各种仪器分析的基本原理及谱图表示方法
仪器分析 课件ppt
THANKS
感谢观看
保障人类健康
仪器分析在保障人类健康方面具有重 要意义,如环境监测、食品药品安全 检测等。
仪器分析的发展历程
早期仪器分析
早期的仪器分析方法比较简单, 如比重法、折光法等。
20世纪发展
20世纪是仪器分析发展的重要时 期,随着科技的不断进步,新的 仪器分析方法不断涌现,如光谱
法、色谱法等。
现代仪器分析
现代仪器分析已经进入了一个全 新的时代,各种高灵敏度、高分 辨率、高自动化程度的仪器不断 涌现,为科学研究和技术创新提
工业生产控制
总结词
仪器分析在工业生产控制中是重要的工具,能够监测 和控制生产过程中的各种参数。
详细描述
仪器分析通过实时监测和控制工业生产过程中的温度、 压力、流量、浓度等参数,确保生产过程的稳定性和产 品质量,提高生产效率和降低能耗。
05
仪器分析的挑战与未来发展
Chapter
提高仪器分析的灵敏度与准确性
结合纳米技术、生物技术、信 息技术等新兴领域,开发新型 仪器分析工具。
探索微型化、便携式仪器分析 设备,满足现场快速检测的需 求。
实现仪器分析的自动化与智能化
通过自动化技术实现仪器分析流 程的连续性与高效性,降低人为
误差和提高分析效率。
利用人工智能和机器学习算法对 仪器分析数据进行处理、建模和 预测,提高分析的智能化水平。
气相色谱法
总结词
基于不同物质在固定相和流动相之间的分配 系数差异而建立的分析方法。
详细描述
气相色谱法是利用不同物质在固定相和流动 相之间的分配系数差异进行分析的方法,通 过分离和检测混合物中的各组分来测定各组 分的含量。该方法具有分离效果好、分析速 度快、应用范围广等优点。
仪器分析3—红外吸收光谱法
傅立叶变换红外光谱仪
样品池
红外光源
摆动的 凹面镜
迈克尔逊 干扰仪
参比池
摆动的 凹面镜
检测器 干涉图谱 计算机 解析 还原
M1 II
同步摆动
I M2
红外谱图
BS
D
仪器组成
第五节 红外光谱法应用
红外光谱法由于操作简单,分析速度 快,样品用量少,不破坏样品,特征性 强等优点,在有机定性分析中应用广泛。 利用红外光谱可对化合物进行鉴定或结 构测定。 但由于吸收较复杂,在定量分析方面 应用受到一定限制。
第四章 红外吸收光谱分析法(IR)
Infrared Absorption Spectrometry
第一节
红外光谱基本知识
1、红外线波长范围: 光学光谱区域:10nm ~1000μm; 其中:10nm ~400nm为紫外光区 400nm ~760nm为可见光区, 760nm ~ 1000μm为红外光区。 为表示方便,红外光不用nm(纳米) 而用微米( μm)表示其波长。
由原理图可见,红外分光光度计也主要 由光源、样品吸收池、单色器、检测器、 记录仪等部件构成。 1、光源:能斯特灯或硅碳棒
红外光谱仪中所用的光源通常是一种惰性固体,用 电加热使之发射高强度的连续红外辐射。 常用的是Nernst灯或硅碳棒。 Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的 中空棒和实心棒。工作温度约为1700℃,在此高温下导 电并发射红外线。但在室温下是非导体,因此,在工作 之前要预热。它的特点是发射强度高,使用寿命长,稳 定性较好。 硅碳棒是由碳化硅烧结而成,工作温度在1200-1500℃ 左右。
ε>100 非常强峰(vs) 20<ε<100 强 峰(s) 10<ε<20 中强峰(m) 1<ε<10 弱 峰(w)
仪器分析的原理范文
仪器分析的原理范文仪器分析是一种利用各种物理、化学或生物原理和技术手段对物质进行定性或定量分析的方法。
下面,我会简要介绍几种常见的仪器分析原理。
1.光谱分析原理光谱分析利用物质与光的相互作用来进行定性和定量分析。
常见的光谱分析方法包括紫外可见光谱分析、红外光谱分析和拉曼光谱分析等。
这些方法根据物质不同的吸收、发射或散射光的特性来确定物质的成分或浓度。
2.质谱分析原理质谱分析是一种利用质谱仪来分析物质的化学成分和结构的方法。
它通过将样品离子化并通过磁场或电场将其分离,然后测量样品离子的质荷比来确定样品的成分和结构。
质谱分析广泛应用于无机分析、有机分析、生物分析和环境分析等领域。
3.色谱分析原理色谱分析是一种利用固态或液态材料对物质进行分离和分析的方法。
