北师大版初一上册数学【1.2展开与折叠】教案
北师大版七年级数学上册第一章《1.2展开与折叠》教案

1.2 展开与折叠〖知识与技能目标:〗1.认识到立体图形与平面图形的关系,了解一些立体图形可由平面图形围成,一些立体图形可展开成平面图形,发展空间观念;2.由观察、折叠等数学活动认识棱柱的某些特征;3.了解直棱柱的侧面展开图,能由侧面展开图想象出棱柱。
〖过程与方法:〗通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。
〖情感态度与价值观:〗让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。
〖教学重点、难点:〗重点:通过数学活动认识棱柱的特征,能感受到研究空间问题的思维方法。
难点:正确判断哪些图形可以折叠成棱柱。
〖教学方法:〗引导发现法【基础知识精讲】1.棱柱的分类我们已经了解了棱柱,那么棱柱之间是否还有区别呢?通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.2.棱柱的特点若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?(1)棱柱的上、下底面是完全相同且互相平行的多边形.(2)棱柱的侧面都是矩形.(3)棱柱的侧棱长都相等.(4)棱柱各元素间的数量关系如下:名称底面形状顶点数棱数侧棱数侧面数侧面形状总面数n棱柱n边形2n个 3n个n条n个长方形(n+2)个3.部分几何体的平面展开图.将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢?(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).图1—9(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).图1—10(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)图1—114.能折成棱柱的平面图形的特征我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.比如:棱柱.若能折成棱柱,一定要符合以下特点:(1)棱柱的底面边数=侧面数.(2)棱柱的两个底面要分别在侧面展开图的两端.(3)四棱柱的平面展开图中只有5条相连的棱.5.正方体的平面展开图在课本中、习题中会经常遇到让大家辨认正方体表面展开图的题目.为了查阅方便,在此列出正方体的十一种展开图,供大家参考.图1—12【学习方法指导】[例1]三棱柱有_______条棱,_______个面,其中侧面是_______形,_______面的形状一定完全相同.点拨:n棱柱的数量特征如下:它有3n条棱,(n+2)个面,侧面一定是长方形.对于完全相同的面则需注意.棱柱的侧棱都是相等的但底面边长不一定相等,因此以底面边长和侧棱为长和宽的侧面的大小不一定相同.如:图1—13易错点:(1)“三棱柱的侧面是三角形.”是常出现的错误,一定要记住:棱柱的侧面是长方形.(2)“侧面都相等.”这也是易犯的错误.侧棱长都相等,易使学生误认为侧面也全都相同.解答:9 5 长方上、下底[例2]一个棱柱有12个顶点,所有侧棱长和为36 cm,求每条侧棱的长.点拨:先根据棱柱的数量特征,由顶点数求出是几棱柱,则相应有几条侧棱,再由侧棱长相等,求出结果.解:有12个顶点的棱柱是六棱柱,有6条侧棱.则每条侧棱长36÷6=6 cm.答:每条侧棱长6 cm.[例3]图1—14所示的平面图形是由哪几种几何体的表面展开的?(1) (2) (3)图1—14点拨:找几何体的表面展开图,关键是看侧面和底面的形状.