单片机计数器程序

合集下载

单片机原理及接口技术(C51编程)第7章 定时器计数器

单片机原理及接口技术(C51编程)第7章 定时器计数器
30
图7-14 由外部计数输入信号控制LED的闪烁
(3)设置IE寄存器 本例由于采用T1中断,因此需将IE寄存器的EA、ET1位置1。
(4)启动和停止定时器T1 将寄存器TCON中TR1=1,则启动T1计数;TR1=0,则停止T1计数。
参考程序如下:
#include <reg51.h> void Delay(unsigned int i)
7.4 定时器/计数器的编程和应用 4种工作方式中,方式0与方式1基本相同,只是计数位数不同。方
式0为13位,方式1为16位。由于方式0是为兼容MCS-48而设,计数初 值计算复杂,所以在实际应用中,一般不用方式0,常采用方式1。
7.4.1 P1口控制8只LED每0.5s闪亮一次 【例7-1】在AT89S51的P1口上接有8只LED,原理电路见图7-
当TMOD的低2位为11时,T0被选为方式3,各引脚与T0的逻辑关系 见图7-8。
T0分为两个独立的8位计数器TL0和TH0,TL0使用T0的状态控制位 C/T* 、GATE、TR0 ,而TH0被固定为一个8位定时器(不能作为外部 计数模式),并使用定时器T1的状态控制位TR1,同时占用定时器T1的 中断请求源TF1。
13。采用T0方式1的定时中断方式,使P1口外接的8只LED每0.5s闪亮 一次。
23
图7-13 方式1定时中断控制LED闪亮
24
(1)设置TMOD寄存器 T0工作在方式1,应使TMOD寄存器的M1、M0=01;应设置C/T*=0,为定
时器模式;对T0的运行控制仅由TR0来控制,应使相应的GATE位为0。定时 器T1不使用,各相关位均设为0。所以,TMOD寄存器应初始化为0x01。 (2)计算定时器T0的计数初值

第06章 MCS-51单片机定时计数器

第06章 MCS-51单片机定时计数器

10
2 8位计数初值自动重装,TL(7 ~ 0)
TH(7 ~ 0)
11
3 T0运行,而T1停止工作,8位定时/计数。
▪ 2.定时/计数器控制寄存器(TCON)

D7 D6 D5 D4 D3 D2 D1 D0
位符号 TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
TR0:定时 / 计数器0运行控制位。软件置位,软件复位。与GATE有关, 分两种情况:
GATE = 0 时:若TR0 = 1,开启T0计数工作;若TR0 = 0,停止T0计 数。
GATE = 1 时:若TR0 = 1 且/INT0 = 1时,开启T0计数; 若TR0 = 1 但 /INT0 = 0,则不能开启T0计数。 若TR0 = 0, 停止T0计数。
TR1:定时 / 计数器1运行控制位。用法与TR0类似。
▪ (1)计算计数初值。欲产生周期为1000μs的等宽方波脉冲, 只需在P1.7端交替输出500μs的高低电平即可,因此定时 时间应为500μs。设计数初值为X,则有:
▪ (216-X)×1×10-6=500×10-6
▪ X=65536-500=65036=FE0CH
▪ 将X的低8位0CH写入TL1,将X的高8位FEH写入TH1。
;清TCON,定时器中断标志清

