实验目的:1. 理解译码器的基本原理;2. 掌握译码器的工作方式和应用场景;3. 进行实际应用实验,验证译码器的功能和效果。

实验器材:1. 译码器芯片2. 实验电路板3. 连接线4. 开关和LED灯实验步骤:1. 实验前准备:在实验电路板上搭建一个简单的电路,将译码器芯片与开关和LED灯连接起来。

2. 连接电路:使用连接线将开关与译码器芯片的输入端相连,将LED灯与译码器芯片的输出端相连。

3. 设置输入信号:打开开关,向译码器芯片输入不同的数字信号。

观察LED灯的亮灭情况。

4. 分析实验结果:根据LED灯的亮灭情况,判断译码器芯片对输入信号的解码结果。

记录实验数据,并进行分析。

实验结果与讨论:通过实验观察和数据记录,我们可以得出以下结论:1. 译码器的工作原理:译码器根据输入信号的不同组合,将其转化为相应的输出信号。

例如,4-2译码器可以将4位二进制数转化为2位输出信号。

2. 译码器的应用场景:译码器广泛应用于数字电路、通信系统和计算机等领域。

例如,在计算机的内存管理中,译码器用于将内存地址转化为实际的存储单元。

3. 实验结果分析:根据LED灯的亮灭情况,我们可以判断译码器芯片对输入信号的解码结果。

例如,当输入信号为“00”时,LED灯1亮,LED灯2灭,表示译码器将输入信号解码为“01”。

结论:通过本次实验,我们深入了解了译码器的工作原理和应用场景。

译码器作为一种重要的电子元件,在数字电路和通信系统中具有广泛的应用前景。

通过实际应用实验,我们验证了译码器的功能和效果,并对其工作原理有了更深入的理解。

总结:译码器作为一种重要的电子元件,具有广泛的应用领域。

通过本次实验,我们不仅了解了译码器的基本原理和工作方式,还通过实际应用实验验证了其功能和效果。

译码器及应用实验报告

译码器及应用实验报告

译码器及应用实验报告译码器及应用实验报告引言:在现代科技的发展中,数字电子技术发挥着至关重要的作用。

而译码器作为数字电子技术中的一种重要元件,被广泛应用于各种电子设备中。

本次实验旨在通过实际操作,深入了解译码器的原理、工作方式以及应用领域。

一、实验目的本次实验的主要目的是掌握译码器的工作原理,并通过实际应用的方式加深对译码器的理解。

同时,通过实验,我们还能够了解译码器在数字电子技术中的广泛应用。

二、实验原理1. 译码器的定义译码器是一种将输入信号转换为输出信号的数字电路。

它可以将不同的输入组合转换为特定的输出信号,从而实现信息的解码。

2. 译码器的工作原理译码器的工作原理可以简单地理解为将不同的输入信号映射到特定的输出信号。

它通过内部的逻辑门电路实现这一转换过程。

常见的译码器有BCD译码器、二进制译码器等。

3. 译码器的应用领域译码器广泛应用于数字电子技术领域,特别是在数字系统中。

它可以用于将数字信号转换为特定的控制信号,从而实现各种功能。

例如,译码器可以用于将二进制代码转换为七段数码管的控制信号,实现数字显示。

三、实验步骤1. 实验器材准备本次实验所需的器材包括译码器芯片、数字信号发生器、示波器等。

2. 连接电路根据实验要求,将译码器芯片与其他器材进行连接。

确保连接正确无误后,接通电源。

3. 发送输入信号通过数字信号发生器,发送不同的输入信号给译码器芯片。

观察输出信号的变化,并记录实验数据。

4. 数据分析根据实验数据,分析输入信号与输出信号之间的关系。

探究译码器的工作原理,并进一步了解其应用领域。

四、实验结果与讨论通过实验,我们成功地观察到了译码器的工作过程,并记录了输入信号与输出信号的变化情况。

通过对实验数据的分析,我们可以清晰地了解到译码器的工作原理以及其在数字电子技术中的应用。

译码器作为数字电子技术中的重要元件,广泛应用于各种电子设备中。

例如,它可以用于将二进制代码转换为七段数码管的控制信号,实现数字显示;它还可以用于将输入的BCD码转换为相应的控制信号,实现BCD码的解码。

数字电路课程_译码器及其应用实验报告

数字电路课程_译码器及其应用实验报告

实验报告
