初一数学期中考试模拟试卷

合集下载

北师版七年级数学上册 期中模拟考试卷01

北师版七年级数学上册  期中模拟考试卷01

2024-2025学年七年级数学上学期期中模拟卷(考试时间:100分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大第一章丰富的图形世界+第二章有理数及其运算+第三章整式及其加减。

5.难度系数:0.75。

第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.中国是最早采用正负数表示相反意义的量的国家,如果将“向东走50米”记作“+50米”,那么“向西走80米”记作()A.﹣80米B.+80米C.+30米D.﹣30米2.有理数的相反数是()A.B.3C.﹣3D.﹣3.“力箭一号”(ZK﹣1A)运载火箭在酒泉卫星发射中心采用“一箭六星”的方式,成功将六颗卫星送入预定轨道,首次飞行任务取得圆满成功.把卫星看成点,则卫星在预定轨道飞行留下的痕迹体现了()A.点动成线B.线动成面C.面动成体D.面面相交成线4.如果把202400这个数精确到千位,并且用科学记数法表示,正确的是()A.202×103B.2.02×105C.2.02×104D.2.024×1055.如图,在数轴上,手掌遮挡住的点表示的数可能是()A.0.5B.﹣0.5C.﹣1.5D.﹣2.56.若a与2互为相反数,则|a+2|等于()A.2B.﹣2C.0D.﹣17.若单项式3ax2y n+1与﹣2ax m y4是同类项,则(m﹣n)2023的值是()A.0B.1C.﹣1D.20238.如图所示的A、B、C、D四个位置的某个正方形与实线部分的五个正方形组成的图形中不能拼成正方体的是位置()A.A处B.B处C.C处D.D处9.按下面的规律摆图形,第n个图形的周长是()厘米(每个小正方形的边长是1厘米).A.3n+4B.4n+2C.2n+4D.5n+210.观察一列单项式:x,﹣3x3,7x5,﹣15x7,31x9,⋯.则第n个单项式是()A.(﹣1)n+1(2n﹣1)x2n﹣1B.(﹣1)n(2n﹣1)x2n+1C.(﹣1)n+1(2n﹣1)x2n﹣1D.(﹣1)n(2n+1)x2n﹣1第二部分(非选择题共70分)二、填空题(本大题共6小题,每小题3分,满分18分)11.比较大小:﹣﹣.(用“>”“=”或“<”连接)12.已知正方体的一个平面展开图如图所示,则在原正方体上“云”字对面的字是.13.若3x m+1y3与﹣5x3y n是同类项,则﹣m n=.14.将一个棱长为6cm的正方体的一个角剪去一个棱长为3cm的小正方体,得到的几何体如图所示,则该几何体主视图的面积为cm2.15.已知a,b,c在数轴上的对应点如图所示,则|a+b|﹣|a﹣c|+|b﹣c|=.16.按如图所示程序计算,若最终输出的结果为110,则输入的正整数x是.三、解答题(本大题共7小题,满分52分.解答应写出文字说明,证明过程或演算步骤)17.(8分)计算:(1)(﹣7)×5﹣(﹣36)÷4;(2).18.(5分)如图,请分别画出从正面、左面和上面观察该几何体看到的形状图.19.(7分)先化简,再求值:(2x2y+xy2)﹣2(x2y﹣1)﹣4xy2﹣2,其中(x﹣2)2+|y+2|=0.20.(7分)如图是一个正方体的展开图,将其折叠成正方体后,其中各相对面上的数字之和均相等,求y ÷x的值.21.(7分)出租车司机小李某天下午的营运全是在东莞大道的路上,如果规定向南为正,向北为负,他这天下午的行车里程如下:+15,﹣6,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣17.(1)当小李将最后一名乘客送到目的地时,小李距下午出车地点的距离多少千米?此时,小李的位置是在出车地点的南面还是北面?(2)若出租车每100千米耗油5升,每升油需要8元,问小李这天下午的行程需要花费多少油钱?22.(8分)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示),若该客户按方案二购买,需付款元(用含x的代数式表示);(2)若x=5时,通过计算说明此时按哪种方案购买较为合算?23.(10分)高速公路旁有三个物品代收点A、B、C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A、B、C的货全部运到货仓,代收点A每天有50吨货物,代收点B每天有10吨货物,代收点C每天有60吨货物,从A到C方向每吨每公里运费1.5元,从C到A方向每吨每公里运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?2024-2025学年七年级数学上学期期中模拟卷(考试时间:100分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

江苏淮安2024年七年级上学期数学期中模拟试题

江苏淮安2024年七年级上学期数学期中模拟试题

淮安市2024-2025学年七年级数学期中模拟(附答案)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列各组中,是同类项的是( )A .2x −与5yB .22a b −与2a bC .2xy −与26x yD .2m 与2n2.(2023秋·湖南长沙·七年级校联考期中)下列说法中,不正确...的是( ) A . 是整式 B .是二次二项式C .多项式的三次项的系数为D .的项有3. 下列6个数﹣33,227,π, 0, 0.1010010001,2019 中,有理数有( )个. A. 2 B. 3 C. 4 D. 54. 下列是一元一次方程的是( )A. 230x −=B. 54x y +=C. 23x +D. 534x +=5.已知 a ,b ,c ,d 表示 4 个不同的正整数,满足 23490a b c d +++=,其中 1d >,则 a b c d +++ 的最大值是( )A .55B .64C .70D .726. 在解方程213123x x −−=− 时,去分母后正确的是( ) A. 3(2x ﹣1)=1﹣2(3﹣x ) B. 3(2x ﹣1)=1﹣(3﹣x )C. 3(2x ﹣1)=6﹣2(3﹣x )D. 2(2x ﹣1)=6﹣3(3﹣x ) 7. 如图,用规格相同的小棒摆成组图案,图案①需要4根小棒,图案②需要12根小棒,图案③需要20根小棒,…,按此规律摆下去,第2023个图案需要小棒数是( )A .8092B .16188C .12136D .161808. 观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32014的个位数字是( )A. 3B. 9C. 7D. 1二、填空题(本大题共10小题,每小题3分,共30分)9. 2022年12月16日,一场雾霾席卷华夏大地,大约有160万平方千米的范围被雾霾包裹,其中160万用科学记数法可以表示为_______________.10.已知代数式23x x +的值为3,则代数式2937x x +−的值为 .11. 在数轴上距离原点2.5个单位长度的点表示的数是________.12. 如果向东走10米记作10+米,那么向西走15米可记作_____米.13. 已知x=4是关于x 的方程3x ﹣2a=9的解,则a 的值为______.14.按一定规律排列的单项式:2a ,33a −,109a ,1527a −,2681a ,…,第n 个单项式是____ .15. 如图是一数值转换机的示意图,当x=-1时,则输出结果是_____16. 已知,|a |=5,|b |=3,且a <b ,则a +b =______.17. 假期中6名老同学聚会,每两名同学握一次手,则握手的次数一共是______.18. 小明和小红两人做游戏,小明对小红说:“你任意想一个数,把这个数加上5,然后乘以2接着减去4,最后除以2,把得到的结果告诉我,我就知道你想的是什么数结果小红把按规则计算出结果为20告诉了小明.”如果你是小明,你应该告诉小红,她想的数是______.三、解答题(本大题共7小题,共66分)19. 计算:(1)()()3-242+÷− (2)20. 解方程:(1)32(1)5x x −−=(2)2213123x x −+−=+ 21. 先化简,后求值:()()22223x y xy x y xy x y +−−−,其中1x =,1y =−.22. 算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个); 、 ;(2)如图2,如果、表示正,. 表示负,J 表示11点,Q 表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个): .23. 若规定一种运算,23a b a b ∗=−,(1)计算:5(3)∗−;(2) (3)(21)5x x −∗−=,则x 是多少?24.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于;②请用两种不同的方法表示图②中阴影部分的面积:方法1:;方法2:;③观察图②,直接写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系:;(2)根据(1)题中的等量关系,解决如下问题:若m+n=6,mn=4,求(m﹣n)2的值.25. 如图,正方形ABCD和CEFG的边长分别为m、n,且B、C、E三点在一直线上试说明△AEG的面积只与n 的大小有关.26. 如图在数轴上A点表示数a,B 点表示数b,数a,b满足|a+2|+|b-4|=0;(1)点 A 表示的数为 ;点 B 表示的数为 ;(2)若在原点O处放一挡板,小球甲从点 A 处以1个单位/秒的速度向左运动;同时另一小球乙从点 B 处以-2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,小球甲到原点的距离= ;小球乙到原点的距离= ;当t=3时,小球甲到原点的距离= ;小球乙到原点的距离= ;②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲、乙两小球到原点的距离相等时经历的时间.淮安市2024-2025学年七年级数学期中模拟(附答案)参考答案一、选择题(本大题共8小题,每小题3分,共24分) 1.下列各组中,是同类项的是( )A .2x −与5yB .22a b −与2a bC .2xy −与26x yD .2m 与2n1.B2.(2023秋·湖南长沙·七年级校联考期中)下列说法中,不正确...的是( ) A .是整式 B .是二次二项式C .多项式的三次项的系数为 D .的项有 【答案】C【分析】分别根据整式和多项式的定义判断即可;单项式和多项式统称为整式;几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高的项的次数叫做多项式的次数;【详解】A 、是多项式,属于整式,原说法正确,故本选项不合题意; B 、是二次二项式,说法正确,故本选项不合题意;C 、多项式的三次项的系数为,原说法错误,故本选项符合题意;D 、的项有,说法正确故本选项不合题意;故选:C 【点睛】本题考查了整式和多项式,掌握相关定义是解答本题的关键.3. 下列6个数﹣33,227,π, 0, 0.1010010001,2019 中,有理数有( )个. A. 2B. 3C. 4D. 5 【答案】D【解析】【分析】根据有理数的概念:整数和分数统称为有理数,找出有理数即可.【详解】解:根据有理数的定义可知:﹣33,227,0, 0.1010010001,2019是有理数,共5个, 故选D.【点睛】本题考查了有理数的知识,解答本题的关键是掌握有理数的概念:整数和分数统称为有理数. 4. 下列是一元一次方程的是( ) A. 230x −= B. 54x y += C. 23x + D. 534x +=【答案】D【解析】【详解】A.230x−= ,不是整式方程,故错误;B. 54x y += ,含有两个未知数,故错误;C. 23x + ,不是等式,故错误;D. 534x +=,是一元一次方程,正确,故选D. 5.已知 a ,b ,c ,d 表示 4 个不同的正整数,满足 23490a b c d +++=,其中 1d >,则 a b c d +++ 的最大值是( )A .55B .64C .70D .72 5.C6. 在解方程213123x x −−=− 时,去分母后正确的是( )A. 3(2x﹣1)=1﹣2(3﹣x)B. 3(2x﹣1)=1﹣(3﹣x)C. 3(2x﹣1)=6﹣2(3﹣x)D. 2(2x﹣1)=6﹣3(3﹣x)【答案】C【解析】【分析】方程左右两边乘以6去分母得到结果,即可作出判断.【详解】解:在解方程213123x x−−=−时,去分母得:3(2x﹣1)=6﹣2(3﹣x),故选:C.【点睛】本题考查解一元一次方程的知识,解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.7. 如图,用规格相同的小棒摆成组图案,图案①需要4根小棒,图案②需要12根小棒,图案③需要20根小棒,…,按此规律摆下去,第2023个图案需要小棒数是()A.8092 B.16188 C.12136 D.161807.D8. 观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32014的个位数字是()A. 3B. 9C. 7D. 1【答案】B【解析】【分析】观察不难发现,每4个数为一个循环组,个位数字依次循环,用2014÷3,根据商和余数的情况确定答案即可.【详解】解:个位数字分别为3、9、7、1依次循环,∵2014÷4=503余2,∴32014的个位数字与循环组的第2个数的个位数字相同,是9.故选B.【点睛】本题考查了尾数特征,观察数据发现每4个数为一个循环组,个位数字依次循环是解题的关键.【答案】A【解析】【分析】本题考查了图形的变化类问题,仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.解题的关键是仔细的观察图形并正确的找到规律.【详解】第1个图形中黑色正方形的数量为11212+=+, 第2个图形中黑色正方形的数量为2322=+, 第3个图形中黑色正方形的数量为31532+=+, 第4个图形中黑色正方形的数量为4642=+, 第5个图形中黑色正方形的数量为51852+=+, …∴当n 为偶数时,第n 个图形中黑色正方形的数量为2n n +个; 当n 为奇数时第n 个图形中黑色正方形的数量为12n n ++个, ∴当101n 时,黑色正方形的个数为10111011522++=个. 故选:A . 二、填空题(本大题共10小题,每小题3分,共30分)9. 2022年12月16日,一场雾霾席卷华夏大地,大约有160万平方千米的范围被雾霾包裹,其中160万用科学记数法可以表示为_______________.【答案】1.6×106【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于160万有7位,所以可以确定n=7-1=6.【详解】160万=1600000=1.6×106,故答案为1.6×106.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.10.已知代数式23x x +的值为3,则代数式2937x x +−的值为 .10.211. 在数轴上距离原点2.5个单位长度的点表示的数是________.【答案】2.5或 2.5−【解析】【分析】分在原点左边与右边两种情况讨论求解.【详解】解:①该点在原点左边时,表示的数是−2.5;②该点在原点右边时,表示的数是2.5.故答案为2.5或 2.5−.【点睛】本题考查了数轴,难点在于要分点在原点的左边与右边两种情况讨论求解.12. 如果向东走10米记作10+米,那么向西走15米可记作_____米.【答案】15−【解析】【分析】明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:∵向东走10米记作10+米,∴向西走15米记作15−米.故答案为:15−.【点睛】本题考查正负数的意义.熟练掌握正负数表示意义相反的量,是解题的关键.13. 已知x=4是关于x 的方程3x ﹣2a=9的解,则a 的值为______. 【答案】32【解析】【分析】把x =4代入方程计算,即可求出a 的值.【详解】解:把x =4代入3x ﹣2a=9得:12−2a =9,解得:a =32, 故答案为32. 【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.按一定规律排列的单项式:2a ,33a −,109a ,1527a −,2681a ,…,第n 个单项式是____ .14.()121(1)3n n n a ++−−−(n 为正整数).15. 如图是一数值转换机的示意图,当x=-1时,则输出结果是_____【答案】7 3【解析】【分析】根据数值转换机的运算得出输出结果即可.【详解】根据数值转换机中的运算得:输出结果是22 (3)29233x x−−=,当x=-1时,原式=29(1)2733×−−=.故答案为7 3【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16. 已知,|a|=5,|b|=3,且a<b,则a+b=______.【答案】-8或 -2【解析】【分析】根据绝对值的性质求出a、b的值,再分情况相加即可得解.【详解】∵|a|=5,|b|=3,∴a=±5,b=±3,∵a<b,∴a=-5时,b=-3,a+b=-5+(-3)=-8,a=-5时,b=3,a+b=-5+3=-2,综上所述,a+b的值为-8或-2.故答案为-8或-2.【点睛】本题考查了有理数的减法,绝对值的性质,有理数的大小比较,难点在于确定出a、b的对应情况.17. 假期中6名老同学聚会,每两名同学握一次手,则握手的次数一共是______.【答案】15【解析】【分析】每两名同学握一次手,则每个同学参与了5次握手,但每一次握手算了2次,据此列式计算即可.【详解】解:有6名同学,因此每个人握手的次数和为5×6=30次,由于每一次握手算了2次,所以它们握手的总次数为30÷2=15次,故答案为15.【点睛】本题考查握手问题,握手要做到不重不漏,类似于求对角线的条数.本题需注意每一次握手对每个人来说重复算了一次,也类似于比赛类问题中的单循环赛制.18. 小明和小红两人做游戏,小明对小红说:“你任意想一个数,把这个数加上5,然后乘以2接着减去4,最后除以2,把得到的结果告诉我,我就知道你想的是什么数结果小红把按规则计算出结果为20告诉了小明.”如果你是小明,你应该告诉小红,她想的数是______.【答案】17【解析】【分析】设这个数为a ,根据小明的运算规律列出方程,求出a 即是小红想的数.【详解】解:设这个数为a ,则小明的运算规律为:[(a+5)×2-4]÷2,∵小红按规则计算出结果为20,∴[(a+5)×2-4]÷2=20,解得a=17,即小红想的数是17.故答案为17【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共66分)19. 计算:(1)()()3-242+÷− (2) 【详解】解:(1)原式()-8210=+−=−;(2)原式,20. 解方程: (1)32(1)5x x −−=(2)2213123x x −+−=+ 【详解】解:(1)去括号得:3225x x −+=,移项得:2523x x −−=−−,合并同类项得:75x −=−, 解得:57x =; (2)去分母得:()()18322216x x −−=++,去括号得:1836426x x −+++,移项得:3426618x x −−=+−−,合并同类项得:716x −=−, 解得:167x =. 21.先化简,后求值:()()22223x y xy x y xy x y +−−−,其中1x =,1y =−. 答案:22−x y+5xy ,-322.算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个); 、 ;(2)如图2,如果、表示正,. 表示负,J 表示11点,Q 表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个): .【答案】(1)3×4+2×6、2×4×(6﹣3);(2)(﹣5)2﹣12﹣(﹣11).【解析】【分析】(1)利用24点游戏规则列出算式即可;(2)利用24点游戏规则列出算式即可.【详解】(1)根据题意得:3×4+2×6、2×4×(6﹣3);(2)根据题意得:(﹣5)2﹣12﹣(﹣11).故答案为(1)3×4+2×6、2×4×(6﹣3);(2)(﹣5)2﹣12﹣(﹣11)23. 若规定一种运算,23a b a b ∗=−,(1)计算:5(3)∗−;(2) (3)(21)5x x −∗−=,则x 是多少? 【答案】(1)19 ;(2)12【解析】【分析】(1)直接根据23a b a b ∗=−,进行计算即可;(2)根据题中新运算列出方程,解方程即可得到x 的值.【详解】解:(1)∵23a b a b ∗=−,∴()5(3)253310919∗−=×−×−=+=; (2)由题意得:2(3)3(21)5x x −−−=, 去括号得:62635x x −−+=,移项合并得:84x −=−, 解得:12x =. 【点睛】本题主要考查了有理数的乘法运算及解一元一次方程,正确理解新运算是解题关键.24.如图①所示是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于 ;②请用两种不同的方法表示图②中阴影部分的面积:方法1: ;方法2: ;③观察图②,直接写出三个代数式(m+n )2,(m ﹣n )2, mn 之间的等量关系: ;(2)根据(1)题中的等量关系,解决如下问题:若m+n =6,mn =4,求(m ﹣n )2的值.【答案】(1)①m n −;②()2m n −,()24m n mn +−,③()()224m n m n mn +−−=;(2)20. 【解析】【分析】(1)①结合图形可得出阴影部分正方形边长为m-n ;②可以直接利用小正方形的边长求面积,还可以用大正方形的面积减去四个小长方形的面积;③利用面积相等即可得出()()224m n m n mn +−−=;(2)结合(1)中得出的等量关系代入求解即可.【详解】解:(1)①观察图②中的阴影部分的正方形的边长为:m ﹣n .故答案为m ﹣n ;②两种不同的方法表示图②中阴影部分的面积:方法1:()2m n −;方法2: ()2m n +-4mn故答案为:()2m n − 、()2m n +-4mn ;③观察图②,三个代数式()2m n +,()2m n −,mn 之间的等量关系: ()2m n − =()2m n +-4mn故答案为:()2m n − =()2m n +-4mn ;(2)根据(1)题中的等量关系:把m+n =6,mn =4代入:()2m n − =()2m n +-4mn∴()2m n −=36-16=20.答:()2m n −的值为20.【点睛】本题考查的知识点是列代数式以及代数式的求值,解此题的关键是将阴影部分小正方形的面积用不同的代数式表示出来.25. 如图,正方形ABCD 和CEFG 的边长分别为m 、n ,且B 、C 、E 三点在一直线上试说明△AEG 的面积只与n 的大小有关.【答案】见解析【解析】【详解】试题分析:列代数式计算△AEG的面积,或说明△AEG的面积即为△CEG的面积=n2(5分)所以△AEG的面积只与n的大小有关. (6分)试题解析:根据图形可得:S△AEG=S△CGE+S梯形ABCG-S△ABE,因为四边形ABCD和CEFG是正方形,所以△GCE、△ABE是直角三角形,所以△GCE的面积=•CG•CE=n2.而四边形ABCG是直角梯形,所以面积=(AB+CG)•BC=(m+n)•m;又因为△ABE的面积=BE•AB=(m+n)•m所以S△AEG=S△CGE+S梯形ABCG-S△ABE =n2.故△AEG的面积的值只与n的大小有关.考点:1.正方形的性质;2.列代数式;3.整式的加减.26. 如图在数轴上A点表示数a,B 点表示数b,数a,b满足|a+2|+|b-4|=0;(1)点 A 表示的数为 ;点 B 表示的数为 ;(2)若在原点O处放一挡板,小球甲从点 A 处以1个单位/秒的速度向左运动;同时另一小球乙从点 B处以-2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,小球甲到原点的距离= ;小球乙到原点的距离= ;当t=3时,小球甲到原点的距离= ;小球乙到原点的距离= ;②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲、乙两小球到原点的距离相等时经历的时间.解:(1)∵|a+2|+|b-4|=0,∴a=-2,b=4,∴点A 表示的数为-2,点 B 表示的数为4,故答案为:-2,4;(2)①当t=1时,∵小球甲从点A 处以1个单位/秒的速度向左运动,∴小球甲1秒钟向左运动1个单位,此时,小球甲到原点的距离=3,∵小球乙从点 B 处以2个单位/秒的速度也向左运动,∴小球乙1秒钟向左运动2个单位,此时,小球乙到原点的距离=4-2=2,故答案为:3,2;当t=3时,∵小球甲从点 A 处以1个单位/秒的速度向左运动,∴小球甲3秒钟向左运动3个单位,此时,小球甲到原点的距离=5,∵小球乙从点 B处以2个单位/秒的速度也向左运动,∴小球乙 2秒钟向左运动4个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2,故答案为5,2;②当( 时,得t+2=4-2t,解得当t>2时,得t+2=2t-4,解得t=6.故当秒或t=6秒时,甲、乙两小球到原点的距离相等.。

