2020年高考物理考点题型归纳与训练专题十四 动量守恒定律及其应用(含解析)
高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析
高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2m∆ 的压缩气体,每级总质量均为2M,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。
喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。
【答案】116.54m【解析】对模型甲: ()00M m v mv =-∆-∆甲21085=200.5629v h m m g =≈甲甲对模型乙第一级喷气: 10022m mM v v ∆∆⎛⎫=-- ⎪⎝⎭乙 解得: 130m v s=乙2s 末: ‘11=10m v v gt s-=乙乙22111'=402v v h m g-=乙乙乙对模型乙第一级喷气:‘120=)2222M M m m v v v ∆∆--乙乙( 解得: 2670=9mv s 乙 22222445=277.10281v h m m g =≈乙乙可得: 129440+=116.5481h h h h m m ∆=-≈乙乙甲。
2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C的质量?②B离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1)2kg(2)9J【解析】试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2即m c=2 kg②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v4得E p=9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M1=1 kg,车上另有一个质量为m=0.2 kg的小球,甲车静止在水平面上,乙车以v0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M2=2 kg,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解5.冰球运动员甲的质量为80.0kg 。
高考物理动量守恒定律技巧和方法完整版及练习题含解析
高考物理动量守恒定律技巧和方法完整版及练习题含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)
高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。
0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。
高考物理动量守恒定律技巧小结及练习题含解析
高考物理动量守恒定律技巧小结及练习题含解析一、高考物理精讲专题动量守恒定律1.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2BB B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.2.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数3μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s3.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析
高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。
【答案】(1) 201v v =,4302v v = (2)L g v x -=μ3220,1620p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得21v v =。
对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4302v v =(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律)(2)2()2(21221221222021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L gv x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律p 222021))(2()2(21221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能162P mv E =注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。
高考物理动量守恒定律练习题及解析.docx
高考物理动量守恒定律练习题及解析一、高考物理精讲专题动量守恒定律1. 如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度 v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度 v 1 的大小;(2)小明接住木箱后三者一起运动的速度 v 2 的大小.【答案】 ① v ; ②2v23【解析】试题分析: ① 取向左为正方向,由动量守恒定律有:0=2mv 1-mv得 v 1 v2② 小明接木箱的过程中动量守恒,有 mv+2mv 1 =(m+2m ) v 2解得 v 22v 3考点:动量守恒定律2. 如图所示,质量为 M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端 刚好与水平面相切于水平面上的B 点, B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的 A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为 53°, A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ =0.,2重力加速度为g=10m/s 2.求:(1)圆弧所对圆的半径R ;(2)若 AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】 (1) 1m ( 2) t4 282 s25【解析】 【分析】根据动能定理得小物块在 B 点时的速度大小 ;物块从 B 点滑到圆弧面上最高点 C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从 C 抛出后,根据运动的合成与分解求落地时间;【详解】解: (1)设小物块在 B 点时的速度大小为v1,根据动能定理得:mgL1mv021mv1222设小物块在 B 点时的速度大小为v2,物块从B点滑到圆弧面上最高点 C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:mv1 (m M )v2根据系统机械能守恒有:1mv121(m M )v22mg ( R R cos530 ) 22联立解得: R1m(2)若整个水平面光滑,物块以v0的速度冲上圆弧面,根据机械能守恒有:1mv021mv32mg ( R R cos530 )22解得:v3 2 2m / s物块从 C 抛出后,在竖直方向的分速度为:v y v3 sin 5382m / s 5这时离体面的高度为: h R R cos530.4mh v y t 1 gt22解得:t 4 282 s253.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值.【答案】 v 乙=6m/s.I =8N【解析】【详解】1左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
最新高考物理二轮复习题型归纳与训练专题十四 动量守恒定律及其应用(含答案解析)