常见的色谱分析方法有气相色谱、液相色谱和层析色谱等。
这些方法根据样品在固定相或液相中的相互作用差异来分离物质,然后根据分离出来的物质的不同特性进行定性和定量分析。
4.电化学分析原理电化学分析是一种利用电性质来进行定性和定量分析的方法。
常见的电化学分析方法包括电位滴定、极谱分析和电化学传感器等。
这些方法基于样品在电极表面的电化学反应来确定样品的成分和浓度。
5.核磁共振分析原理核磁共振分析是一种利用样品中核自旋的性质来进行分析的方法。
核磁共振分析常用于确定样品的结构、测量样品中不同核自旋的含量和动力学研究等。
核磁共振分析依赖于样品中核自旋与外加磁场相互作用的性质。
6.质量分析原理质量分析是一种利用质量分析仪器对粒子、分子或离子的质量进行分析的方法。
质量分析常用于确定样品中不同化学元素或化合物的质量以及分析样品中的碳同位素比例、氢同位素比例等。
质量分析基于样品中质谱离子质量和质量荷比的性质来确定样品的成分和浓度。
总之,仪器分析方法的原理主要依赖于物质与特定性质(如光、质量、电性等)的相互作用,通过测量这些相互作用的特性来确定样品的成分和浓度。
这些原理为我们提供了广泛、灵敏和准确分析样品的手段,广泛应用于科学研究、工业生产和环境监测等领域。
仪器分析(第四版)第二章
3
塔板高度
H
2 1 A 0
L
L H n
P12例
n>50,对称的峰形曲线 气相色谱中,n约为103-106,呈趋于正态分布曲线
理论塔板数(n)可根据色谱图上所测得的保留
时间(tR)和峰底宽(Y)或半峰宽( Y1/2 )按下
4)k与保留时间的关系
若流动相在柱内线速度为u(一定时间内载气在柱内
流动的距离,若固定相对组分有保留作用,组分在
柱内的线速度us小于u,两者比值为滞留因子
R S uS / u
也可用质量分数表示:
mM RS w mS m M
1 1 mS 1 k 1 mM
推导:
组分和流动相通过长度为L的色谱柱,所需时间为:
理论上可以推导出:
VS 1 kK K VM
相比,: VM / VS, 反映各种色谱柱柱型及其结构特征 填充柱(Packing column): 6~35 毛细管柱(Capillary column): 50~1500
结论:
分在两相中质量比,均与组分及固定相的热力学性
1)分配系数是组分在两相中的浓度之比,分配比是组
试样中各组分经色谱柱分离后,按先后次序经过检测 器时,检测器就将流动相中各组分浓度变化转变为相 应的电信号,由记录仪所记录下的信号——时间曲线 或信号——流动相体积曲线,称为色谱流出曲线,
常用术语:
基线: 在操作条件下,仅有纯流动相进入检 测器时的流出曲线。 稳定的基线为一直线
基线漂移:基线随时间定向缓慢变化
各种仪器分析的谱图数据的坐标表示
作业五:各种仪器分析的基本原理及谱图表示方法 紫外吸收光谱 UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法 FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 200300400500600700800900nm标1(EM)0100020003000红外吸收光谱法 IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法 Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法 NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息质谱分析法 MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法 GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关热重法 TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析 DTA分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析 DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息。
一些常见仪器分析方法的缩写、谱图和功能说明
