电力电子技术学习总结PPT课件

合集下载

《电力电子技术》 ppt课件

《电力电子技术》 ppt课件
电力电子技术
《电力电子技术》
电力电子技术
《电力电子技术》
引言 电力电子器件 电力电子电路 脉宽调制(PWM)技术和软开关技术
第2页
电力电子技术
《电力电子技术》
➢ 什么是电力电子技术? ➢ 电力电子技术的发展史 ➢ 电力电子技术的应用
第3页
电力电子技术
《电力电子技术》
➢ 电子技术: 信息电子技术 电力电子技术
电力电子技术
IGBT的结构(显示图)
– 图a—N沟道VDMOSFET与GTR组合——N沟道IGBT
(N-IGBT)。 – IGBT比VDMOSFET多一层P+注入区,形成了一个大面
积的P+N结J1。 – ——使IGBT导通时由P+注入区向N基区发射少子,从
而对漂移区电导率进行调制,使得IGBT具有很强的通流 能力。 – 简化等效电路表明,IGBT是GTR与MOSFET组成的达林 顿结构,一个由MOSFET驱动的厚基区PNP晶体管。 – RN为晶体管基区内的调制电阻。
第17页
电力电子技术
《电力电子技术》
1.不可控器件——电力二极管
2.半控型器件——晶闸管 3. 典型全控型器件
(1)门极可关断晶闸管 (2)电力晶体管 (3)电力场效应晶体管 (4)绝缘栅双极晶体管

第18页
电力电子技术
《电力电子技术》
1. IGBT的结构和工作原理
三端器件:栅极G、集电极C和发射极E
➢ 全控型器件(复合型器件)
80年代后期开始,以绝缘栅极双极型晶体管(IGBT)为代 表的全控型器件因驱动功率小、开关速度快、载流能力大等得 到迅猛的发展。

第10页
电力电子技术

电力电子技术(完整幻灯片PPT

电力电子技术(完整幻灯片PPT
1-3
2.1.1 电力电子器件的概念和特征
电力电子器件的损耗 通态损耗
主要损耗 断态损耗 开关损耗
开通损耗 关断损耗
通态损耗是器件功率损耗的主要成因。
器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
1-4
2.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路
恢复特性的软度:下降时间与
延复迟系时数间,用的S比r表值示tf。/td,或称恢uFFra bibliotek2V0
b) tfr
t
图2-6 电力二极管的动态过程波形
a) 正向偏置转换为反向偏置
b) 零偏置转换为正向偏置
1-17
2.2.2 电力二极管的基本特性
关断过程
IF
diF
dt
trr
须经过一段短暂的时间才能重新获 UF
td
A
G
KK
A A
G
G
P1 N1 P2 N2
J1 J2 J3
K
K G
A
a)
b)
c)
图2-7 晶闸管的外形、结构和电气图形符号
a) 外形 b) 结构 c) 电气图形符号
外形有螺栓型和平板型两种封装。
四层三结三极。
螺栓型封装,通常螺栓是其阳极,能与散热器紧 密联接且安装方便。
平板型晶闸管可由两个散热器将其夹在中间。
电力电子技术(完整幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!

(2024年)电力电子技术完整版全套PPT电子课件

(2024年)电力电子技术完整版全套PPT电子课件

实验报告撰写与答辩
讲解实验报告的撰写要求和答辩技巧 ,提高学生的综合素质和能力。
36
08
电力电子技术应用案例
2024/3/26
37
新能源发电系统中电力电子技术应用
光伏发电系统
最大功率点跟踪(MPPT )技术、逆变器并网技术 、孤岛检测与保护技术等 。
2024/3/26
风力发电系统
变桨距控制技术、变速恒 频技术、直驱式永磁风力 发电技术等。
2024/3/26
13
可控整流电路分析与应用
可控整流电路原理
可控整流电路通过控制触发角α的大小,实现对输出电压的调 节。
2024/3/26
可控整流电路应用
可控整流电路广泛应用于直流调速、电力拖动、电解、电镀 等领域。
14
滤波电路原理与设计方法
滤波电路原理
滤波电路是利用电容、电感等元件对交流电的频率特性进行滤波,从而得到平 滑的直流电的电路。
高性能器件选择
选用高性能的功率器件和驱动电路,提高电路的工作频率和可靠性。例如,选用低导通电阻和低栅极电荷的 MOSFET可以降低电路的导通损耗和开关损耗;选用高耐压和高电流的IGBT可以提高电路的带负载能力等 。
系统优化与热设计
对系统进行全面的优化和热设计,确保电路在高负载、高温等恶劣环境下仍能稳定可靠地工作。例如,采用 合理的散热结构和风扇控制策略可以降低电路的工作温度;采用模块化设计可以提高电路的维修性和可扩展 性等。
2024/3/26
功率场效应晶体管(Power MOSFE…
阐述Power MOSFET和IGBT的结构、特点以及在电力电子电路中的 广泛应用。
11
03
整流与滤波技术
2024/3/26