第 1 页 共 14 页最新高考物理二轮复习题型归纳与训练专题十四 动量守恒定律及其应用题型一、动量定理的理解与应用【典例1】(2019·武汉高三下学期2月调考)运动员在水上做飞行运动表演。
他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中,如图所示。
已知运动员与装备的总质量为90 kg ,两个喷嘴的直径均为10 cm ,已知重力加速度大小g =10 m/s 2,水的密度ρ=1.0×103 kg/m 3,则喷嘴处喷水的速度大约为( )A .2.7 m/sB .5.4 m/sC .7.6 m/sD .10.8 m/s【答案】 C【解析】 设Δt 时间内有质量为m 的水射出,忽略重力冲量,对这部分水由动量定理得F Δt=2mv ,m =ρv Δt ·πd 24,设运动员与装备的总质量为M ,运动员悬停在空中,所以F ′=Mg ,由牛顿第三定律得F ′=F ,联立解得v ≈7.6 m/s ,C 正确。
题型二、动量守恒定律的应用【规律方法】动量守恒定律解题的基本步骤1.明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);3.规定正方向,确定初、末状态动量;4.由动量守恒定律列出方程;5.代入数据,求出结果,必要时讨论说明.【典例2】如图所示,甲、乙两小孩各乘一辆冰车在水平冰面上玩耍.甲和他的冰车的总质量为M=30 kg,乙和他的冰车的总质量也是M=30 kg.甲推着一个质量为m=15 kg的箱子和他一起以2 m/s的速度滑行,乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时,乙迅速抓住.若不计冰面摩擦,求甲至少以多大速度(相对地)将箱子推出,才能避免与乙相撞?【解析】要想刚好避免相撞,要求乙抓住箱子后与甲的速度正好相等,设甲推出箱子后的速度为v1,箱子的速度为v,乙抓住箱子后的速度为v2.对甲和箱子,推箱子前后动量守恒,以甲初速度方向为正方向,由动量守恒定律有(M+m)v0=mv+Mv1①对乙和箱子,抓住箱子前后动量守恒,以箱子初速度方向为正方向,由动量守恒定律有mv-Mv0=(m+M)v2①甲与乙刚好不相撞的条件是v1=v2①联立①①①解得v=5.2 m/s,方向与甲和箱子初速度方向一致.【答案】 5.2 m/s题型三、碰撞模型的规律及应用【典例3】.(多选)(2019·山东济南高三第二次联考)如图甲所示,光滑水平面上有a、b两个小球,a球向b球运动并与b球发生正碰后粘合在一起共同运动,其碰前和碰后的s t图象如图乙所示,已知m a=5 kg.若b球的质量为m b,两球因碰撞而损失的机械能为ΔE,则()第2页共14页第 3 页 共 14 页A .m b =1 kgB .m b =2 kgC .ΔE =15 JD .ΔE =35 J【解析】:在s t 图象中图线的斜率表示小球运动的速度大小,所以v a =61m/s =6 m/s ,碰后粘合在一起共同运动的速度为v =51m/s =5 m/s ,碰撞过程动量守恒,得m a v a =(m a +m b )v ,解得m b =1 kg ,故A 正确,B 错误;根据功能关系得ΔE =12m a v 2a -12(m a +m b )v 2=15 J ,故C 正确,D 错误.【答案】:AC题型四、动量与能量的综合应用【规律方法】利用动量和能量观点解题的技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律.(2)动量守恒定律和能量守恒定律都只考查一个物理过程的初、末两个状态,对过程的细节不予追究.(3)注意挖掘隐含条件,根据选取的对象和过程判断动量和能量是否守恒.【典例4】(2019·湖北孝感高三上学期期末八校联考)如图所示,水平轨道OBC 与一半径为R =0.5 m 的竖直光滑半圆形轨道CD 相切于C 点,其中AB 部分粗糙,其他部分光滑。
动量守恒定律练习题含答案及解析.doc
动量守恒定律练习题含答案及解析一、高考物理精讲专题动量守恒定律1. 水平放置长为 L=4.5m 的传送带顺时针转动,速度为v=3m/s ,质量为 m 2=3kg 的小球被长为 l 1m 的轻质细线悬挂在 O 点,球的左边缘恰于传送带右端 B 对齐;质量为 m 1=1kg的物块自传送带上的左端A 点以初速度 v 0=5m/s 的速度水平向右运动,运动至B 点与球 m 2发生碰撞,在极短的时间内以碰撞前速率的1反弹,小球向右摆动一个小角度即被取走。
2已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度 g 10m/s 2。
求:( 1)碰撞后瞬间,小球受到的拉力是多大?( 2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少?【答案】( 1) 42N ( 2) 13.5J【解析】【详解】解:设滑块 m1与小球碰撞前一直做匀减速运动,根据动能定理:m gL = 1mv 2 1 m v 2121 121 0解之可得: v 1 =4m/s因为 v 1 v ,说明假设合理m 1v 1 = 1 2滑块与小球碰撞,由动量守恒定律: 2m 1v 1+m 2v 2解之得: v 2 =2m/s碰后,对小球,根据牛顿第二定律:F m 2 gm 2 v 22l小球受到的拉力:F 42N(2)设滑块与小球碰撞前的运动时间为t 1 ,则 L1v 0 v 1 t 12解之得: t 1 1s在这过程中,传送带运行距离为: S 1 vt 1 3m 滑块与传送带的相对路程为:X 1L X 1 1.5m设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为 t 2则根据动量定理:m 1 gt 2m 11v 12解之得: t2 2s滑块向左运动最大位移: x m 1 1v1 t 2=2m2 2因为 x m L ,说明假设成立,即滑块最终从传送带的右端离开传送带1再考虑到滑块与小球碰后的速度2 v1< v ,说明滑块与小球碰后在传送带上的总时间为2t2在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程X 22vt212m因此,整个过程中,因摩擦而产生的内能是Q m1 g x1 x2=13.5J2.如图:竖直面内固定的绝缘轨道abc R=3 m的光滑圆弧段bc与长l=1.5 m的粗,由半径糙水平段 ab 在 b 点相切而构成, O 点是圆弧段的圆心,Oc 与 Ob 的夹角θ=37°;过 f 点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C 的匀强电场, Ocb 的外侧有一长度足够长、宽度 d =1.6 m 的矩形区域 efgh, ef 与 Oc 交于 c 点, ecf 与水平向右的方向所成的夹角为β(53 °≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3× 10-3 kg、电荷量 q=3× l0-3 C 的带正电小物体Q 静止在圆弧轨道上 b 点,质量 m1=1.5× 10-3 kg 的不带电小物体 P 从轨道右端 a 以 v0=8 m/s 的水平速度向左运动,P、 Q 碰撞时间极短,碰后 P 以 1 m/s 的速度水平向右弹回.