常见仪器分析方法的缩写、谱图和功能说明AAAS 原子吸收光谱法AES 原子发射光谱法AFS 原子荧光光谱法ASV 阳极溶出伏安法ATR 衰减全反射法AUES 俄歇电子能谱法CCEP 毛细管电泳法CGC 毛细管气相色谱法CIMS 化学电离质谱法CIP 毛细管等速电泳法CLC 毛细管液相色谱法CSFC 毛细管超临界流体色谱法CSFE 毛细管超临界流体萃取法CSV 阴极溶出伏安法CZEP 毛细管区带电泳法DDDTA 导数差热分析法DIA 注入量焓测定法DPASV 差示脉冲阳极溶出伏安法DPCSV 差示脉冲阴极溶出伏安法DPP 差示脉冲极谱法DPSV 差示脉冲溶出伏安法DPVA 差示脉冲伏安法DSC 差示扫描量热法DTA 差热分析法DTG 差热重量分析法EEAAS 电热或石墨炉原子吸收光谱法ETA 酶免疫测定法EIMS 电子碰撞质谱法ELISA 酶标记免疫吸附测定法EMAP 电子显微放射自显影法EMIT 酶发大免疫测定法EPMA 电子探针X射线微量分析法ESCA 化学分析用电子能谱学法ESP 萃取分光光度法FFAAS(Flame Atomic Absorption Spectroscopy) 火焰原子吸收光谱法FABMS 快速原子轰击质谱法FAES 火焰原子发射光谱法FDMS 场解析质谱法FIA 流动注射分析法FIMS 场电离质谱法FNAA 快中心活化分析法FT-IR 傅里叶变换红外光谱法FT-NMR 傅里叶变换核磁共振谱法FT-MS 傅里叶变换质谱法GC 气相色谱法GC-IR 气相色谱-红外光谱法GC-MS 气相色谱-质谱法GD-AAS 辉光放电原子吸收光谱法GD-AES 辉光放电原子发射光谱法GD-MS 辉光放电质谱法GFC 凝胶过滤色谱法GLC 气相色谱法GLC-MS 气相色谱-质谱法HHAAS 氢化物发生原子吸收光谱法HAES 氢化物发生原子发射光谱法HPLC 高效液相色谱法HPTLC 高效薄层色谱法IIBSCA 离子束光谱化学分析法IC 离子色谱法ICP 电感耦合等离子体ICP-AAS 电感耦合等离子体原子吸收光谱法ICP-AES 电感耦合等离子体原子发射光谱法ICP-MS 电感耦合等离子体质谱法IDA 同位素稀释分析法IDMS 同位素稀释质谱法IEC 离子交换色谱法INAA 仪器中子活化分析法IPC 离子对色谱法IR 红外光谱法ISE 离子选择电极法ISFET 离子选择场效应晶体管LLAMMA 激光微探针质谱分析法LC 液相色谱法LC-MS 液相色谱-质谱法MMECC 胶束动电毛细管色谱法MEKC 胶束动电色谱法MIP-AAS 微波感应等离子体原子吸收光谱法MIP-AES 微波感应等离子体原子发射光谱法MS 质谱法NNAA 中子活化法NIRS 近红外光谱法NMR 核磁共振波谱法PPAS 光声光谱法PC 纸色谱法PCE 纸色谱电泳法PE 纸电泳法PGC 热解气相色谱法PIGE 粒子激发Gamma射线发射光谱法PIXE 粒子激发X射线发射光谱法RRHPLC 反相高效液相色谱法RHPTLC 反相液相薄层色谱法RIA 发射免疫分析法RPLC 反相液相色谱法SSEM 扫描电子显微镜法SFC 超临界流体色谱法SFE 超临界流体萃取法SIMS 次级离子质谱法SIQMS 次级离子四极质谱法SP 分光光度法SP(M)E 固相(微)萃取法STM 扫描隧道电子显微镜法STEM 扫描投射电子显微镜法SV 溶出伏安法TTEM 投射电子显微镜法TGA 热重量分析法TGC 薄层凝胶色谱法TLC 薄层色谱法UUPS 紫外光电子光谱法UVF 紫外荧光光谱法UVS 紫外光谱法XXES X射线发射光谱法XPS X射线光电子光谱法XRD X射线衍射光谱法XRF X射线荧光光谱法。
仪器分析的原理
仪器分析的原理仪器分析是一种广泛应用于科学研究、工业生产和环境监测等领域的分析技术。
它通过使用各种仪器设备,利用物质的物理、化学性质和相互作用来定量或定性分析样品的成分和性质。
在仪器分析中,有多种原理被应用,下面将逐一介绍其中几种常见的原理。
1. 光谱分析原理:光谱分析是利用物质对光的吸收、发射或散射而进行分析的方法。
常见的光谱分析技术包括紫外可见光谱、红外光谱、质谱等。
光谱分析原理基于不同物质吸收或发射光的特征,通过测量样品与光源的相互作用,从而推断出样品的成分和浓度。
2. 色谱分析原理:色谱分析是利用物质在固定相和流动相中不同的分配或吸附性质进行分离分析的方法。