(2024年)电力电子技术第5版王兆安课件

(2024年)电力电子技术第5版王兆安课件
调制法
该方式通过调制信号(如正弦波)与高频载波(如三角波)进行比较生成PWM脉冲。优 点是生成的PWM脉冲频率高、波形好且易于实现实时控制。缺点是对于非线性负载的适 应性较差。
32
07
电力电子系统的设计与应用
2024/3/26
33
电力电子系统的设计原则与方法
2024/3/26
设计原则
确保系统稳定性、高效性、可靠性和 安全性;满足特定应用需求;优化成 本和性能。
2024/3/26
6
02
电力电子器件
2024/3/26
7
不可控器件
电力二极管(Power Diode)
结构和工作原理
伏安特性
2024/3/26
8
不可控器件
主要参数
晶闸管(Thyristor)
结构和工作原理
2024/3/26
9
不可控器件
伏安特性和主要参数
派生器件
2024/3/26
10
半控型器件
2024/3/26
36
感谢您的观看
THANKS
2024/3/26
37
26
电压型和电流型逆变电路
电压型逆变电路
电压型逆变电路的输出电压波形为矩 形波或正弦波,其特点是输出电压幅 值和频率可调,适用于对输出电压要 求较高的场合。
电流型逆变电路
电流型逆变电路的输出电流波形为矩 形波或正弦波,其特点是输出电流幅 值和频率可调,适用于对输出电流要 求较高的场合。
2024/3/26
工业自动化
应用于电机驱动、电源供 应、过程控制等领域,提 高生产效率和能源利用率 。
35
电力电子系统的发展趋势与挑战
发展趋势

电力电子技术课件专业版PPT模板分享

电力电子技术课件专业版PPT模板分享

升压型变换器
总结词
一种将输入电压升高的变换器。
详细描述
升压型变换器采用双开关或四开关结构,通过控制开关的导通和关断,实现输入 电压的升高。这种变换器常用于逆变器、直流/直流转换器和电池充电等场合。
升降压型变换器
总结词
一种既能降低电压又能升压的变换器。
详细描述
升降压型变换器具有降压型和升压型变换器的特点,可以适应不同的输入电压和输出负载条件。它通常采用较复 杂的控制电路和开关结构,可以实现双向电压转换和能量回收等功能。
总结词
通过电力电子器件转换得到直流 电源
详细描述
利用电力电子器件如DC/DC变换 器、斩波器等,将交流电转换为 直流电,以满足不同设备对直流 电源的需求。
交流电源设计
总结词
通过电力电子器件转换得到交流电源
详细描述
利用电力电子器件如逆变器、整流器 等,将直流电转换为交流电,以满足 不同设备对交流电源的需求。
新能源领域
电力电子技术在风能、太 阳能等新能源发电和输电 领域发挥着重要的作用。
交通领域
电力电子技术在电动汽车 、铁路和航空交通中有着 广泛的应用。
电力电子技术的发展趋势
高频化
随着技术的不断发展,电 力电子设备的工作频率越 来越高,能够实现更高的 效率和更小的体积。
智能化
电力电子设备具有智能化 的特点,可以实现远程监 控和控制,提高设备的可 靠性和安包括NPN、PNP型晶体管
等。
晶体管的特性曲线
02
展示晶体管的特性曲线,包括输入特性曲线、输出特性曲线等