已知P 与 ab 间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37° =0.6, cos37° =0.8,重力加速度大小g=10m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小 B1;(3)当区域 efgh 内所加磁场的磁感应强度为B2 =2T 时,要让物体Q 从 gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】 (1) F N 4.6 10 2 N (2) B1 1.25T(3) t 127s ,1900和21430 360【解析】【详解】解: (1)设 P 碰撞前后的速度分别为 v 1 和 v 1 , Q 碰后的速度为 v 2 从 a 到 b ,对,由动能定理得: 1212P- m 1gl2 m 1v 12m 1v解得: v 1 7m/s碰撞过程中,对 P , Q 系统:由动量守恒定律: m 1v 1 m 1v 1 m 2v 2取向左为正方向,由题意 v 11m/s,解得: v 24m/sb 点:对 Q ,由牛顿第二定律得: F Nm 2 g m 2 v 2 2R解得 : F N 4.6 10 2 N(2)设 Q 在 c 点的速度为 v c ,在 b 到 c 点,由机械能守恒定律:m 2 gR(1 cos )1m 2v c21m 2v 2 22 2解得: v c 2m/s进入磁场后: Q 所受电场力 F qE 3 10 2Nm 2 g ,Q在磁场做匀速率圆周运动由牛顿第二定律得:qv c B 1m 2v c2r 1Q 刚好不从 gh 边穿出磁场,由几何关系: r 1 d 1.6m解得: B 11.25T(3)当所加磁场 B 22T ,r2m 2v c1mqB 2要让 Q 从 gh 边穿出磁场且在磁场中运动的时间最长,则 Q 在磁场中运动轨迹对应的圆心角最大,则当 gh 边或 ef 边与圆轨迹相切,轨迹如图所示:d r2 设最大圆心角为,由几何关系得:cos(180)r2 解得:1272 m2运动周期: TqB2则 Q 在磁场中运动的最长时间:t T 127?2 m2 127 s360 360 qB2 360此时对应的角: 1 90 和2 1433.如图甲所示,物块A、 B 的质量分别是m A B=4.0kg 和 m =3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:①物块 C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1) 2kg( 2) 9J【解析】试题分析:①由图知, C 与 A 碰前速度为 v1= 9 m/s,碰后速度为v2= 3 m/s , C 与 A 碰撞过程动量守恒. m c 1 AC2v =( m + m ) v即 m c= 2 kg② 12 s 时 B 离开墙壁,之后A、 B、C 及弹簧组成的系统动量和机械能守恒,且当A、 C 与B的速度相等时,弹簧弹性势能最大(m A+ m C) v3=( m A+ m B+ m C) v4得E p= 9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、 v2同向运动,并发生对心碰撞,碰后 m2被右侧墙壁原速弹回,又与 m1碰撞,再一次碰撞后两球都静止.求第一次碰后 m1球速度的大小 .【答案】 【解析】设两个小球第一次碰后 m 1 和 m 2 速度的大小分别为和 ,由动量守恒定律得:( 4 分)两个小球再一次碰撞, (4 分)得:( 4 分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5. 如图所示,一辆质量M=3 kg 的小车 A 静止在光滑的水平面上,小车上有一质量 m=l kg的光滑小球 B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为 L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
高考物理动量守恒定律技巧和方法完整版及练习题含解析
高考物理动量守恒定律技巧和方法完整版及练习题含解析一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.28.如图所示,质量为m a =2kg 的木块A 静止在光滑水平面上。
2020年高考物理专题分类《动量守恒定律及其应用》
动量守恒定律及其应用题型一 动量守恒的理解和判断 动量守恒的条件判断【例1】.一颗子弹水平射入置于光滑水平面上的木块A 并留在其中,A 、B 用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A 及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统( )A .动量守恒,机械能守恒B .动量不守恒,机械能守恒C .动量守恒,机械能不守恒D .无法判定动量、机械能是否守恒【变式】如图所示,A 、B 两物体质量之比m A ∶m B =3∶2,原来静止在平板车C 上,A 、B 间有一根被压缩的弹簧,地面光滑.当弹簧突然被释放后,以下系统动量不守恒的是( )A .若A 、B 与C 上表面间的动摩擦因数相同,A 、B 组成的系统B .若A 、B 与C 上表面间的动摩擦因数相同,A 、B 、C 组成的系统C .若A 、B 所受的摩擦力大小相等,A 、B 组成的系统D .若A 、B 所受的摩擦力大小相等,A 、B 、C 组成的系统 某一方向上的动量守恒问题【例2】.(多选)(2019·佛山模拟)如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽上高h 处由静止开始自由下滑( )A .在下滑过程中,小球和槽之间的相互作用力对槽不做功B .在下滑过程中,小球和槽组成的系统水平方向动量守恒C .被弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球能回到槽上高h 处【变式】质量为M 的小车静止于光滑的水平面上,小车的上表面和14圆弧的轨道均光滑.如图所示,一个质量为m 的小球以速度v 0水平冲向小车,当小球返回左端脱离小车时,下列说法中正确的是( )A .小球一定沿水平方向向左做平抛运动B .小球可能沿水平方向向左做平抛运动C .小球可能沿水平方向向右做平抛运动D .小球可能做自由落体运动 爆炸反冲现象中的动量守恒【例3】.(2017·高考全国卷Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)() A.30 kg·m/s B.5.7×102 kg·m/s C.6.0×102 kg·m/s D.6.3×102 kg·m/s【变式】如图所示,小车AB放在光滑水平面上,A端固定一个轻弹簧,B端粘有油泥,AB总质量为M,质量为m 的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩,开始时AB和C都静止,当突然烧断细绳时,C被释放,C离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,下列说法正确的是()A.弹簧伸长过程中C向右运动,同时AB也向右运动B.C与B碰前,C与AB的速率之比为M∶mC.C与油泥粘在一起后,AB立即停止运动D.C与油泥粘在一起后,AB继续向右运动题型二对碰撞现象中规律的分析碰撞的可能性分析【例2】.(2019·天津高三质检)甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p1=5 kg·m/s,p2=7 kg·m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s,则两球质量m1与m2间的关系可能是()A.m1=m2B.2m1=m2 C.4m1=m2D.6m1=m2【变式】两球A、B在光滑水平面上沿同一直线、同一方向运动,m A=1 kg,m B=2 kg,v A=6 m/s,v B=2 m/s.当A 追上B并发生碰撞后,两球A、B速度的可能值是()A.v′A=5 m/s,v′B=2.5 m/s B.v′A=2 m/s,v′B=4 m/sC.v′A=-4 m/s,v′B=7 m/s D.v′A=7 m/s,v′B=1.5 m/s弹性碰撞规律求解【例3】(2019·安徽江南十校联考)如图所示,一个质量为m的物块A与另一个质量为2m的物块B发生正碰,碰后B物块刚好能落入正前方的沙坑中.假如碰撞过程中无机械能损失,已知物块B与地面间的动摩擦因数为0.1,与沙坑的距离为0.5 m,g取10 m/s2,物块可视为质点.则A碰撞前瞬间的速度为()A.0.5 m/s B.1.0 m/s C.1.5 m/s D.2.0 m/s【变式】如图所示,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.【变式2】.如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动,此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.