初一数学期中考试试卷

初一数学期中考试试卷

初一数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -5B. 0C. 3D. -22. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形3. 如果a和b是两个连续的自然数,且a < b,那么a和b的和是:A. 2aB. 2bC. a + bD. 2ab4. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 65. 以下哪个选项是不等式?A. 3x + 2 = 11B. 2x - 5 > 3C. 4x = 8D. 5x - 76. 一个等腰三角形的底边长为6厘米,腰长为5厘米,那么这个三角形的周长是:A. 16厘米B. 17厘米C. 18厘米D. 19厘米7. 以下哪个选项是二次根式?A. √4B. √(-4)C. √2xD. √x^28. 如果一个数的平方是36,那么这个数是:A. 6B. -6C. ±6D. 369. 以下哪个选项是单项式?A. 3x^2 + 2xB. 5x - 3C. 2xD. x^2 - 4x + 410. 以下哪个选项是多项式?A. 2xB. 3x^2 - 5x + 7C. x^2D. 5二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。

12. 如果一个角的补角是120°,那么这个角的度数是______。

13. 一个数的立方是-8,那么这个数是______。

14. 一个数的平方根是2,那么这个数是______。

15. 一个等腰三角形的底角是45°,那么这个三角形的顶角是______。

16. 如果一个数的相反数是它本身,那么这个数是______。

17. 一个数的倒数是1/4,那么这个数是______。

18. 一个数的平方是25,那么这个数是______。

19. 如果一个数的绝对值是它本身,那么这个数是非负数,即这个数是______。

2024学年秋季学期初中数学七年级上册期中考试模拟试卷

2024学年秋季学期初中数学七年级上册期中考试模拟试卷

2024学年秋季学期初中数学七年级上册期中考试模拟试卷1.中国是世界上最早使用负数概念的国家.数学家刘徽在《九章算术》注文中指出“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若水位升高3m时记作+3m,则﹣5m表示水位()A.下降5m B.升高3m C.升高5m D.下降3m2.12024的相反数是()A.−12024B.2024C.±2024D.−20243.下列化简不正确的是()A.−(−4.9)=+4.9B.−(+4.9)=−4.9C.−[+(−4.9)]=+4.9D.+[−(+4.9)]=+4.94.春节期间冰雪旅游大热,杭州的小明同学准备去旅游,考虑温差准备着装时,他查询气温,杭州的气温是19℃,哈尔滨的气温是−4°C,则此刻两地的温差是()A.23℃B.19℃C.4℃D.15℃5.2024年春运期间,泸州市道路客运共投放客运班车2336辆,营业性运输累计发送旅客374万人次.将数据374万用科学记数法表示的是()A.3.74×105B.3.74×106C.0.374×107D.3.74×1076.代数式x2,st,1x+y,20%•x,√ab,√2ab,2a+b3中,多项式有()个A.0B.1C.2D.37.下列关于多项式5ab2−2a2bc−1的说法中,正确的是()A.它是三次三项式B.它是二次四项式C.它的最高次项是−2a2bc D.它的常数项是18.下列去括号正确的是()A.−3(x+y)=−3x+3y B.−(−a−b)=a+bC.a−2(b−c)=a−2b+c D.x−(3y+m)=x−3y+m9.下列运算正确的是()A.a3−a2=a B.−a+5a=4a C.a+a2=a3D.ab2+a2b=ab2 10.多项式1+2xy-3xy2的次数为()A.1B.2C.3D.511.一辆汽车以60 千米/时的速度行驶,从A城到B城需t小时,如果该车的速度每小时增加v千米,那么从A城到B城需要()A.60t v小时B.60tv+60小时C.vtv+60小时D.vt60小时12.比较大小:(1)−(−2)−|−2.5|,(2)−78−67.13.计算:−6÷(−5)×(−15)=.14.我国某次人口普查结果公布,全国总人口为1443497378人.把横线上的数改写成用“万”作单位,省略“万”后面的尾数是万.15.如图,线段AB=8cm,点C为线段AB上一点,BC=2cm,点D,E分别为AC和AB的中点,则线段DE的长为cm.16.写出一个与﹣2x2y是同类项的单项式为.17.有理数a、b、c在数轴上的位置如图所示,则|a|−3|a+b|+2|c−a|+4|b+c|可化简为.18.计算(134−78−712)÷(﹣78)+ 87÷(134−78−712)的结果为.19.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).20.计算:−14+30÷22×(−13)+12.21.先化简,再求值:x 2y ﹣2( 14 xy 2﹣3x 2y )+(﹣ 12 xy 2﹣x 2y ),其中|x ﹣ 32 |+(y+2)2=0.22. 先化简,再求值:已知a 2−1=0,求(5a 2+2a −1)−2(a +a 2)的值.23.74÷78−23×(−6) .24.先化简,再求值:3x 2y -[2x 2y -3(2xy -x 2y)-xy],其中x =- 12 ,y =2.25.(1)计算2(3ab 2−a 2b )−3(2a 2b −ab 2);(2)先化简,再求值:8a2−2[3a−(4a−1)+4a2],其中a=−2.26.如图所示,学校有一块宽20m,长40m的空闲长方形场地,中间有两条横纵相交且宽度相等的小道,为了美化校园环境,生物部的同学准备在场地上种植一些植被,若小道的宽为xm.(1)用含有x的代数式表示种植植被的面积;(2)当x=2时,计算种植植被的面积.。

江苏苏州2024-2025学年上学期七年级数学期中模拟卷1一4章 (解析版)

江苏苏州2024-2025学年上学期七年级数学期中模拟卷1一4章 (解析版)