底面是圆的几何体有圆柱、圆锥、圆台.侧面是扇形的几何体是圆锥.侧面是长方形的几何体是棱柱、圆柱.解答:(1)圆锥;(2)圆柱;(3)圆台.[例4]下面图形经过折叠能否围成棱柱?图1—15点拨:看能否围成棱柱,可参考“内容全解4”中的几条内容,如有不符合,就不能围成棱柱.解答:(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.(2)两底面在侧面展开图的同一端,不在两端,所以也不能围成棱柱.(3)可以折成棱柱.[例5]一个正方体纸盒沿棱剪开,最多剪几条棱?最少呢?点拨:正方体是四棱柱,共有12条棱,要剪开纸盒使每个面相连,必须剪开部分棱,棱的总数不变(即12),若知道剩下未被剪开的棱数,就可以得到剪开的棱数了.解答:由正方体平面展开图知正方体的所有展开图中都只有5条相连的棱,而正方体共有12条棱,那么需要剪开的棱数就是12-5=7条了.【拓展训练】1.矩形、长方形和正方形都可称为矩形.2.圆台与棱锥的展开图.(1)圆台:圆台的展开图是由大小两个圆(作底)和部分扇形(作侧面)组成的.图1—16(2)棱锥:棱锥的展开图是由一个多边形(作底)和几个三角形(作侧面)组成的.图1—17图1—18展开与折叠(二)说课稿[教学内容]<<展开与折叠(二)>>是北师大版七年级上册第一单元第四小节[学情与教材分析]1.学情分析:七年级学生具有强烈的自我和自我发展的意识,对与自己的直观经验相冲突的现象、对有挑战性的任务很感兴趣,因此在学习活动的安排上除了关注数学的用处之外,设法给学生经历做数学的机会,使他们能够在这些活动中表现自我、发展自我,初步形成并学会数学地思考。
北师大版七年级数学(上)《1.2展开与折叠》教案

北师大版七年级数学(上)《1.2展开与折叠》教案一. 教材分析《1.2展开与折叠》这一节主要让学生了解和掌握展开与折叠的概念,学会如何将立体图形展开成平面图形,并能够进行实际操作。
通过这一节的学习,学生能够更好地理解立体图形的结构和特点,提高空间想象能力。
二. 学情分析七年级的学生已经初步掌握了平面图形的知识和简单的几何概念,但对于立体图形的认识还不够深入。
因此,在教学过程中,教师需要引导学生从平面图形入手,逐步过渡到立体图形,并通过实际操作,让学生感受和理解展开与折叠的概念。
三. 教学目标1.了解展开与折叠的概念,理解展开与折叠之间的关系。
2.能够将简单的立体图形展开成平面图形,并能够进行实际操作。
3.提高空间想象能力,培养观察和动手能力。
四. 教学重难点1.重难点:展开与折叠的概念及其应用。
2.难点:如何将立体图形正确地展开成平面图形。
五. 教学方法1.采用直观演示法,让学生通过观察教师的实际操作,了解和理解展开与折叠的概念。
2.采用实践操作法,让学生亲自动手进行展开和折叠操作,提高动手能力。
3.采用问题驱动法,引导学生思考和探索展开与折叠之间的关系,提高空间想象能力。
六. 教学准备1.准备一些简单的立体图形,如正方体、长方体等。
2.准备展开图,让学生进行实际操作。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)教师通过向学生展示一些生活中的展开与折叠现象,如折纸、包装等,引导学生思考和讨论展开与折叠的概念。
2.呈现(10分钟)教师向学生介绍展开与折叠的概念,并通过实物和图片进行展示,让学生理解和掌握。
3.操练(10分钟)教师引导学生动手操作,将一些简单的立体图形展开成平面图形。
学生两人一组,互相合作,完成操作。
4.巩固(10分钟)教师通过提问和讨论的方式,巩固学生对展开与折叠概念的理解。
同时,教师可以出示一些练习题,让学生进行巩固练习。
5.拓展(10分钟)教师引导学生思考和探索展开与折叠之间的关系,如如何通过展开图还原立体图形等。