非弹性碰撞的分析【例4】.(多选)(2019·宁夏银川模拟)A 、B 两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a 、b 分别为A 、B 两球碰前的位移随时间变化的图象,c 为碰撞后两球共同运动的位移随时间变化的图象,若A 球质量是m =2 kg ,则由图判断下列结论正确的是 ( )A .碰撞前、后A 球的动量变化量为4 kg·m/sB .碰撞时A 球对B 球所施的冲量为-4 N·sC .A 、B 两球碰撞前的总动量为3 kg·m/sD .碰撞中A 、B 两球组成的系统损失的动能为10 J【变式1】如图甲所示,光滑水平面上有P 、Q 两物块,它们在t =4 s 时发生碰撞,图乙是两者的位移—时间图象,已知物块P 的质量为m P =1 kg ,由此可知( )A .碰撞前P 的动量为4 kg·m/sB .两物块的碰撞可能为弹性碰撞C .物块Q 的质量为4 kgD .两物块碰撞过程中P 对Q 作用力的冲量是3 N·s【变式2】质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子的正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,在整个过程中,系统损失的动能为( )A.12mv 2B.mM 2m +Mv 2 C.12N μmgL D .N μmgL参考答案题型一动量守恒的理解和判断动量守恒的条件判断【例1】.一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统()A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒【答案】C【解析】:.动量守恒的条件是系统不受外力或所受外力的合力为零,本题中子弹、两木块、弹簧组成的系统,水平方向上不受外力,竖直方向上所受外力的合力为零,所以动量守恒.机械能守恒的条件是除重力、弹力对系统做功外,其他力对系统不做功,本题中子弹射入木块瞬间有部分机械能转化为内能(发热),所以系统的机械能不守恒,故C正确,A、B、D错误.【变式】如图所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板车C上,A、B间有一根被压缩的弹簧,地面光滑.当弹簧突然被释放后,以下系统动量不守恒的是()A.若A、B与C上表面间的动摩擦因数相同,A、B组成的系统B.若A、B与C上表面间的动摩擦因数相同,A、B、C组成的系统C.若A、B所受的摩擦力大小相等,A、B组成的系统D.若A、B所受的摩擦力大小相等,A、B、C组成的系统【答案】:A【解析】:如果A、B与C上表面间的动摩擦因数相同,弹簧被释放后,A、B分别相对C向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A∶m B=3∶2,所以F A∶F B=3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒;对A、B、C组成的系统,A与C、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力和支持力,它们的合力为零,故该系统的动量守恒;若A、B所受的摩擦力大小相等,则A、B组成的系统所受的外力之和为零,故其动量守恒.综上所述,A正确.某一方向上的动量守恒问题【例2】.(多选)(2019·佛山模拟)如图所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽上高h处由静止开始自由下滑()B.在下滑过程中,小球和槽之间的相互作用力对槽不做功B.在下滑过程中,小球和槽组成的系统水平方向动量守恒C .被弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球能回到槽上高h 处【答案】BC【解析】:.在下滑过程中,小球和槽之间的相互作用力对槽做功,选项A 错误;在下滑过程中,小球和槽组成的系统在水平方向所受合外力为零,系统在水平方向动量守恒,选项B 正确;小球被弹簧反弹后,小球和槽在水平方向不受外力作用,故小球和槽都做匀速运动,选项C 正确;小球与槽组成的系统动量守恒,球与槽的质量相等,小球沿槽下滑,球与槽分离后,小球与槽的速度大小相等,小球被弹簧反弹后与槽的速度相等,故小球不能滑到槽上,选项D 错误.【变式】质量为M 的小车静止于光滑的水平面上,小车的上表面和14圆弧的轨道均光滑.如图所示,一个质量为m 的小球以速度v 0水平冲向小车,当小球返回左端脱离小车时,下列说法中正确的是( )A .小球一定沿水平方向向左做平抛运动B .小球可能沿水平方向向左做平抛运动C .小球可能沿水平方向向右做平抛运动D .小球可能做自由落体运动【答案】:BCD【解析】:小球水平冲向小车,又返回左端,到离开小车的整个过程中,系统机械能守恒、水平方向动量守恒,相当于小球与小车发生弹性碰撞.如果m <M ,小球离开小车向左做平抛运动;如果m =M ,小球离开小车做自由落体运动;如果m >M ,小球离开小车向右做平抛运动. 爆炸反冲现象中的动量守恒【例3】.(2017·高考全国卷Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【答案】A【解析】:.燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -mv 0=0,解得p =mv 0=0.050 kg×600 m/s =30 kg·m/s ,选项A 正确.【变式】如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,下列说法正确的是( )B .弹簧伸长过程中C 向右运动,同时AB 也向右运动 B .C 与B 碰前,C 与AB 的速率之比为M ∶mC .C 与油泥粘在一起后,AB 立即停止运动D .C 与油泥粘在一起后,AB 继续向右运动【答案】:BC【解析】:AB 与C 组成的系统在水平方向上动量守恒,C 向右运动时,AB 应向左运动,故A 错误;设碰前C 的速率为v 1,AB 的速率为v 2,则0=mv 1-Mv 2,得v 1v 2=M m,故B 正确;设C 与油泥粘在一起后,AB 、C 的共同速度为v 共,则0=(M +m )v 共,得v 共=0,故C 正确,D 错误.题型二 对碰撞现象中规律的分析 碰撞的可能性分析【例2】.(2019·天津高三质检)甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 1=5 kg·m/s ,p 2=7 kg·m/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s ,则两球质量m 1与m 2间的关系可能是( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 2【答案】:C【解析】:甲、乙两球在碰撞过程中动量守恒,所以有p 1+p 2=p 1′+p 2′,即p 1′=2 kg·m/s.由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加,所以有p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2,所以有m 1≤2151m 2.因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有p 1m 1>p 2m 2,即m 1<57m 2;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即p 1′m 1≤p 2′m 2,所以m 1≥15m 2.因此C 选项正确. 【变式】两球A 、B 在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s.当A 追上B 并发生碰撞后,两球A 、B 速度的可能值是( )A .v ′A =5 m/s ,v ′B =2.5 m/s B .v ′A =2 m/s ,v ′B =4 m/sC .v ′A =-4 m/s ,v ′B =7 m/sD .v ′A =7 m/s ,v ′B =1.5 m/s【答案】B【解析】:.