苏州市2024-2025学年上学期初一数学期中模拟卷(考试时间:90分钟 试卷满分:100分)一、选择题,本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填涂在答题卷相应位置上......... 1. 2的相反数是( )A. 2B. 12C. 2−D. 4−【答案】C【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:2的相反数是-2,故选C .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 下列计算正确的是( )A. 326=B. 2416−=−C. 880−−=D. 523−−=− 【答案】B【解析】【分析】根据有理数的加法法则和减法法则与乘方法则进行计算即可.【详解】解:A. 328=,故错误;B. 2416−=−,故正确;C. 88-16−−=,故错误;D. 527−−=−,故错误.故选B.【点睛】本题主要考查了有理数与实数的运算,熟练掌握运算法则是解题的关键. 3. 单项式32−23x y z 的系数和次数分别为( ) A. ﹣3,5 B. 32−,5 C. ﹣3,6 D. 32−,6 【答案】D【解析】【分析】根据单项式系数和次数的定义计算即可. 【详解】∵32−23x y z 的系数和次数分别为32−,6, 故选D .【点睛】本题考查了单项式的概念,熟练掌握单项式的系数即单项式中的数字因数,单项式的次数即单项式中所有字母的指数和是解题的关键.4. 化简()221x x −−++的结果为( )A. 221x x −++B. 221x x −+C. 221x x −−D. 221x x −−+ 【答案】C【解析】【分析】根据去括号法则“如果括号外因数是负数,去括号后原括号内各项的符号与原来符号相反”化简,选择答案即可.【详解】解: 222121x x x x ,故选:C .【点睛】本题主要考查了整式的化简,熟记去括号法则是解题的关键.5. 下列说法中正确的是( )A. 2不是单项式B. 2abc −的系数是12−C. 单项式23r 的次数是3D. 多项式25612a ab −+的次数是4 【答案】B【解析】【分析】本题考查单项式与多项式定义,涉及单项式识别、单项式系数、次数及多项式次数等知识,熟记单项式及多项式定义,逐项验证是解决问题的关键.【详解】解:A 、2是单项式,该选项错误,不符合题意;B 、2abc −的系数是12−,该选项正确,符合题意; C 、单项式23r 的次数是2,该选项错误,不符合题意;D 、多项式25612a ab −+的次数是25a 或6ab 的次数,是2,该选项错误,不符合题意;故选:B .的6. 已知有理数a b 、,则a b b a b a a b +−−+、、在数轴上表示的点在原点右侧的个数为( ) A. 0个B. 1个C. 2个D. 无法确定 【答案】B【解析】 【分析】本题考查了有理数符号的判断,需分类讨论,当a b 、同号时,当a b 、异号且0a b +>时,当a b 、异号且0a b +<时,分别判断即可.【详解】解:当a b 、同号时,a b a b a b +--+、是负数,b a是正数, 所以在数轴上表示的点在原点右侧的个数为1个,当a b 、异号且0a b +>时,a b a b a b +--+、中有一个是正数,b a是负数, 所以在数轴上表示的点在原点右侧的个数为1个,当a b 、异号且0a b +<时,a b a b a b +--+、中有一个是正数,b a是负数, 所以在数轴上表示的点在原点右侧的个数为1个,综上所述,在数轴上表示的点在原点右侧的个数为1个.故选:B .7. 某临江的县城为进一步提升旅游业质量和档次,满足游客消费需求,开通了甲、乙两地沿江旅游航线,已知游艇在江中来往航行于甲、乙两地之间,顺流航行全程需2小时,逆流航行全程需3小时(实际船速=静水船±水速).已知水流速度为每小时3km ,求该县甲、乙两地的距离,若设该县甲、乙两地的距离为km x ,则所列方程为( ) A. 323x x += B. 923xx =+ C. 3323x x −=+ D. 3323x x +=− 【答案】C【解析】【分析】本题主要考查了由实际问题抽象出一元一次方程,明确题意,准确得到等量关系是解题的关键.设甲、乙两地的距离为km x ,根据题意,列出方程,即可求解.【详解】解:设甲、乙两地的距离为km x , 根据题意得:3323x x −=+. 故选:C .8. 已知方程()||110k k x −+=是关于x 的一元一次方程,则方程的解等于( ) A. 1B. 0C. 1−D. 12 【答案】D【解析】【分析】本题考查的是解一元一次方程和一元一次方程的定义,掌握一元一次方程的定义与求解是解题的关键.根据一元一次方程的定义,即含有1个未知数,且未知数的最高次数是1的整式方程是一元一次方程,据此求出k 的值,然后再求解方程即可.【详解】解:根据一元一次方程的定义可知,||1k =且10k −≠,解得:1k =−,原方程为:210x −+=, 解得:12x =, 故选:D9. 对于有理数a 、b ,定义一种新运算“※”,规定:a ※b =|a|﹣|b|﹣|a ﹣b|,则2※(﹣3)等于( )A. ﹣2B. ﹣6C. 0D. 2 【答案】B【解析】【分析】根据a ※b=|a|-|b|-|a-b|,可以求得所求式子的值.【详解】解:∵a ※b=|a|-|b|-|a-b|,∴2※(-3)=|2|-|-3|-|2-(-3)|=2-3-|2+3|=2-3-5=-6,故选:B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10. 已知一列数123a a a ,,,…,具体如下规律:2112n n n n n a a a a a ++=+=,(n 是正整数).若11a =,则61a 的值为( )A. 9B. 10C. 11D. 12【答案】A【解析】【分析】根据数列中的各项关系求出61a 和1a 的关系即可.【详解】∵2112n n n n n a a a a a ++=+=,(n 是正整数), ∴613031a a a =+151516a a a =++1582a a +()7842a a a =++74222a a a =++()344122a a a a =+++()1222122a a a a a =++++()1111122a a a a a =++++111232a a a =×++19a =∵11a =,∴619a =,故选:A .【点睛】此题考查了数字的变化规律,根据数列中的各项关系得到61a 和1a 的关系是解题的关键.二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卷相应位置上......... 11. 单项式23ax −的系数和次数依次是________.【答案】-3,3【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:单项式23ax −的系数和次数依次是-3,3,故答案:-3,3.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数是解题关键.12. 比较大小:()8−+______9−−; 23−______3(4−填“>”、“<”、或“=”符号). 【答案】 ①. > ②. >【解析】【分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小.①首先化简,然后比较大小即可;②通分,化成同分母分数,再比较其绝对值的大小,即可得出答案. 【详解】解:()88−+=− ①,99−=−,89−>−, ()89∴−+>−;2283312−== ②,3394412−==,891212 , 2334∴−>−. 故答案为:>;>.【点睛】本题主要考查了有理数大小比较,熟练掌握有理数比较大小的方法是解题关键.13. 台湾省自古以来就是中国领土不可分割的一部分,祖国统一是两岸人民的共同心愿.据统计,2022年台湾省常住人口总数约为23410000人,数据23410000用科学记数法可表示为______.【答案】72.34110×【解析】【分析】根据绝对值大于1的数表示为科学记数法的形式为10n a ×,n 为整数位数减去1,据此求解即可.【详解】723410000 2.34110=×,故答案为:72.34110×.【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示方法是解题关键. 14. 若x 与3互为相反数,则6x +的值为______.【答案】3【解析】为【分析】根据相反数的定义可得3x =−,再代入所求式子计算即可.【详解】解:x 与3互为相反数,3x ∴=−,6363x ∴+=−+=.故答案为:3.【点睛】本题考查了相反数,掌握相反数的定义是解答本题的关键.15. 按如图所示的程序计算,当输入x 的值为3−时,输出的值为_____.【答案】63【解析】【分析】本题主要与程序流程图有关的有理数计算,先输入3−,计算出结果,如果大于10则输出,如果小于10,则把计算的结果作为新的数输入,如此往复,直至计算的结果大于10进行输出即可.【详解】解:当输入3−时,计算的结果为()23191810−−=−=<,当输入8时,计算的结果为()2816416310−=−=>,∴输出结果为63,故答案为:63. 16. 已知23x y +=,则124x y −−=______. 【答案】5−【解析】【分析】本题考查了已知式子的值求代数式的值,先整理()124122x y x y −−=−+,再代入23x y +=,即可计算进行作答.【详解】解:∵23x y +=. ∴()1241221235x y x y −−=−+=−×=−,故答案为:5−.17. 关于x ,y 的代数式2232axy x xy bx y −+++中不含二次项,则()2023a b +=______.【答案】1【解析】【分析】将原式进行合并同类项,由题意可知,所有二次项的系数为0,则可确定a 、b 的值,再代入()2023a b +求值即可,本题考查了合并同类项,解题的关键是:充分理解多项式系数的定义.【详解】将代数式2232axy x xy bx y −+++合并同类项得: ()()223a xy b x y ++−+,由题意得二次项系数为0,则:20a +=,30b −=, 解得:2a =−,3b =,代入()2023a b +得:()202320233112=+=−,故答案为:1.18. 已知x ,a ,b 为互不相等的三个有理数,且a b >,若式子x a x b −+−的最小值为3,则2020a b +−的值为______.【答案】2023【解析】 【分析】本题考查绝对值,有理数的减法,由数轴上x a x b −+−表示的几何意义,求出a b −的值,即可得到答案. 【详解】解:∵x a x b −+−的最小值为3,且a b >,∴3a b −=,∴2020a b +−20203+2023=,∴2020a b +−的值为2023.故答案为:2023.三、解答题:本大题共8小题,共64分.19. 计算:(1)()11324234 +−×−; (2)()()2213442−×+−÷−. 【答案】(1)2−(2)172【解析】【分析】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,然后算加法即可.【小问1详解】 解:()11324234 +−×− 113(24)(24)(24)234×−+×−−×− 12(8)18=−+−+2;=−【小问2详解】 解:()()2213442−×+−÷− 1916(4)2=−×+÷− 9(4)2=−+− 17.2=− 20. 解方程:(1)2(1)25(2)x x −=−+;(2)5172124x x ++−=. 【答案】(1)67x =− (2)43x =【解析】 【分析】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.(1)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【小问1详解】解: 2(1)25(2)x x −=−+,∴222510x x −=−−,∴252102x x +=−+,∴76x =−, ∴67x =−; 【小问2详解】 解:5172124x x ++−=, ∴2(51)(72)4x x +−+=, ∴102724x x +−−=,∴107422x x −=−+,∴34x =, ∴43x =. 21. 先化简再求值:(3a 2b -2ab 2)-2(ab 2-3a 2b ),其中12,2a b == 【答案】2294a b ab −,16【解析】 【分析】先去括号,再合并同类项,然后将12,2a b ==代入,即可求解. 【详解】解:原式=22223226a b ab ab a b −−+=2294a b ab −当2a =,12b =时, 原式=2211924222××−××()=16. 【点睛】本题主要考查了整式加减混合运算中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.22. 已知()2120a b −++=,c 和d 互为倒数,e 和f 互为相反数,求()35332a cd e b f +−+−值. 【答案】4−的【解析】【分析】先根据非负数性质求解1a =,2b =−,再根据倒数,相反数的含义求解1cd =,0e f +=,再把原代数式变形,再代入求值即可.【详解】解:∵ ()2120a b −++=,∴10a −=,20b +=, 解得:1a =,2b =−,∵c 和d 互为倒数,e 和f 互为相反数, ∴1cd =,0e f +=, ∴()35332a cd e b f +−+−()3653a b cd e f =++−+31250=−+−4=−.【点睛】本题考查的是倒数,相反数的含义,绝对值,偶次方的非负性的应用,求解代数式的值,掌握“代入法求解代数式的值”是解本题的关键.23. 高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):17+,9−,10+,15−,3−,11+,6−,8−,(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.1升/千米,则这次养护共耗油多少升?(3)养护过程中,最远处离出发点有多远?【答案】(1)养护小组最后到达的地方在出发点的西方,距出发点3千米(2)这次养护小组的汽车共耗油7.9升(3)最远处离出发点有18千米【解析】【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果.(2)利用绝对值性质以及有理数加法法则求出即可;(3)分别求出每次养护距离出发点的距离,进而作出比较.【小问1详解】解:1791015311683−+−−+−−=−(千米), 所以养护小组最后到达的地方在出发点的西方,距出发点3千米;的的【小问2详解】 解:17910153116879+−++−+−++−+−=(千米), 790.17.9×=(升); 所以这次养护小组的汽车共耗油7.9升;【小问3详解】解:第一次:17,第二次:1798−=;第三次:81018+=;第四次:18153−=;第五次:330−=;第六次:01111+=;第七次:1165−=;第八次:583−=−;所以养护过程中,最远处离出发点有18千米.【点睛】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.24. 学校要利用专款建一长方形的自行车停车场,其他三面用护栏围起,其中长方形停车场的长为()23a b +米,宽比长少()a b −米.(1)求护栏的总长度;(2)若3010a b =,,每米护栏造价80元,求建此停车场所需的费用.【答案】(1)()411a b +米(2)建此停车场所需的费用为18400元.【解析】【分析】(1)直接利用整式的加减运算法则得出宽,进而得出答案;(2)利用(1)中所求,把已知数据代入得出答案.【小问1详解】解:由题意可得宽为:()()23234a b a b a b a b a b +−−=+−+=+米,则护栏的总长度为:()2324a b a b +++2328a b a b =+++()411a b +米;【小问2详解】解:由(1)得:当3010a b =,时,原式4301110230=×+×=(米), ∵每米护栏造价80元,∴2308018400×=(元), 答:建此停车场所需的费用为18400元.【点睛】此题主要考查了整式的加减的应用,正确合并同类项是解题关键.25. 已知数轴上两点A ,B 对应的数分别为1−,3,点P 为数轴上一动点,其对应的数为x .(1)若点P 为AB 的中点,则点P 对应的数是 .(2)数轴的原点右侧有点P ,使点P 到点A ,点B 的距离之和为8.请你求出x 的值.(3)现在点A ,点B 分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动.当点A 与点B 之间的距离为3个单位长度时,直接写出点P 对应的数.【答案】(1)1 (2)x 的值是5(3)点P 对应的数是3−或27−【解析】【分析】本题考查数轴上点表示的数及两点间距离,解题的关键是掌握点运动后表示的数与运动前表示的数的关系.(1)根据点P 为AB 的中点列方程即可解得答案;(2)分两种情况,当P 在线段AB 上时,由()()1348PA PB x x +=−−+−=≠ ,知这种情况不存在;当P 在B 右侧时,()()138x x −−+−=,求解即可; (3)设运动的时间是t 秒,表示出运动后A 表示的数是12t −+,B 表示的数是30.5t +,P 表示的数是16t −,根据点A 与点B 之间的距离为3个单位长度得:()()1230.53t t −+−+=,解出t 的值,即可得到答案.【小问1详解】解:∵A ,B 对应的数分别为1−,3,点P 为AB 的中点,∴()31x x −=−−,解得1x =,∴点P 对应的数是1;【小问2详解】解:当P 在线段AB 上时,()()1348PA PB x x +=−−+−=≠ , ∴这种情况不存在;当P 在B 右侧时,()()138x x −−+−=, 解得5x =,答:x 的值是5;【小问3详解】解:设运动的时间是t 秒,则运动后A 表示的数是12t −+,B 表示的数是30.5t +,P 表示的数是16t −, 根据题意得:()()1230.53t t −+−+=, 解得23t =或143t =, 当23t =时,P 表示的数是2161633t −=−×=−, 当143t =时,P 表示的数是141616273t −=−×=−, 答:点P 对应的数是3−或27−.26. 观察下列新的定义心运算:(2)(10)12 ++=+☆;(2)(10)12 −−=+☆;(4)(6)10++=+☆;(8)(2)10−−=+☆;(2)(10)12−+=−☆;(2)(10)12+−=−☆;(4)(6)10−+=−☆;(8)(2)10 +−=−☆. 0(12)12−=+☆;0(12)12+=+☆;(8)08+=+☆;(8)08−=+☆;(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号两数运算结果取正号..,并把绝对值相加.....; 两数进行☆运算时,异号两数运算结果取 号,并把 ;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于 ;(2)计算:()()902 −−=☆☆ ; (3)若()3314a a ×−=☆,试判断a 的值能否为0?若不能,求出a 符合条件所有可能的值. 【答案】(1)负,绝对值相加,这个数的绝对值(2)11−(3)a 的值不能为0,a 的值为8或10−【解析】【分析】本题考查了新定义,根据所给算式总结出运算法则是解答本题的关键. (1)观察所给算式总结即可;(2)根据新定义运算即可;(3)先判断a 不等于0,再根据新定义转化为一元一次方程求解即可.【小问1详解】两数进行☆运算时,同号两数运算结果取正号..,并把绝对值相加.....; 两数进行☆特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值. 故答案为:负,绝对值相加,这个数的绝对值【小问2详解】()()()929211−+=−+=−☆. 故答案为:11−;【小问3详解】当0a =时,∵()3313318a ×−=×−=☆,40a =,∴()3314a a ×−≠☆.∴a 的值不能为0.当0a >时,∵()3314a a ×−=☆,∴()3314a a ×−=+, ∴8a =;当0a <时, ∵()3314a a ×−=☆, ∴()3314a a ×−−−= , ∴10a =−. ∴a 的值为8或10−.。