常见的色谱分析技术包括气相色谱、液相色谱等。
色谱分析原理基于样品成分在不同相中的携带速度差异,通过测量携带速度,从而实现对样品进行定性和定量分析。
3. 电化学分析原理:电化学分析是利用物质在电极上与电流或电势的关系进行分析的方法。
常见的电化学分析技术包括电解法、电沉积法、电化学阻抗谱等。
电化学分析原理基于物质在电场或电流的作用下,引起电势变化或电流变化,通过测量这些变化来推断样品的性质和浓度。
4. 质谱分析原理:质谱分析是利用物质在质谱仪中通过分子碎片的质量-电荷比进行分析的方法。
常见的质谱分析技术包括质谱质量分析、质谱图谱等。
质谱分析原理基于样品分子在高能状态下发生断裂,形成一系列碎片离子,根据这些离子的质量-电荷比进行分析。
5. 核磁共振分析原理:核磁共振分析是利用核自旋在外加磁场和射频电磁场的作用下发生共振而进行分析的方法。
常见的核磁共振分析技术包括核磁共振成像、核磁共振波谱等。
核磁共振分析原理基于不同核自旋在不同磁场中的共振频率差异,通过测量共振信号来推断样品的成分和分子结构。
综上所述,仪器分析的原理涵盖了光谱分析、色谱分析、电化学分析、质谱分析和核磁共振分析等多个领域,每种原理都有其独特的应用和优势。
仪器分析通过高效、准确的手段提供了快速分析样品成分和性质的方法,为科学研究和生产工作提供了重要的技术支持。
分析化学(仪器分析)第三章-仪器分析(UV)
1
第一节
概述
一、紫外-可见吸收光谱法
根据溶液中物质的分子或离子对紫外和可见光谱
区辐射能的吸收来研究物质的组成和结构的方法。
包括比色分析法和紫外-可见分光光度法。 紫外-可见吸收光谱的产生:分子价电子能级跃迁。 波长范围:10-800 nm.
(1) 远紫外光区: 10-200nm
(2) 近紫外光区: 200-400nm (3) 可见光区:400-800nm
结束结束结束25一基本部件二分光光度计的构造原理26紫外可见分光光27光源单色器样品室检测器显示光源在整个紫外光区或可见光谱区可以发射连续光谱具有足够的辐射强度较好的稳定性较长的使用寿命
第三章 紫外-可见吸收光谱法
第一节 概述
第二节 紫外-可见吸收光谱
第三节 紫外-可见分光光度计
第四节 紫外-可见吸收光谱法的应用
金属离子的影响,将引起配位体 吸收波长和强度的变化。变化与成键 性质有关,若共价键和配位键结合, 则变化非常明显。
23
3.电荷转移吸收光谱
电荷转移跃迁:辐射下,分子中原定域在金属
M轨道上的电荷转移到配位体L的轨道,或按相反
方向转移,所产生的吸收光谱称为荷移光谱。
Mn+—Lbh M(n-1) +—L(b-1) h [Fe2+SCN]2+ [Fe3+SCN-]2+ 电子接受体
34
2. 定量分析
依据:朗伯-比耳定律—分子吸收光谱定量分析 的基本定律,它指出:当一束单色光穿过透明介质 时,光强度的降低同入射光的强度、吸收介质的厚 度以及光路中吸光微粒的数目成正比。
吸光度: A= e b c 透光度:-lgT = e b c
35
仪器分析 第四章--红外吸收光谱法
章节重点:
分子振动基本形式及自由度计算;
红外吸收的产生2个条件;
各类基团特征红外振动频率;
影响红外吸收峰位变化的因素。
第八章 红外吸收光谱分 析法
第三节 红外分光光度计
1. 仪器类型与结构
2. 制样方法
3. 联用技术
1. 仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
弯曲振动:
1.4 振动自由度
多原子分子振动形式的多少用振动自由度标示。
三维空间中,每个原子都能沿x、y、z三个坐标方向独 立运动,n个原子组成的分子则有3n个独立运动,再除 掉三个坐标轴方向的分子平移及整体分子转动。
非线性分子振动自由度为3n-6,如H2O有3个自由度。 线性分子振动自由度为3n-5,如CO2有4个自由度。
某些键的伸缩力常数:
键类型: 力常数: 峰位:源自-CC15 2062 cm-1
-C=C10 1683 cm-1
-C-C5 1190 cm-1
-C-H5.1 2920 cm-1
化学键键强越强(即键的力常数K越大),原子折合 质量越小,化学键振动频率越大,吸收峰在高波数区。
1.2 非谐振子
实际上双原子分子并非理想的谐振子!随着振动量子 数的增加,上下振动能级间的间隔逐渐减小!