MOV TMOD,#10H
;工作方式1设定

MOV TH1,#0FEH
;计数1初值设定

MOV TL1,#0CH

MOV IE,#00H
;关中断

SETB TR1
;启动计数器1
▪ LOOP0:JBC TF1,LOOP1 ;查询是否溢出

认识单片机的定时器计数器

认识单片机的定时器计数器

void main(void) { TMOD=0x01;
TH0=-25000/256; TL0=-25000%256; TR0=1; ET0=1; EA=1; while(1); } void timer0(void) interrupt 1 { TH0=-25000/256;
TL0=-25000%256; P10=~P10; }
根据定时时间T,及公式(1)、(2)分别可以求出初 值N为:
方式1: N=216-T×fosc/12
(3)
方式2、方式3 :N=28-T×fosc/12 (4)
如果fosc=12MHZ,以上公式可简化为
方式1: N=216-T
方式2、方式3 :N=28-T
例如:系统的时钟频率是12MHz,在方式1下,如果希望定时 器/计数器T0的定时时间T为10ms,则初值N =216-T=6553610000=55536
任务一、认识单片机的定时器/计数器
一、定时器/计数器及其应用 在单片机应用系统中,定时或计数是必不可少的。例如: 测量一个脉冲信号的频率、周期,或者统计一段时间里 电机转动了多少圈等。常用的定时方法有:
1、软件定时 软件定时是依靠执行一段程序来实现的,这段程序本身 没有具体的意义,通过选择恰当的指令及循环次数实现 所需的定时,由于执行每条指令都需一定的时间,执行 这段程序所需总的时间就是定时时间。 软件定时的特点是无需硬件电路,但定时期间CPU被占 用,增加了CPU的开销,因此定时时间不宜过长,而且 定时期间如果发生中断,定时时间就会出现误差。
led=_crol_(led,1); 满10次变量led左移1位送P0口
P0=led;
}
}
[案例3] 用定时器的计数方式实现外部中断。如图 所示,P0口控制8只发光管轮流点亮,发光管点 亮时间为500ms,单脉冲电路控制发光管的移动 方向,按下单脉冲按钮,发光管左移,再按下发 光管右移 。

51单片机定时-计数器结构和计数器工作原理

51单片机定时-计数器结构和计数器工作原理
使用中断方式时对IE寄存器赋值开发中断
使TR0或TR1置位,启动定时/计数器
晶体振荡器的振荡信号从XTAL2端输入到片内的时钟发生器上,时钟发
生器是一个二分频触发器电路,它将振荡器的信号频率除以2,向CPU提供
了两相时钟信号P1和P2。时钟信号的周期称为机器状态时间S,它是振荡
周期的2倍。在每个时钟周期(即机器状态时间S)的前半周期,相位1(即
P1信号)有效,在每个时钟周期的后半周期,相位2(即P2信号)有效。
提供
用途:定时器和计数器
核心:加1计数器
原理:每来一个脉冲则加1计数器加1,当加到全1时再来一个脉冲使加
1计数器归零,同时加1计数器的溢出使TCON寄存器中的TF0(或TF1)
置1,向CPU发出中断请求
脉冲来
补充:
计数器工作原理:
用作计数器时,对T0或T1引脚的外部脉冲计数,如果前一个机器周期
采样值为1,后一个机器周期采样值为0,则说明有一个脉冲,计数器加
1。
在每个机器周期的S5P2期间采样引脚输入电平。新的计数初值于下一个
机器周期的S3P1期间装入计数器。
此种方式需要两个机器周期来检测一个1->0负跳变信号,因此最高的计
数频率为时钟频率的1/24。
S5P2:
S5P2指的是第5个时钟周期的相位2。
工作原理:13位计数器,使用TL0的低5位和TH0的高8位组成,TL0
的低5位溢出时向TH0进位。TH0溢出时发出中断请求。
方式1
计算公式:
最大计数:65536个机器周期
工作原理:16位计数器,TL0作为低8位,TH0作为高8位
方式2:自动重装初值的8位计数方式
计算公式:p.s.晶振频率必须选择12的整数倍,因为定时器的频率是晶振

c51单片机计数器触发机制

c51单片机计数器触发机制

C51单片机的计数器是通过触发机制来工作的。

在C51单片机中,有两种常见的计数器类型:定时器和计数器/计时器。

1. 定时器(Timer):
定时器用于生成一定时间间隔的定时事件。

C51单片机中的定时器是基于内部或外部时钟源进行计数的。

当定时器达到设定的计数值时,会触发定时器中断,并执行相应的中断服务程序(ISR)。

可以使用定时器来生成精确的时间延迟、控制周期性任务等。

2. 计数器/计时器(Counter/Timer):
计数器/计时器可以用来计数外部事件的脉冲数量或测量时间间隔。

它可以根据外部事件的触发边沿(上升沿或下降沿)来触发计数动作。

当计数器达到设定的计数值时,也可以触发计数器中断,并执行相应的中断服务程序(ISR)。

计数器还可以被配置为计时器模式,用于测量时间间隔。

在C51单片机中,计数器的触发机制通常是通过设置相关的寄存器来实现的。

这些寄存器包括计数器的初始值、计数模式、计数触发边沿等。

通过配置这些寄存器,可以灵活地控制计数器的工作方式和触发条件。

需要注意的是,具体的计数器触发机制可能会因不同的单片机型号而有所差异。

因此,在编程时应参考相关的芯片手册或数据表,以了解具体的计数器触发机制及其相应的寄存器设置。

1。

单片机实验报告(计数器)