七年级数学上册期中模拟卷人教版2024

七年级数学上册期中模拟卷人教版2024

七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版2024七年级上册1.1-3.2。

5.难度系数:0.85。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,数轴上的两个点分别表示数a 和2-,则a 的值可以是( )A .2B .1-C .4-D .02.在数轴上表示2-的点与原点的距离为( )A .2B .2-C .2±D .03.下列各对数中,互为相反数的是( )A .2与12B .(3)﹣﹣和3+﹣C .(2)﹣﹣与2﹣﹣ D .(5)+﹣与()5+﹣4.若0,0a b <>,则,,,b b a b a ab +-中最大的一个数是( )A .b a -B .b a +C .bD .ab5.根据地区生产总值统一核算结果,2023年上半年,子州县生产总值完成3665000000元,将数据3665000000用科学记数法表示为( )A .6366510⨯B .7366.510⨯C .93.66510⨯D .100.366510⨯6.周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x 杯饮料,y 份沙拉,则他们点的B 餐份数为( )A .10x -B .10y-C .x y-D .10x y--7.如图,a ,b 是数轴上的两个有理数,以下结论:①b a -<-;②0a b +>;③b a a b -<<-<;④+=-a b a b ,其中正确的是( )A .①②③B .②③④C .②③D .②④8.定义一种新运算:*a b ab b =-.例如:1*21220=⨯-=.则()()4*2*3⎡⎤--⎣⎦的值为( )A .3-B .9C .15D .279.已知数a ,b ,c 在数轴上的位置如图所示,化简a b a b a c +--+-的结果为( )A .2a b c ---B .a b c---C .a c--D .2a b c--+10.如图,这是由一些火柴棒摆成的图案,按照这种方式摆下去,摆第20个图案需用火柴棒的根数为( )A .20B .41C .80D .81第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。

24秋沪教七年级数学期中模拟卷(参考答案)

24秋沪教七年级数学期中模拟卷(参考答案)

2024-2025学年七年级数学上学期期中模拟卷参考答案一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,只有一项是符合题目要求的)123456B ACD C C二、填空题(本大题共12小题,每小题2分,共24分)7.25/0.48.3y4−2xy+6x2y−5x3y2−4x49.710.18 11.45/0.812.(x2+4)(x+2)(x−2)13.12x2−2y214.3b2−2ab 15.1716.±3217.−118.16三、简答题(每题5分,共30分.)19.(5分)【详解】解:(x2)3+(x3)2+(−x2)3+(−x3)2=x6+x6−x6+x6=2x6..................................5分20.(5分)【详解】解:原式=4x2−4x+1−2(x2+4x−12)=4x2−4x+1−2x2−8x+24=2x2−12x+25...................................5分21.(5分)【详解】解:原式=[2a−(b−3c)][2a+(b−3c)]=(2a)2−(b−3c)2=4a2−(b2−6bc+9c2)=4a2−b2+6bc-9c2..................................5分22.(5分)【详解】解:4x3y2−3x2y2−12x2y5÷−12xy=−8x2y+6xy+xy4...................................5分23.(5分)【详解】解:原式=−3ab a2b2−2ab+1=−3ab(ab−1)2..................................5分24.(5分)【详解】解:原式=m2+16n2−9mn2−mn2,=m2+16n2−9mn+mn m2+16n2−9mn−mn,=m2−8mn+16n2m2−10mn+16n2,=m−4n2m−2n m−8n...................................5分四、解答题(第25、26、27题每题8分,第28题10分,共34分.解答应写出文字说明,证明过程或演算步骤)25.(8分)【详解】(1)解:根据题意,A−B=12x2−6x+7,即A−5x2+3x−4=12x2−6x+7,∴A=12x2−6x+7+5x2+3x−4=17x2−3x+3;..................................4分(2)结合(1),可得A+B=17x2−3x+3+5x2+3x−4=22x2−1...................................8分26.(8分)【详解】解:原式=4xy2−3xy2+2x2y−xy2+2x2y=4x2y,..................................6分当x=−1,y=12时,原式=4×−12×12=2..................................4分27.(8分)【详解】(1)∵a+b=5,ab=32,∴a2−ab+b2=(a+b)2−3ab=52−3×32=412...................................4分(2)∵a+b=5,ab=32,∴a−b2=a+b2−4ab=52−4×32=19...................................8分28.(10分)【详解】(1)解:图中阴影部分的面积为S□ABCD+S□BEFG−S△ADE−S△CDG−S△EFG=m2+n2−12m m+n−12m m−n−12n2=m2+n2−12m2−12mn−12m2+12mn−12n2=12n2.答:图中阴影部分的面积为12n2...................................3分(2)解:如图,连接DG、CF,∵正方形ABCD和正方形BEFG的面积之差为12,∴m2−n2=12,则四边形DGFC==m2−n22=6,答:四边形DGFC的面积是6...................................6分(3)解:∵四边形DE18,=18=18,解得m+n=6或m+n=−6<0(不符合题意,舍去),又∵m2−n2=12,∴m+n m−n=6m−n=12,∴m−n=2,联立m+n=6m−n=2,解得m=4n=2...................................10分。

2024—2025学年人教版七年级上册期中模拟考试数学试卷

2024—2025学年人教版七年级上册期中模拟考试数学试卷

2024—2025学年人教版七年级上册期中模拟考试数学试卷一、单选题1.2024-的相反数是()A .2024B .2024-C .12024D .12024-2.中国空间站位于距离地面约400km 的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作()A .100+℃B .100-℃C .50+℃D .50-℃3.在0,2,﹣2,23这四个数中,最大的数是()A .2B .0C .﹣2D .234.(湖州中考)某花店的玫瑰每枝4元,兰花每枝8元,小丽买了a 枝玫瑰,b 枝兰花,一共花了()A .12a 元B .12b 元C .(4a +8b)元D .12(a +b)元5.冬天的脚步近了,白天和夜晚的温差很大,白天的最高气温能达到10℃左右,夜晚的最低气温为1-℃左右,则白天最高气温与夜晚最低气温的温差是()A .9-℃B .11-℃C .9℃D .11℃6.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为0.12-毫米,第三个为0.15-毫米,第四个为0.16毫米,则质量最差的零件是()A .第一个B .第二个C .第三个D .第四个7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是()A .0a b +>B .0a b ⋅>C .a b >D .b a b+>8.下列说法正确..的是()A .单项式227xy 的系数是2B .单项式227xy 的次数是2C .232x y x y -是四次多项式D .232x y x y -有两项,分别是232x y x y和9.如图,做一个试管架,在cm a 长的木条上钻4个圆孔,每个孔直径为4cm ,则x =()A .8cm 5a +B .16cm 5a -C .4cm 5a -D .8cm 5a -10.当1x =时,代数式551ax bx +-的值等于1000,那么当1x =-时,代数式551ax bx +-的值().A .1002B .1002-C .1001D .1001-二、填空题11.比较大小:-45-911.12.近似数42.37010⨯,精确到位.13.若关于a ,b 的代数式23x a b -与9y a b 是同类项,则y x 的值是.14.若x 为有理数,则式子22023x -+的最小值为.15.若有理数m ,n 满足220190m n -+-=,则m n +=.16.用黑白两种正六边形地面瓷砖按如图所示规律拼成若干图案,则第n 个图案中有白色地面瓷砖块.三、解答题17.计算(1)()528522514⎛⎫-+÷-⨯- ⎪⎝⎭;(2)()()221113232⎫⎛⎡⎤---+⨯-- ⎪⎣⎦⎝⎭.18.已知234A x x =-,222B x x y =+-(1)当2x =-时,试求出A 的值;(2)当12x =,13y =时,请求出3A B -的值.19.粮库3天内发生粮食进出库的吨数如下(“+”表示进库,“-”表示出库):26+32-15-34+38-20-(1)经过这三天,粮库里的粮食是增多了还是减少了?增多或减少了多少吨?(2)经过这3天,粮库管理员结算时发现粮库里还存480吨粮食,那么3天前粮库里的存粮有多少吨?(3)如果进库出库的装卸费都是每吨10元,那么这3天要付出多少装卸费?20.已知:2A ab a =-,2B ab a b =-++.(1)计算:52A B -;(2)若52A B -的值与字母b 的取值无关,求a 的值.21.如图,用三种大小不等的正方形①②③和一个缺角的正方形拼成一个长方形ABCD (不重叠且没有缝隙),若BF a =,GH a =,1GK a =+.(1)求正方形②和正方形③的边长(用含a 的代数式表示);(2)求长方形ABCD 的周长(用含a 的代数式表示),并求出当3a =时,长方形ABCD 的周长.22.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:b c a b c a -++--.23.已知,有7个完全相同的边长为m 、n 的小长方形(如图1)和两个阴影部分的长方形拼成1个宽为10的大长方形(如图2),小明把这7个小长方形按如图所示放置在大长方形中.(1)当52m n ==,时,大长方形的面积为__________;(2)请用含m ,n 的代数式表示下面的问题:大长方形的长:__________;阴影A 的面积:__________;阴影B 的周长__________;(3)请说明阴影A 与阴影B 的周长的和与m 的取值无关.24.我们把按一定规律排列的一列数,称为数列,若对于一个数列中依次排列的相邻的三个数m 、n 、p ,总满足2p m n =-,则称这个数列为理想数列.(1)若数列2,1-,a ,4-,b ,…,是理想数列,则a =,b =;(2)若数列x ,3x ,4,…,是理想数列,求代数式22233x x -+的值.(3)若数列…,m ,n ,p ,q …,是理想数列,且122p q -=,求代数式()()2223492022n n m m n -++-+的值.25.如图,数轴上有A 、B 、C 、D 四个点,分别对应a ,b ,c ,d 四个数,其中10a =-,8b =-,()214c -与20d -互为相反数,(1)求c ,d 的值;(2)若线段AB 以每秒3个单位的速度,向右匀速运动,当t =时,点A 与点C 重合,当t =时,点B 与点D 重合;(3)若线段AB 以每秒3个单位的速度向右匀速运动的同时,线段CD 以每秒2个单位的速度向左匀速运动,则线段AB 从开始运动到完全通过CD 所需时间多少秒?(4)在(3)的条件下,当点B 运动到点D 的右侧时,是否存在时间t ,使点B 与点C 的距离是点A 与点D 的距离的4倍?若存在,请求出t 值,若不存在,请说明理由.。

七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试【含答案】

七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试【含答案】

22.小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140 个,平均每天
生产 20 个,但由于种种原因,实际每天生产量与计划量相比有出入,下表是小明妈妈某周
的生产情况(超 产记为正、减产记为负):
星期 一 二 三 四 五 六 日
增减产值 +10 -12 -4 +8 -1 +6 0 (1)根据记录的数据求出小明妈妈星期三生产玩具的个数; (2)根据记录的数据求小明妈妈本周实际生产玩具多少个; (3)该厂实行“每周计件工资制”,每生产一个玩具可得工资 5 元,若超额完成任务,则超过部 分每个另奖 3 元;少生产一个则倒扣 3 元,那么小明妈妈这一周的工资总额是多少元? 23.已知有理数 a,b,c 在数轴上对应点的位置如图所示:
2024-2025 学年七年级数学上学期期中模拟卷
注意事项:
(考试时间:120 分钟 试卷满分:120 分)
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案 标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上
D. - 2m2n 的系数是 - 2
5
5
6.已知有理数 a,b 在数轴上的位置如图所示,则下列关系不正确的是( )
A. a + b < 0
B. a + b > 0
C. ab < 0
D. a - b < 0
试卷第 1 页,共 7 页
7.下列去括号正确的是( )
A. x - 4 y - 2 = x - 4 y - 2 C. x + y - 3 = x + y - 3

七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试[含答案]

七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试[含答案]