一、实验名称:译码器及其应用
二、实验内容:
1、逻辑功能测试
参照与译码器74LS138 的实验电路连接电路,如图一。

图一
验证过程如下表:
实验结果与74LS138的逻辑功能相符。

2、用 74HC(LS)138实现逻辑函数
Y=AB+BC+CA
将译码器74LS138 和与非门74LS00进行连接,如图二。

图二
3、扩展
用两片译码器74LS138级联,组成4线-16线译码器。

实验电路如图三(图中输入为DCBA =1101)。

图三
三、实验注意事项
1、集成电路要轻插轻拔。

四、收获
1、在用3线-8线译码器构成4线-16线译码器过程中,
最初有用到与非门,但因为导线连接错误导致未看到
对应输入的LED灯亮。

如图三,未用到与非门得到了
正确的实验结果,因此应尽量使电路结构简单、用较
少元器件实现特定功能;
2、在我们用的实验电路板上,未用导线接高电位或地电
位的引脚电位为零;
3、在与其他同学讨论过程中,学会如何将自己的想法通
过语言或者简单的图形文字表达出来;
4、用Multisim画电路图很方便,可以继续深入探究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三译码器及其应用
一、实验目的
(1) 掌握中规模集成译码器的逻辑功能和使用方法;
(2) 熟悉掌握集成译码器的应用;
(3) 掌握集成译码器的扩展方法。

二、实验设备
数字电路实验箱,电脑一台,74LS20,74LS138。

三、实验内容
(1)利用3-8译码器74LS138和与非门74LS20实现函数:四输入与非门74LS20的管脚图如下:
对函数表达式进行化简:
按Figure 1所示的电路连接。

并用Multisim进行仿真,将结果对比。

Figure 1
(2) 用两片74LS138组成4-16线译码器。

因为要用两片3-8实现4-16译码器,输出端子数目刚好够用。

而输入端只有三个,故要另用使能端进行片选使两片138译码器进行分时工作。

而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试,在各端子上移动即可。

在multisim中仿真电路连接如Figure 2所示(实验台上的电路没有接下面的两个8灯LED):
Figure 2
四、实验结果
(1) 利用3-8译码器74LS138和与非门74LS20实现函数。

输入,由可知,小灯应该亮。

测试结果如Figure 1所示。

输入,分析知小灯应该灭,测试结果如Figure 2所示。

输入,分析知小灯应该亮,测试结果如Figure 3所示。

Figure 4
Figure 5
Figure 6
同理测试,得到结果列为下面的真值表:
A B C Y
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
与所要实现的逻辑功能相一致。

(2) 用两片74LS138组成4-16线译码器。

G1
A B C
1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
在Multisim中测试,分别取和,如下面的所示Figure 7、Figure 8所示:
Figure 9
此仿真结果与实验台结果相一致。

Figure 10
此仿真结果与实验台结果相一致。

五、故障排除
在实验二中进行Multisim仿真的时候,74LS138D的接口接错了。

反复排查之后,发现了错误,得到了预期的结果。

在进行实验三的时候,由于线比较多,所以有两个端子接错了,导致结果不正确。

在修正之后,得到了预期的结果。

六、心得体会
我一直都没搞清楚用两个3-8译码器连成4-16译码器时,哪一片是扩展高位的哪一片是低位的。

经过这次实验我懂得了,哪一片都可以最为扩展为最高位。

根据使能端片选确定先后工作的顺序,因而确定哪一位是最低位,哪一位是最高位。

并且通过本次实验,我学会了怎么将multisim中的元件的名称隐藏起来,以节省空间。

相关文档
最新文档