单片机实验报告(计数器)

扬州大学能源与动力工程学院课程设计报告题目:计数器课程:单片机原理及应用课程设计专业:电气工程及其自动化班级:电气1001*名:**学号:*********第一部分任务书《单片机原理及应用》课程设计任务书一、课题名称音乐倒数计数器二、课程设计目的课程设计是课程教学中的一项重要内容,是达到教学目标的重要环节,是综合性较强的实践教学环节,它对帮助学生全面牢固地掌握课堂教学内容、培养学生的实践和实际动手能力、提高学生全面素质具有很重要的意义。

《单片机原理及应用》是一门理论性、实用性和实践性都很强的课程,课程设计环节应占有更加重要的地位。

单片机原理及应用课程设计的目的是让学生在理论学习的基础上,通过完成一个涉及MCS-51单片机多种资源应用并具有综合功能的小系统目标板的设计与编程应用,使学生不但能将课堂上学到的理论知识与实际应用结合起来,而且能进一步加深对电子电路、电子元器件等知识的认识与理解,同时在软件编程、排错调试、相关软件和仪器设备的使用技能等方面得到较全面的锻炼和提高。

为今后能够独立进行某些单片机应用系统的开发设计工作打下一定的基础。

通过单片机硬件和软件设计、调试、整理资料等环节的培训,使学生初步掌握工程设计方法和组织实践的基本技能,逐步熟悉开展科学实践的程序和方法。

三、课程设计内容设计以89C51单片机和外围元器件构成的单片机应用系统,并完成相应的软硬件调试。

1. 系统方案设计:综合运用单片机课程中所学到的理论知识,学生根据所选课题的任务、要求和条件进行总体方案的设计。

2. 硬件电路设计:对方案中以单片机为核心的电路进行设计计算,包括元器件的选择和电路参数的计算,并画出总体电路图。

3. 软件设计:根据已设计出的软件系统框图,用汇编语言或C51编制出各功能模块的子程序和整机软件系统的主程序。

4. 调试:在单片机EDA仿真软件环境Proteus下进行仿真设计并调试;或在单片机周立功实验箱上进行相关设计并调试。

单片机 加减计数器

单片机 加减计数器

3.分析:定义变量记录按下次数 分析: 分析
(1)键盘:判断按键按下
(延时去抖动)
(2)显示:
延时1ms点亮 动态扫描7步 段码表
4.流程图 流程图
(1)主函数流程图
开始
初始化
key1
N N key2
Y
key3 N Y Y
动态显示
结束
此处 即为初始化问题 (1)直接赋值 (2)跳转命令goto
加/减计数器 减计数器
----单片机编程
1.电路设计 电路设计
2.设计要求 设计要求
(1)按键1计数范围0~99,每按一下显示数 值加1。当显示值为99时,继续计数显示默认 为0,继续计数。 (2)按键2计数范围0~99,每按一下显示数 值减1。当显示值为0时,继续计数显示默认从 100开始。 (3)按键3为复位键,无论计数值为多少,按 下复位键显示数值将刷新为0。
Y熄灭
结束
void delay(unsigned int n)
{ unsigned int x,y; for(x=0;x<n;x++){ for(y=0;y<121;y++){ ; } } }
sfr p1=0x90; sbit p3_0=0xb0; sbit p3_1=0xb1; sbit p3_5=0xb5; sbit p3_6=0xb6; sbit p3_7=0xb7; unsigned char i; code unsigned char tab[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; void delay(unsigned int); void display(void); void key1(void); void key2(void); void key3(void); void main(void) { loop: i=0; while(1){ if(p3_5==0){ key1(); (); else key2(); (); else key3(); (); display(); } }