2024-2025学年七年级数学上学期期中模拟试卷(考试时间:120分钟,试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.测试范围:华东师大版2024七年级上册第1章有理数~第2章整式及其加减.5.难度系数:0.68.第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2024的相反数是( )A .2021B .2024-C .12024D .12024-2.下列四个式子中,计算结果最小的是( )A .2(32)--B .2(3)(2)-´-C .223(2)-¸-D .2332--3.下面合并同类项正确的是( )A . 235a b ab +=B .242pq pq pq -=-C .3343m m -=D .222729x y x y x y -+=- 4.数轴上表示数m ,n 的点的位置如图所示,则下列结论不正确的是( )A .0m n -<B .11m n -<-C .33m n-<-D .22m n <5.下列说法中正确的是( )A .312x p 的系数是12B .225y x y xy -+的次数是7C .4不是单项式D .2xy -与4yx 是同类项6.按下列图示的程序计算,若开始输入的值为3x =,则最后输出的结果是( )A .6B .21C .115D .2317.若5p =,3q =,且0pq >,则p q +的值为( )A .2B .8-C .2或2-D .8或8-8.一个多项式加上2345a a -+,再减去2262a a -+等于23a -,则这个多项式为( )A .2986a a ---B .2986a a -+-C .2946a a +-D .2986a a --9.0a <,则化简a a a a a a ++-的结果为( )A .2-B .1-C .0D .210.若代数式229(93)x ax y bx x y ++--++值与x y 、无关,则a b -+的值为( )A .0B .1-C .2-D .2第二部分(非选择题 共90分)二、填空题:本题共8小题,每小题3分,共24分.11.单项式243xy 的系数是 .12.用简便方法计算:131319151717-´-´= .13.已知212n x y -与3m x y 是同类项,则m n -= .14.化简:()3321a a ---=éùëû .15.对于有理数,a b ,定义2a b a b =-※,化简式子()()()3x y x y y éù-+-=ëû※※ .16.已知有理数a ,b ,c 在数轴上的位置如图所示,则化简2a c a b c b ++--+的结果是 .17.如果240a b ++-=,则ab 的值为 .18.一名同学在计算3A B +时,误将“3A B +”看成了“3A B -”,求得的结果是2658x x -+,已知2373B x x =++,则3A B +的正确答案为 .三、解答题:本题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.19.计算:(1)()()()852436-+´---´¸-;(2)()()()2.538419-´´-¸-;(3)12571839618æö-´--+-ç÷èø(4)()21141345éùæö----´¸-ç÷êúèøëû20.先化简,再求值:2211221323a a a a æöæö-+-++ç÷ç÷èøèø,其中5a =-.21.阅读下列材料:计算:1111243412æö¸-+ç÷èø解法一:原式11111111243244241224=¸-¸+¸=;解法二:原式14311212412121224124æö=¸-+=¸=ç÷èø;解法三:原式的倒数为11112143412241224æö-+¸=¸=ç÷èø,故原式14=.(1)上述得出的结果不同,肯定有错误的解法,则解法______是错误的;(2)请你运用合适的方法计算:113224261473æö-¸--+ç÷èø.22.一出租车一天下午2小时内 以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:公里)依先后次序记录如下:9+,3-,5-,4+,8-,6+.(1)该车2小时内最远时在鼓楼什么方向?离鼓楼多远?将最后一名乘客送到目的地,该车在出发地什么方向?离出发地多远?(2)若每公里收费为3元,且每百公里耗油10升,汽油价格每升6元,那么该司机这2小时除去汽油费后收入是多少?(3)司机每天还要向出租车公司上交180元的管理费,若一天按照工作8小时计算,一月安28天算,问该司机辛苦一个月后的收入约为多少元?23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.小马虎做一道数学题“两个多项式A ,B ,已知2236B x x -=+,试求2A B -的值”.小马虎将2A B -看成2A B +,结果答案(计算正确)为2529x x -+.(1)求多项式A ;(2)若多项式21C mx nx =-+,且满足A C -的结果不含2x 项和x 项,求m ,n 的值.25.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是_____;表示2-和1两点之间的距离是_____;一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.(2)如果12x +=,那么x =______;(3)若34a -=,23b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是______,最小距离是_____.(4)若数轴上表示数a 的点位于3-与5之间,则35a a ++-=_____.(5)当a =_____时,154a a a -+++-的值最小,最小值是_____.1.B【分析】本题主要考查了相反数的定义,根据“只有符号不同的两个数互为相反数”即可解答,熟练掌握其定义是解决此题的关键.【详解】2024的相反数是2024-,故选:B .2.D【分析】本题主要考查有理数的乘方和有理数大小比较.原式各项计算得到结果,即可做出判断.【详解】解:22(32)(5)25--=-=;2(3)(2)(3)412-´-=-´=-;2293(2)944-¸-=-¸=-;23329817--=--=-,91712254-<-<-<.故选:D .3.B【分析】本题考查了合并同类项,系数相加字母部分不变是解题关键.根据合并同类项的法则,可得答案.【详解】A 、不是同类项不能合并,故A 错误;B 、系数相加字母部分不变,242pq pq pq -=-,故B 正确;C 、系数相加字母部分不变,33343m m m -=,故C 错误;D 、系数相加字母部分不变,222725x y x y x y -+=-,故D 错误;故选:B .4.C【分析】本题考查了点在数轴上的位置判断式子的正负,根据m 、n 在数轴上的位置可得m n <,根据不等式的性质逐一判断即可求解,熟练掌握数轴上点的特征和不等式的基本性质是解题的关键.【详解】解:由图得:m n <,A 、0m n -<,则正确,故不符合题意;B 、11m n -<-,则正确,故不符合题意;C 、33m n ->-,则错误,故符合题意;D 、22m n <则正确,故不符合题意.故选:C .5.D【分析】本题考查了同类项、单项式、多项式,根据单项式的定义,同类项的定义,多项式的次数,可得答案,熟记单项式的定义,同类项的定义,多项式的次数是解题关键.【详解】解:A 、312x p 的系数是12π,故选项不符合题意;B 、225y x y xy -+的次数是3,故选项不符合题意;C 、4是单项式,故选项不符合题意;D 、2xy -与4yx 是同类项,说法正确,故选项符合题意;故选:D .6.D【分析】观察图示我们可以得出关系式为:(1)2x x +,因此将x 的值代入就可以计算出结果.如果计算的结果<等于100则需要把结果再次代入关系式求值,直到算出的值100>为止,即可得出y 的值.解答本题的关键就是弄清楚题图给出的计算程序.一要注意结果100>才可以输出,二是当<等于100是就是重新计算,且输入的就是这个数.【详解】解:依据题中的计算程序列出算式:由于(1)3(31)622x x +´+==,6100<Q \应该按照计算程序继续计算6(61)212´+=,21100<Q \应该按照计算程序继续计算21(211)2312´+=,\输出结果为231.故选:D .7.D 【分析】本题主要考查了绝对值、有理数乘法运算法则、代数式求值等知识,结合题意确定p q 、的值是解题关键.根据绝对值的性质可知5p =±,3q =±,再根据有理数乘法运算法则可得p q 、同号,即可确定p q 、的值,然后分别代入求值即可.【详解】解:∵5p =,3q =,∴5p =±,3q =±,又∵0pq >,即p q 、同号,∴5p =,3q =或5p =-,3q =-,当5p =,3q =时,538p q +=+=,当5p =-,3q =-时,(5)(3)8p q +=-+-=-,综上所述,p q +的值为8或8-.故选:D .8.B【分析】本题考查整式的加减运算,用23a -加上2262a a -+,再减去2345a a -+,即可得出结果.【详解】解:()2223262345a a a a a -+-+--+2223262345a a a a a =-+-+-+-2263224325a a a a a =++--+-+-2689a a +=--;故选:B .9.B【分析】本题主要考查了绝对值的意义,掌握负数的绝对值等于这个数的相反数是解题的关键.先根据已知条件化简绝对值,然后进行计算即可.【详解】解:∵0a <,∴()()()012a a a aa a a a a a a a a a a+-++=+=+=------.故选:B .10.D【分析】本题主要考查整式的加减运算,熟练掌握运算法则是解题的关键.先对代数式进行化简,根据题意求出a b 、的值,即可得到答案.【详解】解:229(93)x ax y bx x y ++--++22993x ax y bx x y =++-+--,2(1)(1)3b x a x =-++-,由于代数式229(93)x ax y bx x y ++--++值与x y 、无关,故10b -=且10a +=,解得1,1b a ==-,故112a b -+=+=,故选D .11.43【分析】本题考查了单项式的概念,单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.【详解】解:单项式243xy 的系数是43.故答案为:43.12.26-【分析】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.根据乘法分配律计算即可求解.【详解】解:131319151717-´-´()13191517=-´+133417=-´26=-.故答案为:26-.13.1-【分析】本题考查了同类项的定义,根据同类项的定义“字母相同,相同字母的指数也相同”可求出m n ,的值,再代入计算即可求解,掌握同类项的定义是解题的关键.【详解】解:根据题意,32n m ==,,∴231m n -=-=-,14.1a -##1a -+【分析】本题考查了整式的加减.先去括号,再合并同类项,最后得出结果即可.【详解】解:()3321a a éù---ëû()3322a a =--+3322a a =-+-1a =-,故答案为:1a -.15.23x y -##32y x-+【分析】此题考查了整式的加减,利用题中的新定义计算即可求出值,熟练掌握运算法则是解本题的关键.【详解】解:()()()()()()323x y x y y x y x y y éùéù-+-=--+-ëûëû※※※()()33x y y =--※()()233x y y =---26323x y y x y =-+=-.故答案为:23x y -.16.a【分析】本题考查了根据有理数在数轴上的位置判断式子的符号,绝对值化简,整式的加减运算,正确地判断式子的符号化简绝对值是解题的关键.由数轴可知:0c b a <<<,c b >,c a >,进而可得出0a c +<,20a b ->,0c b +<,然后化简绝对值,最后再行进加减运算即可.【详解】解:由数轴可知:0c b a <<<,c b >,c a >,∴0a c +<,20a b ->,0c b +<,∴2a c a b c b++--+()()2a c a b c b =-++-++2a c a b c b=--+-++a =,17.8-【分析】此题考查了有理数的乘法及绝对值,根据绝对值的非负性求出a 与b 的值,即可求出ab 的值,正确理解绝对值的意义,熟练掌握运算法则是解题的关键.【详解】解:∵240a b ++-=,∴20a +=,40b -=,则2a =-,4b =,∴248ab =-´=-故答案为:8-.18.212914x x ++【分析】本题主要考查整式的加减.根据题意列出相应的式子,结合整式的加减的相应的法则进行运算即可.【详解】解:由题意得:23658A B x x -=-+,23658A x x B \=-++,2373B x x =++Q ,223658373A x x x x \=-++++29211x x =++,3A B\+229211373x x x x =+++++212914x x =++.故答案为:212914x x ++.19.(1)20-(2)20-(3)2(4)110-【分析】本题主要考查了有理数的混合计算:(1)先计算乘除法,再计算加减法即可;(2)根据有理数乘除法计算法则求解即可;(3)根据乘法分配律求解即可;(4)按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【详解】(1)解:原式()()810126=----¸-8102=---20=-;(2)解:原式()103819=´¸-()102=´-20=-;(3)解:原式()()()12571818181839618æö=-´---´+-´--´ç÷èø64157=+-+2=;(4)解:()21141345éùæö----´¸-ç÷êúèøëû()314145éùæö=----¸-ç÷êúèøëû()21445æö=---¸-ç÷èø()18145=--¸-9110=-+110=-.20.2a -+,7【分析】本题主要考查了整式加减的化简求值,先去括号,然后合并同类项化简,最后代值计算即可.【详解】解:2211221323a a a a æöæö-+-++ç÷ç÷èøèø22423a a a a =--+++2a =-+,当5a =-时,原式()527=--+=.21.(1)一;(2)114-.【分析】(1)根据题意,第一种解法是错误,除法运算没有这样的运算律,不能自己杜撰乱用致错.(2)选择适当且正确的方法解答即可.本题考查了除法的运算,乘法分配律,熟练掌握运算律是解题的关键.【详解】(1)解:根据题意,得第一种解法是错误的,故答案为:一.(2)解:原式的倒数为132216147342æöæö--+¸-ç÷ç÷èøèø()132********æö=--+´-ç÷èø791228=-++-14=-,故原式114=-.22.(1)该车2小时内最远在鼓楼的东方,离鼓楼有9公里,将最后一名乘客送到目的地,该车在鼓楼的东方,离出发点3公里(2)84元(3)4368元【分析】此题考查了有理数加减混合运算的应用,正数与负数,以及绝对值,弄清题意是解本题的关键.(1)将记录的数字相加得到结果,即可做出判断;(2)将记录的数字绝对值相加得到总路程数,算出总收入-汽油费,即可解答;(3)计算出司机的总收入-所交的管理费,即可解答.【详解】(1)解:送完第1名乘客,离出发地(鼓楼)的距离为9公里,第2名:()()936++-=(公里),第3名:()()651++-=(公里),第4名:145+=(公里),第5名:()583+-=-(公里),第6名:363-+=(公里),则,该车2小时内最远在鼓楼的东方,离鼓楼有9公里,将最后一名乘客送到目的地,该车在鼓楼的东方,离出发点3公里;(2)93548635++-+-+++-++=(公里),353105´=(元),1035621100´´=(元),1052184-=(元),答:该司机这2小时除去汽油费后收入是84元.(3)842828180284368¸´´-´=(元)答:该司机辛苦一个月后得收入约为4368元.23.(1)()24ab x -平方米(2)196平方米【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积;(2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.【详解】(1)解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.∴由图可得,阴影部分的面积是2(4)ab x -平方米;(2)解:当20a =,10b =,1x =时,24ab x -2201041=´-´2004=-196=(平方米),即阴影部分的面积是196平方米.24.(1)243+-x x (2)1m =,n =-4【分析】(1)根据题意,按照2A B +的结果为2529x x -+得到等式()222365922x x x A x +-=-++,由加法的含义列式计算即可得到答案;(2)先计算()()2144A C m x n x -=-++-,再根据A C -的结果不含2x 项和x 项建立方程求解即可得到答案.【详解】(1)解:Q 2236B x x -=+,22529A B x x =-++,\()225292236A x x x x =-+--+225294612x x x x =-+-+-243x x =+-;(2)∵243A x x =-+,21C mx nx =-+,∴()22431A C x x mx nx -=+---+22431x x mx nx =+--+-()()2144m x n x =-++-;∵A C -的结果不含2x 项和x 项,∴10m -=,40n +=,解得:1m =,n =-4.【点睛】本题考查的是整式的加减运算的应用,多项式不含某项的含义,掌握整式的加减运算的运算法则是解本题的关键.25.(1)1;3(2)1或3-(3)12;2(4)8(5)1,9【分析】(1)根据数轴,观察两点之间的距离即可解决;(2)根据数轴上两点间的距离,分两种情况即可解答;(3)根据数轴上两点间的距离分别求出a ,b 的值,再分别讨论,即可解答;(4)根据35a a ++-表示数a 的点到3-与5两点的距离的和即可求解;(5)分类讨论,即可解答.【详解】(1)解:由数轴得数轴上表示3和2的两点之间的距离是:321-=;表示2-和1两点之间的距离是:()123--=;故答案:1;3.(2)解:由12x +=得,()12x --=,所以表示x 与1-距离为2,因为与1-距离为2的是1或3-,所以1x =或3x =-.故答案:1或3-.(3)解:由34a -=,23b +=得,34a -=,()23b --=,所以表示a 与3的距离为4,b 与2-的距离为3,,所以7a =或1-,1b =或5-,当7a =,=5b -时,则A 、B 两点间的最大距离是12,当1a =,1b =-时,则A 、B 两点间的最小距离是2,故答案:12,2.(4)解:35a a ++-()35a a --+-=所以表示a 与3-的距离加上a 与5的距离的和,因为表示数a 的点位于3-与5之间,所以583a a +-=+,故答案:8.(5)解:154a a a -+++-()154a a a =-+--+-,所以表示a 与1、5-、4的距离之和,①如图,当表示a 的点在4的右侧时,即4a >,由数轴得:154a a a -+++-()9334a =++-3=a ,所以a >312,所以15412a a a -+++->;②如图,当表示a 的点在1和4的之间时,即14a <<,由数轴得:154a a a -+++-()91a =+-因为10a ->,所以()919a +->,所以1549a a a -+++->;③如图,当表示a 的点在5-和1的之间时,即51a -<<,由数轴得:154a a a -+++-()91a =+-因为10a ->,所以()919a +->,所以1549a a a -+++->;④当表示a 的点在5-或1或4的点上时,即5a =-或1a =或4a =,如图,当1a =时,154369a a a -+++-=+=;如图,当4a =时,1543912a a a -+++-=+=;如图,当5a =-时,1546915a a a -+++-=+=;因为91215<<,所以当表示a 的点在5-或1或4的点上时,仅当1a =时,154a a a -+++-的最小值为9;综上所述:当1a =,154a a a -+++-的最小值为9.故答案: 1,9.【点睛】本题主要考查了绝对值的应用,数轴上用绝对值表示两点之间的距离,理解绝对值表示距离的意义,掌握距离的求法是解题的关键.。