北师大版数学七年级上册1.2《展开与折叠》(第1课时)教学设计

北师大版数学七年级上册1.2《展开与折叠》(第1课时)教学设计一. 教材分析《展开与折叠》是北师大版数学七年级上册第1.2节的内容,主要介绍了平面图形的折叠与展开,目的是让学生理解平面图形的折叠与展开的原理,培养学生的空间想象能力和动手操作能力。
本节课的内容是学生学习立体几何的基础,对于学生形成正确的空间观念具有重要意义。
二. 学情分析七年级的学生已经具备了一定的空间想象能力,对于简单的立体图形有一定的认识。
但是,对于复杂的立体图形的折叠与展开,学生可能还存在一定的困难。
因此,在教学过程中,教师需要注重引导学生,让学生通过动手操作,逐步理解平面图形的折叠与展开的原理。
三. 教学目标1.理解平面图形的折叠与展开的原理,能够将平面图形正确地折叠成立体图形。
2.培养学生的空间想象能力和动手操作能力。
3.培养学生合作学习的习惯,提高学生的团队协作能力。
四. 教学重难点1.教学重点:平面图形的折叠与展开的原理,立体图形的特征。
2.教学难点:复杂立体图形的折叠与展开,学生的空间想象能力的培养。
五. 教学方法1.讲授法:教师通过讲解,引导学生理解平面图形的折叠与展开的原理。
2.示范法:教师通过示范,让学生动手操作,培养学生的动手能力。
3.小组合作:学生分组讨论,共同完成立体图形的折叠与展开,培养学生的团队协作能力。
六. 教学准备1.教具准备:立体图形模型,平面图形卡片,剪刀,胶水等。
2.教学环境:教室里每个学生都有一张桌子,一把椅子,方便学生动手操作。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾平面几何的知识,为新课的学习做好铺垫。
例如,教师可以提问学生:“你们知道哪些平面几何图形?它们有什么特点?”学生回答后,教师总结并导入本节课的内容:“今天我们要学习的是平面图形的折叠与展开,这将是我们在立体几何学习中非常重要的一部分。
”2.呈现(10分钟)教师通过展示实物或图片,让学生直观地了解平面图形的折叠与展开。
北师大版数学七上1.2展开与折叠word教案2篇

§1.2.1 展开与折叠(一)教学目标:(一)教学知识点1.在操作活动中认识棱柱的某些特性.2.了解棱柱展开图的形状,能正确地判断和制作简单的立体模型.(二)能力训练要求1.经历展开与折叠、模型制作等活动发展空间观念,积累数学活动经验.2.在大量活动经验的基础上,形成较为规范的语言.(三)情感与价值观要求在操作活动中揭发学生自主学习的热情和积极思考的习惯,体验学习数学的乐趣.教学重点:1.在操作活动中,发展空间观念,积累数学活动经验.认识棱柱的某些特征,形成规范的语言.2.能根据棱柱的展开图判断和制作简单的立体图形.教学难点:根据棱柱的展开图判断和操作简单的立体图形.教学方法:实验——归纳法教具准备:多媒体课件教学过程:Ⅰ.创设问题情境,引出新课[师]上一节课我们从构成图形的基本元素为出发点,认识了常见几何体的某些特征.还有一位同学提出了一个问题;棱柱有几个面?几个顶点?几条线?这节课我们就来重点研究棱柱,学习了这节课后,你就可以很轻松地回答上面的问题啦. (出示课件)Ⅱ.讲授新课1.从做一做中认识棱柱的特性[师]教师节就要到了,同学们有精美的小礼物,——一张贺卡,一句祝福……如果能包装上自己亲手设计的精美的包装,那种祝福将更为深情.我这儿也有礼物送给我过去的一位老师,我想把它放在一个长方体(棱柱)形状的包装盒里,可以吗?[师]同学们,这样的一个包装盒,就是一个棱柱,回答第(1)问题:这棱柱的上、下底面一样吗?它们各有几条边?[生]这个棱柱的上、下底面是一样的,它们的相对面都是一样的。