51单片机程序计数器PC和堆栈指针SP如何指挥ROM和RAM工作

51单片机程序计数器PC和堆栈指针SP如何指挥ROM和RAM工作

编程模型Keil中的执行情况编程模型寄存器组8位数据寄存器组16位地址寄存器组程序计数器PC堆栈指针SP状态标记寄存器组指令集汇编指令集C51指令集编程模型16位地址寄存器组片内ROM 8位数据寄存器组片内RAM地址内容(指令)0x0FFF xx0x0FFE xx (xx)0x0101xx0x0100xx (xx)0x0002xx0x0001xx0x0000 xx 地址内容(数据)0x7F xx0xFE xx (xx)0x61xx0x60xx (xx)0x02xx0x01xx0x00 xx只考虑片内时SP、PCSP PCSP:堆栈指针,51单片机堆栈是向上生长型,即栈底是低位地址。

SP 指向栈顶。

存放有顺序要求的数据。

用途:(1)用来存放压入堆栈的数据。

(2)存放函数调用是断口地址。

(3)中断断口地址及保存数据。

51单片机复位后的SP默认地址:07H,为了避免和位寻址区重合,一般设置50H或者60H。

PC:程序计数器,51单片机内不可访问,独立结构的16位地址寄存器。

(1)自动+1,CPU从ROM中每读一个字节,自动执行PC+1→PC。

(2)执行转移指令,PC会根据指令要求修改下一次读ROM的地址(3)执行子程序调用或中断时,CPU自动将下一条执行的PC值压入堆栈,将子程序或中断入口地址装入PC,返回时,恢复原有压入堆栈的PC值,继续执行原程序。

举一个例子(汇编程序)ORG0000H;规定下一条指令的起始地址为0000HJMP START;跳转指令,程序跳转到START处执行ORG0400H;规定下一条指令DELY 的起始地址为0400HDELY: ;子函数DELYNOP;NOP指令,空操作,什么都不做,消耗该指令周期的时间RET;返回指令,弹出堆栈中断口地址,DELY调用返回指令ORG0100H;规定下一条指令START 的起始地址为0100HSTART: ;函数STARTMOV SP,#60H ;设置堆栈指针的值,即设置单片机栈底的地址为60HMOV DPTR,#1234H;将立即数1234H赋值给DPTR,其中低8位给DPTR的DPL(34H),;高8位给DPTR的DPH(12H)PUSH DPH;将DPH中数据12H压入堆栈PUSH DPL;将DPL中数据34H压入堆栈CALL DELY;调用子函数DELYPOP DPH;弹出堆栈中栈顶数据到DPH中POP DPL;弹出堆栈中栈顶数据到DPL中LJMP$;原地等待END;结束标志KEIL中的执行情况PC=0x0000 ;即0000HSP=0x07 ;即07H黄色箭头表示PC指针指向PC=0x0100 ;即0100H SP=0x07 ;即07HPC指针指向下一条指令PC=0x0103 ;即0103H SP=0x60 ;即60HPC指针指向下一条指令PC=0x0106 ;即0106H SP=0x60 ;即60HPC指针指向下一条指令PC=0x0108 ;即0108HSP=0x61 ;即61H,且地址为61H中的数据为12H PC指针指向下一条指令PC=0x010A ;即010AHSP=0x62 ;即62H,且地址为61H中的数据为12H,62H中的数据为34HPC指针指向下一条指令PC=0x0400 ;即0400HSP=0x64 ;即62H,且地址为61H中的数据为12H,62H中的数据为34H,63H中的数据为0CH,64H中的数据为01H。

51单片机计数器程序c语言

51单片机计数器程序c语言

下面是一个51单片机计数器的简单程序,使用C语言编写。

c
#include <reg51.h>
// 定义计数器的值
volatile unsigned int counter = 0;
// 定义外部中断0的服务函数
void INT0_Handler() interrupt 0 {
// 清除外部中断0标志位
EX0 = 0;
// 计数器值加1
counter++;
}
void main() {
// 设置外部中断0触发方式为下降沿触发
IT0 = 1;
// 使能外部中断0
EX0 = 1;
// 全局中断使能
EA = 1;
while(1) {
// 在此处添加处理计数器值的代码,例如:
// if (counter >= 100) {
// // 计数器值达到100,执行某些操作
// counter = 0; // 计数器清零
// }
}
}
此代码实现了51单片机的外部中断0的计数器功能。