七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试[含答案]

七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试[含答案]

2024-2025学年七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:北京版2024七年级上册第一章-第二章.5.难度系数:0.85.第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算13--的结果是( )A .-2B .2C .-4D .42.下列方程中是一元一次方程的是( )A .5x =-B .242x x x -=+C .231x x -=-D .10.254x x +=+3.如图,数轴上被墨水遮盖的点表示的数可能是( )A .1-B . 1.5-C .3-D .5-4.在31-.,0,+2,(7)--,15--,π2-,3(2)-中,负有理数有( )A .2个B .3个C .4个D .5个5.若a 、b 互为相反数,则下列等式:①0a b +=;②0a b +=;③0a b -=;④0a b ´=其中一定成立的个数为( )A .1B .2C .3D .46.某工厂计划每天烧煤5吨,实际每天少烧2吨,m 吨煤多烧了20天,则可列方程是( )A .2025m m -=B .2023m m -=C .2057m m -=D .2035m m -=7.如图所示是计算机程序流程图,若开始输入1x =,则最后输出的结果是( )A .11B .11-C .13D .13-8.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简b a a c b c --+--的结果是( )A .0B .2bC .2cD .2a-第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分.9. 2.78- 425-.(填“>”“<”或“=”)10.如果方程1320m x ++=是关于x 的一元一次方程,那么m 的值是 .11.中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利80元记作80+元,那么亏本70元记作 元.12.规定图形表示运算a b c -+,图形表示运算x z y w +--,则+= .(直接写出答案)13.在边长为9cm 的正方形ABCD 中,放置两张大小相同的正方形纸板,边EF 在AB 上,点K ,I 分别在BC ,CD 上,若区域I 的周长比区域Ⅱ与区域Ⅲ的周长之和还大6cm ,则正方形纸板的边长为 cm .14.在解关于y 的方程21132y y a -+=-时,小明在去分母的过程中,右边的“1-”漏乘了公分母6,因而求得方程的解为4y =,则方程正确的解是 .15.若关于x 的一元一次方程3x k +=和123x k x k --=的解互为相反数,则k = .16.已知一个长方形的周长为36cm ,若长方形的长减少1cm ,宽扩大为原来的2倍后成为一个正方形,设原来长方形的长为x cm ,则可列方程 .三、解答题:本题共12小题,共68分.解答应写出文字说明、证明过程或演算步棸.17.一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?18.解方程:43(2)x x -=-.19.计算:()2311154éù--´--ëû20.一个两位数,个位上的数字与十位上的数字之和是6,若把个位上的数字与十位上的数字调换位置,那么所得的新数比原数的三倍多6,求原来的两位数.21.在给出的数轴上,把下列各数表示出来,并用“>”连接各数.22-, 1.5-,122-,0,()2--,5-22.有甲、乙两个粮仓,已知乙仓原有粮食35 吨.如果从甲仓取出 15 吨粮食放入乙仓,这时乙仓的存粮是甲仓的 25,则甲仓原有粮食多少吨?23.下列数阵是由50个偶数按照5×10排成的,框内有四个数.(1)猜测:图中框内四个数之和与数字4有什么关系?(2)在数阵中任意做一类似于(1)中的框,设左上角的数为x ,那么其他3数怎样表示?(3)任意移动这个框,是否都能得到(1)的结论?你能证明这个结论吗?24.如图,每个图形都由同样大小的小正方形按一定规律组成。

2024—2025学年人教版七年级上册数学期中考试模拟试卷

 2024—2025学年人教版七年级上册数学期中考试模拟试卷

人教版2024—2025学年秋季七年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟 注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

笞卷前,考生务必 将自己的姓名、准考证号填写在答题卡上。

2.回答第I 卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置 ,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II 卷时,将答案写在第II 卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题(每题只有一个正确选项,每小题3分,满分30分) 1.﹣2024的相反数( )A .2024B .﹣2024C .20241D .202412.下列说法正确的是( )A .0既不是正数也不是负数B .最小的正数0C .绝对值等于3的数是3D .任何有理数都有倒数3.下列各组中,不是同类项的是( ) A .52与25 B .﹣ab 与baC .0.2a 2b 与﹣a 2bD .a 2b 3与﹣a 3b 24.下列式子去括号正确的是( )A .﹣(7a +3b ﹣5c )=﹣7a ﹣3b ﹣5cB .7a +2(3b ﹣3)=7a +6b ﹣3C .5a ﹣(b ﹣5)=5a ﹣b ﹣5D .﹣2(3x ﹣y +1)=﹣6x +2y ﹣2 5.一个多项式与m 2﹣2n 2的和是5m 2﹣3n 2+1,则这个多项式为( ) A .6m 2﹣5n 2+1B .﹣4m 2+n 2﹣1C .4m 2﹣n 2﹣1D .4m 2﹣n 2+16.一台电视机成本价为a 元,销售价比成本价增加了25%,因库存积压,所以就按销售价降价30%出售,那么每台实际售价为( ) A .(1+25%)(1﹣30%)a 元 B .30%(1+25%)a 元C .(1+25%)(1+30%)a 元D .(1+25%+30%)a 元7.关于x 的多项式3x 4﹣(m +5)x 3+(n ﹣1)x 2﹣5x +3不含x 3和x 2,则( ) A .m =﹣5,n =﹣1 B .m =5,n =1 C .m =﹣5,n =1 D .m =5,n =﹣18.若|a ﹣3|=3﹣a ,则a 的取值范围是( ) A .a >3B .a <3C .a ≥3D .a ≤39.若x=﹣1时,ax5+bx3+cx+1=6,则x=1时,ax5+bx3+cx+1=()A.﹣3B.12C.﹣6D.﹣410.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R二、填空题(每小题3分,满分18分)11.如果﹣x m y与2x3y n+5是同类项,则m+n=.12.m和n互为相反数,p和q互为倒数,则3(m+n)﹣pq的值为.13.如果一个单项式的系数和次数分别为m、n,那么2mn=.14.比较大小:﹣﹣(填“>”“<”或“=”)15.若|a|=3,|b|=2,且a﹣b<0,则a+b的值等于.16.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.人教版2024—2025学年秋季七年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________题号12345678910答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.先化简,再求值:(3a2﹣ab+7)﹣(﹣4a2+2ab﹣6),其中a=﹣1,b=2.18.某一出租车一天下午以火车站为出发地在东西方向营运,规定向西走为正,向东走为负,行车里程(单位:km),依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+11(1)出租车司机将最后一名乘客送达目的地,那么出租车离火车站出发点多远?在火车站的什么方向?(2)若每千米价格为2.2元,司机一个下午的营业额是多少?19.已知:A﹣B=7x2﹣7xy,且B=﹣4x2+6xy+7(1)求A等于多少?(2)若A中x,y满足|x+1|与(y﹣2)2互为相反数,求A的值.20.已知|x|=2,|y|=7.(1)若x>0,y>0,求x﹣y的值;(2)若xy<0,求x+y的值;(3)求x2y﹣xy2+21的值.21.小华坐公交车要投两元钱,他发现刷学生卡可以省钱,于是在公交总站办理了学生卡,充值了50元,如果小华乘车的次数用n表示,则记录他每次乘车后的余额m(元)如下表:(1)写出用乘车的次数n表示余额m的式子.(2)利用上式计算乘了20次车后,余额为多少?(3)小华最多能乘几次车?22.若用点A、B、C分别表示有理数a、b、c,如图:(1)判断下列各式的符号:a+b0;c﹣b0;c﹣a0(2)化简|a+b|﹣|c﹣b|﹣|c﹣a|次数n(次)余额m(元)150﹣0.9=49.1 250﹣1.8=48.2 350﹣2.7=47.3 450﹣3.6=46.4……23.已知多项式(x2+mx﹣y+3)﹣(3x﹣2y+1﹣nx2).(1)若多项式的值与字母x的取值无关,求m、n的值;(2)在(1)的条件下,先化简多项式3(m2﹣mn﹣n2)﹣(3m2+mn+n2),再求它的值;(3)在(1)的条件下,求(n+m2)+(2n+m2)+(3n+m2)+…(9n+ m2)24.已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5表示的是x5的系数,a4表示的是x4,以此类推.当x=2时,35=25•a5+24•a4+23•a3+22•a2+2•a1+a0.(1)取x=0,则可知a0=.(2)利用特殊值法求﹣a5+a4﹣a3+a2﹣a1+a0的值.(3)探求a4+a2的值.25.已知,A,B在数轴上对应的数分别用a,b表示,且(a+5)2+|b﹣15|=0.(1)数轴上点A表示的数是,点B表示的数是(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,当C点在数轴上且满足AC=3BC时,求C点对应的数.(3)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动,当P 运动到B点时,再立即以同样速度返回,运动到A点停止;点P从点A出发时,另一动点Q从原点O出发,以1个单位长度/秒速度向B运动,运动到B 点停止.设点Q运动时间为t秒.当t为何值时,点P与点Q之间的距离为2个单位长度.。

24-25学年七年级数学期中模拟卷01(全解全析)【测试范围:七年级上册第1章-第4章】(人教版)

24-25学年七年级数学期中模拟卷01(全解全析)【测试范围:七年级上册第1章-第4章】(人教版)

2024-2025学年七年级数学上学期期中模拟卷01(人教版2024)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一章~第四章。