晶体管的应用
03
列举晶体管在电力电子技术中的应用,如放大器、开关等。
可控整流器
01

2024版《电力电子技术》PPT课件

2024版《电力电子技术》PPT课件

电力电子技术的定义与发展01020304定义晶闸管时代可控硅时代现代电力电子时代用于高压直流输电、无功补偿、有源滤波等,提高电力系统的稳定性和效率。

用于电动汽车、电动自行车、电梯等电机驱动系统,实现高效、节能的电机控制。

用于太阳能、风能等新能源发电系统,实现能源的高效利用和转换。

用于自动化生产线、机器人等工业设备,实现设备的精确控制和高效运行。

电力系统电机驱动新能源工业自动化数字化与智能化随着计算机技术和人工智能的发展,电力电子技术将实现数字化和智能化,提高系统的自适应能力和智能化水平。

高频化与高效化随着半导体材料和器件的发展,电力电子技术将实现更高频率和更高效率的电能转换。

绿色化与环保化随着环保意识的提高,电力电子技术将更加注重绿色、环保的设计理念,降低能耗和减少对环境的影响。

工作原理特点应用整流电路、续流电路等工作原理通过门极触发导通,无法自行关断特点耐压高、电流大、开关速度快应用直流电机调速、交流调压等工作原理特点应用工作原理特点应用逆变器、斩波器、电机驱动等工作原理特点应用工作原理开关速度快、耐压高、电流大、热稳定性好应用逆变器、斩波器、电机驱动等高端应用领域特点VS整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用整流电路逆变电路逆变电路的作用逆变电路的分类逆变电路的工作原理逆变电路的应用直流-直流变流电路直流-直流变流电路的作用直流-直流变流电路的分类直流-直流变流电路的工作原理直流-直流变流电路的应用交流-交流变流电路交流-交流变流电路的作用交流-交流变流电路的工作原理A B C D交流-交流变流电路的分类交流-交流变流电路的应用电机驱动照明控制加热与焊接030201一般工业应用交通运输应用电动汽车驱动轨道交通牵引航空电源电力系统应用高压直流输电柔性交流输电通过电力电子技术可实现高压直流输电,减少输电损耗和占地面积。

智能电网风能发电通过电力电子技术可实现风能发电系统的变速恒频控制和并网运行。

电力电子技术ppt课件

电力电子技术ppt课件

② 按照内部载流子的工作性质分: 单极型器件:导通时只有空穴或电子一种载流子导电的器件。功率场
效应晶体管,器件的特点主要是工作频率高、导通压降较大,单个器 件容量较小。 双极型器件:导通时的载流子既有空穴也有电子导电的器件。功率二 极管、晶闸管及派生器件、可关断晶闸管、双极型功率晶体管等。器 件的特点主要是功率较高、而工作频率较低。 复合型器件:复合型既含有单极型器件的结构,又有双极型器件的结 构,通常其控制部分采用单极性结构,主功率部分采用双极型结构。 绝缘栅双极型晶体管、MOS控制晶闸管等。结合了两者的优点,具有 卓越的电气性能,是电力电子器件的发展方向。
电力电子技术
(第3版)
绪论
1. 电力电子技术的内容 2. 电力电子技术的发展 3. 电力电子技术的应用 4. 电力电子技术课程的学习要求
1. 电力电子技术的内容
电力电子学 , 又 称 功 率 电 子 学 (Power Electronics)。它主要 研究各种电力电子器件,以及由 这些电力电子器件所构成的各式 各样的电路或装置,以完成对电 能的变换和控制。
4. 电力电子技术课程的学习要求
熟悉和掌握常用电力电子器件的工作机理、特性和参数,能正确选 择和使用它们。
熟悉和掌握各种基本变换器的工作原理,特别是各种基本电路中的 电磁过程,掌握其分析方法、工作波形分析和变换器电路的初步设 计计算。
了解各种开关元件的控制电路、缓冲电路和保护电路。 了解各种变换器的特点、性能指标和使用场合。 掌握基本实验方法与训练基本实验技能。
电力电子器件的电压、电流、开关频率是影响它们使用的关键参数 ➢电压容量从低到高的顺序依次为功率场效应晶体管、绝缘栅双极型晶体 管、双极型功率晶体管、可关断晶闸管、晶闸管,其中绝缘栅双极型晶 体管、双极型功率晶体管电压容量接近,可关断晶闸管、晶闸管电压容 量接近。 ➢电流容量从低到高的顺序依次为功率场效应晶体管、绝缘栅双极型晶体 管、双极型功率晶体管、可关断晶闸管、晶闸管,其中绝缘栅双极型晶 体管、双极型功率晶体管电流容量接近。 ➢开关频率从低到高的顺序依次为晶闸管、可关断晶闸管、双极型功率晶 体管、绝缘栅双极型晶体管、功率场效应晶体管,其中绝缘栅双极型晶 体管、双极型功率晶体管的开关频率接近。