当INT0引脚检测到下降沿时,会触发外部中断0,并执行INT0_Handler()函数,使counter值加1。

在main()函数中,可以添加处理counter值的代码。

例如,当counter值达到某个阈值时,可以执行特定的操作。

注意,这只是一个基础的示例,具体的代码可能会因具体硬件和应用需求而略有不同。

音乐倒数计数器(单片机课程设计)

音乐倒数计数器(单片机课程设计)

摘要单片机自20世纪70年代问世以来,以其极高的性能价格比,受到人们的重视和关注,应用很广、发展很快。

而51单片机是各单片机中最为典型和最有代表性的一种。

本实验是基于MCS51系列单片机所设计的,可以实现键盘按键与数字动态显示并可以用音乐倒数的计数器。

本设计基于单片机技术原理,以单片机芯片STC89C52作为核心控制器,通过硬件电路的制作以及软件程序的编制,设计制作出一个计数器,包括以下功能:输出时间,按下键就开始计时,并将时间显示在LCD1602显示器上。

当倒计数为0时,蜂鸣器就发出音乐声响等等。

该计数器系统主要由计数器模块、LCD显示器模块、蜂鸣器模块、键盘模块、复位模块等部分组成。

关键词:STC89C52、键盘、LCD1602显示、蜂鸣器目录摘要............................................................... I 1 项目概述和要求 (2)1.1 单片机基础知识 (2)1.2 单片机的发展趋势 (2)1.3 项目设计任务与要求 (3)2 系统设计 (4)2.1 框图设计 (4)2.2部分硬件方案论述 (5)2.3电路原理图 (5)2.4元件清单 (6)2.4.1STC89C52芯片 (6)2.4.2字符型LCD1602 ......................... 错误!未定义书签。

2.4.3按键控制模块 (8)2.4.4其它元件 (10)3软件设计 (11)3.1 程序流程图 (11)4 系统的仿真与调试 (12)4.1 硬件调试 (12)4.2 软件调试 (12)4.3 软硬件调试 (12)5总结 (13)参考文献 (14)附录程序 (25)1 项目概述和要求1.1 单片机基础知识单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

概括的讲,一块芯片就成了一台计算机。

单片机具有体积小、功能强、应用面广等优点,目前正以前所未见的速度取代着传统电子线路构成的经典系统,蚕食着传统数字电路与模拟电路固有的领地。

单片机“0~99”加法计数器程序设计51单片机原理及应用

单片机“0~99”加法计数器程序设计51单片机原理及应用

课程设计课程名称51单片机原理及应用题目名称单片机“0~99”加法计数器程序设计专业班级学生姓名学号指导教师蚌埠学院运算机科学与技术系课程设计任务书目录前言 (6)一.单片机介绍 (6)(一).AT89C51简介 (6)(二).主要特性 (7)(三).特性概述 (7)(四).管脚说明 (7)(五).芯片擦除 (9)(六) (9)二.课程设计的目的和要求 (13)(一).设计目的 (13)(二).课程设计题目 (13)(三).设计任务及要求 (13)三.整体设计思路 (13)(一).硬件设计思路及系统框图 (13)1.硬件设计思路: (13)2.原器件清单 (14)3.系统框图 (14)(二).软件设计思路: (14)(三).对照表 (14)(四).程序流程图 (15)四.硬件设计 (17)(一).芯片主要特性 (17)(二).管脚说明: (17)(三).排阻的作用 (18)(四).电路图说明 (19)1.添加晶振和复位 (19)2.添加P0和P2两个按键 (19)3. 数码管动态显示 (19) (19)五.软件设计说明 (19)}得和体会: (20)(二).建议和意见: (20)八.参考文献 (21)附录: (22)(一).汇编源程序 (22)(二).原理图 (24)前言单片机全称叫单片微型运算机(Single Chip Microcomputer),是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处置能力的中央处置器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、按时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D 转换器等电路)集成到一块硅片上组成的一个小而完善的运算机系统。

目前单片机渗透到咱们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。

导弹的导航装置,飞机上各类仪表的控制,运算机的网络通信与数据传输,工业自动化进程的实时控制和数据处置,普遍利用的各类智能IC卡,民用奢华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,和程控玩具、电子宠物等等,这些都离不开单片机。