5.难度系数:0.85。

一、选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.规定:(→2)表示向右移动2,记作+2,则(←5)表示向左移动5,记作()A.+5B.-5C.15D.-152.2023年9月23日-10月8日,第19届亚运会在杭州举办,据浙江省统计局基于GDP模型预测,亚运会为杭州带来的GDP拉动量约为4141亿元人民币.请将4141亿用科学记数法表示为()A.4.141×1012B.4.141×1011C.0.4141×1012D.41.41×1010【答案】B【详解】解:4141亿=4141×108=4.141×1011,故选B3.如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,A、B、C、D哪个球最接近标准( )A .-3.5B .+0.7C .-2.5D .-0.6【答案】D【详解】通过求五个排球的绝对值得:|-0.6|=0.6,|+0.7|=0.7,|-2.5|=2.5,|-3.5|=3.5,|5|=5,-0.6的绝对值最小.所以最后一个球是接近标准的球.故选D .4.在式子5mn 2,x ―1,―3,ab +a 2,―p ,2x 2―x +3中,是单项式的有( )A .1个B .2个C .3个D .4个5.下列能够表示比x 的12倍多5的式子为( )A .12x +5B .12(x +5)C .12x ―5D .12(x ―5)6.单项式﹣2x 2yz 3的系数、次数分别是( )A .2,5B .﹣2,5C .2,6D .﹣2,6【答案】D【详解】单项式﹣2x 2yz 3的系数是﹣2,次数是2+1+3=6.故选:D .7.在一个多项式中,与2ab2为同类项的是( )A.ab B.ab2C.a2b D.a2b2【答案】B【详解】解:与2ab2为同类项的是ab2,故选:B.8.已知|x―5|+(y+4)2=0,则xy的值为( )A.9B.―9C.20D.―20【答案】D【详解】解:∵|x―5|+(y+4)2=0,∴x=5,y=―4∴xy=―20,故选:D.9.飞机无风时的速度是a km/h,风速为15km/h,飞机顺风飞行4小时比无风飞行3小时多飞的航程为( )A.(a+60)km B.60km C.(4a+15)km D.(a+15)km10.下列各式去括号正确的是()A.―(2x+y)=―2x+y B.3x―(2y+z)=3x―2y―zC.x―(―y)=x―y D.2(x―y)=2x―y【答案】B【详解】A、括号前为“-”号,去括号时括号里的第二项没有变号,故错误;B、正确;C、括号前为“-”号,去括号时括号里的项没有变号,故错误;D、括号里的第二项没有乘2,出现了漏乘的现象,故错误.故选:B.11.如图,则下列判断正确()A.a+b>0B.a<-1C.a-b>0D.ab>0【答案】A【详解】解:选项A:a为大于-1小于0的负数,b为大于1的正数,故a+b>0,选项A正确;选项B:a为大于-1小于0的负数,故选项B错误;选项C:a小于b,故a-b<0,选项C错误;选项D:a为负数,b为正数,故ab<0,故选项D错误;故选:A.12.计算机是将信息转化成二进制进行处理的,二进制即“逢二进一”.将二进制数转化成十进制数,例如:(1)2=1×20=1;(10)2=1×21+0×20=2;(101)2=1×22+0×21+1×20=5.则将二进制数(1101)2转化成十进制数的结果为()A.8B.13C.15D.16二、填空题(本题共6小题,每小题2分,共12分.)13.﹣7的相反数是.【答案】7【详解】﹣7的相反数是-(-7)=7.故答案是:7.14.比较大小:―13―23(用“>”“<”或“=”填空).故答案是:>.15.近似数12.336精确到百分位的结果是.【答案】12.34【详解】解:12.336≈12.34(精确到百分位),故答案为:12.34.16.规定符号“⊙”的意义是a⊙b=a2―b,例如2⊙1=22―1=3,则4⊙2=.【答案】14【详解】解:由题意得:4⊙2=42―2=16―2=14,故答案为:14.17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.18.把1~9这9个数填入3×3的方格中,使其任意一行,任意一列及两条对角线上的数之和都等于15,这样便构成了一个“九宫格”,它源于我国古代的“洛书”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中m的值为.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:(1)(―8)+10+2+(―1);(2)4+(―2)3×5―(―28)÷4.【详解】(1)(―8)+10+2+(―1)=2+2―1(1)=4―1(2分)=3;(3分)(2)4+(―2)3×5―(―28)÷4=4+(―8)×5―(―28)÷4(4分)=4―40+7(5分)=―29.(6分)20.(6分)计算:(1)m―n2―m―n2;(2)―x+(2x―2)―(3x+5).【详解】(1)解:m―n2―m―n2=―2n2;(3分)(2)解:―x+(2x―2)―(3x+5)=―x+2x―2―3x―5(2分)=―2x―7.(6分)21.(6分)先化简,再求值:3x2―3y―3x2+y―x,其中x=―3,y=2.22.(10分)【知识呈现】我们可把5(x―2y)―3(x―2y)+8(x―2y)―4(x―2y)中的“x―2y”看成一个字母a,使这个代数式简化为5a―3a+8a―4a,“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.在数学中,常常用这样的方法把复杂的问题转化为简单问题.【解决问题】(1)上面【知识呈现】中的问题的化简结果为;(用含x、y的式子表示)(2)若代数式x2+x+1的值为3,求代数式2x2+2x―5的值为;【灵活运用】应用【知识呈现】中的方法解答下列问题:(3)已知a―2b=7,2b―c的值为最大的负整数,求3a+4b―2(3b+c)的值.【详解】解:(1)∵5a―3a+8a―4a=6a,∴5(x―2y)―3(x―2y)+8(x―2y)―4(x―2y)=6(x―2y)=6x―12y,(3分)故答案为:6x―12y;(2)∵x2+x+1=3,∴x2+x=2,(4分)∴2x2+2x―5=2(x2+x)―5=2×2―5=―1,(6分)故答案为:―1;(3)∵2b―c的值为最大的负整数,∴2b―c=―1,(7分)∴3a+4b―2(3b+c)(8分)=3a+4b―6b―2c,=3(a―2b)+2(2b―c),=3×7+2×(―1),=19.(10分)23.(10分)综合与实践【问题情景】七年级(1)班的同学们在劳动课上采摘红薯叶,通过对红薯叶的称重感受“正数与负数”在生活中的应用.【实践探索】同学们一共采摘了10筐红薯叶,以每筐15kg为标准,超过的千克数记作正数,不足的千克数记作负数,称重后记录如下:【问题解决】(1)求这10筐红薯叶的总重量为多少千克?(2)若市场上红薯叶售价为每千克5元,则这10筐红薯叶价值多少元?【详解】(1)―2.5+(―1.5)+(―3)+(―2)+0.5+1+(―2)+2+(―1.5)+2=―7,(4分)15×10―7=143(千克);(6分)答:这10筐红薯叶的总重量为143千克.(7分)(2)143×5=715(元);(9分)答:这10筐红薯叶全部售出可获得715元.(10分)24.(10分)将连续的奇数1,3,5,7,9,…排成如图所示的数表.(1)十字框中的五个数之和与中间数15有什么关系?(2)设中间数为a,如何用代数式表示十字框中五个数之和?(3)若将十字框上下左右移动,可框住另外五个数,这五个数还有上述的规律吗?(4)十字框中的五个数之和能为2018吗?能为2025吗?【详解】(1)解:(5+13+15+17+25)÷15=75÷15=5,(2分)则十字框中的五个数之和与中间数15的5倍;(2)解:设中间数为a,则其余的4个数分别为a―2,a+2,a―10,a+10,(3分)由题意,得a+a―2+a+2+a―10+a+10=5a,(4分)因此十字框中的五个数之和为5a.(3)解:设移动后中间数为b,则其余的4个数分别为b―2,b+2,b―10,b+10,(5分)由题意,得b+b―2+b+2+b―10+b+10=5b,(6分)因此这五个数之和还是中间数的5倍.(4)解:由(3)知,十字框中五个数之和总为中间数的5倍,2018÷5=403.6,(7分)因为403.6是小数,所以十字框中五个数之和不能为2018,(8分)2025÷5=405,(9分)因为405是整数,且405在第三列,所以十字框中五个数之和能为2025.(10分)25.(12分)秋风起,桂花飘香,也就进入了吃螃蟹的最好季节,清代文人李渔把秋天称作“蟹秋”.意为错过了螃蟹,便是错过了整个秋季,小贤去水产市场采购大闸蟹,极品母蟹每只30元,至尊公蟹每只20元.商家在开展促销活动期间,向客户提供以下两种优惠方案:方案①极品母蟹和至尊公蟹都按定价的8折销售;方案②买一只极品母蟹送一只至尊公蟹.现小贤要购买极品母蟹30只,至尊公蟹a(a>30)只.(1)按方案①购买极品母蟹和至尊公蟹共需付款______元(用含a的式子表示);按方案②购买极品母蟹和至尊公蟹共需付款______元(用含a的式子表示).(2)当a=40时,通过计算说明此时按上述哪种方案购买较合算.(3)若两种优惠方案可同时使用,当a=40时,你能通过计算给出一种最为省钱的购买方案吗?【详解】(1)解:由题意得:按方案①购买极品母蟹和至尊公蟹共需付款=0.8×(30×30+20a)=0.8×(900+20a)=(720+16a)元,按方案②购买极品母蟹和至尊公蟹共需付款=30×30+20(a―30)=900+20a―600=(300+20a)元,∴按方案①购买极品母蟹和至尊公蟹共需付款(720+16a)元;按方案②购买极品母蟹和至尊公蟹共需付款(300+20a)元,故答案为:(720+16a),(300+20a);(4分)(2)当a=40时,按方案①购买极品母蟹和至尊公蟹共需付款=720+16×40=720+640=1360(元),(6分)按方案②购买极品母蟹和至尊公蟹共需付款=300+20×40=300+800=1100(元),(8分)∵1100<1360,∴按方案②购买较为合算;(9分)(3)若两种优惠方案可同时使用,则可先按方案②购买30极品母蟹,再送30只至尊公蟹,然后按方案①购买10只至尊公蟹,理由:30×30+(40―30)×20×0.8=900+10×20×0.8=900+160=1060(元),(10分)∵1060<1100<1360,(11分)∴最为省钱的购买方案是:先按方案②购买30极品母蟹,再送30只至尊公蟹,然后按方案①购买10只至尊公蟹.(12分)26.(12分)综合实践【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:如图1,若数轴上点A、点B表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为b―a,请用上面材料中的知识解答下面的问题:【问题情境】如图,一个点从数轴上的原点开始,先向左移动2个单位长度到达点A,再向右移动3个单位长度到达点B,然后再向右移动5个单位长度到达点C.(1)【问题探究】请在图2中表示出A、B、C三点的位置:(2)【问题探究】若点P从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,同时点M、N从点B、点C分别以每秒23个单位长度速度沿数轴向右匀速运动.设移动时间为t秒(t>0).①A,B两点间的距离AB=______;②用含t的代数式表示:t秒时,点P表示的数为______,点M表示的数为______,点N表示的数为______;③试探究在移动的过程中,3PN―4PM的值是否随着时间t的变化而变化?若变化说明理由:若不变,请求其值.【详解】(1)解:A、B、C三点的位置在数轴上表示如图1所示:(3分)(2)①AB=1―(―2)=3,(4分)②如图2,由题意得:PA=t,BM=2t,CN=3t,∴t秒时,点P表示的数为―t―2,点M表示的数为2t+1,点N表示的数为3t+6,(7分)③在移动的过程中,3PN―4PM的值不随着时间t的变化而变化,理由如下:PN=(3t+6)―(―t―2)=4t+8,PM=(2t+1)―(―t―2)=3t+3,∴3PN―4PM=3(4t+8)―4(3t+3)=12t+24―12t―12=12.(11分)∴在移动的过程中,3PN―4PM的值总等于12,保持不变.(12分)。

2022—2023学年人教版数学七年级下册期中考试模拟试卷

2022—2023学年人教版数学七年级下册期中考试模拟试卷

七年级下册数学期中模拟卷姓名___班级___考号___得分___一.选择题(共10小题,每小题3分,共30分)1.下列各数中,是无理数的是()A.2.5 B.C.D.02.下列各式正确的是()A.=±4 B.=﹣3 C.±=±9 D.=23.已知实数a、b在数轴上的对应点如图所示,则下列命题中正确的是()A.丨a+b丨=丨a丨+丨b丨B.丨a﹣b丨=丨a丨﹣丨b丨C.丨a+b丨=丨b丨﹣丨a丨D.丨a﹣b丨=丨b丨﹣丨a丨4.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短5.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为()A.15°B.10°C.20°D.25°6.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A. B.C. D.7.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°8.如果点M(a+b,ab)在第二象限,那么点N(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点P在第四象限,且到x轴的距离是3,到y轴的距离是8,则点P的坐标为()A.(8,﹣3)B.(3,﹣8)C.(8,3)D.(﹣8,3)10.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为()A.(1008,0)B.(1006,0)C.(2,2012)D.(2,1006)二.填空题(共6小题,每小题3分,共18分)11.的平方根为.12.已知,则x+y=.13.命题“若ac2>bc2,则a>b”的逆命题是命题.(填“真”或“假”)14.如图,将一张长方形的纸片沿折痕EF翻折,使点B、C分别落在点M、N的位置,且∠AFM=∠EFM,则∠DEF=°.15.点P(2﹣m,3m﹣1)在直角坐标系的y轴上,则点P的坐标为.16.如图,AC∥BD,E、F分别是直线AB、CD之间的点,EP、FP分别平分∠AEF、∠EFB,若∠A=m°,∠B=n°,则∠P=°.(用含m,n的代数式表示)三.解答题(共72分)17.计算:(1)2+++|﹣2| (2)+﹣.18.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.已知三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图(1)分别写出点B、B'的坐标:B ,B' ;(2)若点P(a,b)是三角形ABC内部一点,则平移后三角形A'B'C'内的对应点P'的坐标为;(3)求三角形ABC的面积.20.AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?解:BE∥DF.∵AB⊥BC,∴∠ABC=°,即∠3+∠4=°.又∵∠1+∠2=90°,且∠2=∠3,∴=.理由是:.∴BE∥DF.理由是:.21.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.22.观察下列各式及其验证过程:验证:=;验证:===;验证:=;验证:===.(1)按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明.23.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.。

七年级上学期数学期中模拟卷02、答案和解析(人教版2024)

七年级上学期数学期中模拟卷02、答案和解析(人教版2024)

2024-2025学年七年级数学上学期期中模拟卷02(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一章~第四章。