《电力电子技术 》课件

《电力电子技术 》课件

电机控制
电机控制是指通过电力电子技术实现对电机速度 、方向和位置的精确控制。
电机控制广泛应用于工业自动化、交通运输、家 用电器等领域,如变频空调、电动汽车等。
电机控制有助于提高能源利用效率,降低能耗, 实现更智能化的生产和制造。
新能源发电系统
新能源发电系统是指利用可再生能源进行发电 的系统,如太阳能、风能等。
、更高可靠性和更小体积的方向发展。
系统集成和智能化的发展
系统集成
随着电力电子系统规模的不断扩大,系统集成成为了一个重要的研究方向,通过将多个电力电子模块集成在一个系统 中,可以实现更高的功率密度和更小的体积。
智能化
智能化是电力电子技术的另一个重要发展方向,通过引入人工智能和机器学习等技术,可以实现电力电子系统的自适 应控制和智能管理,提高系统的稳定性和可靠性。
针对高效能转换的挑战,需要不断研 究和开发新的电力电子器件、电路拓 扑和控制策略,以实现更高的转换效 率和更低的能耗。
技术瓶颈
目前电力电子技术面临的主要挑战是 如何进一步提高转换效率,降低能耗 ,以满足不断增长的高效能转换需求 。
新材料和新技术的发展
01
新材料的应用
随着新材料技术的不断发展,新型半导体材料如碳化硅(SiC)和氮化
电力电子技术的应用实例
不间断电源(UPS)
不间断电源(UPS)是一种能够提供持续电力供应的电源设备,主要用于保护重要 设备和数据免受电力中断的影响。
UPS通过使用电力电子转换技术,将电池或其他形式的储能装置与电网连接,确保 在电网故障或停电时,能够继续为设备提供稳定的电力。
UPS在医疗、金融、通信等领域有广泛应用,对于保证关键设备和服务的正常运行 至关重要。
详细描述

2024版电力电子技术完整版全套PPT电子课件

2024版电力电子技术完整版全套PPT电子课件

contents•电力电子技术概述•电力电子器件目录•电力电子电路•电力电子技术的控制策略•电力电子技术的实验与仿真电力电子技术的定义与发展定义发展历程如太阳能、风能等可再生能源的转换与利用。

如电动汽车、电动自行车等电机驱动系统的控制。

如智能电网、分布式发电等电力系统的优化与控制。

如变频器、伺服系统等工业自动化设备的控制。

能源转换电机驱动电力系统工业自动化高效率、高功率密度智能化、数字化绿色化、环保化多学科交叉融合晶闸管(Thyristor 可控的单向导电性,用于可控整流电路Power Diode )具有单向导电性,可用于整流电路010402050306电力晶体管(Giant Transistor,GTR)具有耐压高、电流大、开关特性好等优点通过在门极施加负脉冲使其关断电流控制型器件,通过控制基极电流来控制集电极电流可关断晶闸管(Gate Turn-OffThyristor,GTO)具有可控的开关特性,适用于高电压、大电流场合01电力场效应晶体管(Power MOSFET )02电压控制型器件,通过控制栅源电压来控制漏极电流03具有开关速度快、输入阻抗高、热稳定性好等优点04绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor ,IGBT )05结合了MOSFET 和GTR 的优点,具有电压控制、大电流、低饱和压降等特性06广泛应用于电机控制、电源转换等领域整流电路整流电路的工作原理介绍整流电路的基本工作原理,包括半波整流、全波整流和桥式整流等。

整流电路的类型详细阐述不同类型的整流电路,如单相半波整流电路、单相全波整流电路、三相半波整流电路和三相全波整流电路等。

整流电路的应用列举整流电路在电力电子领域的应用,如电源供应器、电池充电器和电机驱动器等。

逆变电路逆变电路的工作原理01逆变电路的类型02逆变电路的应用031 2 3直流-直流变流电路的工作原理直流-直流变流电路的类型直流-直流变流电路的应用交流-交流变流电路的工作原理01交流-交流变流电路的类型02交流-交流变流电路的应用03电动机控制电热控制照明控制030201一般工业应用交通运输应用电动汽车驱动轨道交通牵引飞机电源系统电力系统应用高压直流输电柔性交流输电分布式发电与微电网新能源应用风能发电太阳能发电风力发电机组中采用电力电子技术实现变速恒频控制,提高风能发电的稳定性和可靠性。