[师]你所说的一样如何理解?[生]大小一样,即每条边对应相等.[生]老师,我觉得是不仅大小一样,而且形状也是相同的,如果要把它们剪下来,应该是完全重合的. (大家表示认可)[师]这位同学的回答很精彩,能用自己形象的语言,将棱柱的上、下底面的关系描述的如此清楚,很了不起.接下来第(2)题,这个棱柱有几个侧面?侧面的形状是什么图形?[生]应该有五个侧面,由原来的平面设计图就可以看出,并且这五个侧面形状都是长方形,老师我还发现侧面的个数与底面的边数是相等的.[师]看来,同学们通过亲自动手制作棱柱,棱柱的特性已从我们的勤劳的双手中流淌出来.上节课,我们知道,面与面相交可以得到线,棱柱的相邻侧面与侧面有交线,侧面与底面相交也有交线,这个棱柱有多少条交线呢?[生]有15条交线.因为相邻侧面与侧面相交有5条,侧面与底面相交上下各有5条,所以总共15条.[师]那么这个棱柱呢?它的上下底面是六边形,它有多少条交线呢?[生]应该有18条.[师]如果棱柱的底面是七边形、八边形……n边形,它们又该有多少条交线呢?(同学们略加思索后回答)[生]我认为七边形应有7×3=21条边;八边形应有8×3=24条边,……n边形应有n×3条边.[师]很好,所以说棱柱有多少条交线是由底面的边数确定的.我们把棱柱中相邻的两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.如果底面是五边形的棱柱就叫五棱柱,底面是六边形的棱柱就叫六棱柱,所以,人们通常根据底面图形的边数将棱柱分为三棱柱,四棱柱、五棱柱、六棱柱……,长方体和正方体都是四棱柱.那么在这个五棱柱中,有几条侧棱呢?它们的长度之间有何关系?[生]应该有5条侧棱,它们的长度当然是相等的,因为它们相邻的侧面都是有一个公共侧棱的长方形.[师]的确如此.我们关于这个棱柱讨论了很多了.谁来用自己的语言来描述一下棱柱的性质呢?大家可以先小组充分交流后回答.[生]我认为棱柱有如下性质:1.棱柱上下底面的形状、大小是一样的.2.侧棱都相等.3.侧面都是长方形.[生]老师还有:4.棱柱的底面是n边形,它的侧棱就有n条,它的棱应有(n的3倍)条.[师]那么有多少个顶点?多少个面呢?同学们可以继续讨论.[生]棱柱的底面是n边形,就是n棱柱,顶点的个数是(n×2)个,有(n+2)个面.Ⅲ.随堂练习1.如图(1)长方体有_____个顶点,_____条棱,_____个面,这些面形状都是_____.(2)哪些面的形状和大小一定完全相同?(3)哪些棱的长度一定相等?分析:让学生观察图形,可以用自己的语言进行回答.解:(1)8 12 6 长方形(2)相对的两个面形状和大小完全相同.(3)相互平行的四条棱的长度相等.2.想一想,再折一折,下面两图经过折叠能否围成棱柱?分析:先想一想,是对学生空间想像能力的更高要求,但也不可忽视折一折的作用,先想一想,再动手操作,是培养空间观念的重要环节.解:A.经过折叠可以围成棱柱,B.经过折叠不可以围成棱柱.3.如下图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.解:(2)、(4)可以围成棱柱,(1)、(3)不可以围成棱柱.4.一个六棱柱模型如图,它的底面边长都是5厘米,侧棱长4厘米.(课本第九页图1—4)观察这个模型,回答下列问题:(1)这个六棱柱一共有多少个面?它们分别是什么形状?哪些面的形状和大小完全相同?(2)这个六棱柱一共有多少条棱?它们的长度分别是多少?分析:图1—4下问题中的面是指围成六棱柱的侧面和底面.解:(1)8个面;其中6个侧面是长方形;两个底面是六边形;2个六边形形状、大小完全相同,所有侧面的形状,大小完全相同.(2)这个六棱柱一共有18条棱,6条侧棱的长度分别是4厘米;围成底面的所有棱长相等,均为5厘米.Ⅳ.课时小结1.这节课我们通过动手操作发现了棱柱的几个特性:(1)上下底面完全相同.(2)侧棱长都相等.(3)侧面都是长方形等.2.