(1)-O-H,37003100 cm-1,确定醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐 ,强吸收;当浓度较大时,发生缔合作用,峰形较宽。
注意区分: -NH伸缩振动:3500 3300 cm-1 峰型尖锐
(2)饱和碳原子上的-C-H -CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动
光学光谱各种仪器分析的基本原理及谱图表示方法
各种仪器分析的基本原理及谱图表示方法——牛人总结,留着备用来源:刘艳的日志紫外吸收光谱UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态动态热―力分析DMA分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化谱图的表示方法:模量或tgδ随温度变化曲线提供的信息:热转变温度模量和tgδ透射电子显微术TEM分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等扫描电子显微术SEM分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等原子吸收AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。
各种仪器分析的基本原理及谱图表示方法
各种仪器分析的基本原理及谱图表示方法仪器分析是化学分析中的重要分支,它利用各种仪器设备,通过对样品中成分的检测、鉴定和测量,实现对样品的分析和解释。
下面介绍几种常见的仪器分析方法及其基本原理和谱图表示方法。
原子吸收光谱法(AAS)1.基本原理:原子吸收光谱法是基于原子能级跃迁的吸收光谱法。
样品中的原子在高温烈焰中被激发为原子态,当光源发射的光束通过样品时,其中的某些元素会被吸收,导致光强减弱。
通过测量光强减弱程度,可以推算出样品中元素的含量。
2.谱图表示方法:原子吸收光谱的谱图表示吸光度(Absorbance)与波长(Wavelength)的关系。
横坐标为波长,纵坐标为吸光度。
在每个元素的吸收峰处,吸光度会显著增加,从而实现对元素的定性定量分析。
气相色谱法(GC)1.基本原理:气相色谱法是一种分离和分析复杂混合物的方法。
样品中的组分在气相状态下被载气携带通过色谱柱,不同组分在固定相和移动相之间的分配系数不同,因此会以不同的速度通过色谱柱,从而实现各组分的分离。
通过检测器对分离后的组分进行检测和测量,可以得到各组分的含量。
2.谱图表示方法:气相色谱图的横坐标为时间(Time),纵坐标为峰高(Peak Height)或峰面积(Peak Area)。
各组分会在不同的时间点出现,通过对比标准品可以得到各峰的定性结果,通过测量峰高或峰面积可以计算出各组分的含量。
紫外-可见光谱法(UV-Vis)1.基本原理:紫外-可见光谱法是一种基于分子吸收光子能量的光谱法。
样品中的分子在紫外-可见光照射下会吸收特定波长的光子能量,导致光强减弱。
通过测量光强减弱程度,可以推算出样品中分子的含量及分子结构信息。
2.谱图表示方法:紫外-可见光谱图的横坐标为波长(Wavelength),纵坐标为吸光度(Absorbance)或透过率(Transmittance)。
在每个分子的特征吸收峰处,吸光度会显著增加,从而实现对分子的定性定量分析。
分析化学(仪器分析)第四章-仪器分析(IR)
30
第二节 红外吸收基本理论
振动过程中偶极矩发生变化(△≠0) 的分子振动能引起可观测的红外吸收光谱, 称之为红外活性的。 振动过程中偶极矩不发生变化(△=0) 的分子振动不能产生红外吸收光谱,称为非 红外活性的。
31
第二节 红外吸收基本理论
绝大多数化合物在红外光谱图上出现的峰数远 小于理论上计算的振动数,这是由如下原因引起的: (1)没有偶极矩变化的振动,不产生红外吸收; (2)相同频率的振动吸收重叠,即简并; (3)仪器不能区别频率十分接近的振动,或吸收带 很弱,仪器无法检测; (4)有些吸收带落在仪器检测范围之外。
33
第二节 红外吸收基本理论
(二)吸收谱带的强度
红外吸收谱带的强度取决于分子振动时偶极矩 的变化,红外光谱的强度与分子振动时偶极矩变 化的平方成正比。 偶极矩的变化与分子的极性以及分子结构的对 称性,也就是固有偶极矩有关。极性较强的基团 (如C=O,C-X等)吸收强度较大,极性较弱的 基团(如C=C、C-C、N=N等)吸收较弱。分子 的对称性越高,振动中分子偶极矩变化越小,谱 带强度也就越弱。
28
第二节 红外吸收基本理论
在倍频峰中,二倍频峰还比较强。三倍频峰以 上,因跃迁几率很小,一般都很弱,常常不能测到。 除此之外,还有合频峰(1+2,21+2, ),差频峰( 1-2,21-2, )等,这些 峰多数很弱,一般不容易辨认。倍频峰、合频峰和 差频峰统称为泛频峰,泛频峰一般都很弱。
11
第二节 红外吸收基本理论
根据Hooke定律,分子 简谐振动的频率的计算 公式为
12
第二节 红外吸收基本理论
式中k为化学键的力常数,定义为将两原子由 平衡位置伸长单位长度时的恢复力(单位为Ncm -1)单键、双键和三键的力常数分别近似为 5、 1 0和15 Ncm-1;c为光速(2.9981010cm s-1), 为折合质量,单位为g,且 影响分子振动频率的直接原因是原子质量和 化学键的力常数。
仪器分析第三章发射光谱
发射光谱的分析基础:
定性分析:特征谱线的波长 定量分析:特征谱线的强度(黑度),主要的
26
二、原子发射光谱的分析仪器
光源 分光系统 检测器 信号显示系统
27
光源
作用:提供稳定,重现性好的能量,使试样中的被 测元素蒸发、解离、原子化和激发,产生电子跃迁, 发生光辐射
19
4、原子发射光谱图
元素标准光谱图
20
21
5、谱线的自吸和自蚀
自吸和自蚀
影响自吸和自蚀的因素 谱线的固有强度 弧层厚度 溶液浓度
22
自吸和自蚀
发射光谱是通过物质的蒸发、激发、 迁移和射出弧层而得到的。在一般光 源中,是在弧焰中产生的,弧焰具有 一定的厚度,如下图:
a b
23
a
自吸和自蚀
发射光谱的分析过程 发射线的波长 发射谱线的强度 原子发射光谱图 谱线的自吸和自蚀
3
1、发射光谱的分析过程
激发态原子
外 层 电 子 跃 迁
基态原子
光电法 摄谱法
原子化
热或电
光电倍增管 感光板
气态分子
气 化
样品分子
4
原子发射光谱示意图
5
一般情况下,原子处于基态, 在激发光源作用下,原子获得能 量,外层电子从基态跃迁到较高 能态变为激发态 ,约经10-8 s,外 层电子就从高能级向较低能级或 基态跃迁,多余的能量的发射可 得到一条光谱线。
第三章 原子发射光谱法
Atomic Emission Spectrometry,AES
1
特点: 优点——灵敏度高、简便快速、可靠性高、
仪器分析(xrd、红外、拉曼等)讲课教案
各种仪器分析的基本原理及谱图表示方法——牛人总结,留着备用来源:刘艳的日志紫外吸收光谱UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态动态热―力分析DMA分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化谱图的表示方法:模量或tgδ随温度变化曲线提供的信息:热转变温度模量和tgδ透射电子显微术TEM分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等扫描电子显微术SEM分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等原子吸收AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。
26种仪器分析的原理及谱图方法大全
26种仪器分析的原理及谱图方法大全1.紫外吸收光谱 UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息2.荧光光谱法 FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息3.红外吸收光谱法 IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率4.拉曼光谱法 Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率5.核磁共振波谱法 NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息6.电子顺磁共振波谱法 ESR分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息7.质谱分析法 MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息8.气相色谱法 GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关9.反气相色谱法 IGC分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数10.裂解气相色谱法 PGC分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型11.凝胶色谱法 GPC分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布12.热重法 TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区13.热差分析 DTA分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区14.示差扫描量热分析 DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息15.静态热―力分析 TMA分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态16.动态热―力分析 DMA分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化谱图的表示方法:模量或tgδ随温度变化曲线提供的信息:热转变温度模量和tgδ17.透射电子显微术 TEM分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等18.扫描电子显微术 SEM分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等19.原子吸收AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。
仪器分析核磁共振波谱分析课件
2024/4/7
仪器分析核磁共振波谱分析课件
图12.9
·共轭效应:影响电子云密度,如,甲氧基苯环上的H,邻位的化学位移为 6.84,对位的化学位移为6.99,间位的化学位移为7.81。杂化影响:若无其它 效应的影响,杂化轨道随S成分增加而电子云密度降低,屏蔽作用减小,化
学位移增大
2024/4/7
仪器分析核磁共振波谱分析课件
2024/4/7
仪器分析核磁共振波谱分析课件
因此,处于高能级的核必须回到低能态,才能维持处
于低能态的核的微弱的数量优势,使得核磁共振信号得以 检测。这一过程以非辐射的形式实现,称为驰豫过程,可 分为: 1、自旋--晶格驰豫,又称纵向驰豫:
自旋核与周围分子交换能量的过程,如固体的晶格, 液体则为周围的同类分子或溶剂分子。用弛豫时间T1 示。 2、自旋--自旋驰豫,又称横向驰豫:
2024/4/7
(a)在CDCl3中 (b)~(d)中为逐步加入苯 4 二甲基甲酰胺的溶剂效应
仪器分析核磁共振波谱分析课件
2024/4/7
图12.15 苯环对二甲基甲酰胺甲基的屏蔽
仪器分析核磁共振波谱分析课件
交换反应: 1.位置交换: 活泼氢,如-OH, -SH,-COOH, -NH2 2.构象交换: 环己烷平伏键与直立键
2024/4/7