《现代电力电子技术》课件

《现代电力电子技术》课件

电力电子技术的未来发展方向
高效化
智能化
未来电力电子技术将更加注重能效的提高 ,不断推动能源转换和利用效率的提升。
随着人工智能和物联网技术的发展,电力 电子技术将更加智能化,能够实现自适应 控制和远程监控等功能。
集成化
绿色化
未来电力电子技术将更加注重集成化设计 ,实现多功能、高集成度的电力电子系统 。
05
CATALOGUE
电力电子技术的挑战与未来发 展
电力电子技术的挑战
01
02
03
技术更新换代快
随着科技的不断进步,电 力电子技术需要不断更新 换代,以满足更高的性能 和效率要求。
节能环保压力
随着能源危机和环境问题 的日益严重,电力电子技 术在节能环保方面面临更 大的压力。
市场竞争激烈
电力电子市场参与者众多 ,竞争激烈,企业需要不 断提升技术水平和产品创 新能力。
详细描述
在DC/DC转换电路中,开关电源的作用是通过控制开关 管的通断时间来调节输出电压的大小。当输入电压通过开 关管时,通过控制开关管的占空比,可以调节输出电压的 大小,从而实现将一种直流电压转换为另一种直流电压。
总结词
DC/DC转换电路的应用
详细描述
DC/DC转换电路广泛应用于各种需要不同电压等级的场 合,如通信设备、计算机、仪器仪表等。通过DC/DC转 换电路,可以将较高或较低的电压转换为所需的稳定直流 电压,满足各种设备的用电需求。
电力电子技术的应用
电力系统
电力系统中的电力电子技术应用主要涉及发 电、输电和配电环节。通过使用电力电子设 备,如可编程逻辑控制器(PLC)和智能传 感器,可以实现电网的智能化控制和优化管 理,提高电力系统的稳定性和可靠性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.反电势负载:即负载中有反电势存在。如蓄电池充电为反电势 电阻性负载,直流电机拖动系统为反电势电感性负载。反电势 越大,晶闸管导通角越小。
7
4.电容性负载一般在变频器、不间断电源、开关电源等场合 使用。
• 可控整流电路的工作原理、特性、电压电流波形以及电量 间的数量关系与整流电路所带负载的性质密切相关,必须 根据负载性质的不同分别进行讨论。然而实际负载的情况 是复杂的,属于单一性质负载的情况是很少,往往是几种 性质负载的综合,所以在分析时还要根据具体情况进行详 细区别讨论。在学习整流电路过程中,根据交流电源的电 压波形、功率半导体器件的通断状态和负载的性质,分析 电路中各点的电压、电流波形,掌握整流电压和移相控制 的关系。掌握了电路中的电压、电流波形,也就掌握了电 路的工作原理。
5
• 功率半导体器件是电力电子电路的基础,通过学习掌握了多 种电力电子器件的工作原理、基本特性、主要参数等内容。 其中包括功率二极管、大功率晶体管、晶闸管、场效应晶体 管、绝缘栅双极型晶体管等。 整流管是电力电子器件中结构 最简单,应用最广泛的一种器件。目前已形成普通型,快恢 复型和肖特基型三大系列产品,电力整流管对改善各种电力 电子电路的性能,降低电路损耗和提高电流使用效率等方面 都具有非常重要的作用。
• 整流电路 1.单相整流电路可分为单相半波电路和单相桥式电路。单相 整流电流电路比较简单、成本也低、控制方便,但输出电 压波形差,谐波分量较大,使用场合受到限制。