我们还通过想一想,折一折发现空间观念,积累了关于棱柱的展开与折叠的数学活动经验.Ⅴ.课后作业1.习题1.32.数学日记:记叙这节课活动的收获.3.设计一个棱柱形的精美的包装盒.Ⅵ.活动与探究填写下表:名称各面形状面数f 棱数e 顶数v f+v+e 正四面体正三角形 4正方形 6正八面体 6 2 正十二面体正五边形30正二十面体正三角形12(1)通过以上填表过程,你能发现f、e、v之间有什么样的关系?(2)你能亲手制作这样的正多面体吗?[过程]教师应鼓励感兴趣的同学,寻找或制作模型填写上表,从而验证f、e、v的规律. [结果]f+v-e存在一个奇妙的规律,即f+v-e=2.1.2展开和折叠一、课题§1.2展开和折叠二、教学目标1、体会从古至今数学始终伴随着人类的进步与发展,增进学习数学的兴趣。
北师大版七年级数学上册第一章第二节《展开与折叠》教学设计

(二)讲授新知
1.教学内容:介绍展开与折叠的基本概念,让学生理解立体图形可以通过展开变成平面图形,反之,平面图形也可以通过折叠变成立体图形。
-展开图:将立体图形展开成平面图形的过程。
2.教学活动:邀请学生分享自己在课堂上的收获和感悟,引导他们从空间想象力、逻辑思维能力等方面进行自我评价。
3.设计意图:通过总结归纳,帮助学生巩固所知识,培养他们的反思能力和自主学习能力,为后续的学习奠定基础。
在整个教学内容与过程中,教师应关注学生的个体差异,充分调动学生的积极性,引导他们主动参与课堂活动,使学生在掌握知识的同时,提高各方面的能力。
2.分层次教学,注重个体差异:针对学生在空间想象力、抽象思维能力和动手操作能力上的差异,设计不同难度的教学任务,使每个学生都能在课堂上得到有效的提升。
3.合作探究,培养学生的团队协作能力:采用小组合作、讨论交流等形式,让学生在合作探究中掌握展开与折叠的知识,提高学生的团队协作能力和表达能力。
4.理论与实践相结合,提高学生的动手操作能力:设置丰富的实践活动,如制作立体图形、展开图的绘制等,让学生在实际操作中加深对知识的理解。
2.教学指导:引导学生观察、思考、实践,鼓励他们发表自己的观点,培养团队协作能力和表达能力。
3.设计意图:通过小组讨论,让学生在合作探究中深入理解展开与折叠的原理,提高学生的空间想象力和动手操作能力。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生独立完成,巩固所学知识。
-简单题:识别常见立体图形的展开图,并能正确折叠成立体图形。
北师大版七年级数学上册第一章第二节《展开与折叠》教学设计
北师大版数学七年级上册 1 2 展开与折叠教案

2 展开与折叠
第1课时正方体的展开与折叠
你是按什么规律来分类的?学生讨论得出分为4类:
4、设问:既然都是正方体,为什么剪出的平面图形会不一样呢?
5、一个正方体要将其展开成一个平面图形,必须沿几条棱剪开?第三环节:先猜想再实践,发展几何直觉
内容:把一个正方体的表面沿某些棱剪开,展成一个平面图形,你能得到下面的些平面图形吗?
第四环节:巩固基础
内容:下列图形可以折成一个正方体形的子.折好以后,与 1 相邻的数是什么?相对的数是么?先想一想,再具体折一折,看看你的想法是否正确
第五环节:课堂小结,布置作业
习题1.3第1、2、4题有几种,各有什么特点。
当堂检测
如果将正方体的表面分别标上数字1,2,3,4,5,6,使它的任意两个相对面的数字之和为7,将它沿某些棱剪开,能展开成下列的平面图形吗?
板书
设计
教学
反思
第2课时
课题 1.2展开与折叠(二) 执笔人审核人。
北师大版七年级数学上册1.2《展开与折叠》教学设计(第2课时)

a.平面图形与立体图形之间的转换方法有哪些?
b.在实际生活中,展开与折叠知识有哪些应用?
c.如何运用展开与折叠知识解决实际问题?