图12.13 单键的各向异性
仪器分析核磁共振波谱分析课件
(二) 氢键的影响:分子形成氢键后,使质子周围电子云密度降低,产生去屏
蔽作用而使化学位移向低场移动,如醇类、胺类和酸类等。
1. 分子间氢键:受溶液浓度、温度和溶剂的影响较显著; 2. 分子内氢键:几乎不受溶液浓度、温度和溶剂的影响。 溶剂效应:如二甲基甲酰胺,随各向异性溶剂苯的加入,两个甲基化学位移 发生变化
仪器分析紫外-可见光谱PPT
样品选择与处理
样品选择
选择具有紫外-可见吸收特性的样品 ,如有机化合物、无机离子、生物大 分子等。
样品处理
根据样品性质,进行适当的处理,如 溶解、稀释、过滤等,以获得适合光 谱分析的样品溶液。
实验条件设置与优化
01
02
03
光源选择
根据实验需求选择合适的 光源,如氘灯、钨灯等, 以获得连续且稳定的紫外可见光谱。
原理:比色法是基于比较有色物 质溶液颜色深度以测定待测组分 含量的方法。通常采用目视比较 或光电比色计进行定量测定。
1. 配制一系列已知浓度的标准溶 液,并加入显色剂;
3. 根据颜色深浅程度,确定待测 样品中目标组分的含量。
案例分析:混合物中各组分含量测定
案例描述:某混合物 中含有A、B两种组分, 其紫外-可见吸收光谱 有重叠。为了准确测 定各组分的含量,可 以采用多波长线性回 归分析法。
检测系统
检测系统用于检测经过样品吸收后的光信号,并将其转换为电信号以供后续处理 。常见的检测系统包括光电倍增管、光电二极管阵列等。这些检测器具有高灵敏 度和宽动态范围,能够准确地测量微弱的光信号。
数据处理与结果显示
数据处理
在紫外-可见光谱分析中,数据处理涉及对原始光谱数据的预处理、背景扣除、峰识别 与定量分析等步骤。预处理可能包括平滑、基线校正等操作,以提高数据质量和分析的
灵敏度
通过测量特定浓度样品在特定波长下的吸光度来 评价仪器的灵敏度,吸光度越大则灵敏度越高。
3
稳定性
通过连续多次测量同一样品在相同条件下的吸光 度来评价仪器的稳定性,结果越一致则稳定性越 好。
常见故障排查与处理方法
光源故障
检查光源是否损坏或老化,如有需要更换光源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
紫外吸收光谱UV
分析原理:吸收紫外光能量,引起分子中电子能级的跃迁
谱图的表示方法:相对吸收光能量随吸收光波长的变化
提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息
荧光光谱法FS
分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光
谱图的表示方法:发射的荧光能量随光波长的变化
提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息
红外吸收光谱法IR
分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁
谱图的表示方法:相对透射光能量随透射光频率变化
提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率
拉曼光谱法Ram
分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射
谱图的表示方法:散射光能量随拉曼位移的变化
提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率
核磁共振波谱法NMR
分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁
谱图的表示方法:吸收光能量随化学位移的变化
提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息
电子顺磁共振波谱法ESR
分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁
谱图的表示方法:吸收光能量或微分能量随磁场强度变化
提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息
质谱分析法MS
分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化
提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息
气相色谱法GC
分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离
谱图的表示方法:柱后流出物浓度随保留值的变化
提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关
反气相色谱法IGC
分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力
谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线
提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数
裂解气相色谱法PGC
分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片
谱图的表示方法:柱后流出物浓度随保留值的变化
提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型
凝胶色谱法GPC
分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出
谱图的表示方法:柱后流出物浓度随保留值的变化
提供的信息:高聚物的平均分子量及其分布
热重法TG
分析原理:在控温环境中,样品重量随温度或时间变化
谱图的表示方法:样品的重量分数随温度或时间的变化曲线
提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区
热差分析DTA