MCS-51单片机的定时器计数器

MCS-51单片机的定时器计数器
器工作方式。 (2)预置定时计数器中计数的初值——直接写入TH和
TL; 如:任务中的MOV TH0,#00H 两条指令,设定计数初
值。 MOV TL0,#00H
Copyright 2006
(3)根据需要开放定时器/计数器的中断——对IE位赋值; (4)启动定时器/计数器; 如:任务中的SETB TR0 指令 初值的计算方法 X=M-计数值 M是定时器的最大计数值。视工作方式不同而不同。
判断中 断的次 数

CPL P1.0
;定时到,输出取反

NO:RETI
;中断返回
END
注意:此程序的#20和#60这两个立即数后面没 有加H表示是十进制数。
思考:能否利用定时器来实现一个电子钟?
Copyright 2006
测量每1秒钟之内的按键按下次数
工作方式0: 13位定时/计数方式,因此,最多可以计到2的13 次方,也就是8192次。
工作方式1: 16位定时/计数方式,因此,最多可以计到2的16 次方,也就是65536次。
工作方式2和工作方式3:都是8位的定时/计数方式,因此, 最多可以计到2的8次方,也说是256次。
Copyright 2006
;开中断 ;开T0中断 ;运行T0 ;等待中断 ;定时到,输出取反 ;重新加载初战值
;中断返回
中断程序的主 程序和中断服 务程序的布局
定时器初始化
开定时器中断
Copyright 2006
实例二:利用方式1定时
题目:用定时器T1,使用工作方式1,在单片机的P1.0输出一个周期为2分钟、占 空比为1:1的方波信号。
Copyright 2006
MCS-51单片机的定时器/计数器(二)

51单片机定时器计数器汇编实验

51单片机定时器计数器汇编实验

实验三、定时器/计数器实验报告一、实验内容1、编写单片机程序,用T0作定时器产生周期为1秒的方波(用查询方式编程),从P3.6,P3.7口输出,将P3.7接到示波器显示该方波波形;用T1作计数器对从P3.6输出的方波进行计数,计数结果通过P1口输出到发光二极管显示。

(计算机仿真)2、编写单片机程序,用T0作定时器产生周期为1秒的方波(用查询方式编程),从P3.6,P3.7口输出,将P3.6输出的方波接到P3.5口通过T1作计数器对该方波进行计数,计数值由LED显示,用存储示波器显示P3.7输出的方波。

(实验台验证)3、设计一个60秒计时器,秒计时结果用两位LED数码管显示。

(计算机仿真)二、实验仿真图(1)脉冲计数实验程序ORG 0000HBEGIN:MOV TMOD,#51H MOV TL0,#0F0HMOV TH0,#0DBHMOV TH1,#00HMOV TL1,#00HMOV P1,#00HMOV P0,#00HMOV P2,#00HMOV R3,#00HMOV R4,#00HSETB TR0SETB TR1S1: MOV R1,#33HMOV A,R4MOV R5,TL1ADD A,R5MOV P1,AMOV R2,TL1CJNE R2,#10,S2MOV TH1,#00HMOV TL1,#00HINC R3MOV A,R3MOV DPTR,#TAB1MOVC A,@A+DPTRMOV P2,AMOV P0,#3FHMOV A,R3MOV B,#0AHMUL ABMOV R4,AMOV P1,R4AJMP NEXTS2: MOV R1,#33HMOV DPTR,#TAB1MOV A,TL1MOVC A,@A+DPTRMOV P0,AAJMP NEXT LOOP: JBC TF0,NEXT AJMP LOOPNEXT: MOV TL0,#0F0HMOV TH0,#0DBHDJNZ R1,LOOPCPL P3.6CPL P3.7AJMP S1TAB1:DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH;(SW3,SW4为:00) END(2)60秒定时器实验程序ORG 0000HBEGIN:MOV TMOD,#51HTL0,#0F0HMOVMOVTH0,#0DBHTH1,#00HMOVTL1,#00HMOVR3,#00HMOVP0,#00HMOVP2,#00HMOVSETBTR0TR1SETBS1: MOV R1,#33HR2,TL1MOVR2,#10,S2CJNETH1,#00HMOVTL1,#00HMOVR3INCR3,#06H,S4CJNER3,#00HMOVS4: MOV A,R3DPTR,#TAB1MOVA,@A+DPTRMOVCP2,AMOVMOVP0,#3FHNEXTAJMPS2: MOV R1,#33HDPTR,#TAB1MOVA,TL1MOVA,@A+DPTRMOVCMOVP0,ANEXTAJMPLOOP: JBC TF0,NEXTLOOPAJMPNEXT: MOV TL0,#0F0HTH0,#0DBHMOVR1,LOOPDJNZP3.6CPLCPLP3.7S1AJMPTAB1:DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH END。