虽然题中四个选项均满足动量守恒定律,但A 、D 两项中,碰后A 的速度v ′A 大于B 的速度v ′B ,必然要发生第二次碰撞,不符合实际;C 项中,两球碰后的总动能E ′k =12m A v ′2A +12m B v ′2B =57 J ,大于碰前的总动能E k =22 J ,违背了能量守恒定律;而B 项既符合实际情况,也不违背能量守恒定律,故B 项正确. 弹性碰撞规律求解【例3】(2019·安徽江南十校联考)如图所示,一个质量为m 的物块A 与另一个质量为2m 的物块B 发生正碰,碰后B 物块刚好能落入正前方的沙坑中.假如碰撞过程中无机械能损失,已知物块B 与地面间的动摩擦因数为0.1,与沙坑的距离为0.5 m ,g 取10 m/s 2,物块可视为质点.则A 碰撞前瞬间的速度为( )A .0.5 m/sB .1.0 m/sC .1.5 m/sD .2.0 m/s【答案】:C【解析】:碰后物块B 做匀减速直线运动,由动能定理有-μ·2mgx =0-12·2mv 22,得v 2=1 m/s.A 与B 碰撞过程中动量守恒、机械能守恒,则有mv 0=mv 1+2mv 2,12mv 02=12mv 12+12·2mv 22,解得v 0=1.5 m/s ,则C 项正确.【变式】如图所示,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.【答案】 (5-2)M ≤m <M【解析】 A 向右运动与C 发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A 的速度为v 0,第一次碰撞后C 的速度为v C 1,A 的速度为v A 1.由动量守恒定律和机械能守恒定律得 mv 0=mv A 1+Mv C 1① 12mv 20=12mv 2A 1+12Mv 2C 1② 联立①②式得v A 1=m -M m +M v 0 ③v C 1=2m m +M v 0④ 如果m >M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况. 第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A 2,B 的速度为v B 1,同样有v A 2=m -M m +M v A 1=2⎪⎭⎫ ⎝⎛+-M m M m v 0 ⑤根据题意,要求A 只与B 、C 各发生一次碰撞,应有v A 2≤v C 1⑥ 联立④⑤⑥式得m 2+4mM -M 2≥0解得m ≥(5-2)M另一解m ≤-(5+2)M 舍去.所以,m 和M 应满足的条件为 (5-2)M ≤m <M .【变式2】.如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动,此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.【答案】:32v 20113gl ≤μ<v 202gl【解析】:设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有12mv 20>μmgl ① 即μ<v 202gl ②设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1,由能量守恒定律有12mv 20=12mv 21+μmgl ③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v ′1、v ′2,由动量守恒定律和能量守恒定律有mv 1=mv ′1+3m 4v ′2 ④12mv 21=12mv ′21+12⎪⎭⎫ ⎝⎛43m v ′22 ⑤ 联立④⑤式解得v ′2=87v 1 ⑥ 由题意,b 没有与墙发生碰撞,由功能关系可知12⎪⎭⎫ ⎝⎛43m v ′22≤μ3m 4gl ⑦ 联立③⑥⑦式,可得μ≥32v 20113gl ⑧联立②⑧式,可得a 与b 发生弹性碰撞,但b 没有与墙发生碰撞的条件为32v 20113gl ≤μ<v 202gl. 非弹性碰撞的分析【例4】.(多选)(2019·宁夏银川模拟)A 、B 两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a 、b 分别为A 、B 两球碰前的位移随时间变化的图象,c 为碰撞后两球共同运动的位移随时间变化的图象,若A 球质量是m =2 kg ,则由图判断下列结论正确的是 ( )A .碰撞前、后A 球的动量变化量为4 kg·m/sB .碰撞时A 球对B 球所施的冲量为-4 N·sC .A 、B 两球碰撞前的总动量为3 kg·m/sD .碰撞中A 、B 两球组成的系统损失的动能为10 J【答案】ABD.【解析】:根据题图可知,碰前A 球的速度v A =-3 m/s ,碰前B 球的速度v B =2 m/s ,碰后A 、B 两球共同的速度v =-1 m/s ,故碰撞前、后A 球的动量变化量为Δp A =mv -mv A =4 kg·m/s ,选项A 正确;A 球的动量变化量为4 kg·m/s ,碰撞过程中动量守恒,B 球的动量变化量为-4 kg·m/s ,根据动量定理,碰撞过程中A 球对B 球所施的冲量为-4 N·s ,选项B 正确;由于碰撞过程中动量守恒,有mv A +m B v B =(m +m B )v ,解得m B =43kg ,故碰撞过程中A 、B 两球组成的系统损失的动能为ΔE k =12mv 2A +12m B v 2B -12(m +m B )v 2=10 J ,选项D 正确;A 、B 两球碰撞前的总动量为p =mv A +m B v B =(m +m B )v =-103kg·m/s ,选项C 错误. 【变式1】如图甲所示,光滑水平面上有P 、Q 两物块,它们在t =4 s 时发生碰撞,图乙是两者的位移—时间图象,已知物块P 的质量为m P =1 kg ,由此可知( )A .碰撞前P 的动量为4 kg·m/sB .两物块的碰撞可能为弹性碰撞C .物块Q 的质量为4 kgD .两物块碰撞过程中P 对Q 作用力的冲量是3 N·s【答案】:AD【解析】:根据位移—图象可知,碰撞前P 的速度v 0=4 m/s ,碰撞前P 的动量为p 0=m P v 0=4 kg·m/s ,选项A 正确.根据位移—图象,碰撞后二者速度相同,说明碰撞为完全非弹性碰撞,选项B 错误.碰撞后,二者的共同速度v =1 m/s ,由动量守恒定律,m P v 0=(m P +m Q )v ,解得m Q =3 kg ,选项C 错误.由动量定理,两物块碰撞过程中P 对Q 作用力的冲量是I =Δp Q =m Q v =3 N·s ,选项D 正确.【变式2】质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子的正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,在整个过程中,系统损失的动能为( )A.12mv 2B.mM 2m +Mv 2 C.12N μmgL D .N μmgL 【答案】:BD【解析】:由于水平面光滑,箱子和小物块组成的系统动量守恒,二者经多次碰撞后,保持相对静止,易判断两物体最终速度相等设为v 共,由动量守恒定律得mv =(m +M )v 共,系统损失的动能为12mv 2 -12(m +M )v 共2=mM 2m +Mv 2,B 正确;系统损失的动能等于克服摩擦力做的功,经N 次碰撞后,物块的路程为NL ,即ΔE k =-W f =NμmgL ,D 正确.。
2020年高考物理一轮复习热点题型专题14动量守恒定律和应用
2020年高考物理一轮复习热点题型专题14—动量守恒定律及应用题型一 动量守恒定律的理解和基本应用 题型二 碰撞模型问题“滑块—弹簧”碰撞模型 “滑块—木板”碰撞模型 “滑块—斜面”碰撞模型 题型三 “人船”模型问题 题型四 “子弹打木块”模型问题题型一 动量守恒定律的理解和基本应用【例题1】(2019·江苏卷)质量为M 的小孩站在质量为m 的滑板上,小孩和滑板均处于静止 状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v , 此时滑板的速度大小为_________。