要求:论文结构清晰,观点明确,论据充分,字数不限。
4.鼓励学生进行课后拓展学习,通过网络、书籍等途径了解以下内容:
a.其他有趣的几何变换方法;
(三)教学设想
1.创设情境,激发兴趣:以生活中的实际例子引入展开与折叠的概念,让学生感受到数学与生活的紧密联系,激发学习兴趣。
2.自主探究,合作交流:设计具有启发性的问题,引导学生通过观察、实践、讨论等方式,自主探究展开与折叠的规律。在此过程中,鼓励学生进行小组合作,分享彼此的想法,形成共同的认识。
(二)过程与方法
1.采用探究式教学方法,引导学生通过观察、实践、讨论等环节,自主发现展开图与折叠的规律。
2.利用信息技术手段,如多媒体课件、网络资源等,辅助教学,提高学生的学习兴趣和效果。
3.设计丰富的课堂活动,如小组合作、竞赛等,激发学生的学习积极性,培养合作意识和竞争意识。
4.通过对典型例题的分析与讲解,使学生掌握解题方法,形成解决问题的策略。
2.学生独立思考,尝试解决练习题,教师巡回辅导,关注学生的解题过程和方法。
3.邀请部分学生上台展示自己的解题过程,其他学生进行评价,教师给予点评和指导。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结展开与折叠的基本概念、几何变换方法以及解决实际问题的策略。
2.学生分享自己在学习过程中的收获和感悟,教师给予肯定和鼓励。
2.学生分享观察到的展开图特点,教师适时给出展开图和折叠的定义,并强调它们之间的相互关系。
3.讲解几何变换方法,如平移、旋转等,并举例说明如何运用这些方法将平面图形转换为立体图形,反之亦然。
北师大版七年级数学(上)《1.2展开与折叠》教学设计

北师大版七年级数学(上)《1.2展开与折叠》教学设计一. 教材分析《1.2展开与折叠》这一节内容,主要让学生了解和掌握平面图形的折叠与展开,培养学生的空间想象能力和动手操作能力。
通过这一节的学习,使学生能够熟练地运用折叠与展开的方法,解决一些实际问题。
二. 学情分析学生在学习这一节内容时,已经有了一定的几何知识基础,对一些基本的平面图形有了一定的了解。
但是,对于复杂的图形折叠与展开,可能还存在着一定的困难。
因此,在教学过程中,需要注重引导学生,培养他们的空间想象能力和动手操作能力。
三. 教学目标1.知识与技能:使学生掌握平面图形的折叠与展开的方法,能够熟练地运用折叠与展开的方法,解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手操作能力。
3.情感态度价值观:激发学生学习数学的兴趣,培养他们的观察能力、思考能力和创新能力。
四. 教学重难点1.重点:平面图形的折叠与展开的方法。
2.难点:对于复杂的图形折叠与展开,如何引导学生进行思考和操作。
五. 教学方法采用问题驱动法、合作学习法、操作实验法等教学方法,引导学生观察、操作、思考、交流,培养他们的空间想象能力和动手操作能力。
六. 教学准备1.准备一些简单的平面图形,如正方形、长方形、三角形等。
2.准备一些复杂的平面图形,如六边形、八边形等。
3.准备一些剪刀、胶带等工具,让学生进行折叠和展开的操作。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实物,如纸盒、衣物等,引导学生观察和思考,这些实物是如何通过折叠和展开形成的。
让学生体会到折叠与展开在实际生活中的应用,激发他们的学习兴趣。
2.呈现(10分钟)呈现一些简单的平面图形,如正方形、长方形、三角形等,引导学生观察和思考,这些图形是如何通过折叠和展开形成的。
通过学生的自主探索和合作交流,总结出一些基本的折叠与展开的方法。
3.操练(10分钟)让学生动手操作,将一些简单的平面图形进行折叠和展开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一丰富的图形世界
展开与折叠
【学习目标】
1.经历展开与折叠、模型制作等活动,发展学生的空间观念,积累数学活动经验.2.在操作活动中认识棱柱的某些特性.
3.了解棱柱、圆柱、圆锥的侧面展开图,并能根据展开图判断和制作简单的立体模型.