单片机实验 带程序的

单片机实验  带程序的

五.实验步骤: 1. 连接电源线和串行口数据线; 2. 把P3.1接至P3.0孔,P1.0~P1.7分别接发光二极管 L1~L8孔。 3.打开DICE—5203 K实验开发系统的电源; 4. 启动计算机,打开桌面软件文件夹,选择MS51仿真 开发系统图标双击,进入软件编程界面; 5. 编制程序,调试、运行; 6. 从按键开关输入数字量,观察发光二极管的发光状 态,或从寄存器观察其对应数值。 六.思考题: 修改程序,使串行口工作于方式3或 2(考虑波特率)。
四、实验步骤 (一)定时/计数器T0延时实验 1、连接电源线和串行口数据线; 2、用插针将P1.0孔与发光二极管L1孔相连, P1.1孔与发光二极管L2孔相连; 3、打开DICE—5203 K实验开发系统的电源; 4、启动计算机,打开桌面软件文件夹,选择 MS51仿真开发系统图标双击,进入软件 编程界面; 5、编制程序,调试、运行; 6、观察发光二极管状态。
• void tim0(void) interrupt 1 using 1 • { EA=0; • i++; • j++; • if(i==20) • {P1_0=!P1_0; • i=0;} • if(j==100) • {P1_1=!P1_1; • j=0;} • TH0=(65536-50000)/256; • TL0=(65536-50000)%256; • EA=1; • }
ds-ms(int j) {uchar k; while(j--!=0) for(k=0,k<125,k++);}
void main (void) { uchar i,a; COM8255 =0x80; a =0x01; for(i=0,i<8,i++) {PB8255=a; ds-ms(500); a=a<<1; if(a==0)a=0x01; } }

单片机C语言编程定时器计数器

单片机C语言编程定时器计数器

6.2.4 模式3的逻辑结构及应用
1、T0模式3的结构特点
M1 M0 =11,选择模式3。逻辑结构如图 6-8和6-9所示:
结构: TL0、TH0分为两个独立的8位计数器 TL0: 8位定时器/计数器
使用T0所有的资源和控制位 TH0:8位定时器
使用T1所有的资源(中断向量、中断控制 ET1、PT1)和控制位(TR1、TF1)
第6章 MCS-51单片机定时器/计数器
目录
6.1 MCS-51定时器/计数器 的结构及原理
6.2 定时器T0、T1 6.3 定时器T2 6.4 定时器应用举例
第6章 MCS-51单片机的定时器/计数器
本章主要讨论MCS-51单片机定时器/计 数器的逻辑结构和工作原理。内容主要有 MCS-51单片机定时器T0、T1、T2的逻辑结 构,工作方式的选择和应用。
6.1.3 定时器/计数器的方式和控制寄存器
M1、M0——工作模式选择位。
如下表所示:
表6-1 定时器/计数器的工作模式
M1 M0 工作模式
功能
0 0 模式0 13位定时器/计数器
0 1 模式1 16位定时器/计数器
10 11
模式2 模式3
8位自动重置定时器/计数器
定时器0:TL0为8位定时器/计 数器,TH0为8位定时器。 定时器1:无此方式
MCS-51单片机之所以设置几乎完全一 样 的方 式0和方式1,是出于与 MCS-48单片机兼容的。
6.2.3 模式2的逻辑结构及应用
M1 M0 =10时,选择模式2。逻辑结构 如图6-7所示。
T0的结构: TL0:8位的定时器/计数器; TH0:8位预置寄存器,用于保存初值。 工作过程:当TL0计满溢出时,TF0置1, 向CPU发出中断请求;同时引起重装操作 (TH0的计数初值送到TL0),进行新一轮 计数。