分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化
谱图的表示方法:温差随环境温度或时间的变化曲线
提供的信息:提供聚合物热转变温度及各种热效应的信息
示差扫描量热分析DSC
分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化
谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线
提供的信息:提供聚合物热转变温度及各种热效应的信息
静态热―力分析TMA
分析原理:样品在恒力作用下产生的形变随温度或时间变化
谱图的表示方法:样品形变值随温度或时间变化曲线
提供的信息:热转变温度和力学状态
动态热―力分析DMA
分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化
谱图的表示方法:模量或tgδ随温度变化曲线
提供的信息:热转变温度模量和tgδ
透射电子显微术TEM
分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象
谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象
提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等
扫描电子显微术SEM
分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象
谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等
提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等
原子吸收AAS
原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。
吸光度与待测元素的浓度成正比。
(Inductive coupling high frequency plasma)电感耦合高频等离子体ICP
原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。
通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。
X-ray diffraction ,x射线衍射即XRD
X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。
晶体可被用作X光的光栅,这些很大数目的原子
或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。
由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。
满足衍射条件,可应用布拉格公式:2dsinθ=λ
应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。
高效毛细管电泳(high performance capillary electrophoresis,HPCE)
CZE的基本原理
HPLC选用的毛细管一般内径约为50μm(20~200μm),外径为375μm,有效长度为50cm(7~100cm)。
毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。
HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。
在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。
所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象;电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。
溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。
带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。
与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。
MECC的基本原理
MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。
MECC 是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。
扫描隧道显微镜(STM)
扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。
将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。
这种现象即是隧道效应。
原子力显微镜(Atomic Force Microscopy ,简称AFM)
原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。
一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。
俄歇电子能谱学(Auger electron spectroscopy),j简称AES
俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。
外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。
对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X 射线或俄歇电子。
原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。
因此,俄歇电子能谱适用于轻元素的分析。