A .m v M B .M v m C .m v m M + D .Mv m M+ 【答案】B【解析】设滑板的速度为u ,小孩和滑板动量守恒得:0mu Mv =-,解得:Mu v m=,故B 正确。
【例题2】(2018·湖北省仙桃市、天门市、潜江市期末联考)如图所示,A 、B 两物体的质量之比为m A ∶m B =1∶2,它们原来静止在平板车C 上,A 、B 两物体间有一根被压缩了的水平轻质弹簧,A 、B 两物体与平板车上表面间的动摩擦因数相同,水平地面光滑.当弹簧突然释放后,A 、B 两物体被弹开(A 、B 两物体始终不滑出平板车),则有( )A .A 、B 系统动量守恒B .A 、B 、C 及弹簧整个系统机械能守恒 C .小车C 先向左运动后向右运动D .小车C 一直向右运动直到静止 【答案】 D【解析】 A 、B 两物体和弹簧、小车C 组成的系统所受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,因m A ∶m B =1∶2,由摩擦力公式F f =μF N =μmg 知,A 、B 两物体所受的摩擦力大小不等,所以A 、B 两物体组成的系统合外力不为零,A 、B 两物体组成的系统动量不守恒,A 物体对小车向左的滑动摩擦力小于B 对小车向右的滑动摩擦力,在A 、B 两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动,因存在摩擦力做负功,最终整个系统将静止,则系统的机械能减为零,不守恒,故A 、B 、C 错误,D 正确.题型二 碰撞模型问题1.碰撞遵循的三条原则 (1)动量守恒定律 (2)机械能不增加E k1+E k2≥E k1′+E k2′或p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2(3)速度要合理①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大或相等. ②相向碰撞:碰撞后两物体的运动方向不可能都不改变. 2.弹性碰撞讨论 (1)碰后速度的求解 根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 12+12m 2v 22=12m 1v 1′2+12m 2v 2′2② 解得v 1′=(m 1-m 2)v 1+2m 2v 2m 1+m 2v 2′=(m 2-m 1)v 2+2m 1v 1m 1+m 2(2)分析讨论:当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度. 当碰前物体2的速度为零时,v 2=0,则: v 1′=(m 1-m 2)v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2,①m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度. ②m 1>m 2时,v 1′>0,v 2′>0,碰撞后两物体沿同方向运动. ③m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的物体被反弹回来.【例题1】(2019·湖南省长沙市雅礼中学高三下学期一模)一质量为m 1的物体以v 0的初速 度与另一质量为m 2的静止物体发生碰撞,其中m 2=km 1,k <1。
高中物理动量守恒定律的技巧及练习题及练习题(含答案)含解析.docx
高中物理动量守恒定律的技巧及练习题及练习题( 含答案 ) 含解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【解析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,之后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为 M=l kg,点火后全部压缩气体以 v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有m的压缩气体,每级总2质量均为M,点火后模型后部第一级内的全部压缩气体以速度v o从底部喷口在极短时间2内竖直向下喷出,喷出后经过2s时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。
喷气过程中的重力和整个过程中的空气阻力忽略不计, g 取 10 m / s2,求两种模型上升的最大高度之差。
【答案】 116.54m【解析】对模型甲:0 M m v甲mv0v甲21085m200.56 m h甲 =92g对模型乙第一级喷气:0M m v乙1m v022解得:v乙130ms2s 末:v乙‘1=v乙1gt10msh乙1= v乙21v '乙2140m2 g对模型乙第一级喷气:Mv乙‘1 =(M m)v乙2mv02222解得:v乙2=670 m9sh乙2= v乙2222445m277.10 m 2g81可得:h h乙1+h乙2h甲 =9440m116.54m 。
2020届高考物理选择题题型高效专练 动量和动量守恒(含解析)
2020届高考物理选择题题型高效专练动量和动量守恒1.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动)。
此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为 A.m 2gh t +mg B.m 2gh t-mg C.m gh t +mg D.m gh t-mg 【解析】 解法一:由v 2=2gh 得v =2gh 。
对安全带对人作用的过程应用动量定理,则有(mg -F )t =0-mv ,解得F =m 2gh t+mg ,故A 正确。
解法二:对安全带对人作用的过程应用牛顿第二定律,则有F -mg =ma ,而a =v t =2gh t,解得F =m 2gh t+mg ,故A 正确。
【答案】 A2.我国女子短道速滑队在今年世锦赛上实现女子3 000 m 接力三连冠。
观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出,在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则A .甲对乙的冲量一定等于乙对甲的冲量B .甲、乙的动量变化一定大小相等方向相反C .甲的动能增加量一定等于乙的动能减少量D .甲对乙做多少负功,乙对甲就一定做多少正功【解析】 甲对乙的冲量与乙对甲的冲量大小相等,方向相反,选项A 错误;甲、乙组成的系统动量守恒,动量变化量等大反向,选项B 正确;甲、乙相互作用时,虽然她们之间的相互作用力始终大小相等,方向相反,但相互作用过程中,她们的对地位移不一定相同,所以甲的动能增加量不一定等于乙的动能减少量,那么甲对乙做的功就不一定等于乙对甲做的功,选项C 、D 错误。
【答案】 B3.如图所示,一个质量为m 的物块A 与另一个质量为2m 的物块B 发生正碰,碰后B 物块刚好能落入正前方的沙坑中。
2020高考备考物理重难点《动量守恒定律》(附答案解析版)
重难点07 动量守恒定律【知识梳理】一、动量守恒定律的条件及应用1.动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
2.动量守恒定律的适用条件( 1)前提条件:存在相互作用的物体系;( 2)理想条件:系统不受外力;( 3)实际条件:系统所受合外力为0;( 4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力;( 5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒。
3.动量守恒定律的表达式(1)m1V l+m2V2=m i V1 ' m2V2',相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和;(2)A p i= - ^2,相互作用的两个物体动量的增量等大反向;(3)A p=0,系统总动量的增量为零。
4 .动量守恒的速度具有四性”①矢量性;②瞬时性;③相对性;④普适性。