5.难度系数:0.85。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.现实生活中经常用正数和负数来表示具有相反意义的量.如果收入80元记作+80元,那么−20元表示()A .支出80元B .收入80元C .支出20元D .收入20元2.神舟十一号飞船成功飞向浩瀚宇宙,并在距地面约390000米的轨道上与天宫二号交会对接.将390000用科学记数法表示应为( ) A .3.9×104 B .3.9×105 C .39×104D .0.39×1063.如果单项式3a x y +与5b xy −是同类项,那么()2023a b +=( )A .1B .1−C .0D .无法确定4.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a + b + c 等于( ) A .-1B .0C .1D .25.有下列四个算式①()()538−++=−;②()326−−=;③512663 ++−= ;④1393 −÷−= .其中,正确的有( ). A .0个B .1个C .2个D .3个6.如图,数轴上点A 、B 分别对应有理数a ,b ,则下列结论正确的是( )A .a b >B .a b >C .0a b +>D .0a b −>7.若关于a ,b 的单项式522x a b +与36y a b −−的和仍是单项式,则x y +的值是( ) A .6B .7C .8D .98.如图,小宁同学在求阴影部分的面积时,列出了4个式子,其中错误的是( ).A .ab + a (c -a )B .bc +ac -a 2C .ab +ac -a 2D .ac + a (b -a )9.下列说法中正确的个数是( ) (1)﹣a表示负数;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1的次数是3;(3)单项式229xy −的系数为﹣2;(4)若|x |=﹣x ,则x <0;(5)一个有理数不是整数就是分数. A .0个B .1个C .2个D .3个10.如图所示的运算程序中,若开始输入x 的值是2,第1次输出的结果是1−,第2次输出的结果是1,依次继续下去…,第2023次输出的结果是( )A .2−B .1−C .1D .4二、填空题(本大题共5小题,每小题3分,共15分) 11.去括号:()23x y −+= .12.如果单项式232m n x y ++与35x y 是同类项,那么m n += .13.已知x ,y 均为有理数,现规定一种新运算“※”,满足2x y xy x y =+−−※,例如1212122=1=×+−−※.计算()324 −=※※ . 14.已知m 、n 互为相反数,c 、d 互为倒数,则310m n cd ++−的值为 . 15.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n 个图案是由 个组成的.三、解答题(本大题共8小题,共75分) 16.(8分)计算: (1)(5)(8)6(4)−−−+−+;(2)()235448 −×−+− ;(3)2(2)3(2)a b a b −−−; (4)�16−314+23�×(−42).17.(6分)化简:(1)()()2222432a b ab a b ab −+−+; (2)()()22342223a b a b −−−+.18.(8分)已知有理数a ,b ,其中数a 在如图所示的数轴上对应点M ,b 是负数,且b 在数轴上对应的点与原点的距离为3(1)a = ,b = .(2)写出大于﹣52的所有负整数;(3)在数轴上标出表示﹣52,0,﹣|﹣1|,﹣b 的点,并用“<“连接起来. 19.(9分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(超产记为正、减产记为负):星期一 二 三 四 五 六 日增减(单位:个)5+2−5− 15+ 10− 16+ 9−(1)该厂本周星期一生产工艺品的数量为______个; (2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每日..计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元,试求该工艺厂在这一周应付出的工资总额.20.(10分)如图是某种窗户的形状(实线为窗框),其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为m a .(结果用π表示)(1)求窗户的面积; (2)求窗框的总长;(3)若1a =,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用.21.(10分)已知,有理数a 、b 、c 在数轴上的位置如图所示,(1)试化简:322a b c a c b +−−++;(2)若a ,c 两数的倒数是他们自身,求x a x c −+−的最小值;以及取最小值时x 范围.22.(12分)已知a 为最大的负整数,||1||5b c ==,,且0bc >,0b c +>,请解决下列问题.(1)a =______,b =______,c =______.(2)在数轴上,a ,b ,c 所对应的点分别为点A ,B ,C ,点P 为数轴上点A ,B 之间一点(不包括点A ,B )其对应的数为x ,化简:13125x x x +−−−−.(3)在(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向数轴负方向运动,同时,点B 和点C 分别以每秒2个单位长度和每秒5个单位长度的速度向数轴正方向运动.设运动时间为t 秒,则BC AB −的值是否随时间t 的变化而变化?若变化,请说明理由;若不变,请求出该值. 23.(12分)阅读材料:材料一:对实数a ,b ,定义(),F a b 的含义为:当a b ≤时,(),F a b a b =+;当a b >时,(),F a b a b =−.例如:()1,3134F =+=;()()2,1213F −=−−=.材料二:关于数学家高斯的故事:2000多年前,高斯的老师提出了下面的问题:123100+++⋅⋅⋅+=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:()()()11002995051101505050++++⋅⋅⋅++=×=. 也可以这样理解:令123100S =+++⋅⋅⋅+①,则10099321S =++⋅⋅⋅+++②, ①+②得:()()()()211002991001100110010100S =++++⋅⋅⋅++=×+=,即()100110050502S×+=.解决问题:(1)()13F −=, ;()23?F −=, ;(2)已知20x y +=,且x y >,求()()6,10,F x F y −的值; (3)对于正数a ,满足关系式()21,12F a −+=−时,求:()()()()1,992,993,99199,99F a F a F a F a ++++++⋅⋅⋅++值.2024-2025学年七年级数学上学期期中模拟卷02参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1 2 3 4 5 6 7 8 9 10 CBBBCCACBD二、填空题(本大题共5小题,每小题3分,共15分) 11.62x y −− 12.313.7−14.7−15.16 3n+1三、解答题(本大题共8小题,共75分) 16.(8分)【详解】(1)解:(5)(8)6(4)−−−+−+5864=−++−5=;(2分)(2)解:()235448 −×−+−351648 ×−+−35161648 =×−+×−()1210=−+− 22=−(4分)(3)解:2(2)3(2)a b a b −−−2463a b a b =−−+4a b =−−.(6分)(4)解:�16−314+23�×(−42)()()()1324242426143=×−−×−+×− ()()()7928=---+-()()7928=-++-26=−(8分)17.(6分)【详解】(1)解:原式2222432a b ab a b ab −−+22(23)(41)a b ab +−=−223a b ab −=;(3分) (2)解:原式221246=6a b a b +−−2=(66)124a b −++()21612a b =−.(6分) 18.(8分)【详解】(1)∵数a 在数轴上对应点M ,b 是负数,且b 在数轴上对应的点与原点的距离为3, ∴a =2,b =0﹣3=﹣3, 故答案为:2,﹣3;(3分) (2)大于﹣52的所有负整数是﹣2,﹣1;(6分) (3)﹣|﹣1|=﹣1,﹣b =3,﹣52<﹣|﹣1|<0<﹣b .(8分) 19.(9分)【详解】(1)周一的产量为:3005305+=个;(2分)(2)由表格可知:星期六产量最高为()30016316++=(个), 星期五产量最低为30010290−=(个), 则产量最多的一天比产量最少的一天多生产31629125−=(个);(4分)(3)根据题意得一周生产的工艺品为:()()()()()()()300752515101692100102110 ×+++−+−+++−+++−=+=(个),(6分)答:服装厂这一周共生产工艺品2110个;(4)()()51516502510980++×−+++×36502680=×−×280=−(元), 则该工艺厂在这一周应付出的工资总额为:211060*********×−=(元),(8分)答:该工艺厂在这一周应付出的工资总额为126320元.(9分) 20.(10分)【详解】(1)解:窗户的面积21222a a a π=+×22142a a π +2m ;(3分) (2)窗框的总长123842a a a a π=×+++15a a π=+(15)(m)a π=+;(6分)(3)21425(15)202a a ππ +×++× 214125(15)1202ππ +××++×× 25100(20300)2ππ+++654002π+(元).(9分) ∴制作这种窗户需要的费用是654002π+元.(10分) 21.(10分)【详解】(1)解:由数轴可得0b a c >>>, 则302020a b c a c b +>−<+>,,,∴322a b c a c b +−−++()322a b a c c b +−−++322a b a c c b +−+++32a b c =++.(3分) (2)解:∵a ,c 两数的倒数是他们自身,且0a >,0b <, ∴1a =,1c =−,(4分) ∴11x a x c x x −+−=−++,∵11x x −++表示在数轴上点到表示1和1−两个点的距离之和,(6分) ∴当11x −≤≤时,11x x −++的值最小,(8分) ∴x a x c −+−的最小值为()11112−−=+=.(10分) 22.(12分)【详解】(1)解:∵0bc >, ∴b 、c 同号,∵0b c +>,∴00b c >>,, ∵||1||5b c ==,,∴15b c ==,,∵a 是最大的负整数, ∴1a =−,故答案为:1−;1;5;(3分)(2)解:当11x −<<时,101050x x x +>−<−<,,,∴13125x x x +−−−−()()13125x x x =+−−−−133102x x x =+−+−+612x =−;(6分)(3)解:不变,理由如下:由题意可得,t 秒时,点A 对应的数为1t −−,点B 对应的数为21t +,点C 对应的数为55t +, ∴()()552134BC t t t =+−+=+,()()21132AB t t t +−−−+,(8分)∴()()34322BC AB t t −=+−+=,即BC AB −值的不随着时间t 的变化而改变.(12分) 23.(12分)【详解】(1)解:()13132F −=−+=,;()()23235F −=−−=,; 故答案为:2,5;(2分) (2)∵20x y +=,且 ,x y > ∴10,10x y ><,∴()()6,10,F x F y −()610x y =+−−4x y =+−204=−16=, 故()()6,10,F x F y −的值为16;(5分)(3)∵aa 为正数,220,0,0a a a ∴>>−<,∴1−aa ²<1, ∴FF (−aa ²+1,1)=−aa ²+1+1=−2, ²4,a ∴=则2a =(负值舍去),∴99299101a +=+=(8分) ∴()()()1,992,99199,99F a F a F a ++++…++()()()()()1,1012,101101,101102,101199,101F F F F F ++++++ ()()()()()11012101101101102101199101=++++…+++−+…+− ()()1011011231011298=×++++…++++…+()()11011011989810110122+×+×=×++(10分)101101101519949=×+×+×1011529949=×+×153524851+20203=.(12分)2024-2025学年七年级数学上学期期中模拟卷02答案解析(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学期中考试模拟试卷(一)
班级 姓名 学号
一、填空题(本大题共有14小题,23空,每空2分,共46分.)
1.2的相反数为 ; —5的倒数为 . 2.-3的绝对值是 ; 绝对值等于7的数是 . 3.把下列各数填在相应的集合内:
100、—0. 82、2130-、3.14、-2、0、-2008、.51.3-、 7
3
.
正分数集合:{ …} 整数集合:{ …} 负有理数集合:{ …} 非负数集合;{ …}
4.我国首次载人飞船按一定的轨道绕着地球飞行,一圈的路程约为42000千米,用科学记数法表示:飞船飞行一圈的路程为_____________________千米.
5.在某地,人们发现蟋蟀叫的次数与温度有某种关系.用蟋蟀1分钟叫的次数n 除以7,然后再加上3,就可以近似的得到该地当时的温度(℃).用代数式表示该地当时的温度为___________℃;当蟋蟀1分钟叫的次数为100时,该地当时的温度约为________℃(精确到个位).
6.若230x y -++=,则2008
()x y +=_______________.
7.比较大小:① -3 -4; ② ()4-- 5--. 8.若单项式
n
y x 23
2与32y x m -的和仍为单项式,则m n 的值为 . 9.多项式2423751x y xy xy y -+--是__________________次多项式,按字母y 的降幂排
列是_____________________________.
10. 请你写出单项式23a b 的一个同类项是____________________. 11.已知3x y +=,则922x y --的值为_________________.
12.小说《达芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数
按从小到大的顺序排列为:1、1、2、3、5、8…,则这列数的第8个数是 . 13.有一种“二十四点”游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将
这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24. 例如对1、2、3、4,可作运算:(1+2+3)×4=24.(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3、4、-6、10. 运用上述规则写出两种不同方法的运算式,使其结果等于24,运算式如下:(1) ;(2) .
-
-5 14.依法纳税是公民应尽的义务.《个人所得税法》规定:每月总收入减去1600元后的余
额为应纳税所得额,应纳税所得额不超过500元的按5%纳税;超过500元但不超过2000元的部分按l0%纳税,…… 若职工小王某月税前总收入为2000元,则该月他应纳税___________________元.
二、选择题(本大题共有6小题,每小题3分,共18分.)
15.如果向东走2km 记作+2km ,那么-3km 表示 ( )
A .向东走3km
B .向南走3km
C .向西走3km
D .向北走3km 16.将)2()7()3(6-+--+-中的减法改成加法并写成省略加号的和应是 ( )
A .2736-+--
B .2736---
C .2736-+-
D .2736--+ 17.如果0>+b a 、0>ab ,那么 ( )
A . a >0,b >0
B .a <0,b <0
C .a >0,b <0
D .a <0,b >0
18.请阅读一小段约翰·斯特劳斯的作品,根据乐谱中的信息,确定最后一个音符的时间长
应为 ( )
A.
18
B.
12
C.
14
D.
34
19.右表是5个城市的国际标准
时间(单位:时),那么北京
时间2007年6月17日上午9时应是 ( ) A .汉城时间2007年6月17日上午8时 B .纽约时间2007年6月17日晚上22时 C .多伦多时间2007年6月16日晚上20时 D .伦敦时间2007年6月17日凌晨1时
20.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母~A F 共16个
例如:十进制中的261610=+,可用十六进制表示为1A ;在十六进制中,1E D B += 等.由上可知,在十六进制中,2F ⨯= ( ) A.30
B.1E
C.1E
D.2F
三、解答题(本大题共有6小题,共36分.) 21.(本小题满分3分)
① 请你在数轴上表示下列有理数: ()21
, 2.5,0,2,42
-----.
② 将上列各数用“<”号连接起来:___________________________________.
22.计算:(本题共4小题,每小题3分,满分12分)
(1)-24+3-16-5 (2)0-()25.0324333221+-⎪⎭
⎫ ⎝⎛--⎪⎭⎫ ⎝⎛++
(3)()()()1685124+-⨯-+-⨯ (4)⎪⎭

⎝⎛-
-⨯1514311843
23.(本题共2小题,每小题2分,满分4分) 当3,1x y ==-时,求下列代数式的值:
(1)2
2
2x xy y ++ (2)2
2
x y -
24.(本小题满分6分)
有这样一道题:“计算)3()2()232(3
2
3
3
2
3
2
2
3
y y x x y xy x xy y x x -+-++----的值,其中
1,21-==
y x ” .甲同学把“21=x ”错抄成“2
1
-=x ”,但他计算的结果也是正确的,试 说明理由,并求出这个结果.
25.(本小题满分5分)
已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.
(1)求2※4的值;
(2)求(1※4)※(-2)的值;
(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;
(4)探索a※(b+c)与a※b+a※c的关系,并用等号或不等号把它们表达出来. 26.(本小题满分6分)
(1)在④和⑤后面的横线上分别写出相应的等式;
(2)根据上面算式的规律,请计算:1+3+5+……+99=;
(3)通过猜想写出与第n个点阵相对应的等式.
……
……
①1=12;②1+3=22;③1+3+5=32;④;⑤;
初一数学参考答案
一、填空题(本大题共有14小题,23空,每空2分,共46分.) 1.-2;1-5
2.3,7± 3.①3
3.14,
7
②100,2,0,2008-- ③10.82,30,2,2008, 3.152----- ④3100,3.14,0,7
4.44.210⨯ 5.
37
n
+;17 6.1 7.>、> 8. 9
9.5、4
3
2
2
571xy y xy x y --++- 10. 232a b (答案不唯一) 11.3 12.21
13.3×()[]6104-++;()()64103---⨯等 14.20
二、选择题(本大题共有6小题,每小题3分,共18分.) 15.C 16.C 17.A 18.C 19.D 20.B 三、解答题(本大题共有6小题,共36分.) 21.(本小题满分3分)21
20 2.5(4)2
-<-
<<-<-- 22.(本题共4小题,每小题3分,满分12分)-42、-17.5、8、4.3 23.(本题共2小题,每小题2分,满分4分)4;8 24.(本小题满分6分)3
2y -,与x 的取值无关, 2.
25.(本小题满分5分)
(1)9; (2)-9; (3)□※○=○※□; (4)a ※(b +c )+1=a ※b +a ※c . 26.(本小题满分6分)(1)④1+3+5+7=42;⑤1+3+5+7+9=52. (2)1+3+5+……+99=2500 (3)1+3+5+…+(2n -1)=n 2。

相关文档
最新文档