【基础知识精讲】
/
1.棱柱的分类
我们已经了解了棱柱,那么棱柱之间是否还有区别呢
通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.
2.棱柱的特点
若有若干几何体,你能立刻找到棱柱吗棱柱有什么与众不同的特征呢
(1)棱柱的上、下底面是完全相同且互相平行的多边形.
(2)棱柱的侧面都是矩形.
(3)棱柱的侧棱长都相等.
、
名称底面形状顶点数棱数侧棱数侧面数侧面形状·
总面数
n棱柱n边形2n个3n个n条n个长方形"
(n+2)个3.部分几何体的平面展开图.
将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢
(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).
图1—9
(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).
(
图1—10
(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)
图1—11
4.能折成棱柱的平面图形的特征
我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.比如:棱柱.若能折成棱柱,一定要符合以下特点:
(1)棱柱的底面边数=侧面数.
(2)棱柱的两个底面要分别在侧面展开图的两端.
>
(3)四棱柱的平面展开图中只有5条相连的棱.
5.正方体的平面展开图
在课本中、习题中会经常遇到让大家辨认正方体表面展开图的题目.为了查阅方便,在此列出正方体的十一种展开图,供大家参考.
图1—12
【学习方法指导】
[例1]三棱柱有_______条棱,_______个面,其中侧面是_______形,_______面的形状一定完全相同.
/
点拨:n棱柱的数量特征如下:它有3n条棱,(n+2)个面,侧面一定是长方形.对于完全相同的面则需注意.棱柱的侧棱都是相等的但底面边长不一定相等,因此以底面边长和侧棱为长和宽的侧面的大小不一定相同.如:
图1—13
易错点:
(1)“三棱柱的侧面是三角形.”是常出现的错误,一定要记住:棱柱的侧面是长方形.
(2)“侧面都相等.”这也是易犯的错误.侧棱长都相等,易使学生误认为侧面也全都相同.
解答:95长方上、下底
[例2]一个棱柱有12个顶点,所有侧棱长和为36 cm,求每条侧棱的长.;
点拨:先根据棱柱的数量特征,由顶点数求出是几棱柱,则相应有几条侧棱,再由侧棱长相等,求出结果.
解:有12个顶点的棱柱是六棱柱,有6条侧棱.则每条侧棱长36÷6=6 cm.
答:每条侧棱长6 cm.
[例3]图1—14所示的平面图形是由哪几种几何体的表面展开的
(1)(2)(3)
图1—14
点拨:找几何体的表面展开图,关键是看侧面和底面的形状.
·
底面是圆的几何体有圆柱、圆锥、圆台.
侧面是扇形的几何体是圆锥.
侧面是长方形的几何体是棱柱、圆柱.
解答:(1)圆锥;(2)圆柱;(3)圆台.
[例4]下面图形经过折叠能否围成棱柱
图1—15
点拨:看能否围成棱柱,可参考“内容全解4”中的几条内容,如有不符合,就不能围成棱柱.
(
解答:(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.
(2)两底面在侧面展开图的同一端,不在两端,所以也不能围成棱柱.
(3)可以折成棱柱.
[例5]一个正方体纸盒沿棱剪开,最多剪几条棱最少呢
点拨:正方体是四棱柱,共有12条棱,要剪开纸盒使每个面相连,必须剪开部分棱,棱的总数不变(即12),若知道剩下未被剪开的棱数,就可以得到剪开的棱数了.解答:由正方体平面展开图知正方体的所有展开图中都只有5条相连的棱,而正方体共有12条棱,那么需要剪开的棱数就是12-5=7条了.
【拓展训练】
1.矩形、长方形和正方形都可称为矩形.
2.圆台与棱锥的展开图.
(1)圆台:圆台的展开图是由大小两个圆(作底)和部分扇形(作侧面)组成的.
图1—16
(2)棱锥:棱锥的展开图是由一个多边形(作底)和几个三角形(作侧面)组成的.
图1—17图1—18。