2.多相整流电路以三相整流电路为主。三相整流电路也可分为三 相半波和三相桥式电路。三相整流电路输出直流电压波形较好, 脉动小。因此它应用较广,尤其是三相桥式整流电路在直流电 机拖动系统中得到了广泛应用。多相整流电路通常在大功率整 流装置中应用。
电力电子技术学习总结
电研041班:刘春玲
1
提纲: 一、电力电子技术的历史发展过程简介 二、课程所学主要内容总结 三、当今世界电力电子技术的发展现状及趋势
2
前言
随着大功率半导体开关器件的发明和变流电路的进步和 发展,产生了利用这类器件和电路实现电能变换与控制的技 术——电力电子技术。电力电子技术横跨电力、电子和控制 三个领域,是现代电子技术的基础之一,是弱电子对强电力 实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、 交通、能源和人民生活的各个领域,有着极其广阔的应用前 景,成为电气工程中的基础电子技术。
10
报告完毕,谢谢!
11
8
• 逆变 在生产实际中除了需要将交流电转变为大小可调的直流电
供给负载外,常常还要将直流电转换成交流电,即逆变过程。 变流器工作在逆变状态时,如交流侧接至电网上,直流电将被 逆变成与电网同频的交流电并反馈回电网,因为电网有源,则 称为有源逆变。有源逆变是整流电路在特定条件下的工作状态, 其分析方法与整流状态时相同,在直流电机拖动系统中可通过 有源逆变将直流电机的能量传送到电网。 • 当前,电力电子作为节能、自动化、智能化、机电一体化的基 础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色 化的方向发展。现代电力电子技术的发展方向,是从以低频技 术处理问题为主的传统电力电子学,向以高频技术处理问题为 主的现代电力电子学方向转变。
大电流的系列产品,它们是普通晶闸管不能自关断的半控 型器件,被称为第一代电力电子器件。
• 第二代电力电子器件
随着电力电子技术理论研究和制造工艺水平的不断提 高,电力电子器件在容量和类型等方面得到了很大发展, 是电力电子技术的又一次飞跃,先后研制出大功率双极型 晶体管(GTR),门极可关断晶闸管(GTO),功率MOSFET等自 关断全控型第二代电力电子器件。
4
• 第三代电力电子器件 以绝缘栅双极型晶体管(IGBT)为代表,开始向大容量高频
率、响应快、低损耗方向发展。 • 现代电力电子时代
八十年代末期和九十年代初期发展起来的、以功率MOSFET 和IGBT为代表的、集高频、高压和大电流于一身的功率半导体 复合器件,表明传统电力电子技术已经进入现代电力电子时代。 电力电子器件正朝着标准模块化、智能化、功率集成的方向发 展。在国际上电力电子技术是竞争最激烈的高新技术领域。
3
• 电力电子的诞生
上世纪五十年代未第一只晶闸管问世,电力电子技术 开始登上现代电气传动技术舞台,以此为基础开发的可控 硅整流装置,是电气传动领域的一次革命,使电能的变换 和控制从旋转变流机组和静止离子变流器进入由电力电子 器件构成的变流器时代。这标志着电力电子的诞生。
• 第一代电力电子器件 进入70年代晶闸管开始形成由低电压小电流到高电压
9
• 电力电子技术的创新与电力电子器件制造工艺改进,已成为 世界各国工业自动化控制和机电一体化领域竞争最激烈的阵 地,各个发达国家均在这一领域注入极大的人力,物力和财 力,使之进入高科技行业,就电力电子技术的理论研究而言, 目前日本、美国及法国、荷兰、丹麦等西欧国家可以说是齐 头并进,在这些国家先进的电力电子技术不断开发完善,促 进电力电子技术向着高频化迈进,实现用电设备的高效节能, 为真正实现工控设备的小型化,轻量化,智能化奠定了重要 的技术基础,也为电力电子技术的不断拓展创新描绘了广阔 的前景。而我国开发研制电力电子器件的综合技术能力与国 外发达国家相比,仍有较大的差距,要发展和创新我国电力 电子技术,并形成产业化规模,就必须走有中国特色的产学 创新之路,即牢牢坚持和掌握产、学、研相结合的方法走共 同发展之路。
• 按照负载性质又可分为电阻性负载、电感性负载、反电动势负 载和电容性负载。
1.阻性负载:负载为电阻时,输出电压波形与电流波形形状相同, 移相控制角较大时,输出电流会出现断续。
2.电感性负载:负载有电感和电阻,以电感为主时,由于电感有 维持电流导通的能力,当电感数值较大时,输出直流电流可连 续而且基本保持不变。
相关文档
最新文档