c语言单片机定时器计数器程序

c语言单片机定时器计数器程序

C语言单片机定时器计数器程序1. 简介C语言是一种被广泛应用于单片机编程的高级编程语言,它可以方便地操作单片机的各种硬件模块,包括定时器和计数器。

定时器和计数器是单片机中常用的功能模块,它们可以用来实现精确的时间控制和计数功能。

本文将介绍如何使用C语言编程实现单片机的定时器计数器程序。

2. 程序原理在单片机中,定时器和计数器通常是以寄存器的形式存在的。

通过对这些寄存器的操作,可以实现定时器的启动、停止、重载以及计数器的增加、减少等功能。

在C语言中,可以通过对这些寄存器的直接操作来实现对定时器和计数器的控制。

具体而言,可以使用C语言中的位操作和移位操作来对寄存器的各个位进行设置和清零,从而实现对定时器和计数器的控制。

3. 程序设计在编写单片机定时器计数器程序时,首先需要确定定时器的工作模式,包括定时模式和计数模式。

在定时模式下,定时器可以按照设定的时间间隔生成中断,从而实现定时功能;在计数模式下,定时器可以根据外部的脉冲信号进行计数。

根据不同的应用需求,可以选择不同的工作模式,并根据具体情况进行相应的配置。

4. 程序实现在C语言中,可以通过编写相应的函数来实现对定时器和计数器的控制。

需要定义相关的寄存器位置区域和位掩码,以便于程序对这些寄存器进行操作。

编写初始化定时器的函数、启动定时器的函数、停止定时器的函数、重载定时器的函数等。

通过这些函数的调用,可以实现对定时器的各种操作,从而实现定时和计数功能。

5. 示例代码以下是一个简单的单片机定时器计数器程序的示例代码:```c#include <reg52.h>sbit LED = P1^0; // 定义LED连接的引脚void InitTimer() // 初始化定时器{TMOD = 0x01; // 设置定时器0为工作在方式1TH0 = 0x3C; // 设置初值,定时50msTL0 = 0xAF;ET0 = 1; // 允许定时器0中断EA = 1; // 打开总中断void Timer0_ISR() interrupt 1 // 定时器0中断服务函数{LED = !LED; // 翻转LED状态TH0 = 0x3C; // 重新加载初值,定时50msTL0 = 0xAF;}void m本人n(){InitTimer(); // 初始化定时器while(1){}}```以上代码实现了一个简单的定时器中断程序,当定时器计数到50ms 时,会触发定时器中断,并翻转LED的状态。

单片机(c语言版)定时器计数器复习进程

单片机(c语言版)定时器计数器复习进程
➢ 当作为波特率发生器使用时,只需要设置好工作方式,便可 自动运行。如要停止工作,只需送入一个把T1设置为方式3 的方式控制字。因为定时/计数器T1不能在方式3下工作, 因为T1处于方式3时相当于TR1 = 0,停止计数。
12
6.3 对外部输入的计数信号的要求
当定时器/计数器工作在计数器模式时,计数脉冲来自外部输入 引脚T0或T1。当输入信号产生由1至0的跳变(即负跳变)时, 计数器值增1。 由于确认一次负跳变花2个机器周期,即24个振荡周期,因此 外部输入的计数脉冲的最高频率为系统振荡器频率的1/24。
TMOD寄存器应初始化为0x01=0000 0001B
(2)计算T0计数初值 设定时时间5ms(即5000µs),设定时器T0的计数初值为
X,假设晶振的频率为11.0592MHz,则定时时间为: 定时时间=(216−X)12/晶振频率 则 5000=(216 −X)12/11.0592 得:X = 60928,转换成16进制后为:0xee00,其中0xee装 入TH0,0x00装入TL0。 (3)设置IE寄存器
TCON
TF1 D7
申请 中断
TR1
TF0
溢出 TH0 TL0
TR0
8位 5位
D0
1 1
0 &
≥1
T0引脚
机器周期 1
INT0引脚
TMOD
0 M0 D0 0 M1
C/T GATE
M0 M1 C/T GATE D7
6
C/T*位决定定时器/计数器的两种工作模式 (1)C/T*=0,T1(或T0)为定时器工作模式,把时钟振荡
图6-2 寄存器TMOD格式 3
(2)M1、M0—工作方式选择位 M1、M0的4种编码,对应于4种工作方式的选择。 (3)C/T* —计数器模式和定时器模式选择位 C/T*=0,为定时器工作模式,对单片机的晶体振荡器12分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档