5.应用动量守恒定律解题的步骤:( 1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);( 2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);( 3)规定正方向,确定初、末状态动量;( 4)由动量守恒定律列出方程;( 5)代入数据,求出结果,必要时讨论说明。
二、碰撞与动量守恒定律1 .碰撞的特点( 1)作用时间极短,内力远大于外力,总动量总是守恒的。
( 2)碰撞过程中,总动能不增。
因为没有其他形式的能量转化为动能。
( 3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
( 4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律3 •关于弹性碰撞的分析两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为 m i 的钢球沿一条直线以速度 v o 与静止在水平面上的质量为 m 2的钢 球发生弹性碰撞,碰后的速度分别是V i 、V 2m 1v 0 m i v 1 m 2v 2 ① 1 2 1 2 1 2m 1v 0 m 1v 1m 2v 2 ②2 2 2m m 2由①②可得:v 1-2V o ③m 1 m 2利用③式和④式,可讨论以下五种特殊情况:a .当 当叶 m 2时,v 1 0 , v 2 0,两钢球沿原方向原方向运动; b . 当m 1m 2时,v 1 0 , v 2 0,质量较小的钢球被反弹,质量较大的钢球向前运动; c .当 当叶 m 2时, v 10 , v 2v 0,两钢球交换速度。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.2.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.3.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
高考物理动量守恒定律技巧小结及练习题含解析
高考物理动量守恒定律技巧小结及练习题含解析一、高考物理精讲专题动量守恒定律1.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
【名师点睛】本题考查了求速度、距离问题,分析清楚运动过程、应用动量守恒定律、动能定理、能量守恒定律即可正确解题。
2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0,得:02Mv m nv考点:动量守恒定律4.匀强电场的方向沿x 轴正向,电场强度E 随x 的分布如图所示.图中E 0和d 均为已知量.将带正电的质点A 在O 点由能止释放.A 离开电场足够远后,再将另一带正电的质点B 放在O 点也由静止释放,当B 在电场中运动时,A 、B 间的相互作用力及相互作用能均为零;B 离开电场后,A 、B 间的相作用视为静电作用.已知A 的电荷量为Q ,A 和B 的质量分别为m 和.不计重力.(1)求A 在电场中的运动时间t ,(2)若B 的电荷量q =Q ,求两质点相互作用能的最大值E pm (3)为使B 离开电场后不改变运动方向,求B 所带电荷量的最大值q m 【答案】(1)(2)145QE 0d (3)Q 【解析】 【分析】 【详解】解:(1)由牛顿第二定律得,A 在电场中的加速度 a ==A 在电场中做匀变速直线运动,由d =a 得 运动时间 t ==(2)设A 、B 离开电场时的速度分别为v A0、v B0,由动能定理得 QE 0d =m qE 0d =A 、B 相互作用过程中,动量和能量守恒.A 、B 相互作用为斥力,A 受力与其运动方向相同,B 受的力与其运动方向相反,相互作用力对A 做正功,对B 做负功.A 、B 靠近的过程中,B 的路程大于A 的路程,由于作用力大小相等,作用力对B 做功的绝对值大于对A 做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,由动量守恒定律得:(m +)v,= mv A0 +v B0由能量守恒定律得:E Pm= (m+)—)且 q =Q解得相互作用能的最大值 E Pm=145QE0d(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用根据动量守恒定律得:mv A+v B= mv A0 +v B0根据能量守恒定律得:m+=m+解得:v B = -+因为B不改变运动方向,所以v B = -+≥0解得:q≤Q则B所带电荷量的最大值为:q m =Q5.冰球运动员甲的质量为80.0kg。
高中物理动量守恒定律及其解题技巧及练习题(含答案)及解析
高中物理动量守恒定律及其解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.2.如图的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板,物体P1沿轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P,以此碰撞时刻为计时零点,探测器只在t1=2 s至t2=4 s内工作,已知P1、P2的质量都为m=1 kg,P与AC间的动摩擦因数为μ=0.1,AB段长L=4 m,g取10 m/s2,P1、P2和P均视为质点,P与挡板的碰撞为弹性碰撞。
(1)若v1=6 m/s,求P1、P2碰后瞬间的速度大小v和碰撞损失的动能ΔE;(2)若P与挡板碰后,能在探测器的工作时间内通过B点,求v1的取值范围和P向左经过A 点时的最大动能E。
【答案】(1)9J (2)10m/s<v1<14m/s 17J【解析】试题分析:(1)由于P1和P2发生弹性碰撞,据动量守恒定律有:碰撞过程中损失的动能为:(2)解法一:根据牛顿第二定律,P做匀减速直线运动,加速度a=设P1、P2碰撞后的共同速度为v A,则根据(1)问可得v A=v1/2把P与挡板碰撞前后过程当作整体过程处理经过时间t1,P运动过的路程为s1,则经过时间t2,P运动过的路程为s2,则如果P能在探测器工作时间内通过B点,必须满足s1≤3L≤s2联立以上各式,解得10m/s<v1<14m/sv1的最大值为14m/s,此时碰撞后的结合体P有最大速度v A=7m/s根据动能定理,代入数据,解得E=17J解法二:从A点滑动到C点,再从C点滑动到A点的整个过程,P做的是匀减速直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考物理二轮复习题型归纳与训练专题十四 动量守恒定律及其应用题型一、动量定理的理解与应用【典例1】(2019·武汉高三下学期2月调考)运动员在水上做飞行运动表演。
他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中,如图所示。
已知运动员与装备的总质量为90 kg ,两个喷嘴的直径均为10 cm ,已知重力加速度大小g =10 m/s 2,水的密度ρ=1.0×103 kg/m 3,则喷嘴处喷水的速度大约为( )A .2.7 m/sB .5.4 m/sC .7.6 m/sD .10.8 m/s【答案】 C【解析】 设Δt 时间内有质量为m 的水射出,忽略重力冲量,对这部分水由动量定理得F Δt=2mv ,m =ρv Δt ·πd 24,设运动员与装备的总质量为M ,运动员悬停在空中,所以F ′=Mg ,由牛顿第三定律得F ′=F ,联立解得v ≈7.6 m/s ,C 正确。
题型二、动量守恒定律的应用【规律方法】动量守恒定律解题的基本步骤1.明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);3.规定正方向,确定初、末状态动量;4.由动量守恒定律列出方程;5.代入数据,求出结果,必要时讨论说明.【典例2】如图所示,甲、乙两小孩各乘一辆冰车在水平冰面上玩耍.甲和他的冰车的总质量为M=30 kg,乙和他的冰车的总质量也是M=30 kg.甲推着一个质量为m=15 kg的箱子和他一起以2 m/s的速度滑行,乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时,乙迅速抓住.若不计冰面摩擦,求甲至少以多大速度(相对地)将箱子推出,才能避免与乙相撞?【解析】要想刚好避免相撞,要求乙抓住箱子后与甲的速度正好相等,设甲推出箱子后的速度为v1,箱子的速度为v,乙抓住箱子后的速度为v2.对甲和箱子,推箱子前后动量守恒,以甲初速度方向为正方向,由动量守恒定律有(M+m)v0=mv+Mv1①对乙和箱子,抓住箱子前后动量守恒,以箱子初速度方向为正方向,由动量守恒定律有mv-Mv0=(m+M)v2②甲与乙刚好不相撞的条件是v1=v2③联立①②③解得v=5.2 m/s,方向与甲和箱子初速度方向一致.【答案】 5.2 m/s题型三、碰撞模型的规律及应用【典例3】.(多选)(2019·山东济南高三第二次联考)如图甲所示,光滑水平面上有a、b两个小球,a球向b球运动并与b球发生正碰后粘合在一起共同运动,其碰前和碰后的s -t图象如图乙所示,已知m a=5 kg.若b球的质量为m b,两球因碰撞而损失的机械能为ΔE,则()A.m b=1 kg B.m b=2 kgC .ΔE =15 JD .ΔE =35 J【解析】:在s -t 图象中图线的斜率表示小球运动的速度大小,所以v a =61m/s =6 m/s ,碰后粘合在一起共同运动的速度为v =51m/s =5 m/s ,碰撞过程动量守恒,得m a v a =(m a +m b )v ,解得m b =1 kg ,故A 正确,B 错误;根据功能关系得ΔE =12m a v 2a -12(m a +m b )v 2=15 J ,故C 正确,D 错误.【答案】:AC题型四、动量与能量的综合应用【规律方法】利用动量和能量观点解题的技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律.(2)动量守恒定律和能量守恒定律都只考查一个物理过程的初、末两个状态,对过程的细节不予追究.(3)注意挖掘隐含条件,根据选取的对象和过程判断动量和能量是否守恒.【典例4】(2019·湖北孝感高三上学期期末八校联考)如图所示,水平轨道OBC 与一半径为R =0.5 m 的竖直光滑半圆形轨道CD 相切于C 点,其中AB 部分粗糙,其他部分光滑。
质量分别为1 kg 和2 kg 且外形相同的甲、乙两物块放在水平轨道上,物块甲被一处于压缩状态的轻弹簧水平锁定于A 点左侧某处(图中未画出),其与轨道AB 间的动摩擦因数为μ=0.2,AB 间的距离L AB =7.75 m ,物块乙位于轨道BC 上。
现释放物块甲,使其从A 点弹出,并与物块乙相撞。
已知两物块撞后粘在一起向右运动,两物块恰好能运动到半圆轨道的最高点D ,重力加速度g 取10 m/s 2。
求:(1)弹簧对物块甲的冲量;(2)从物块甲被弹出至滑到D 点的过程中,甲、乙整体损失的机械能ΔE 。
【答案】 (1)16 N·s (2)90.5 J【解析】 (1)甲、乙两物块碰后恰能到达竖直半圆轨道的最高点,由牛顿第二定律得(M 甲+M 乙)g =(M 甲+M 乙)v 2D R在甲、乙两物块从碰后到上滑到最高点的过程中,由机械能守恒定律有12(M 甲+M 乙)v 2D +2(M 甲+M 乙)gR =12(M 甲+M 乙)v 2共 在甲、乙碰撞的过程中,由动量守恒定律有M 甲v 甲=(M 甲+M 乙)v 共在物块甲由A 到B 的过程中,由运动学知识有v 2甲-v 20=-2μgL AB联立以上各式解得v 共=5 m/s ,v 0=16 m/s在弹簧与物块甲相互作用的过程中,对物块甲应用动量定理有I =M 甲v 0=16 N·s 。
(2)从物块甲被弹出至滑到D 点的过程中,甲、乙整体损失的机械能为ΔE =12M 甲v 20-12(M 甲+M 乙)v 2共=90.5 J 。
【强化训练】1.(2019·湖南株洲高三年级教学检测)高空坠物伤人事件常有发生.一身高为1.75 m 的同学被一根从6.75 m高处竖直落下的枯树枝砸正头顶,设枯枝质量为2 kg,与头部作用时间为0.02 s,那么()A.枯枝对人的头部产生的冲击力约20 NB.枯枝对人的头部产生的冲击力约1 000 NC.保持其他条件不变,身高更高的同学,头部受到枯枝的冲击力会更大D.保持其他条件不变,身高更矮的同学,头部受到枯枝的冲击力会更小2.(多选)(2019·黑龙江哈尔滨4月理综检测)水平推力F1和F2分别作用于置于水平面上的等质量的a、b两物块上,作用一段时间后撤去推力,两物块在水平面上继续运动一段时间停下来.两物块运动的v -t图象如图所示,图中AB∥CD,则下列说法正确的是()A.两物块所受摩擦力大小相等B.两物块所受摩擦力冲量大小相等C.F1的冲量大于F2的冲量D.F1的冲量小于F2的冲量3.(2019·陕西西安高考模拟)如图所示,一物体分别沿三个倾角不同的光滑斜面由静止开始从顶端下滑到底端C、D、E处,三个过程中动能变化量的大小依次为ΔE1、ΔE2、ΔE3,动量变化量的大小依次为Δp1、Δp2、Δp3,则有()A.ΔE1<ΔE2<ΔE3,Δp1<Δp2<Δp3B.ΔE1<ΔE2<ΔE3,Δp1=Δp2=Δp3C.ΔE1=ΔE2=ΔE3,Δp1<Δp2<Δp3D.ΔE1=ΔE2=ΔE3,Δp1=Δp2=Δp34.(2019·湖南娄底高三教学质量检测)质量为M 的气球上有一个质量为m 的人,气球和人在静止的空气中共同静止于离地h 高处,如果从气球上逐渐放下一个质量不计的软梯,让人沿软梯降到地面,则软梯长至少应为( )A.m m +Mh B.M m +M h C.M +m M h D.M +m mh 5.(2019·湖南长沙高三期末)如图所示,质量为m 的A 球以速度v 0在光滑水平面上运动,与原静止的质量为4m 的B 球碰撞,碰撞后A 球以v =av 0(待定系数a <1)的速率弹回,并与挡板P 发生完全弹性碰撞,若要使A 球能追上B 球再相撞,则a 的取值范围为( )A.15<a <13B.13<a <23C.13<a ≤25D.13<a ≤356.(多选)一质量m =0.10 kg 的小钢球以大小为v 0=10 m/s 的速度水平抛出,下落h =5.0 m 时撞击一钢板,撞后速度恰好反向,且速度大小不变.已知小钢球与钢板的作用时间极短,g 取10 m/s 2,则( )A .钢板与水平面的夹角θ=60°B .小钢球从水平抛出到刚要撞击钢板的过程中重力的冲量大小为1 N·sC .小钢球撞击钢板的过程中其动量的变化量的大小为 10 2 kg·m/sD .钢板对小钢球的冲量大小为 2 2 N·s7.(多选)(2019·河南驻马店高三期末)如图所示,光滑水平直轨道上有三个质量均为m =3 kg 的物块A 、B 、C ,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以v 0=4 m/s 的速度朝B 开始运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短,则以下说法正确的是( )A.从开始到弹簧最短时物块C受到的冲量大小为1 N·sB.从开始到弹簧最短时物块C受到的冲量大小为4 N·sC.从开始到A与弹簧分离的过程中整个系统损失的机械能为3 JD.从开始到A与弹簧分离的过程中整个系统损失的机械能为9 J8.(2019·云南二模)如图所示,木块静止在光滑水平面上,两颗不同的子弹A、B从木块两侧同时射入木块,最终都停在木块内,这一过程中木块始终保持静止。
若子弹A射入的深度大于子弹B射入的深度,则()A.子弹A的质量一定比子弹B的质量大B.入射过程中子弹A受到的阻力比子弹B受到的阻力大C.子弹A在木块中运动的时间比子弹B在木块中运动的时间长D.子弹A射入木块时的初动能一定比子弹B射入木块时的初动能大9.如图,光滑的水平地面上停着一个木箱和小车,木箱质量为m,小车和人的总质量为M=4m,人以对地速率v将木箱水平推出,木箱碰墙后等速反弹回来,人接住木箱后再以同样大小的速率v第二次推出木箱,木箱碰墙后又等速反弹回来……多次往复后,人将接不到木箱.求从开始推木箱到接不到木箱的整个过程,人所做的功.10.(2019·江西吉安高三上学期五校联考)平板车上的跨栏运动如图所示,光滑水平地面上人与滑板A一起以v0=0.5 m/s的速度前进,正前方不远处有一距离轨道高h=0.7875 m的(不考虑滑板的高度)横杆,横杆另一侧有一静止滑板B,当人与A行至横杆前时,人相对滑板竖直向上起跳越过横杆,A从横杆下方通过并与B发生弹性碰撞,之后人刚好落到B上,不计空气阻力,已知m人=40 kg,m A=5 kg,m B=10 kg,g取10 m/s2。